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Abstract

We provide a convergence result for numerical schemes approximating nonlocal

front propagation equations. Our schemes are based on a recently investigated

notion of weak solution for these equations. We also give examples of such schemes,

for a dislocation dynamics equation, and for a Fitzhugh-Nagumo type system.
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1 Introduction

We are concerned with numerical approximation for nonlocal equations of the form

{

ut(x, t) = H[1{u≥0}](x, t,Du,D
2u) in R

N × (0, T ),
u(·, 0) = u0 in R

N ,
(1.1)

which, in the level-set approach for front propagation (see [18, 17, 12] for a complete
overview of this method), describe the movement of a family {K(t)}t∈[0,T ] of compact
subsets of R

N such that
K(t) = {x ∈ R

N ; u(x, t) ≥ 0}
for some function u : R

N × [0, T ] → R. Here ut, Du and D2u denote respectively the time
derivative, space gradient and space Hessian matrix of u, while 1A denotes the indicator
function of any set A.

The function H corresponds to the velocity of the front. In our setting, it depends not
only on local properties of the front, such as its position, the time, the normal direction
and its curvature matrix, but also, at time t, on the family {K(s)}s∈[0,t] itself. This
non-local dependence is carried by the notation H[1{u≥0}]: for any indicator function
χ or more generally for any χ ∈ L∞(RN × [0, T ]) with values in [0, 1], the Hamiltonian
H[χ] depends on χ in a nonlocal way; typically in our examples, it is obtained by a
convolution procedure between χ and a physical kernel (either only in space or in space
and time). In particular, H[χ] is continuous in space but has no particular regularity in
time. However, the H[χ]−equation is always well-posed.
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The initial datum u0 : R
N → R is a bounded and Lipschitz continuous function on

R
N which represents the initial front, i.e. such that

{u0 ≥ 0} = K0 and {u0 = 0} = ∂K0

for some fixed compact set K0 ⊂ R
N . Since in the level-set approach, the family

{K(t)}t∈[0,T ] only depends on the 0-level set of u0 (see [12]), we assume for simplic-
ity that there exists R0 > 0 such that

u0 = −1 in R
N \ B̄(0, R0). (1.2)

The main issue linked with these nonlocal equations is the fact that they do not
satisfy a comparison principle (or, geometrically, an inclusion principle on the fronts).
Indeed, in general the fact that {u1 ≥ 0} ⊂ {u2 ≥ 0} does not imply that H[1{u1≥0}] ≤
H[1{u2≥0}]. The consequence of this absence of monotonicity is that one cannot build
viscosity solutions to (1.1) by the classical methods, a comparison principle being crucial
for both existence and uniqueness of solutions.

To overcome these difficulties, a notion of weak solution to (1.1) has therefore been
introduced in [4, 5]. It uses the notion of L1-viscosity solution, a notion of solution
adapted to Hamiltonians H[χ] which are merely measurable in time, that is, we as-
sume that for any χ ∈ L∞(RN × [0, T ]; [0, 1]), H[χ](x, t, p, A) defines a measurable func-
tion of (x, t, p, A) ∈ R

N × [0, T ] × R
N \ {0} × SN , while for almost every t ∈ [0, T ],

H[χ](x, t, p, A) defines a continuous function of (x, p,A). Here SN denotes the set of
real square symmetric matrices of size N . We refer to [14, 15, 16, 8, 9] for a complete
presentation of the theory of L1-viscosity solutions. Moreover the equations we consider
are degenerate parabolic, which means that for any χ ∈ L∞(RN × [0, T ]; [0, 1]), for any
(x, p) ∈ R

N × R
N \ {0}, for almost every t ∈ [0, T ] and for all A,B ∈ SN , we have

H[χ](x, t, p, A) ≤ H[χ](x, t, p, B) if A ≤ B,

where ≤ stands for the usual partial ordering for symmetric matrices.

Let us now recall the definition of a weak solution to (1.1):

Definition 1.1. Let u : R
N × [0, T ] → R be a continuous function. We say that u is a

weak solution of (1.1) if there exists χ ∈ L∞(RN × [0, T ]; [0, 1]) such that:

1. u is a L1-viscosity solution of

{

ut(x, t) = H[χ](x, t,Du,D2u) in R
N × (0, T ),

u(·, 0) = u0 in R
N .

(1.3)

2. For almost all t ∈ [0, T ],

1{u(·,t)>0} ≤ χ(·, t) ≤ 1{u(·,t)≥0} a.e. in R
N .

Moreover, we say that u is a classical viscosity solution of (1.1) if in addition, for almost
all t ∈ [0, T ],

1{u(·,t)>0} = 1{u(·,t)≥0} a.e. in R
N .

In [5], Barles, Cardaliaguet, Ley and the author proved a general result of existence
of weak solutions for these nonlocal equations. The essential assumptions under which
existence is known are the following; they concern the local equation (1.3), where the

2



nonlocal dependence is frozen, that is to say, 1{u≥0} is replaced by a fixed function
χ ∈ L∞(RN × [0, T ]; [0, 1]):

(A1) If χn ⇀ χ weakly-∗ in L∞(RN × [0, T ]; [0, 1]), and if Supp(χ) is uniformly bounded,
then for all (x, t, p, A) ∈ R

N × [0, T ] × R
N \ {0} × SN ,

∫ t

0

H[χn](x, s, p, A)ds −→
n→+∞

∫ t

0

H[χ](x, s, p, A)ds

locally uniformly in x, t, p, A.

(A2) A comparison principle holds for (1.3): for any fixed χ ∈ L∞(RN × [0, T ]; [0, 1]),
if u is a bounded and upper semicontinuous viscosity subsolution of (1.3) and v is a
bounded, lower semicontinuous viscosity supersolution of (1.3) with u(x, 0) ≤ v(x, 0) in
R

N , then u ≤ v in R
N × [0, T ).

These assumptions are the classical ingredients to carry out a stability argument: as-
sumption (A1) provides stability for L1-viscosity solutions under very weak convergence
of the Hamiltonians, thanks to a new stability result of Barles [3], while assumption (A2)
enables to identify the limit by a comparison principle. This is the idea of the proof of
the existence result of [5]. We assume throughout the paper that these assumptions hold,
and we refer to [11] for conditions on H[χ] under which they hold. We also point out
that assumption (A2) implies that for any fixed χ ∈ L∞(RN × [0, T ]; [0, 1]), (1.3) has a
unique continuous L1-viscosity solution u : R

N × [0, T ] → R.

Considering this existence result, our motivation is to provide numerical schemes,
and a general convergence result, for these nonlocal and non-monotone front propaga-
tion equations with L1 dependence in time. This work is inspired by [7] where Barles
and Souganidis proved a general convergence result for monotone, stable and consis-
tent schemes in the local framework. We also refer to the works of Cardaliaguet and
Pasquignon [10] and Slepčev [20] on the approximation of moving fronts in the nonlocal
but monotone case.

This paper is organized as follows: in Section 2, we define a class of approximation
schemes and prove the general convergence result. In Section 3, we give two explicit
examples of such schemes, for a dislocation dynamics equation and Fitzhugh-Nagumo
type system (see (3.1) and (3.3)).

