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Abstract

Statistical inference with missing data is a recurrent issue in epidemiology where

the infection process is only partially observable. In this paper, Approximate

Bayesian Computation, an alternative to data imputation methods such as Monte

Carlo Markov chain integration, is proposed for making inference in epidemiological

models. This method of inference is not based on the likelihood function and re-

lies exclusively on numerical simulations of the model. We apply the Approximate

Bayesian Computation framework to calibrate an epidemiological model dedicated

to the analysis of the HIV contact-tracing program in Cuba. We first evaluate

numerically, using synthetic data sets, the statistical properties of the estimated

posterior distributions obtained with different variants of Approximate Bayesian

Computation. Then, once the epidemiological model has been calibrated with the

Cuban VIH database, we make predictions concerning the efficiency of the detection

system, and the evolution of the disease in the forthcoming years.

Keywords: mathematical epidemiology, stochastic SIR model, contact-tracing, unob-
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1 Introduction

Mathematical modelling in epidemiology plays an important role for understanding and
predicting the spread of diseases, as well as for comparing and evaluating public health
policies. It has been emphasized in the literature (e.g. [6, 32]) that although deterministic
modelling can be a guide for describing epidemics, stochastic models have their importance
in featuring realistic processes and in quantifying confidence in parameters estimates and
prediction uncertainty. Standard mathematical models in epidemiology consist in com-
partmental models, in which the population is structured in different classes composed of
the susceptible, infectious and removed individuals (SIR models [30]). Parameter estima-
tion for SIR models is usually a difficult task because of missing observations which is a
recurrent issue in epidemiology (e.g. [6, 23, 34, 35, 41]). Indeed, the infected population
may be partially observed and the infection times may be missing. The computation of
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the likelihood in this context is numerically infeasible because it involves integration over
all unobserved infection events.

Markov Chain Monte Carlo (MCMC) methods, that treat the missing data as extra pa-
rameters, have thus become increasingly popular for calibrating stochastic epidemiological
models with missing data (e.g. [10, 20, 34, 35]). However, for high-dimensional missing
observations, fine tuning of the proposal distribution is required for efficient MCMC al-
gorithm [24]. In this paper, we show that SIR models with missing observations can be
calibrated with the Approximate Bayesian Computation (ABC) approach, an alternative
to MCMC, originally proposed for making inference in population genetics [36, 5]. This
approach is not based on the likelihood function and relies solely on numerical simula-
tions of the model. The idea of using simulations in models for which the distribution
theory is intractable has been pioneered by Diggle and Gratton [15] in a frequentist set-
ting. Interestingly, Silverman [38] in the discussion following their paper anticipated that
compartmental models might constitute applications of the likelihood free approach.

The current work is motivated by the study of the Cuban HIV/AIDS database [13]
that contains the dates of detection of the 8662 individuals that have been found to be
HIV positive in Cuba between 1986 and 2007. The database contains additional covariates
including the manner by which an individual has been found to be HIV positive. The
individuals can be detected either by the so-called random screening or contact-tracing

methods. The latter is the mode of detection by which a person, that is found to be HIV
positive, is invited to give the names of her/his sexual partners (e.g. [27]) so that they
can in turn take a detection test. As usual for infectious disease data, the total number
of infectious individuals as well as the infectious times are unknown. Only data relative
to the detected individuals are indeed available. However, once an individual has been
detected, it is sometimes possible to infer by medical methods the probable time at which
he/she was infected. In the Cuban HIV database, these reconstructed times are available
for the sixth first years of the epidemic.

The paper is organized as follows. In the first section, we introduce the stochastic
SIR model with contact tracing that has been developed by Clémencon et al. [12]. The
second section is devoted to the ABC methods. In this section, we present the standard
ABC methodology and its regression-based variants that have been developed [5, 7] as
well as an original extension to the case of path-valued summary statistics that is suited
to our study. In the third section, we compare the statistical properties of the different
ABC approaches using synthetic data sets. The last section concentrates on the analysis
of the database for HIV-AIDS in Cuba. We address several questions concerning the
dynamic of this epidemic: what is the percentage of the epidemic that is known [14, 27],
or equivalently what is the efficiency of the system of detection in Cuba [13]; how many
new cases of HIV are expected in the forthcoming years; and what is the proportion of
detections that will be obtained in the contact-tracing program.

2 A stochastic SIR model for HIV/AIDS epidemics

with contact-tracing

In this work, we restrict our study to the sexually-transmitted epidemic of HIV in Cuba.
It has been inferred that 90% of the seropositive individuals have contracted the disease
by sexual contacts [27]. For modelling the dynamics of the number of known and unknown
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HIV cases, we consider the SIR-type model developed in [12]. The population is divided
into three main classes S, I and R corresponding to the susceptible, infectious, and detected

individuals considered as removed because we assume that they do not transmit the disease
anymore (see Figure 1). The population of the susceptible individuals, of size St, at time
t > 0, consists of the sexually active seronegative (healthy) individuals. Individuals
immigrate into the class S with a rate λ0 and leave it by dying/emigrating, with rate
µ0St, or by becoming infected. The class of infectious individuals, of size It at time t > 0,
corresponds to the seropositive individuals who have not taken a detection test yet and
may thus contaminate new susceptible individuals. We assume that each individual may
transmit the disease to a susceptible individual at rate λ1 so that the total rate of infection
is equal to λ1StIt. Individuals leave the class I when they die/emigrate with a total rate
of µ1It, or when they are detected to be HIV positive.

