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ABSTRACT: The equivalent permeability of a randomly cracked porous material is studied using a finite element 
program in which a four-nodes zero-thickness element is implemented for modelling the cracks. The numerical 
simulations are performed for geometries with different cracks densities and for different values of matrix 
permeability and cracks conductivity, but the cracks length are taken equal to one. The method used for 
determination of the equivalent permeability resulted in a perfectly symmetric equivalent permeability tensor for 
each case. Based on the obtained results a simple relation is presented for the equivalent permeability of a 
randomly cracked porous material as a function of the matrix permeability and the cracks density and 
conductivity. This relation is then generalized for the cracks of any length using a linear transformation.  

1 Introduction 
Evaluation of the equivalent permeability of a cracked porous material has a great interest in geotechnical and 
petroleum engineering. In such material, the non-cracked matrix is permeable and the presence of the cracks, 
which are normally more permeable than the matrix, creates the preferential paths for water flow. When the 
cracks density is below the percolation threshold, the equivalent permeability of the cracked porous material is a 
function of the matrix permeability, cracks density and transmissivity and the statistical distribution of length and 
orientation of the cracks. The problem of equivalent permeability of a cracked porous material has been 
intensively investigated using the theoretical upscaling methods (Sánchez-Vila et al. 1995, Goméz-Hernández 
and Wen 1996, Renard and de Marsily 1997, Noetinger 2000, Dormieux and Kondo, 2002). Recently Pouya and 
Ghabezloo (2008) have presented a solution for the flow around a single crack in porous material and used this 
solution for upscaling the permeability of micro-cracked materials. But this approach, as well as other approaches 
using at best the self-consistent scheme for permeability upscaling, remains valid only for weak crack densities. 
In fact, these semi-analytical approaches neglect the crack interaction or represent it in a too simplified way. The 
upscaling of permeability for higher density of cracks requires adequate numerical modelling. In these methods 
the macroscopic permeability is deduced from the relations between the average velocity and pressure gradient 
in a Representative Elementary Volume. A review of recent works on numerical determination of the effective 
permeability of fractured rock masses gives witness, however, of difficulties in determining rigorously these 
average values for locally discontinuous materials. As a consequence, the compliance tensor obtained for the 
domain is found to be not symmetric and this is attributed wrongly to the finite-size of the domain. Pouya and 
Courtois (2002) and Pouya (2005) proposed a rigorous method for determining the mean flux and the mean 
pressure gradient from pressure and flux values on the boundary of the domain and showed that the equivalent 
permeability tensor obtained in this way is symmetric and positive-definite. In this work a numerical method based 
on Finite Elements is presented for a rigorous calculation of the effective permeability of a micro-cracked porous 
material. The analysis results in a law of equivalent permeability as a function of matrix permeability and cracks 
conductivity, length and density. 
 
Notation: In what follows, light-face (Greek or Latin) letters denote scalars; underlined letters designate vectors 
and bold-face letters, second-order tensors. The convention of summation on repeated indices is used implicitly. 
The inner product of two vectors is labeled as a.b = aibi and the operation of a second-order tensor a on a vector 
n is labelled as a.n, (a.n)i = aijnj.  

Please cite this paper as: Ghabezloo S., Pouya A. (2008) Numerical upscaling of the permeability of a 
randomly cracked porous medium, The 12th international conference of International Association for 
Computer Methods and Advances in Geomechanics (IACMAG), 1-6 octobre 2008, Goa, India, 2536-2543. 
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2 Governing equations 

A homogeneous bloc Ω  containing a family of straight cracks Γ  is considered (Figure (1)). Fluid velocity ( )v x  
in the matrix is given by the Dracy’s law: 
 
 ( ) ( )x v x p x∀ ∈Ω−Γ = − ⋅∇k  (1) 
 
where k  is the matrix permeability and ( )p x  the pressure field. The flux (discharge) in the crack is given by a 
Poisieul type law, function of the pressure gradient along the crack: 
 
 ( )x q s c p s∀ ∈Γ = − ∂ ∂  (2) 
 
Where s  is the abscise along the crack and c  is the crack’s conductivity. Mass conservation in the matrix reads:  
 
 ( ) 0x v x∀ ∈Ω−Γ ∇ ⋅ =  (3) 
 

 
Figure 1. Porous matrix containing cracks 

The crack-matrix mass exchange law reads, on running points on cracks (Pouya and Ghabezloo, 2008): 
 
 ( ) 0v x n q s⋅ + ∂ ∂ =  (4) 
 
where x  is the point in Ω  corresponding to the abscise s on the crack, n  is the normal unit vector to the crack 

line and ⋅  designates the discontinuity or jump across the crack.  