Notation. In what follows, | · | denotes the standard euclidean norm on R
N , B(x,R)

(resp. B̄(x,R)) is the open (resp. closed) ball of radius R centered at x ∈ R
N . We

denote the essential supremum of f ∈ L∞(RN ) or f ∈ L∞(RN × [0, T ]) by ‖f‖∞.

2 Convergence of approximation schemes

Let h = T/n for some n ∈ N
∗, and ∆1, . . . ,∆N ∈ (0, 1) be our respective time and

space steps: a choice of h determines fixed ∆i’s by the relation ∆i = λi h for λi > 0
fixed. We define for (i1, . . . , iN ) ∈ Z

N , xi1,...,iN
= (i1∆1, . . . , iN∆N ), and

Qi1,...,iN
=

N
∏

k=1

[(ik − 1/2)∆k, (ik + 1/2)∆k).
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Let us also define the space grid

Πh =
⋃

(i1,...,iN )∈ZN

xi1,...,iN
,

and for x = (x1, . . . , xN ) ∈ R
N , its projection on this grid,

xh := ([x1/∆1 + 1/2]∆1, . . . , [xN/∆N + 1/2]∆N ) ∈ Πh,

where [·] denotes the integer part, so that if x ∈ Qi1,...,iN
, then xh = xi1,...,iN

.

For x ∈ Πh, k ∈ N such that kh ≤ T , u : Πh → R and χ : Πh × [0, T ] → [0, 1] with
bounded support, we define an approximate Hamiltonian Hh[χ](x, kh, u) which depends
on

{χ(xi1,...,iN
, lh)}(i1,...,iN )∈ZN , 0≤l≤k and {u(xi1,...,iN

, kh)}(i1,...,iN )∈ZN .

We keep in mind that H[χ](x, kh, u) possibly depends on the entire history {χ(·, lh)} for
l up to k.

We consider approximation schemes of the following form: for any k ∈ N such that
(k + 1)h ≤ T , and for any x ∈ Πh, we set

{

uh(x, (k + 1)h) = uh(x, kh) + hHh[1{uh≥0}](x, kh, uh(·, kh)),
uh(x, 0) = u0(x).

(2.1)

We finally extend uh to a piecewise constant function on R
N × [0, T ] by setting for any

(x, t),
uh(x, t) = uh(xh, [t/h]h).

In particular we have for any x ∈ R
N ,

uh(x, 0) = u0(xh).

Let us now state our assumptions on Hh; in what follows C2
b (RN ; R) denotes the set

of C2 functions on R
N such that the norm ‖φ‖ = ‖φ‖∞ + ‖Dφ‖∞ + ‖D2φ‖∞ is finite.

Let us first state an assumption on the behavior of Hh with respect to its last variable,
which represents space derivatives. It is a trivial assumption which is linked to the fact
that H[χ] is geometric for any fixed χ; it will be satisfied for all reasonnable schemes at
no cost, so we state it separately:

(H0) consistency with respect to derivatives:
(i) For any x ∈ Πh, k, h with kh ≤ T , u : Πh → R, λ ∈ R, and any function

χ : Πh × [0, T ] → [0, 1] with bounded support,

Hh[χ](x, kh, u+ λ) = Hh[χ](x, kh, u), and Hh[χ](x, kh, 0) = 0.

(ii) There exists r ∈ N
∗ such that for any x ∈ Πh, k, h with kh ≤ T , and χ :

Πh × [0, T ] → [0, 1] with bounded support, for all u, v : Πh → R,

if u(y) = v(y) ∀ y ∈ Πh s.t. ∀i, |xi − yi| ≤ r∆i, then Hh[χ](x, kh, u) = Hh[χ](x, kh, v).

We easily deduce from this and (1.2) that there exists R = R0 + rT maxλi such that
if uh is defined by the scheme (2.1), then uh(x, t) = −1 if x ∈ R

N \ B̄(0, R), for all
t ∈ [0, T ]; hence we only need to consider functions χ with uniformly bounded support.
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This shows in addition that the domain of space computation is uniformly bounded. In
particular we set Bh(RN × [0, T ]; [0, 1]) to be the set of functions χ defined on R

N × [0, T ]
with values in [0, 1] such that Supp(χ) ⊂ B̄(0, R)× [0, T ] and χ is piecewise constant on
∪ Qi1,...,iN

× [kh, (k + 1)h).

Our assumptions are the following:

(H1) Hh is conditionally monotone: for any x ∈ Πh, k, h with kh ≤ T , and χ ∈
Bh(RN × [0, T ]; [0, 1]), for all u, v : Πh → R,

u ≤ v ⇒ u(x) +Hh[χ](x, kh, u) ≤ v(x) +Hh[χ](x, kh, v).

(H2) Hh is stable: there exists L > 0 such that for any x ∈ Πh, k, h with kh ≤ T , and
χ ∈ Bh(RN × [0, T ]; [0, 1]), the solution uh of (2.1) satisfies

|uh(x, kh)| ≤ L.

(H3) Hh is consistent with H: for any x ∈ R
N , for any φ ∈ C2

b (RN ; R), if χh ∈
Bh(RN × [0, T ]; [0, 1]) is such that χh ⇀ χ weakly-∗ in L∞(RN × [0, T ]; [0, 1]) as h → 0,
then

h

[t/h]−1
∑

l=0

Hh[χh](xh, lh, φ) −→
h→0

∫ t

0

H[χ](x, s,Dφ(x), D2φ(x)) ds

locally uniformly for t ∈ [0, T ] (the sum is set to 0 if t < h).

(H4) Regularity : for any compact subset K of R
N × C2

b (RN ; R), there exist uniformly
bounded moduli of continuity mh(η, ε) such that for any h > 0, (x, φ), (y, ψ) ∈ K with
x, y ∈ Πh, for any k, h with kh ≤ T , any χ ∈ Bh(RN × [0, T ]; [0, 1]),

|Hh[χ](x, kh, φ)−Hh[χ](y, kh, ψ)| ≤ mh(|x− y|, |Dφ(x)−Dψ(y)|+ |D2φ(x)−D2ψ(y)|),

and such that mh(η, ε) → 0 as h, η, ε→ 0.

Assumptions (H1) to (H3) are the classical assumptions introduced by Barles and
Souganidis in [7]. Moreover (H3) is the discrete equivalent of (A1) on the weak conver-
gence of the Hamiltonians. As a matter of fact, the proof of our convergence theorem
is based on the proof of the stability result of [3], the key assumption of which is (A1).
Finally assumption (H4) appears naturally alongside (H3), just like in the continous
case (see [3]).

Remark 2.1. Under assumption (H0) (ii), if (H1) holds, then it also holds for all func-
tions u and v such that u(y) ≤ v(y) for any y ∈ Πh with |xi−yi| ≤ r∆i for all i = 1 . . . N ,
that is, also for functions that are comparable only locally. Indeed in this case, we can
change u and v to 0 out of the set {y ∈ Πh; |xi − yi| ≤ r∆i ∀i = 1 . . . N}. This provides
new functions ũ and ṽ such that ũ ≤ ṽ in Πh, whence, using (H1),

ũ(x) +Hh[χ](x, kh, ũ) ≤ ṽ(x) +Hh[χ](x, kh, ṽ).