The class R of the detected individuals, of size Rt at time t, is subdivided into two
subclasses whether their seropositivity has been revealed by random screening or contact
tracing. As already mentioned, contact tracing in Cuba consists in testing the sexual
contacts of detected individuals [27]. In the following, we denote by R1

t (resp. R2
t ) the

size, at time t > 0, of the population of removed individuals detected by random screening
(resp. contact-tracing). We assume that the total rate of detection by random screening
is λ2It. Concerning contact tracing detection, the model shall capture the fact that the
contribution of a removed individual to the rate of detection depends on the time elapsed
since she/he has been found to be HIV positive. In the sequel, we will consider the two
following expressions for the total rate of contact-tracing detection

λ3It
∑

i∈R

Ψ(t− Ti) and λ3It
∑

i∈R

Ψ(t− Ti)/(It +
∑

i∈R

Ψ(t− Ti)), (2.1)

where Ψ is a positive function and Ti denotes the time at which a removed individual
i has been detected. The weight function Ψ determines the contribution of a removed
individual i to the contact-tracing control according to the time t − Ti she/he has been
detected. In the following we will restrict our analysis to Ψ(t) = e−ct, for c > 0, so
that the contribution of a removed individual to the contact-tracing control decreases
exponentially with the time elapsed since she/he has been detected. The first rate in
(2.1) corresponds to a mass action principle, and is proportional to the weighted number
of detected individuals. The second rate in (2.1) corresponds to a model with frequency
dependence. Further details and examples of more general infection and detection rates
can be found in [12] as well as a more elaborate mathematical definition of the model
based on random measures.

In the following we denote by θ = (µ1, λ1, λ2, λ3, c) the multivariate parameter of the
model. When there is no missing observation, Clémencon et al. [12] studied the maximum
likelihood estimators and proved their consistency and asymptotic normality.

2.1 Connection between the stochastic and the deterministic
SIR model

In this section, we focus on the first form of detection rate by contact tracing proposed
in equation (2.1) which corresponds to a mass action principle. Similar results can be
obtained for the second rate of equation (2.1). The evolution of the SIR process described
in Section 2 can be described by Stochastic Differential Equations (SDEs) driven by
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Poisson point measures and which describe the population at an individual level. These
SDEs are given and studied in [12]. To link the stochastic SIR process with the classical
equations of epidemiology [30], Clémençon et al. [12] show that in a large population
renormalization, the individual-centered SIR process converges to the solution of the
following system of PDEs






dst

dt
= λ0 − µ0st − λ1stit

dit
dt

= λ1stit − (µ1 + λ2)it − λ3it
∫

R+
Ψ(a)ρt(a) da

∂ρt

∂t
(a) = −∂ρt

∂a
(a)

ρt(0) = λ2it + λ3it
∫

R+
Ψ(a)ρt(a) da

(2.2)

where st, and it denote the size of the susceptible and infectious populations at time t ≥ 0,
and ρt(a) denotes the density of individuals having been detected since a time a at time
t (0 ≤ a ≤ t). This PDE system with age provides an alternative to delay equations (e.g.
[31, 44, 45]) and discrete stage structured models (e.g. [28]). With the exponential form
for Ψ, the PDE system reduces to the following ODE






dst

dt
= λ0 − µ0st − λ1stit

dit
dt

= λ1stit − (µ1 + λ2)it − λ3itrt
drt

dt
= λ2it + λ3itrt − crt

, (2.3)

where rt =
∫ t

0
e−caρt(a) da, so that rt measures, at time t, the contribution of the removed

individuals to the rate of detection by contact tracing.
Apart from the inherent stochastic nature of epidemic propagation that has already

been pointed out, and that may be particularly important for small populations (see e.g.

[18]), considering a stochastic SIR model rather than its deterministic counterpart can
present at least two important advantages for parameter calibration. First, it is quite
straightforward to perform exact simulations from the stochastic model (see Section 2.2)
and this is one motivation for considering ABC methods. Second, the individual-centered
stochastic process suits the formalism of statistical methods, which are based on samples
of individual data. Within this formalism, problems such as missing or noisy data can
be tackled with the arsenal of statistical methods. Since the estimates of the stochastic
process converge to the parameters of the PDEs (see [12]), this provides new alternative
approaches for calibrating the parameters of PDEs and ODEs (e.g. [2, 3, 9, 32]).

2.2 Exact path simulation of the SIR model with contact-tracing

The main difficulty for simulating the SIR model with contact tracing lies in the fact
that the rate of detection by contact-tracing evolves with time. Here, we consider an
acceptance-rejection technique for simulating the SIR-type process between time 0 and
the end of the observation period at time t = T (see [43, 17, 19] for similar algorithms).

In order to simplify the algorithm, we assume that the values of the parameter λ0 and
µ0 are such that the size of the population of susceptible individuals remains constant
during the observation period.

The algorithm can be described iteratively as follows:

1. Start with a population of S = S0 susceptible individuals, I = I0 infectious indi-
viduals, no detected individuals, and a vector of the detection times set to the null
vector.
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2. Assume that we have already simulate k events, and that the kth event occurs at

time tk. We describe, in the following, how to simulate the k+1th event. Let τ = tk
be the current time.

(a) Simulate an independent exponential random variable E with parameter

Ck = λ1StkItk + (µ1 + λ2)Itk + λ3ItkRtk

which is an upper bound of the sum of the rates of occurrence of all possible
events. The time of the next putative event is defined as τ ′ = τ + E .

(b) Increment the ages by E

(c) If τ ′ > T , then stop the simulation process.
Else, simulate an independent uniform random variable U in [0, Ck].
If 0 ≤ U < λ1StkItk then a susceptible individual is removed, and an infectious
individual is added.
If λ1StkItk ≤ U < λ1StkItk + µ1Itk then an infectious individual is removed.
If λ1StkItk + µ1Itk ≤ U < λ1StkItk + (µ1 + λ2)Itk then an infectious individual
is removed, an individual detected by random screening is added, and a zero
is added to the vector of the detection times.
If λ1StkItk + (µ1 + λ2)Itk ≤ U < λ1StkItk + (µ1 + λ2)Itk + λ3Itk

∑
i∈R ψ(τ ′ − Ti)

then an infectious individual is removed, an individual detected by contact
tracing is added, and a zero is added to the vector of the detection times.
Else, nothing happens. Return to step 2a with the current time set equal to
τ ′.