2.1 Conductivity tensors for a finite size domain 

A linear pressure condition ( )p x A x= ⋅  is prescribed on the boundary ∂Ω , generating a velocity field ( )v x  in 
Ω . The average velocity V  is determined numerically by: 

 
( )

1
ii

V vd qtds
Ω Γ

⎡ ⎤
= Ω +⎢ ⎥
Ω ⎢ ⎥⎣ ⎦

∑∫ ∫  (5) 

 
The linearity of equations implies that V is a linear function of A . From V  components obtained for two 
different directions of A  we deduce the coefficients of the conductivity tensor K  defined by V A= − ⋅K . Pouya 
and Courtois (2002) and Pouya (2005) have shown, for continuous material, that this equivalent permeability 
matrix K  is symmetric and positive-definite. This property can be extended to cracked material in the same way 
that for mechanical properties as shown by Pouya and Chalhoub (2008). 
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3 Finite element modelling 
In order to study the problem of equivalent permeability of a cracked porous material, a 2D finite element program 
is developed for solving the equations of fluid transfer in a double porosity material, presented in the preceding 
section. A four-node zero-thickness joint element is integrated into the program for the modelling of the cracks. 
The statistical distribution is limited to randomly oriented cracks. The equivalent permeability in this case is 
isotropic. A square shaped REV is considered and a family of random cracks with a given density is generated 
within the REV (Figure 2). The cracks density ρ  is defined by: 
 

 ( )21 2N lρ =
Ω

 (6) 

 
where N  is the number of cracks, l  is the cracks length and Ω  is the area of REV. The length of the cracks is 
taken equal to one and the size of the REV is defined with some preliminary calculations equal to ten. After the 
generation of the cracks with random positions and orientations, the cracks that have a part outside the REV are 
truncated. Then the finite element mesh is generated and the nodes on the cracks are doubled to form four-node 
zero-thickness joint elements. In order to optimize the calculation time, the nodes and elements are renumbered 
after the creation of joint elements. An example of geometry with cracks density 1ρ =  is presented in Figure (2). 
 

 
Figure 2. Example of geometry with ρ=1 

The linear pressure boundary condition ( )p x A x= ⋅  is applied to the model. Using the velocity vectors of the 

matrix elements and the discharge of the joint elements in equation (5) the average velocity vector V  is 

calculated. By solving the problem for two different vectors 1A  and 2A  two velocity vectors 1V  and 2V  are 
obtained. Knowing that V A= − ⋅K , the four elements of K  can be found by solving a system of two linear 
equations. The method of determination of equivalent permeability tensor presented here above (Pouya and 
Courtois, 2002; Pouya, 2005) is resulted in an equivalent permeability tensor K  which is perfectly symmetric. As 
an example, for a model with 1.0ρ = (Figure (2)), 81 10 m seck −= × , 6 21 10 m secc −= ×  and thus 100c k =  
the calculated equivalent permeability tensor is: 
 

 
7 9

9 7

1.3223 10 8.1411 10
8.1411 10 1.2589 10

− −

− −

⎡ ⎤× − ×
= ⎢ ⎥− × ×⎣ ⎦

K  (7) 

 
Due to the random distribution of the position and orientation of the cracks and also the isotropic permeability of 
the porous matrix ( xx yyk k k= = , 0xy yxk k= = ), the elements xxK  and yyK  of the equivalent permeability 

matrix K  have very close values. The average of these two values is considered as the equivalent permeability 
of the cracked porous material. For a more general case we can write: 
 
 eqK = K  (8) 
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where K  is the determinant of the second-order matrix K . Thus for the equivalent permeability tensor 
presented in equation (7), the ratio of the equivalent permeability of the cracked medium to the matrix 
permeability, eqK k  is obtained equal to 12.91. For each finite element model with a given cracks density, the 

equivalent permeability tensor is determined for different values of c k ratio and the results are presented in the 
following section. 