But ũ(x) = u(x), Hh[χ](x, kh, ũ) = Hh[χ](x, kh, u) thanks to (H0) (ii), and the same
holds for v. This proves our assertion.

In the same spirit, we notice that assumption (H4) also holds for two functions φ
and ψ in C2(RN ; R), because one can always modify φ and ψ to obtain new functions in
C2

b (RN ; R) without changing the values of Hh[χ](x, kh, φ) or Hh[χ](y, kh, ψ).

Let us now state our main result:
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Theorem 2.2. Let u0 be a bounded and Lipschitz continuous function which satisfies
(1.2). Let (uh)h be defined by the scheme (2.1) satisfying assumptions (H0) to (H4).

Then there exist hn → 0 and u ∈ C0(RN × [0, T ]; R) such that uhn
→ u locally

uniformly in R
N × [0, T ], and u is a weak solution of (1.1).

If (1.1) has a unique weak solution u, then the whole sequence (uh) converges locally
uniformly to u.

Proof. By compactness of L∞(RN × [0, T ]; [0, 1]) for the weak-∗ topology, we can find
χ ∈ L∞(RN × [0, T ]; [0, 1]) and (hn) converging to 0 such that

1{uhn≥0} ⇀ χ weakly- ∗ in L∞(RN × [0, T ]; [0, 1]).

By the stability assumption (H2), there exists L > 0 such that ‖uh‖∞ ≤ L for any h.
We can therefore set

u(x, t) = lim sup∗(uhn
)(x, t)

= lim sup{uh′

n
(xn, knh

′
n); (h′n) ⊂ (hn), xn → x with xn ∈ Πhn

,

knh
′
n → t with kn → +∞},

which defines an upper semi-continuous function on R
N × [0, T ]. Let us prove that u

is an L1-viscosity subsolution of (1.3). We could prove in the same way that u(x, t) =
lim inf{uh′

n
(xn, knh

′
n); (h′n) ⊂ (hn), xn → x, knh

′
n → t} is an L1-viscosity supersolution

of (1.3).

Step 1. We first prove that for any x ∈ R
N , u(x, 0) ≤ u0. To do this we adapt the proof

of the same statement in the proof of Theorem 3.1 of [5]. First of all, u0 is Lipschitz
continuous, so that for any fixed 0 < ε ≤ 1, we have, for any x, y ∈ R

N ,

u0(y) ≤ u0(x) + ‖Du0‖∞|x− y| ≤ u0(x) +
|x− y|2

2ε2
+

‖Du0‖∞ε2
2

.

We fix x and set φ(y) = |x− y|2/2ε2. In the ball B(x, ε+ rT maxλi), using (H0) (i), we
see that the function defined by

ψε(y, khn) = u0(x) + φ(y) +
‖Du0‖∞ε2

2
+ Cε khn

is a supersolution of (2.1) associated to H[1{uhn≥0}] provided that Cε is large enough,
namely as soon as

Hhn
[1{uhn≥0}](y, khn, φ) ≤ Cε for all y with |x− y| < ε+ rT maxλi and khn ≤ T.

This condition can be fulfilled using (H4) and the fact that H[χ](x, kh, 0) = 0 (assump-
tion (H0) (i)). Indeed, for some uniformly bounded moduli of continuity, we have

Hhn
[1{uhn≥0}](y, khn, φ) ≤ mhn

(|x− y|, |Dφ(y)| + |D2φ(y)|)

for any n ∈ N, y ∈ Πhn
such that |x − y| < ε + rT maxλi, and khn ≤ T . The function

φ does not belong to C2
b (RN ; R), but using Remark 2.1, we recall that (H4) can also

be applied to two functions in C2(RN ; R). By the conditional monotonicity assumption
(H1) (using again Remark 2.1), we obtain that for any y ∈ Πhn

with |y−x| < ε+ r(T −
hn) maxλi,

uhn
(y, hn) ≤ ψε(y, hn).

6



Reproducing the argument, we get that for any y ∈ Πhn
with |y − x| < ε and k, hn with

khn ≤ T ,
uhn

(y, khn) ≤ ψε(y, khn),

and in particular

u(x, 0) ≤ lim sup∗ψε(x, 0) = u0(x) +
‖Du0‖∞ε2

2
.

Sending ε to 0 proves the claim.

Step 2. Now let φ ∈ C2(RN × (0, T ); R) and b ∈ L1((0, T ); R) be such that

(x, t) 7→ u(x, t) − φ(x, t) −
∫ t

0

b(s) ds

has a global strict maximum at some (x0, t0) ∈ R
N × (0, T ). Let G be a continuous func-

tion such that for almost all t in a neighborhood of t0, for all (x, p,A) in a neighborhood
of (x0, Dφ(x0, t0), D

2φ(x0, t0)),

H[χ](x, t, p, A) − b(t) ≤ G(x, t, p, A).

To check the L1-viscosity subsolution property, we have to prove that

φt(x0, t0) ≤ G(x0, t0, Dφ(x0, t0), D
2φ(x0, t0)).

We can assume without loss of generality that supt∈[0,T ] ‖φ(·, t)‖ < +∞. Let us set for
simplicity xh = (x0)h and introduce the functions

fh : t 7→ h

[t/h]−1
∑

l=0

Hh[1{uh≥0}](xh, lh, φ(·, t0))−
∫ t

0

H[χ](x0, s,Dφ(x0, t0), D
2φ(x0, t0)) ds,

so that by the consistency assumption (H3), fhn
(t) → 0 as n → +∞, locally uniformly

for t ∈ [0, T ]. As a consequence, the functions

vhn
: (x, t) 7→ uhn

(x, t) − φ(x, t) −
∫ t

0

b(s) ds− fhn
(t)

satisfy

lim sup∗(vhn
)(x, t) = u(x, t) − φ(x, t) −

∫ t

0

b(s) ds.

By a standard stability argument, there exists a subsequence of (hn), still denoted (hn)
for simplicity, and a sequence (xn, knhn) → (x0, t0) of global maximum points of vhn

with xn ∈ Πhn
. We set

ξn = vhn
(xn, knhn),

so that

uhn
(x, t) ≤ φ(x, t) +

∫ t

0

b(s) ds+ fhn
(t) + ξn (2.2)

for every (x, t) ∈ R
N × (0, T ), with equality at (xn, knhn). Now the definition of the

scheme (2.1) shows that

uhn
(xn, knhn) = uhn

(xn, (kn−1)hn)+hnHhn
[1{uhn≥0}](xn, (kn−1)hn, uhn

(·, (kn−1)hn)).

7



Replacing uhn
in this expression thanks to (2.2), and using the assumption (H1) of

conditional monotonicity of the scheme, we therefore have

φ(xn, knhn) +

∫ knhn

0

b(s) ds+ fhn
(knhn) + ξn

≤φ(xn, (kn − 1)hn) +

∫ (kn−1)hn

0

b(s) ds+ fhn
((kn − 1)hn) + ξn

+hnHhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn) +

∫ (kn−1)hn

0

b(s)ds

+ fhn
((kn − 1)hn) + ξn),

which, using assumption (H0) (i), reduces to

φ(xn, knhn) +

∫ knhn

0

b(s) ds+ fhn
(knhn)

≤φ(xn, (kn − 1)hn) +

∫ (kn−1)hn

0

b(s) ds+ fhn
((kn − 1)hn)

+hnHhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn)).