The complexity of the algorithm scales with the total number of events, so that it depends
on the parameter vector θ. When simulating the Cuban HIV epidemic, t = 0 corresponds
to the beginning of the epidemic in 1986 and the simulations are performed until the end
of the observation period at time T = 21.5, in July 2007.

3 Approximate Bayesian Computation for epidemic

models

Bayesian approaches have been widely used in epidemiology (e.g. [11, 10, 22, 23, 35, 40,
41]) and the reasons to adopt a Bayesian approach are manyfold. First, in epidemiology,
credibility intervals might be of greater interest than simple point estimates. The same
reason was invoked in population genetics [42]. Whereas Bayesian algorithms usually
provide samples from the posterior distribution from which it is straightforward to obtain
credibility intervals, frequentist confidence intervals are based on asymptotic derivations
that might be poor approximations when the sample is too small or highly correlated. The
second reason is that epidemiological models may contain nuisance parameters that should
be integrated over when making inference. In the context of the SIR model with contact
tracing, the parameters c and µ1 are considered as the nuisance parameters whereas the
parameters of interest are λ1, λ2, and λ3. The third reason is that Bayesian methods offer
a convenient way to handle missing observations that are treated as extra parameters.
And, the last reason is that high dimensional integration, typically involved in Bayesian
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methods, might be more convenient than high dimensional optimization when the like-
lihood function is flat in certain directions. However, we lay absolutely no claim that
Bayesian methods are the most relevant methods for SIR-type models and applications
of the frequentist likelihood-free method of Diggle and Gratton [15], for instance, might
be of great interest in this setting.

First, let us sum up the main principle of the ABC method. For simplicity, we deal here
with densities, but the following description also holds when dealing with measures that
are not absolutely continuous w.r.t. the Lebesgue measure. Let x be the available data
and π(θ) be the prior density. Instead of focusing on the posterior density p(θ |x), ABC
aims at a less informative target density p(θ |S(x) = sobs) ∝ Pr(sobs|θ)π(θ) where S is a
summary statistic with realization sobs on the data, and which takes its values in a normed
space. The summary statistic S can be a d-dimensional vector or an infinite-dimensional
variable such as a L1 function. Of course, if S is sufficient, then the two conditional
densities are the same. The idea of replacing x with S(x) can be traced back at least
to [15] who initiated this approach in a frequentist setting. In general, it is a tough task
to find statistics that are sufficient or approximately sufficient (see [29]). The practice of
ABC consists of choosing summary statistics that are considered as informative enough.
The target distribution will also be coined as the approximate posterior distribution and
the ABC algorithms given below aim at generating samples from this distribution.

3.1 Smooth rejection

Let us now describe how the ABC method with smooth rejection [5] generates random
draws from the target distribution. We assume that a vector of summary statistics sobs is
calculated for the data. The algorithm can be described as follows

1. Generate N random draws (θi, si), i = 1 . . .N , where θi is generated from the prior
distribution and where si is the vector of summary statistics calculated for the ith

synthetic data set, simulated from the generative model with parameter θi (see
Section 2.2).

2. Associate to the ith simulation the weight Wi = Kδ(‖si − sobs‖), where ‖.‖ is an
appropriate metric and where Kδ(x) ∝ K(x/δ) in which K : R 7→ R+ is a Parzen-
Rosenblatt kernel and δ > 0 is a tolerance threshold.

3. Then the distribution (
∑N

i=1Wiδθi
)/(
∑N

i=1Wi), in which δx denotes the dirac mea-
sure at x, approximates the target distribution. In other words, the resulting
weighted sample (θi,Wi) forms a sample from a distribution close to the target
distribution p(θ |S(x) = sobs).

In the case of a d-dimensional vector of summary statistics, because these statistics may
span different scales, we consider a weighted Euclidean distance for ‖sobs − si‖, i =
1 . . .N , where the weights are equal to the inverse of the variance of each one-dimensional
summary statistic [5]. When dealing with L1-valued summary statistics, we consider
the L1-norm. Concerning the tolerance threshold δ, we rather set a tolerance rate Pδ

that corresponds to the percentage of accepted simulations. This procedure amounts at
choosing the Pδ quantile of the distances ‖si−sobs‖, i = 1 . . . N , for the tolerance threshold
δ. When K is the indicator function 1[0,δ[, the ABC (non-smooth) rejection algorithm
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simply consists of keeping the simulations for which the distance between the vector of
simulated and observed summary statistics is smaller than the prescribed tolerance δ. This
was considered by Pritchard et al. [36] in the infancy of ABC applications in population
genetics. In the sequel, an Epanechnikov kernel for Kδ is considered.

Once a sample from the target distribution has been obtained, as for classical Bayesian
inference, several estimators may be considered for point estimation of each one-dimensional
parameter λj, j = 1 . . . 3. We will consider here the means, medians and modes of the
marginal posterior distributions.

• Using the weighted sample (λj,i,Wi), i = 1 . . . N , the means of the target distribu-
tions p(λj|sobs) are estimated as

λ̂j(δ) =

∑N

i=1 λj,iKδ(‖si − sobs‖)∑N

j=1Kδ(‖sj − sobs‖)
, j = 1, . . . , 3 (3.1)

which is the well-known Nadaraya-Watson regression estimator of the conditional
expectation E(λj | sobs) [33, 46].