4 Modelling results 
In order to study the effect of the cracks density and conductivity on the equivalent permeability of the cracked 
porous material, 18 different models with cracks densities between 0.2 and 1.2 are prepared. For each model the 
equivalent permeability is calculated for the ratio of the cracks conductivity over matrix permeability,c k , equal 
to 1, 5, 10, 50 and 100 which make a total of 90 data points. Figure (3) shows the ratio of the equivalent 
permeability to the matrix permeability, eqK k , as a function of the cracks density ρ  for different values of 

cracks conductivity to matrix permeability ratio, c k . We can see the increase of the eqK k  ratio with the 
cracks density and conductivity. To obtain a unique expression for the equivalent permeability as a function of the 
cracks density and conductivity, Figure (4) presents the expression ( )Ln eqK k ρ  as a function of the c k  

ratio, shown in a logarithmic scale, from which the following expression is obtained for the equivalent 
permeability: 
 

 ( ) ( )1 Ln 0.38Ln 0.92eqK k c k
ρ

= +  (9) 

 
Note that this relation is valid for high conductivity cracks ( 1c k > ) and is not valid for the limit 0c → . 
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Figure 3. Increase of the equivalent permeability with 
cracks density for different values of c/k 

Figure 4. Increase of the equivalent permeability, 
normalized with matrix permeability and cracks 

density, with c/k ratio 

Equation (9) can be re-written in the following form: 
 

 
0.38

2.51
eqK c

k k

ρ
⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (10) 

 
Equation (10) gives the equivalent permeability of a randomly cracked porous material as a function of the matrix 
permeability and cracks density and conductivity, but is restricted to the case in which the cracks length is equal 
to one. This equation will be generalized in the following section for the cracks of every length using a theoretical 
transformation. The results then will be validated using some more numerical calculations. 
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5 Linear transformation 
Consider the problem presented in Figure (5). Here we consider an isotropic permeability tensor for the porous 
matrix. Considering the isotropic distribution of the cracks, the resulted equivalent permeability tensor will also be 
isotropic. So we replace the second-order tensors k  and K  respectively with the scalar values k  and eqK . As 
described before the solution of the problem to find the fields ( )v x  and ( )p x is given by the following 
equations: 
 

 

( )
( ) ( )
( )

( )
( )

0

0

p x A x x

v x k P x x

q s c p s x

v x x

v x n q s x

= ⋅ ∀ ∈∂Ω

= − ∇ ∀ ∈Ω−Γ

= − ∂ ∂ ∀ ∈Γ

∇⋅ = ∀ ∈Ω−Γ

⋅ + ∂ ∂ = ∀ ∈Γ

 (11) 

 
Now let introduce a linear transformation of the coordinate system such that: 
 
 1x xλ−=  (12) 
 

 
Figure 5. Linear transformation 

This transformation changes the domain Ω  to a domain Ω  and the cracks Γ  with length equal to one to the 
cracks Γ  with length equal to 1λ− . Now we define a new solution field such that: 
 
 ( ) ( ) ( ) ( ),v x v x p x p x= =  (13) 
 
For this new solution we have: 
 

 ( ) ( ) ( ) ( )
i i

p x p x
p x p x

x x
λ λ

∂ ∂
∇ = = = ∇

∂ ∂
 (14) 

and so: 
 ( ) ( ) ( )v x k p x k p xλ= − ∇ = − ∇  (15) 
 
From equation (13) we know that ( ) ( )v x v x=  and from equation (11) we have ( ) ( )v x k p x= − ∇ . So the 
following relation between the matrix permeabilities is found: 
 
 1k kλ−=  (16) 
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From equation (13) for the points on the cracks we have ( ) ( )v x n v x n⋅ = ⋅  and so to satisfy equation (11) 

for the transformed problem we should have q s q s∂ ∂ = ∂ ∂ . Knowing that s sλ=  we obtain 

q s q sλ∂ ∂ = ∂ ∂  and so we find: 
 
 1q qλ−=  (17) 
 
For the points on the cracks from equation (11) we have q c p s= − ∂ ∂ . Knowing that s sλ=  and ( ) ( )p x p x=  

we find 1p s p sλ−∂ ∂ = ∂ ∂  and so 1q c p sλ−= − ∂ ∂ . Replacing this in equation (17) we find the following 
relation between the crack conductivities: 
 
 2c cλ−=  (18) 
 
From the definition given in equation (6) and knowing that 1l λ−=  and 2λ−Ω = Ω  the cracks density for the 
transformed problem is written as the following: 
 

 
2 2

2 444
Nl N Nλρ ρ

λ

−

−= = = =
ΩΩΩ

 (19) 

 
Using equations (12) and (13), the mass conservation equation for Ω  is written in the following form: 
 

 ( ) ( ) ( ) ( ) 0i i

i i

v x v x
v x v x

x x
λ λ

∂ ∂
∇ ⋅ = = = ∇ ⋅ =

∂ ∂
 (20) 

 
So we showed the solution fields ( )v x  and ( )p x  corresponding to a cracked porous material Ω  with the 

matrix permeability k , cracks conductivity c , length equal to one and density ρ  are equivalent to the solution 

fields ( )v x  and ( )p x  of another problem Ω  with the matrix permeability equal to 1kλ− , cracks conductivity 

equal to 2cλ− , length equal to 1λ−  and the same density ρ . 