Replacing fhn
by its value, this transforms into

φ(xn, knhn) − φ(xn, (kn − 1)hn)

hn

≤ 1

hn

∫ knhn

(kn−1)hn

{

H[χ](x0, s,Dφ(x0, t0), D
2φ(x0, t0)) − b(s)

}

ds

+Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn))

−Hhn
[1{uhn≥0}](xhn

, (kn − 1)hn, φ(·, t0)).

We now use the definition of G to deduce that

φ(xn, knhn) − φ(xn, (kn − 1)hn)

hn
≤ 1

hn

∫ knhn

(kn−1)hn

G(x0, s,Dφ(x0, t0), D
2φ(x0, t0)) ds

+Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn))

−Hhn
[1{uhn≥0}](xhn

, (kn − 1)hn, φ(·, t0)).

Since φ and G are sufficiently regular, we have

φ(xn, knhn) − φ(xn, (kn − 1)hn)

hn
− 1

hn

∫ knhn

(kn−1)hn

G(x0, s,Dφ(x0, t0), D
2φ(x0, t0)) ds

−→
n→+∞

φt(x0, t0) −G(x0, t0, Dφ(x0, t0), D
2φ(x0, t0)).

To conclude, it therefore suffices to prove that

Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn))−Hhn

[1{uhn≥0}](xhn
, (kn − 1)hn, φ(·, t0))

has a non-positive upper limit as n → +∞. But as n goes to +∞, xn → x0, xhn
→ x0,

and φ(·, (kn − 1)hn) → φ(·, t0), so that thanks to assumption (H4), we have for some
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moduli of continuity mhn
,

|Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn))

−Hhn
[1{uhn≥0}](xhn

, (kn − 1)hn, φ(·, t0))|
≤ mhn

(|xn − xhn
|, |Dφ(xn, (kn − 1)hn) −Dφ(xhn

, t0)|
+ |D2φ(xn, (kn − 1)hn) −D2φ(xhn

, t0)|),

which converges to 0 as n→ +∞, and the result follows.

Step 3. We just proved that u is a bounded upper semicontinuous L1-viscosity subsolution
of (1.3), while u is a bounded lower semicontinuous L1-viscosity supersolution of (1.3).
The comparison principle (A2) for this equation then implies that u ≤ u in R

N × [0, T ),
while the converse inequality is a direct consequence of their definition. This shows that
in R

N × [0, T ), u = u coincide with the unique continuous L1-viscosity solution u of
(1.3), and that (uhn

) converges locally uniformly in R
N × [0, T ) to u. Since of course we

can extend H[χ] by 0 after time T , and use the previous argument on the extended time
interval, we deduce that the convergence is in fact locally uniform in R

N × [0, T ].
Moreover, χ being taken as the weak-∗ limit of (1{uhn≥0}), we can prove as in [5] that

for almost all t ∈ [0, T ],

1{u(·,t)>0} ≤ χ(·, t) ≤ 1{u(·,t)≥0}.

This finally proves that u is a weak solution of (1.1).

In fact, this proof shows that any sequence (uhn
) of solutions of the scheme (2.1)

admits a subsequence which converges locally uniformly to a weak solution of (1.1). As
a consequence if this equation has a unique weak solution, then the whole sequence (uh)
converges locally uniformly to the weak solution u of (1.1).

3 Applications

3.1 Dislocation dynamics

We are interested in particular in the dislocation dynamics equation (see [19, 2, 4]
and the references therein), namely

{

ut = [c0(·, t) ⋆ 1{u(·,t)≥0}(x) + c1(x, t)]|Du| in R
N × (0, T ),

u(·, 0) = u0 in R
N ,

(3.1)

where the nonlocal part of the velocity is defined by the space convolution

c0(·, t) ⋆ 1{u(·,t)≥0}(x) =

∫

RN

c0(x− y, t)1{u(·,t)≥0}(y) dy.

We assume that c0 and c1 satisfy the following assumptions, under which (A1) and (A2)
are satisfied (see [4, 5]):

(D) (i) c0 ∈ C0([0, T ];L1
(

R
N
)

), c1 ∈ C0(RN × [0, T ]; R).

(ii) For any t ∈ [0, T ], c0(·, t) is locally Lipschitz continuous and there exists a constant
C > 0 such that ‖Dc0‖L∞([0,T ];L1(RN )) ≤ C.
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(iii) There exists a constant C > 0 such that, for any x, y ∈ R
N and t ∈ [0, T ],

|c1(x, t)| ≤ C and |c1(x, t) − c1(y, t)| ≤ C|x− y|.

Under these assumptions, there exists a weak solution of (3.1), as proved by Barles,
Cardaliaguet, Ley and Monneau [4, Theorem 1.2] or Barles, Cardaliaguet, Ley and the
author [5, Theorem 3.3]. We are going to study the convergence in any dimension of the
following approximation algorithm proposed by Alvarez, Carlini, Monneau and Rouy [1]
for N = 2, which is a particular case of (2.1). We set if x = xi1,...,iN

∈ Πh,

Hh[χ](x, kh, φ)

=







∑

j1,...jN∈Z

c0(i1 − j1, . . . , iN − jN , k)χ(j1∆1, . . . , jN∆N , kh)







|Dh|(φ)(xi1,...,iN
)

+ c1(i1, . . . , iN , kh) |Dh|(φ)(xi1,...,iN
),

where

c0(m1, . . . ,mN , k) =

∫

Qm1,...,mN

c0(y, kh) dy,

and |Dh|(φ)(x) is a monotone approximation of |Dφ(x)| adapted to the sign of the non-
local term, such as the one proposed by Osher and Sethian [18] and used in [1]: let
(e1, . . . , eN ) denote the canonical basis of R

N ; then for x ∈ Πh,

|Dh|(φ)(x) =

{

N
∑

i=1

max

(

φ(x+ ei) − φ(x)

∆i
, 0

)2

+ min

(

φ(x) − φ(x− ei)

∆i
, 0

)2
}1/2

if the nonlocal term is nonnegative, and

|Dh|(φ)(x) =

{

N
∑

i=1

min

(

φ(x+ ei) − φ(x)

∆i
, 0

)2

+ max

(

φ(x) − φ(x− ei)

∆i
, 0

)2
}1/2

otherwise. In particular Hh satisfies (H0) with r = 1. Let M > 0 be such that

‖c0(·, t)‖L1(RN ) + c1(x, t) ≤M for any (x, t) ∈ R
N × [0, T ].

The CFL condition to ensure the conditional monotonicity (H1) of the scheme is

√
2N M

h

∆i
≤ 1 for any i = 1, . . . , N. (3.2)

The discrete convolution in the definition of Hh is efficiently computed using Fast Fourier
Transform, see [1]. We now state our convergence result:

Theorem 3.1. Let c0 and c1 satisfy (D), and let u0 be a bounded and Lipschitz contin-
uous function which satisfies (1.2). Let us fix space steps ∆i = λi h for any i = 1, . . . , N ,
for some constants λi > 0 such that (3.2) holds.