• The medians of the marginal target distributions are estimated by computing the
median of a non-weighted sample that has been obtained by sampling with replace-
ment in the weighted sample (θi,Wi)i∈[[1,N ]].

• The modes are estimated by maximizing the estimates p̂(λj | sobs) of the marginal
distributions of λj , j = 1 . . . 3, obtained as

p̂(λj | sobs) =

∑N
i=1K∆(λj,i − λj)Kδ(‖si − sobs‖)∑N

j=1Kδ(‖sj − sobs‖)
, λj > 0, j = 1, . . . , 3 (3.2)

where ∆ is a bandwith parameter for the density estimation. It can be seen that
formula (3.2) corresponds to a standard kernel smoothing for conditional density
estimation (e.g. [25]).

For computing the 95% credibility intervals, we estimate the 97.5% and the 2.5%
quantiles of the marginal target distributions in the same manner as the median.

Compared to standard likelihood approach, two important approximations are made
in the ABC approach described above. First, and as mentioned before the target distribu-
tion is not the true posterior distribution. Consequently, choosing a vector of informative
summary statistics is of considerable importance since a loose choice would lead to flat
target distributions. Second, in the case of a d-dimensional vector of summary statistics,
it is known (e.g. [8, 16]) that when N → +∞, the estimators (3.1) and (3.2) converge
if the tolerance rate satisfies limN→+∞ δN = 0, so that their bias converge to 0, and
limN→+∞Nδd

N = +∞, so that their variances converge to 0. This means that the tol-
erance rate has to be small, but large enough to retain a sufficient number of points for
computations. As d increases, a larger tolerance threshold shall be chosen involving that
the bias of the estimator might be large. This phenomenon known in statistics as the
curse of dimensionality may be a serious issue for the ABC-rejection approach since large
values of δ distort the approximation of the target distribution p(θ|sobs) by the approxi-
mate distribution obtained with the rejection method. The following paragraph presents
the correction originally introduced by Beaumont et al. [5] and refined by Blum and
François [7] to reduce the curse of dimensionality.
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3.2 Regression adjustment for vector-valued summary statistics

We explain here a refinement due to Beaumont et al. [5] to cope with the curse of
dimensionality that arises in nonparametric estimation. For large thresholds δ, the re-
jection method may retain couples (θi, si) with summary statistics far from sobs meaning
heuristically that the associated θi’s may not be considered as random draws from the
distribution p(θ | sobs) anymore. To overcome this fact, Beaumont et al. [5] adjusted the
θi’s in (3.1) and (3.2) so that the corrected values denoted as θ∗i are random draws close
to the conditional distribution p(θ|sobs). Doing this, they found that the resulting target
distributions were numerically insensitive to the tolerance threshold δ for a large range of
small enough values of δ.

We present here the adjustment principle in a general setting within which the correc-
tions of [5] and [7] can be derived. The (θi, si) are independent and identically distributed
(i.i.d.) random variables (r.v.), so it is possible to write θi = F (si, εi) =: Fsi

(εi) where F
is a (possibly complicated) function and where the εi’s are i.i.d. r.v. independent of the
si’s. We assume that for all s, F−1

s (θ) can be properly defined.

Proposition 3.1. The r.v. (θ∗i := Fsobs
◦ F−1

si
(θi))i∈[[1,N ]] are i.i.d. with density p(θ | sobs).

The proof of this proposition stands in appendix. Of course, the function Fs is unknown
and shall be approximated. The ABC algorithm with regression adjustment can be de-
scribed as follows

1. Simulate, as in the Step 1 of the rejection algorithm, a sample (θi, si)i∈[[1,N ]] of i.i.d.
r.v.

2. By making use of this weighted sample, approximate the function F such that
θi = F (si, εi).

3. Replace the θi by the corrected θ∗i . The resulting weighted sample (θ∗i ,Wi), i =
1 . . .N , form a sample from the target distribution. The weightsWi = Kδ(‖si−sobs‖)
heuristically give less importance to values for which the adjustment has been more
important.

Beaumont et al. local linear regressions (LOCL) The case where F is approxi-
mated by the linear model F (s, ε) = α + stβ + ε was considered in [5]. Considering the
function F amounts at adjusting the θi’s so that the first moment of the θ∗i ’s is approxi-
mately equal to the conditional expectation E(θ|sobs). The parameters α and β are inferred
by minimizing the weighted least-square

∑N

i=1Kδ(‖si − sobs‖)(‖θi − (α+ (si − sobs)
Tβ)‖2

2.
The estimator α̂ corresponds to the estimation of E(θ|sobs) obtained with standard local
polynomial regression (see e.g. [16]). Using Proposition 3.1, the correction of [5] is derived
as

θ∗i = θi − (si − sobs)
T β̂, i = 1, . . . , N.

Interestingly, similar adjustments have been proposed by Hansen [26] in the context
of conditional density estimation. Hansen proposed to estimate a conditional density
using a two-step procedure in which the conditional mean is inferred in a first step and
the conditional density of the residuals in a second step. Compared to Beaumont et

al. [5], the conditional mean in [26] is inferred using a Nadaraya-Watson estimator and
not local polynomials. Additionally, Hansen provided asymptotic results concerning the
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consistency of the two-step procedure for conditional density estimation. More generally,
we note that ABC can be viewed from the angle of conditional density estimation, the
major difference being that ABC aims at simulating replicates from the conditional density
and not at estimating the conditional density.