The average velocity vector for the problem Ω  can be obtained using equation (5): 
 

 
( ) ( )

2 1 1
2

1 1
i ii i

V vd qtds v d qt ds Vλ λ λ
λ

− − −
−

Ω ΩΓ Γ

⎡ ⎤ ⎡ ⎤
= Ω + = Ω + =⎢ ⎥ ⎢ ⎥

ΩΩ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫ ∫ ∫  (21) 

 
For the boundary ∂Ω  we have ( )p x A x= ⋅ . Knowing that ( ) ( )p x p x=  and using equation (12) we find: 
 
 A Aλ=  (22) 
 
Using equations (21) and (22) and knowing that eqV K A= − we can write 1eq eq eqK A K A K Aλ−= =  and so we 
obtain the following relation between the equivalent permeability tensors: 
 
 1eq eqK Kλ−=  (23) 
 
Let us notice that eqK  is the equivalent permeability for the case of local parameters k , c , ρ  and l . This 

means that we can write ( ) ( ), , , , , ,eq eqK k c l K k c lρ ρ= . So equation (23) can be written in the following from: 

 
 ( ) ( )1 2 1, , , , , ,1eq eqK k c l K k cλ λ ρ λ ρ− − −=  (24) 
 
We can re-write equation (24) for a new set of variables by considering 1k kλ−′ =  and 2c cλ−′ =  and knowing 
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1l λ−= : 

 ( ) ( )1 2, , , , , ,1eq eqK k c l lK l k l cρ ρ− −′ ′ ′ ′=  (25) 
 
Now we can replace the variable k ′  and c ′  respectively by k  and c  to have: 
 
 ( ) ( )1 2, , , , , ,1eq eqK k c l lK l k l cρ ρ− −=  (26) 
 
From equation (11) it is evident that if we multiply the matrix permeability k  and the cracks conductivity c  by a 
coefficient α , the resulted equivalent permeability will be multiplied by α . So we have: 
 
 ( ) ( )1, , , , , ,eq eqK k c l K k c lρ α α α ρ−=  (27) 
 
By taking 1kα −=  in equation (27) we find: 

 ( ) ( )1, , , 1, , ,eq eqK k c l kK k c lρ ρ−=  (28) 

Once again by taking 1k lα −=  we obtain: 
 
 ( ) ( ) ( )1 2 1 1 1 1 2 1 1 1, , ,1 , , ,1 1, , ,1eq eq eqK l k l c kl K lk l k lk l c kl K k l cρ ρ ρ− − − − − − − − − −= =  (29) 
 
Replacing equation (28) and (29) in equation (26) we obtain: 
 
 ( ) ( )1 1 11, , , 1, , ,1eq eqK k c l K k l cρ ρ− − −=  (30) 
 
We can simply re-write equation (30) in the following form: 
 

 , , ,eq eqc cK l K
k kl

ρ ρ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (31) 

 
Using equation (31) the expression of equation (10) can be generalized for the case of cracks of length l  in the 
following form: 
 

 
0.38

2.51
eqK c

k kl

ρ
⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (32) 

 
The generalized expression presented in equation (32) can be verified using some numerical simulations. For 
doing this two different cases are compared: The first is with 1l =  and 10c k =  and the second one is with 

10l =  and 100c k =  and so for both cases 10c kl = . Figure (6) shows the increase of the eqK k  ratio with 
the cracks density ρ  for both cases. The perfect superposition of the results of the two studied cases verifies the 
presented transformation (equation (32)). 
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Figure 6. Verification of the linear transformation 

6 Conclusion 
The equivalent permeability of a cracked porous material is studied numerically using a finite element program in 
which the cracks of equal length are modelled using zero-thickness four-nodes elements. A random distribution is 
considered for positions and orientations of the cracks. A linear pressure boundary condition is applied to the 
model and the equivalent permeability is calculated using the method proposed by Pouya and Courtois (2002) 
and Pouya (2005). This method resulted in a perfectly symmetric equivalent permeability tensor. Several 
numerical simulations are performed for geometries with different cracks density and for different ratios of the 
cracks conductivity over the matrix permeability. For each case the equivalent permeability tensor is calculated 
for the cracks with the length equal to one. Based on the obtained results a simple equation is presented for the 
equivalent permeability of a randomly cracked porous material as a function of the matrix permeability and the 
cracks density and conductivity for the cracks length equal to one. This relation is then generalized for the cracks 
of any length using a linear transformation. The presented transformation is then verified by some more numerical 
simulations.  
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