Then there exists hn → 0 such that (uhn
) converges locally uniformly to a weak

solution of (3.1) in R
N × [0, T ].

If in addition we have
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(D’) There exist c, c > 0 such that, for any x ∈ R
N and t ∈ [0, T ],

|c0(x, t)| ≤ c,

0 < c ≤ −‖c0(·, t)‖L1(RN ) + c1(x, t) ≤ ‖c0(·, t)‖L1(RN ) + c1(x, t) ≤ c,

then the whole sequence (uh) converges locally uniformly in R
N × [0, T ] to the unique

weak solution of (3.1).

Proof. We check the assumptions of Theorem 2.2, but will assume to avoid repetition
that c1 = 0; the treatment of the term c1 is similar to – but easier than – the treatment
of the convolution term involving c0. To check the assumptions, we first notice as in [1]
that for x ∈ Πh and χ ∈ Bh(RN × [0, T ]; [0, 1]),

Hh[χ](x, kh, φ) = {c0(·, kh) ⋆ χ(·, kh)(x)} |Dh|(φ)(x).

Assumption (H2) is satisfied with L = ‖u0‖∞, by a simple comparison with the constant
solutions ±‖u0‖∞. It only remains to prove assumptions (H3) and (H4). Let us pick
x ∈ R

N , φ ∈ C2
b (RN ; R), χh ∈ Bh(RN × [0, T ]; [0, 1]) such that χh ⇀ χ weakly-∗ in

L∞(RN × [0, T ]; [0, 1]), and let us prove that

h

[t/h]−1
∑

l=0

{c0(·, lh) ⋆ χh(·, lh)(xh)} |Dh|(φ)(xh) ds −→
h→0

∫ t

0

{c0(·, s) ⋆ χ(·, s)(x)} |Dφ(x)| ds

locally uniformly for t ∈ [0, T ]. We decompose the difference of the two above terms as

∫ [t/h]h

t

{c0(·, [s/h]h) ⋆ χh(·, s)(xh)} |Dh|(φ)(xh) ds

+

∫ t

0

{c0(·, [s/h]h) ⋆ χh(·, s)(xh)} (|Dh|(φ)(xh) − |Dφ(x)|) ds

+|Dφ(x)|
∫ t

0

{c0(·, [s/h]h) ⋆ χh(·, s)(xh) − c0(·, s) ⋆ χh(·, s)(xh)} ds

+|Dφ(x)|
∫ t

0

{c0(·, s) ⋆ χh(·, s)(xh) − c0(·, s) ⋆ χh(·, s)(x)} ds

+|Dφ(x)|
∫ t

0

{c0(·, s) ⋆ χh(·, s)(x) − c0(·, s) ⋆ χ(·, s)(x)} ds.

By definition of |Dh| and regularity of φ, the first term of this expression satisfies

∣

∣

∣

∣

∣

∫ [t/h]h

t

{c0(·, [s/h]h) ⋆ χh(·, s)(xh)} |Dh|(φ)(xh) ds

∣

∣

∣

∣

∣

≤ |t− [t/h]h|M
√

2N ‖Dφ‖∞ ≤M
√

2N ‖Dφ‖∞ h,

while the second is estimated by

∣

∣

∣

∣

∫ t

0

{c0(·, [s/h]h) ⋆ χh(·, s)(xh)} (|Dh|(φ)(xh) − |Dφ(x)|) ds
∣

∣

∣

∣

≤ T M | |Dh|(φ)(xh) − |Dφ(x)| | −→
h→0

0.
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The third term is, in absolute value, less than

|Dφ(x)|
∫ t

0

‖c0(·, [s/h]h) − c0(·, s)‖L1(RN ) ds ≤ |Dφ(x)|T m(h),

where m is a modulus of continuity for c0 ∈ C0([0, T ];L1(RN )). We estimate the fourth
term by

|Dφ(x)|T C |xh − x| ≤
√
N

2
T C |Dφ(x)| (maxλi)h

using the facts that ‖Dc0‖L∞([0,T ];L1(RN )) ≤ C and

|xh − x|2 ≤
N
∑

i=1

(

∆i

2

)2

=
1

4

N
∑

i=1

λ2
i h

2 ≤ N

4
(maxλi)

2 h2.

Finally, the last term is equal to

|Dφ(x)|
∫ t

0

∫

RN

c0(x− y, s) {χh(y, s) − χ(y, s)} dyds

which converges to 0 as h→ 0 by definition of the weak-∗ convergence of (χh) to χ. This
convergence is a priori merely pointwise in time but we notice as in [4, Remark 5.2] that
the bound

∣

∣

∣

∣

∫

RN

c0(x− y, s)χh(y, s) dy

∣

∣

∣

∣

≤M

valid for any (x, s) ∈ R
N × [0, T ] and h > 0 implies that the convergence is in fact

uniform, by Ascoli’s theorem.

To check (H4), let K be a compact set of R
N and R be a positive constant, and let

us fix x, y ∈ K ∩ Πh, k ∈ N with kh ≤ T , φ, ψ ∈ C2
b (RN ; R) with ‖φ − ψ‖ ≤ R and

χ ∈ Bh(RN × [0, T ]; [0, 1]). We want to prove that

|Hh[χ](x, kh, φ)−Hh[χ](y, kh, ψ)| ≤ mh(|x− y|, |Dφ(x)−Dψ(y)|+ |D2φ(x)−D2ψ(y)|),

for some uniformly bounded moduli of continuity mh. To do this we write

Hh[χ](x, kh, φ) −Hh[χ](y, kh, ψ)

= {c0(·, kh) ⋆ χ(·, kh)(x)} |Dh|(φ)(x) − {c0(·, kh) ⋆ χ(·, kh)(y)} |Dh|(ψ)(y)

= {c0(·, kh) ⋆ χ(·, kh)(x)} |Dh|(φ)(x) − {c0(·, kh) ⋆ χ(·, kh)(x)} |Dφ(x)|
+ {c0(·, kh) ⋆ χ(·, kh)(x)} |Dφ(x)| − {c0(·, kh) ⋆ χ(·, kh)(x)} |Dφ(y)|
+ {c0(·, kh) ⋆ χ(·, kh)(x)} |Dφ(y)| − {c0(·, kh) ⋆ χ(·, kh)(y)} |Dφ(y)|
+ {c0(·, kh) ⋆ χ(·, kh)(y)} |Dφ(y)| − {c0(·, kh) ⋆ χ(·, kh)(y)} |Dψ(y)|
+ {c0(·, kh) ⋆ χ(·, kh)(y)} |Dψ(y)| − {c0(·, kh) ⋆ χ(·, kh)(y)} |Dh|(ψ)(y).

By definition of |Dh|, the first and the last terms of this equality are respectively estimated
by

M | |Dh|(φ)(x) − |Dφ(x)| | ≤M

√
2N

2
‖D2φ‖∞ (maxλi)h

and M | |Dh|(ψ)(y) − |Dψ(y)| | ≤M

√
2N

2
‖D2ψ‖∞ (maxλi)h

≤M

√
2N

2
(‖D2φ‖∞ +R) (maxλi)h.
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The second term is easily dominated by

M
√
N ‖D2φ‖∞ |x− y|

by regularity of φ, while the third term is, in absolute value, less than

C |x− y| ‖Dφ‖∞,

because ‖Dc0‖L∞([0,T ];L1(RN )) ≤ C. Finally, the fourth term is estimated by

M (|Dφ(y)| − |Dψ(y)|) ≤M |Dφ(x) −Dψ(y)| +M |Dφ(x) −Dφ(y)|
≤M |Dφ(x) −Dψ(y)| +M

√
N ‖D2φ‖∞ |x− y|.