Blum and François’ nonlinear conditional heteroscedastic regressions (NCH)
To relax the assumptions of homoscedasticity and linearity inherent to the local linear
regression model, Blum and Francois [7] approximated F by F (s, ε) = m(s) + σ(s) × ε
wherem(s) denotes the conditional expectation E(θ|s), and σ2(s) the conditional variance.
Choosing the form given above for F amounts at adjusting the θi’s so that both the first
and the second moment of the θ∗i ’s are approximately equal to those of the conditional
distribution p(θ|sobs). The estimators m̂ and log σ̂2 of the conditional expectation and of
the logarithm of the conditional variance are found by adjusting two feed-forward neural
networks [37] using weighted least squares. To motivate the choice of neural networks,
Blum and Francois [7] emphasized that the regression layer is not performed on the
(possibly high dimensional) subspace of the summary statistics but on a subspace of lower
dimension found via internal projections. For the NCH model, parameter adjustment is
performed as follows

θ∗i = m̂(sobs) + (θi − m̂(si)) ×
σ̂(sobs)

σ̂(si)
, i = 1, . . . , N.

In practical applications of the NCH model, we train L = 10 neural networks for each con-
ditional regression (expectation and variance) and we average the results of the L neural
networks to provide the estimates m̂ and log σ̂2. This averaging procedure considerably
reduces the variance of the posterior estimates (results not shown). It is coined as the
predictive Bayes approach for neural networks in [37].

Reparameterization In both regression adjustment approaches, the regressions can be
performed on transformations of the responses θi rather that on the responses themselves.
Parameters whose prior distributions have finite supports are transformed via the logit
function and non-negative parameters are transformed via the logarithm function. These
transformations guarantee that the θ∗i ’s lie in the support of the prior distribution. The
transformations have the additional advantage of stabilizing the variance [1].

3.3 Data and summary statistics

Data Starting at the time of the first detection in 1986, the Cuban AIDS data consists
principally of the detection times at which the individuals have been found to be HIV
positive. At the time of the last detection event that is considered, in July 2007, there is
a total of 8,662 individuals that have been found to be HIV positive. For each detection
event, covariates are the way of detection (random screening and contact-tracing), and
the possible time of infection when available (obtained by medical methods or discussions
with the patient). For the sixth first years of the epidemic (1986-1992), the infection times
have been reconstructed. We neglect here the noise arising from the reconstruction of the
infectious times.
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Summary statistics In the following, we consider two different ways of capturing the
information contains in the Cuban AIDS database.

In the first approach, we consider three types of summary statistics. First, we compute
the number of individuals detected, at the end of the observation period T = 21.5 years,
by random screening R1

T=21.5 = 6157 and by contact tracing R2
T=21.5 = 2145. Second,

for each year, we compute the number of individuals that have been found to be HIV
positive Rl

j+1−R
l
j for j = 0, . . . , 20, and l = 1, 2. Last, we take profit of the reconstructed

infectious times. We compute the number of new infectious for each of the the sixth first
years Ij+1 − Ij for j = 0, . . . , 5, as well as the mean time during which an individual is
infected but has not been detected yet. This mean time corresponds to the mean sojourn
time in the class I for the sixth first years of the epidemic. When considering the total
observation period, a total of 61 summary statistics are considered in this approach.

The second approach is based on a different set of summary statistics. We consider
here the two (infinite-dimensional) statistics (R1

t , t ∈ [0, T ]) and (R2
t , t ∈ [0, T ]). The L1

norm between the simulated paths Rl
i (l = 1, 2, i = 1, . . . N) and the observed ones Rl

obs

(l = 1, 2) is

‖Rl
obs − Rl

i‖1 =

∫ T

0

|Rl
obs,s − Rl

i,s| ds , l = 1, 2, i = 1, . . . , N.

For the weights Wi, we choose a product kernel so thatWi = Kδ1(‖R
1
obs−R

1
i ‖1)Kδ2(‖R

2
obs−

R2
i ‖1) where δ1, δ2 are 2 possibly different tolerance thresholds. In practice, we set the

same tolerance rate Pδ1 = Pδ2 for the two summary statistics so that they contribute
equally to the target distribution.

Let us emphasize a similarity that exists with deterministic approaches in which
parameter calibration relies on the minimization of a cost function (e.g. [3, 9]). In
the second approach based on the two trajectories, the value of θi that maximizes the
weights Wi, i = 1 . . . N , maximizes (1 − ‖R1

obs − R1
i ‖1/δ1)

2(1 − ‖R2
obs − R2

i ‖1/δ2)
2, when

considering Epanechnikov kernels for Kδ1 and Kδ2 . For small differences between the
simulated and observed paths, this amounts at minimizing the quadratic cost function
‖R1

obs − R1
i ‖

2
1/δ1 + ‖R2

obs −R2
i ‖

2
1/δ2.

4 Validation on synthetic data sets

To check the validity of the ABC algorithms, we simulate M = 200 synthetic data sets for
a given value of the parameters. In order to work on a data similar to the Cuban database
for the HIV/AIDS epidemic, we choose µ1 = 2×10−6, λ1 = 1.14×10−7, λ2 = 3.75×10−1,
λ3 = 6.55 × 10−5, and c = 1. The initial conditions are set to S0 = 6 106, the size of the
Cuban population in the age-group 15-49 [13], I0 = 232 and R0 = 0. When analyzing the
synthetic data sets, we simulate only 6 years of the epidemics.

In the following, we study four variants of ABC for estimating λ1, λ2, and λ3. When
using the finite dimensional vector of summary statistics, we perform the smooth rejection
approach as well as the LOCL and NCH corrections with a total of 21 summary statistics:
the 18 summary statistics corresponding to the yearly increase of R1, R2, and I; the final
numbers of detected individuals R1

6 and R2
6; and the mean sojourn time in the class I.

When considering the two trajectories (R1
t , t ∈ [0, T ]) and (R2

t , t ∈ [0, T ]) as the summary
statistics, we perform the smooth rejection approach using the product kernel for the
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computation of the weights Wi. Each of the M = 200 estimations of the approximate
posterior distributions are performed using a total of N = 5000 simulations of the SIR
model with the mass action principle (first rate in equation (2.1)).

Prior distributions The prior distributions of the parameters µ1, λ1, λ2 and λ3 are
chosen to be uniform on a log scale. The prior distributions are defined on a log scale to
reflect our uncertainty in the order of magnitude of the parameters. More specifically, the
prior distribution for log(µ1) is U(−6,−4) where U(a, b) denotes the uniform distribution
on the interval (a, b). The prior distribution for log(λ1) is U(−9,−6), the prior distribution
for log(λ2) is U(−4, 3) and the prior distribution for log(λ3) is U(−8, 2). The bounds of
the uniform distributions are set to keep the simulations from being degenerate. The
prior for the parameter c is log(2)/U(1/12, 5). This prior is chosen so that the half time
of ψ is uniformly distributed between 1/12 and 5 years. We recall that the function Ψ(t)
measures the contribution of an individual, detected t units of time ago, to the rate of
contact-tracing detection.

Point estimates of θ and credibility intervals Figure 2 displays the boxplots of the
200 estimated modes, medians, 2.5% and 97.5% quantiles of the posterior distribution for
λ1 as a function of the tolerance rate. The corresponding figures for λ2 and λ3 can be
found in the Supplementary Material.

First, we find that medians and modes are equivalent for the NCH and LOCL variants,
while the mode is less biased in the rejection methods. For the lowest tolerance rates,
the point estimates obtained with the four possible methods are close to the value λ1 =
1.14 × 10−7 used in the simulations, with smaller credibility intervals for the LOCL and
NCH variants. When increasing the tolerance rate, the bias of the point estimates obtained
with the rejection method with 21 summary statistics slightly increases. By contrast, up
to tolerance rates smaller than 50%, the bias of the point estimates obtained with the
three other methods remains small. As could be expected, the widths of the credibility
intervals obtained with the rejection methods increase with the tolerance rate while it
remains considerably less variable for the LOCL and NCH variants.

Mean square error To further investigate the differences between the statistical prop-
erties of the different methods, we compute the rescaled mean square errors (RMSEs).
RMSEs are computed on a log scale and rescaled by the range of the prior distribution

RMSE(λj) =
1

M

M∑

k=1

(log(λ̂k
j ) − log(λj))

2

Range(prior(λj))2
, j = 1, . . . , 3, (4.1)

where λ̂k
j is a point estimate obtained with the kth synthetic data set. Figure 3 displays

the values of the RMSEs as functions of the tolerance rate. We find that the smallest
values of the RMSE are usually reached for the lowest value of the tolerance rate (but see
the RMSEs for λ2 in Figure 3). For λ1 and λ2, the RMSEs of the point estimates obtained
with the four different methods are comparable for the lowest tolerance rate. However, the
smallest values of the RMSE’s are always found when performing the rejection method
with the two summary statistics R1 and R2. This finding is even more pronounced for
the parameter λ3 suggesting that the two trajectories R1 and R2 are the most informative
summary statistics for estimating the λj, j = 1 . . . 3.
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Rescaled mean credibility intervals To compare the whole posterior distributions
obtained with the four different methods, we additionally compare the different credibil-
ity intervals. As displayed by Figure 2 and the Figures 1 and 2 of the Supplementary
Material, the credibility intervals obtained with the smooth rejection schemes increase
importantly with the tolerance rate whereas such an important increase is not observed
for the regression approaches. To further compare the 95% credibility intervals obtained
with the different methods, we computed the rescaled mean credibility intervals (RMCI)
defined as follows

RMCI =
1

M

M∑

k=1

|ICk
j |

Range(prior(λj))
, j = 1, . . . , 3, (4.2)

where |ICk
j | is the length of the kth estimated credibility interval for the parameter λj.

As displayed by Figure 4, credibility intervals obtained with the NCH method are
clearly the thinnest, those obtained with the rejection methods are the widest and those
obtained with the LOCL method have intermediate width. We additionally found that
the RMCI’s obtained with the regression methods also increase with the tolerance rate.
This phenomenon is partly due to the increase of the variance of the extreme quantiles
that is observed when the tolerance rate increases. In the following, we perform the NCH
correction when considering the finite-dimensional vector of summary statistics. This
choice is motivated by the small RMSEs and RMCIs obtained with the NCH method
(Figure 3 and 4).

5 Application to the Cuban HIV epidemic

5.1 Parameter calibration and goodness of fit

Using the NCH method when considering the 61 summary statistics and smooth rejection
with the 2 trajectories R1 and R2 as the summary statistics, we now fit the SIR model of
Clemençon et al. [12] to the Cuban HIV data using a total of 100,000 simulations. We
consider the two different rates of contact-tracing detection (2.1). We use the same initial
conditions and priors as in Section 4.