This proves (H4) and concludes the proof of the first part of Theorem 3.1.

For the convergence of the entire sequence, we use the result of [6] which states that
under assumptions (D) and (D’), then (3.1) has a unique weak solution. The convergence
of the whole sequence (uh) to this solution then follows from Theorem 2.2.

3.2 A Fitzhugh-Nagumo type system

We are also interested in the following system:











ut = α(v)|Du| in R
N × (0, T ),

vt − ∆v = g+(v)1{u≥0} + g−(v)(1 − 1{u≥0}) in R
N × (0, T ),

u(·, 0) = u0, v(·, 0) = v0 in R
N ,

(3.3)

which is obtained as the asymptotics as ε→ 0 of the following Fitzhugh-Nagumo system
arising in neural wave propagation or chemical kinetics:

{

uε
t − ε∆uε = ε−1f(uε, vε),

vε
t − ∆vε = g(uε, vε)

(3.4)

in R
N × (0, T ), where for (u, v) ∈ R

2,

{

f(u, v) = u(1 − u)(u− a) − v (0 < a < 1),

g(u, v) = u− γv (γ > 0).

The functions α, g+ and g− : R → R appearing in (3.3) are associated with f and g.
This system has been studied in particular by Giga, Goto and Ishii [13] and Soravia,
Souganidis [21]. They proved existence of a weak solution to (3.3). Moreover in [21], the
convergence of the solution of (3.4) to a solution of (3.3) as ε→ 0 is proved.

If for χ ∈ L∞(RN × [0, T ]; [0, 1]), v denotes the solution of

{

vt − ∆v = g+(v)χ+ g−(v)(1 − χ) in R
N × (0, T ),

v(·, 0) = v0 in R
N ,

(3.5)

and if c[χ](x, t) := α(v(x, t)), then Problem (3.3) reduces to

{

ut(x, t) = c[1{u≥0}](x, t)|Du(x, t)| in R
N × (0, T ),

u(·, 0) = u0 in R
N ,

(3.6)
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which is a particular case of (1.1), and where c[χ] depends on χ in a nonlocal way in
both space and time. In [5], Barles, Cardaliaguet, Ley and the author were therefore
able to recover the existence result of [13, 21], and in [6], they proved uniqueness in the
case where α > δ in R for some δ > 0.

Let us state the assumptions satisfied by the data; they imply that (A1) and (A2)
hold:

(F) (i) α is Lipschitz continuous on R,

(ii) g+ and g− are smooth on R
N , and there exist g and g in R such that

g ≤ g−(r) ≤ g+(r) ≤ g for all r in R.

We set γ = max{|g|, |g|}. Moreover we assume that

‖(g+)′‖∞ + ‖(g+)′′‖∞ + ‖(g−)′‖∞ + ‖(g−)′′‖∞ < +∞.

(iii) v0 is of class C4 on R
N with ‖Djv0‖∞ < +∞ for any j = 0, . . . , 4.

Here we want to propose a numerical scheme to compute a weak solution, or the weak
solution if α > δ, of (3.3)-(3.6). To solve the heat equation part

vt − ∆v = g+(v)χ+ g−(v)(1 − χ),

we use an approximation scheme that we write in the following abstract form: we build
functions vh : R

N × [0, T ] → R, such that vh is piecewise constant, i.e. for any (x, t) ∈
R

N × [0, T ], vh(x, t) = vh(xh, [t/h]h), and such that for any k ∈ N with (k+1)h ≤ T , for
any x ∈ Πh,

{

vh(x, (k + 1)h) = Sh[χ](x, kh, vh),

vh(x, 0) = v0,h(x),
(3.7)

where Sh[χ](x, kh, v) depends on {χ(xi1,...,iN
, lh)}(i1,...,iN )∈ZN for l ∈ N up to k+ 1, and

on {vh(xi1,...,iN
, lh)}(i1,...,iN )∈ZN for l ∈ N up to k. Moreover v0,h is an approximation of

the initial datum v0.

The scheme solving the heat equation being fixed, we then use our scheme (2.1) in
the following form: for any k ∈ N such that (k + 1)h ≤ T , and for any x ∈ Πh, we set

{

uh(x, (k + 1)h) = uh(x, kh) + hα(vh(x, kh))|Dh|(uh(·, kh)),
vh(x, (k + 1)h) = Sh[1{uh≥0}](x, kh, vh),

(3.8)

with the initial condition
{

uh(x, 0) = u0(x)

vh(x, 0) = v0,h(x).

We recall that |Dh|(φ)(x) is the monotone approximation of |Dφ(x)| used in the previous
section. We easily see that this scheme is of the form (2.1) where H[χ](x, kh, u) depends
on χ through all the values χ(·, lh) for 0 ≤ l ≤ k. We now formulate assumptions on the
functions Sh which will guarantee convergence of (3.8) according to Theorem 2.2:

(S) (i) There exists M > 0 such that for any fixed χ ∈ L∞(RN × [0, T ]; [0, 1]), the
solution v of (3.7) satisfies, for any x ∈ Πh and k ∈ N with kh ≤ T ,

|v(x, kh)| ≤M independently of h.
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(ii) If χh ∈ Bh(RN × [0, T ]; [0, 1]) is such that χh ⇀ χ in L∞(RN × [0, T ]; [0, 1]) for
the weak-∗ topology as h → 0, then the solution vh of (3.7) associated to χh converges
pointwise to the solution v of (3.5) in B̄(0, R) × [0, T ], where we set R = R0 + T maxλi

and R0 is given by (1.2).

(iii) For any compact subset K of R
N , there exist uniformly bounded moduli of

continuity mh(η) such that for any h > 0, x, y ∈ K ∩ Πh, any k, h > 0 with kh ≤ T and
χ ∈ L∞(RN × [0, T ]; [0, 1]), the solution v of (3.7) satisfies

|v(x, kh) − v(y, kh)| ≤ mh(|x− y|),

and such that mh(η) → 0 as h, η → 0.

Our convergence result is the following:

Theorem 3.2. Assume that α, g+, g− and v0 satisfy (F), while u0 is a bounded and
Lipschitz continuous function which satisfies (1.2). Let uh be defined by the scheme (3.8)
such that (S) holds and the ∆i’s satisfy

√
2N max{|α(r)|, |r| ≤M} h

∆i
≤ 1 for any i = 1, . . . , N, (3.9)

where M is the constant given by assumption (S) (i). Then there exists hn → 0 such
that (uhn

) converges locally uniformly in R
N × [0, T ] to a weak solution of (3.6).

If in addition there exists δ > 0 such that α(r) ≥ δ for any r ∈ R, then the whole
sequence (uh) converges locally uniformly in R

N × [0, T ] to the weak solution of (3.6).

Proof. Assumption (S) (i) guarantees the existence of a constant M such that for any
fixed χ ∈ L∞(RN × [0, T ]; [0, 1]), the solution v ∈ Bh(RN × [0, T ]) of (3.7) satisfies, for
any x, y ∈ Πh and k ∈ N with kh ≤ T ,

|v(x, kh)| ≤M independently of h.

The CFL condition to ensure the conditional monotonicity of the first part of the scheme
(3.8) is exactly (3.9), while the stability of this scheme follows as in the dislocation case.
It only remains to check assumptions (H3) and (H4) of Theorem 2.2. This verification
is very similar to the above proof in the dislocation case: it uses assumption (S) and
the Lipschitz continuity of α. As a consequence, Theorem 2.2 guarantees the existence
of a subsequence (uhn

) converging locally uniformly in R
N × [0, T ] to a weak solution of

(3.6).

If in addition there exists δ > 0 such that α(r) ≥ δ for any r ∈ R, then (3.6) has
a unique weak solution (see [6]). The convergence of the whole sequence (uh) to this
solution follows once more from Theorem 2.2.

Let us now give an example of scheme (3.7) which satisfies (S). Due to the lack of
regularity of the function χ, we will solve an approximate equation in which the term
χ is regularized by convolution: for ε > 0, let (ρε) be a mollifier on R

N × R such that
Supp(ρε) ⊂ [−ε, ε]N+1, ρε(−x,−t) = ρε(x, t) for all (x, t) ∈ R

N × R, ‖ρε‖1 = 1 and

∥

∥

∥

∥

∂ρε

∂t

∥

∥

∥

∥

1

≤ A

εN+1
,
∥

∥Djρε
∥

∥

1
≤ A

εj(N+1)
for j = 1, 2 (3.10)
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for some constant A > 0. To ensure that our scheme is non-anticipative, we shift ρε in
time by ε and set

χε(x, t) =

∫ T

0

∫

RN

ρε(x− y, t− s− ε)χ(y, s) dyds.

Let us fix the space steps ∆i by the relation ∆i = λi h for some fixed constants λi > 0
so that (3.9) holds with

M = ‖v0‖∞ + γ T.

We also assume that ε is linked to h by the relation

εN+1 = hβ (3.11)

for some fixed β ∈ (0, 1).

We are going to solve (3.5) by the standard forward Euler scheme, with the regular-
ization χε of χ. For reasons linked to this choice of scheme that will appear later, we need
to solve (3.5) on a refined time grid: let h′ be another time step such that h/h′ =: p ∈ N

∗;
the integer p may depend on h. We define the operator T kh′

h′ [χ] corresponding to the k-th
step of the forward Euler scheme for (3.5) on this refined grid, that is, for any function
v : Πh → R, χ ∈ L∞(RN × [0, T ]; [0, 1]), for any x ∈ Πh and k, h′ such that (k+1)h′ ≤ T ,

T kh′

h′ [χ](v)(x) = v(x) + h′
N
∑

i=1

v(x+ ∆iei) − 2v(x) + v(x− ∆iei)

∆2
i

+ h′ g+(v(x))χε(x, kh′) + h g−(v(x))(1 − χε(x, kh′)), (3.12)

where (e1, . . . , eN ) is the canonical basis of R
N .

Then we set for any v : Πh → R, χ ∈ L∞(RN × [0, T ]; [0, 1]), for any x ∈ Πh and k, h
such that (k + 1)h ≤ T ,

Sh[χ](x, kh, v) = T
kh+(p−1)h′

h′ [χ] ◦ · · · ◦ T kh+h′

h′ [χ] ◦ T kh
h′ [χ](v)(x),

and we denote vε
h the solution of (3.7) with initial condition

v0,h(x) = vε
0(x)

for some regularization vε
0 of v0 of class C∞ with ‖Djvε

0‖∞ ≤ ‖Djv0‖∞ for any j =
0, . . . , 4 and such that vε

0 → v0 uniformly as ε→ 0.

This means that, to define vε
h(x, (k+1)h) knowing vε

h(x, kh), we split the time interval
[kh, (k+1)h] in p = p(h) intervals of length h′ and make p iterations of the operator Th′ ,
starting from vε

h(x, kh).

To explain the choice of h′, we notice that the linear part of (3.12), which is repre-
sented by the operator

G(h′) : v = (v(x))x∈Πh
7→
(

v(x) + h′
N
∑

i=1

v(x+ ∆iei) − 2v(x) + v(x− ∆iei)

∆2
i

)

x∈Πh

,

is monotone and satisfies
‖G(h′)v‖∞ ≤ ‖v‖∞
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under the CFL condition

max
h′

∆2
i

≤ 1

2N
. (3.13)

Since in addition we have for any k, h′ such that kh′ ≤ T ,

|h′ g+(vε
h(x, kh′))χε(x, kh′) + h′ g−(vε

h(x, kh′))(1 − χε(x, kh′))| ≤ γ h′,

it is easy to see that under condition (3.13), for any h and ε we have

‖vε
h‖∞ ≤ ‖v0‖∞ + γ T = M.

We therefore choose our time step h′ by the relation ∆i = µi

√
h′ for some constant

µi > 0 such that h/h′ ∈ N
∗ and (3.13) holds: more precisely, we fix constants µi ≥

√
2N

independent of h such that λi/µi =: ν does not depend on i, and set

h′ = (νh)2 where h =
1

ν2p

for some p ∈ N
∗.

Let us now check the assumptions of Theorem 3.2 for the choice of ε given by (3.11).
First of all, (S) (i) is satisfied with M = ‖v0‖∞ + γ T , and the ∆i’s were chosen so as to
satisfy (3.9) with this M .

To check (S) (ii), let us fix a sequence of functions χh ∈ Bh(RN × [0, T ]; [0, 1]) such
that χh ⇀ χ weakly-∗ in L∞(RN × [0, T ]; [0, 1]) as h → 0. We want to prove that for
the choice of ε(h) given by (3.11), the solution vε

h of (3.7) associated to χh with initial
condition vε

0 converges pointwise to the solution v of (3.5) in B̄(0, R) × [0, T ] as h → 0.
To do so, we set χε

h := (χh)ε and write

vε
h − v = (vε

h − wε
h) + (wε

h − wh) + (wh − v),

where wh (resp. wε
h) denotes the solution of (3.5) associated to χh (resp. χε

h) with
initial condition v0 (resp. vε

0). That is, we split the error in three parts, the first part
concerning the approximation error coming from the scheme, but with regular source
terms χε

h, the second part taking into account the error on exact solutions of (3.5), but
as we relax the regularity of χε by letting χε

h → χh, and the third part dealing with the
weak convergence of χh to χ.