To set the value of the tolerance rate Pδ for each of the two procedures, we consider
the 21st years of the epidemic as the training data set and we choose the value of the
tolerance rate Pδ that minimizes the prediction error at the end of the 21st year and a
half of the epidemic. The prediction error is defined as

Pred Error = EPδ




(
R1

21.5(Pδ) − R1
obs,21.5

R1
obs,21.5

)2

+

(
R2

21.5(Pδ) − R2
obs,21.5

R2
obs,21.5

)2


 (5.1)

where EPδ
denotes the expectation with respect to the approximate posterior distribution

found with a tolerance rate set to Pδ.
Once the tolerance rate Pδ has been chosen and once the approximate posterior dis-

tribution has been obtained, we investigate the goodness of fit of the SIR-type model by
simulating paths of the SIR model associated with parameters θ sampled from the ap-
proximate posterior distribution. In Figures 5 and 6, we display the Posterior Predictive
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Distributions (PPD) [21] of R1
21.5, R

2
21.5, I6, as well as the mean sojourn time in the class

I. We investigate if the observed values fall within the supports of the PPDs.
The best predictions correspond to the model of frequency dependence (second rate in

equation (2.1)) that has been fitted with the two trajectories R1 and R2 as the summary
statistics. As displayed by Figure 6, R1

obs,21.5 is close to the mode of the PPD and R2
obs,21.5

is smaller than the mode but still contained in the PPD. By contrast, the mean sojourn
time in the class I is not contained in the PPD and the observed number of infectious
individuals is in the lower tail of the PPD. An explanation might be that an age-structure
has to be taken into account for the infection rate in order to capture the non-Markovian
effects (e.g. [41]). A model with an increasing infectious rate could diminish the mean
sojourn time in the class I and increase by compensation the number of infections to
maintain the infection pressure constant.

Concerning the PPDs obtained with the NCH method, we find that they have ex-
tremely wide supports for both the model with a mass action principle (Figure 5), and
the model with frequency dependence (results not shown). The PPD obtained with the
mass action principle and the two trajectories R1 and R2 as the summary statistics are
peaky but R1

obs,21.5 is not contained in the PPD (see Supplementary Material). In this
model, because the rate of contact tracing detection increases linearly with the total num-
ber of detected individuals, the number of individuals detected by contact tracing may
increase too rapidly compared to the observed data.

In the following, we consider the model with frequency dependence that has been
fitted with the two trajectories R1 and R2. For parameter estimation and estimation
of credibility intervals, we choose a larger tolerance rate of Pδ = 5% for each summary
statistic so that enough data points (of the order of 1000) are available for estimating the
credibility intervals. The point estimates of Table 1 have been obtained by maximizing
the estimated marginal posterior distributions.

Parameter Point estimates Lower bound Upper bound
of the 95% credibility interval

λ1 5.4 10−8 3.9 10−8 2.3 10−7

λ2 0.13 0.007 1.17
λ3 0.19 0.03 0.82

Table 1: Point estimates and 95% credibility intervals for the infection rate λ1 and the

detection rates λ2 and λ3.

The point estimate of the rate of infection λ1 implies that the net rate of infection
per infectious individuals λ1S is equal to 0.32 (95%CI = 0.23 − 1.37). This means that
the waiting time before an infectious individual, that has not been detected yet, infect an
other individual is 3.1 years (95%CI = 0.72 − 4.34).

5.2 The dynamic of the Cuban HIV epidemic

Reconstruction of the cumulative numbers of detections Figure 7 displays the
dynamics predicted by the SIR model for the number of individuals detected by ran-
dom screening (R1

t , t ∈ [0, T ]), by contact tracing (R2
t , t ∈ [0, T ]) and for the number of
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unknown infectious individuals (It, t ∈ [0, T ]). Interestingly, there is a really good fit be-
tween the real and predicted numbers of individuals detected by random screening except
between 1992 and 1995. This period corresponds to the period of crisis that followed the
collapse of the Soviet Union and during which the HIV detection system received less
attention [12]. We also find that there is a slight discrepancy in the recent years (2000-
2007) between the real and predicted numbers of individuals detected by contact tracing.
The SIR model predicts a larger number of contact tracing detections which may reveal
a weakening in the contact tracing system.

Performance of the contact-tracing system When testing for the performance of
the contact tracing system, Hsieh et al. [27] computed the coverage of the epidemic defined
as the percentage of infectious individuals that have been detected (R1+R2)/(I+R1+R2).
As displayed by Figure 8, the SIR model predicts a coverage of 62% (95%CI = 36%−66%)
in 2000 that is much lower than a coverage of 83% (75% − 87%) as inferred in [27] (the
confidence interval is given in [14]). However, since the PPDs of Figure 6 shows that the
SIR model predicts less infectious individuals than observed, the coverage might still be
overestimated and would consequently be smaller than 62%.

Predictions Additionally, simulations of the SIR model provide predictions for the
evolution of the HIV dynamic in the forthcoming years. Obviously, predictions for the
year 2015, for instance, should be interpreted with caution since they rely on the as-
sumption that the different rates remain constant. The SIR model predicts that in
2015, 42, 000 (95%CI = 29, 000 − 107, 000) individuals will be infected since the be-
ginning of the epidemic in Cuba. Among these infected individuals, a proportion of 45%
(95%CI = 29% − 46%) will be detected by random screening an a proportion of 21%
(95%CI = 10% − 22%) will be detected by contact tracing. As displayed by Figure 7,
the SIR-type model with contact tracing predicts that the total proportion, among the
detected individuals, of individuals detected by contact tracing would reach an asymp-
tote of 32% (95%CI = 25% − 33%) in 2015 whereas the counting data reveals a drop in
the proportion of individuals detected by contact tracing. The total number of infected
individuals in 2015 corresponds to 27, 000 (95%CI = 19, 000 − 80, 000) new cases of HIV
between July 2007 (T = 21.5) and January 2015 (T = 29). In the same period of time, the
SIR model predicts that 12, 000 individuals (95%CI = 9, 000 − 24, 000) will be detected
by random screening and 6, 000 individuals (95%CI = 4, 000− 8, 000) will be detected by
contact tracing.

6 Conclusions

In the context of temporal epidemiological data, we show that Approximate Bayesian
Computation (ABC) techniques can provide reasonable estimates of the parameters of
interest such as the infection and detection rates. ABC inference relies solely on the
simulations of the model and can therefore be applied for various epidemiological mod-
els defined in terms of an implicit stochastic mechanism [15]. In its broad lines, ABC
consists of rejecting the simulations that produce summary statistics too different from
the observations. Practically, ABC offers a convenient way for making inference since it
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can be applied to different variants of SIR-type model without modifications. Addition-
ally, in the context of partially observed population and missing infectious times, MCMC
methods require to reconstruct the unknown data which can be highly computationally in-
tensive for large populations. For instance, [35] and [41] considered MCMC algorithms for
populations consisting of about 100 individuals whereas the Cuban HIV-AIDS database
contains almost 10,000 known HIV positive individuals, which makes the total (known
and unknown) number of infectious individuals even larger.

In this paper, we consider both finite dimensional summary statistics, as well as infi-
nite dimensional ones, as the observations consists of the cumulative number of detected
individuals as a function of time. The point estimates of the parameters λj, j = 1 . . . N ,
with the smallest quadratic errors were obtained with the rejection method based on the
infinite-dimensional statistics. However, the 95% credibility intervals obtained with this
method are large and critically depends on the tolerance rate. By contrast, regression-
based adjutment methods, and the NCH method more particularly, considerable shorten
the credibility intervals and are less sensitice to the tolerance rate. Applications of
regression-based ABC methods [5, 7] constitute therefore a solution for ”stabilizing” the
credibility intervals. However, no ABC-regression based methods have been developed so
far for infinite-dimensional summary statistics.

In the last section of the paper, we calibrate the SIR model to the Cuban HIV data that
contains the times at which the Cuban individuals have been found to be HIV positive.
By comparing the posterior predictive distributions obtained with the fitted SIR model
to the observed ones, we find that a model that accounts for a frequency-dependent rate
of contact tracing detection provides a good fit to the data. We suggest here two possible
improvements of the SIR model that could ameliorate the fit to the Cuban HIV data.
First, because the mean time during which an infected individual has not been detected
yet, is not well predicted by the SIR model, detection rates that depend on the time elapsed
since infection could be considered. Second, the rates of infection and detection could vary
in time so that changes in the dynamics of infection and detection would be captured.
Such models would contain additional parameters and the simple rejection scheme might
require a prohibitive number of simulations for targeting in the approximate posterior
distribution. For high-dimensional models, adaptive ABC algorithms [39, 4], that use
the simulations to modify the sampling distribution of the parameter θ, might constitute
interesting ways to explore for the future of ABC in epidemiology.
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7 Appendix

Proof of Proposition 3.1. Let us denote by ν the common distribution of the εi’s. Then
the distribution of θi conditional on si is π(dθ | si) = ν ◦ F−1

si
the image distribution of ν

by Fsi
. The aproximate posterior distribution can be expressed as

π(dθ | s) = ν ◦ F−1
s = ν ◦ F−1

si
◦ Fsi

◦ F−1
si

= π(dθ | si) ◦
(
Fs ◦ F

−1
si

)
−1

which is the image distribution of π(dθ | si) by Fs ◦F
−1
si

. The latter function is a coupling

of π(dθ | s) and π(dθ | si). �
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Figure legends

Figure 1. Schematic description of the SIR model with contact tracing.

Figure 2. Boxplots of the M = 200 estimated modes and quantiles (2.5%, 50%, and
97.5%) of the approximate posterior distributions of λ1. For each ABC method and each
value of the tolerance rate, 200 posterior distributions are computed for each of the 200
synthetic data sets. The horizontal lines correspond to the true values λ1 = 1.14 × 10−7

used when simulating the 200 synthetic data sets. The different tolerance rates are 0.01,
0.05, 0.10, 0.25, 0.50, 0.50, 0.75, and 1 for all the ABC methods except the rejection
scheme with the two summary statistics. For the latter method, the tolerance rates are
0.007, 0.02, 0.06, 0.13, 0.27, 0.37, 0.45, 0.53, 0.66, 0.80, 1.

Figure 3. Rescaled mean squared error (RMSE) of the mode of the approximate
posterior distributions when estimating the three parameters λ1, λ2, and λ3. The RMSE’s
are plotted as a function of the tolerance rate.

Figure 4. Rescaled mean credibility interval (RMCI) of the approximate posterior
distributions when estimating the three parameters λ1, λ2, and λ3. The RMCI’s are
plotted as a function of the tolerance rate.

Figure 5. Bayesian posterior predictive distributions of R1
21.5, R

2
21.5, I6, and the mean

sojourn time in the class I. The SIR model corresponds to the model with a mass action
principle. The vertical lines correspond to the observations. The approximate posterior
samples were obtained with the ABC-NCH method (Pδ = 0.5%) by making use of the 61
summary statistics (see text).

Figure 6. Bayesian posterior predictive distributions of R1
21.5, R

2
21.5, I6, and the

mean sojourn time in the class I. The SIR model corresponds to the model with frequency
dependence for contact tracing detection. The approximate posterior samples are obtained
with the smooth rejection ABC algorithm by making use of the 2 infinite-dimensional
summary statistics R1 and R2. A tolerance rate of Pδ = 1% is considered for each
summary statistic.

Figure 7. Median and 95% credibility intervals of the posterior predictive distri-
butions of R1

t , R
2
t , R

1
t/(R

1
t + R2

t ), and It from t = 0 (1986) to T = 29 (2015). The
posterior samples are generated by the rejection scheme with the two summary statistics.
A tolerance rate of Pδ = 1% is considered for each summary statistic.



Figure 8. Median and 95% credibility intervals of the posterior predictive distribution
of the coverage of the epidemic from t = 0 (1986) to T = 29 (2015). The coverage is defined
as the proportion of known HIV positive individuals. The posterior samples are generated
by the rejection scheme with the two summary statistics R1 and R2. A tolerance rate of
Pδ = 1% is considered for each summary statistic.
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