Step 1: the term vε
h − wε

h. Let us set

Ek = (Ek(x))x∈Πh
:= (vε

h(x, kh′) − wε
h(x, kh′))x∈Πh

to be the approximation error at step k. Let us also set ek = (ek(x))x∈Πh
, where

ek(x) :=
wε

h(x, (k + 1)h′) −G(h′)wε
h(x, kh′)

h′

− g+(wε
h(x, kh′))χε

h(x, kh′) − g−(wε
h(x, kh′))(1 − χε

h(x, kh′)),

which represents the consistency error of the scheme. Classical error estimates on the
explicit Euler scheme for the heat equation imply that there exists a constant C > 0 such
that for any x ∈ Πh and k, h′ with kh′ ≤ T ,

|ek(x)| ≤ C

ε2(N+1)
(h′ + max ∆2

i ). (3.14)
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Indeed, the theory of parabolic equations shows that wε
h is of class C∞ with

∥

∥

∥

∥

∂2wε
h

∂t2

∥

∥

∥

∥

∞

≤ A

εN+1
and

∥

∥D4wε
h

∥

∥

∞
≤ A

ε2(N+1)

for some constant A > 0, thanks to (3.10) and the bounds on the derivatives of the initial
datum v0. Then we remark that

Ek+1(x)

= vε
h(x, (k + 1)h′) − wε

h(x, (k + 1)h′)

=G(h′)vε
h(·, kh′)(x) + h′ g+(vε

h(x, kh′))χε
h(x, kh′) + h′ g−(vε

h(x, kh′))(1 − χε
h(x, kh′))

−G(h′)wε
h(·, kh′)(x) − h′ g+(wε

h(x, kh′))χε
h(x, kh′) − h′ g−(wε

h(x, kh′))(1 − χε
h(x, kh′))

−h′ ek(x),

which we rewrite

Ek+1(x) = G(h′)[vε
h(·, kh′) − wε

h(·, kh′)](x) − h′ ek(x)

+ h′ [g+(vε
h(x, kh′)) − g+(wε

h(x, kh′))]χε
h(x, kh′)

+ h′ [g−(vε
h(x, kh′)) − g−(wε

h(x, kh′))](1 − χε
h(x, kh′)).

If D denotes a Lipschitz constant for g+ and g−, then we obtain, using the fact that
‖G(h′)‖ ≤ 1,

‖Ek+1‖∞ ≤ ‖Ek‖∞ + h′‖ek‖∞ +Dh′ ‖Ek‖∞ = (1 +Dh′)‖Ek‖∞ + h′ ‖ek‖∞.

By induction, and using the fact that E0 = 0, we easily deduce that for any k with
kh′ ≤ T ,

‖Ek‖∞ ≤ h′
k
∑

i=0

(1 +Dh′)i ‖ek−i‖∞.

Using (3.14), we obtain that for any k with kh′ ≤ T ,

‖Ek‖∞ ≤ TeDT C

ε2(N+1)
(h′ + max ∆2

i )

≤ TeDT C

ε2(N+1)
(1 + maxµ2

i ) ν
2 h2, (3.15)

thanks to the choices of ∆i = µi

√
h′ and h′ = (νh)2. We therefore see that if we choose

ε as in (3.11), i.e. εN+1 = hβ for some β ∈ (0, 1), then vε
h −wε

h converges to 0 uniformly
on Πh as h → 0. Moreover, an easy consequence of the explicit resolution of (3.5) (see
Lemma 3.5 in [5]) is that there exists a constant kN > 0 depending only on N such that
for any x, y ∈ R

N ,

|wε
h(x, kh) − wε

h(y, kh)| ≤
(

‖Dv0‖∞ + kN γ
√
T
)

|x− y|.

As a consequence, vε
h − wε

h also converges to 0 uniformly on R
N as h→ 0.

Step 2: the term wε
h −wh. Let us first prove that χε

h − χh ⇀ 0 in L∞(RN × [0, T ]; [0, 1])
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weakly-∗ as h→ 0. For any φ ∈ L1(RN × [0, T ]; R),

∫ T

0

∫

RN

χε
h(x, t)φ(x, t) dxdt−

∫ T

0

∫

RN

χh(x, t)φ(x, t) dxdt

=

∫ T

0

∫

RN

(

∫ T

0

∫

RN

χh(y, s) ρε(x− y, t− s− ε) dyds

)

φ(x, t) dxdt

−
∫ T

0

∫

RN

χh(x, t)φ(x, t) dxdt.

Exchanging the variables (x, t) and (y, s) in the first integral, which is permitted by the
facts that χh takes values in [0, 1], and that ρε and φ ∈ L1, we transform this difference
of integrals into

∫ T

0

∫

RN

χh(y, s)

(

∫ T

0

∫

RN

ρε(x− y, t− s− ε)φ(x, t) dxdt

)

dyds

−
∫ T

0

∫

RN

χh(y, s)φ(y, s) dyds

which, in absolute value, is less than

∫ T

0

∫

RN

∣

∣

∣

∣

∣

(

∫ T

0

∫

RN

ρε(x− y, t− s− ε)φ(x, t) dxdt

)

− φ(y, s)

∣

∣

∣

∣

∣

dyds,

since |χh| ≤ 1. Using the fact that ρε is symmetric, this integral is equal to

∫ T

0

∫

RN

∣

∣

∣

∣

∣

(

∫ T

0

∫

RN

ρε(y − x, s− t+ ε)φ(x, t) dxdt

)

− φ(y, s)

∣

∣

∣

∣

∣

dyds,

that is to say,
‖ρε(·, · + ε) ⋆ φ̃− φ̃‖L1(RN×[0,T ]),

where φ̃ is the extension of φ to R
N × R by φ̃(·, t) = 0 if t /∈ [0, T ]. Reproducing the

standard proof on approximation by convolution (using the approximation of φ̃ by a
function of class C1), we see that this term converges to 0 as ε = ε(h) → 0. This proves
the claim.

We deduce from this assertion and the fact that vε
0 → v0 uniformly, that wε

h − wh

converges locally uniformly to 0 as h → 0. This verification is similar to the proof of
Theorem 3.4 of [5], based on the explicit resolution of (3.5) in terms of the Green function
of the heat equation.

Step 3: the term wh − v. We prove in the same manner that this term converges locally
uniformly to 0 as h→ 0, since χh ⇀ χ weakly-∗ in L∞(RN × [0, T ]; [0, 1]). This concludes
the verification of (S) (ii).

Let us finally check (S) (iii) for the choice of ε given by (3.11) : let K be a compact
subset of R

N , let x, y ∈ K ∩ Πh, kh ≤ T and χ ∈ L∞(RN × [0, T ]; [0, 1]). To estimate
vε

h(x, kh) − vε
h(y, kh), where vε

h is the solution of (3.7), we write

vε
h(x, kh) − vε

h(y, kh) = (vε
h(x, kh) − wε

h(x, kh)) + (wε
h(x, kh) − wε

h(y, kh))

+ (wε
h(y, kh) − vε

h(y, kh)).
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Using the error estimate (3.15), we know that

|vε
h(x, kh) − wε

h(x, kh)| + |wε
h(y, kh) − vε

h(y, kh)| ≤ 2T eDT C

ε2(N+1)
(1 + maxµ2

i ) ν
2 h2.

Moreover, as recalled above, the solution wε
h of (3.5) associated to χε

h satisfies

|wε
h(x, kh) − wε

h(y, kh)| ≤
(

‖Dv0‖∞ + kN γ
√
T
)

|x− y|.

With the previous choice of ε, we therefore obtain that (S) (iii) is satisfied with

mh(η) = 2T eDT C (1 + maxµ2
i ) ν

2 h2(1−β) +
(

‖Dv0‖∞ + kN γ
√
T
)

η.

This concludes the proof of convergence for this scheme.
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