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We provide a convergence result for numerical schemes approximating nonlocal front propagation equations. Our schemes are based on a recently investigated notion of weak solution for these equations. We also give examples of such schemes, for a dislocation dynamics equation, and for a Fitzhugh-Nagumo type system.

Introduction

We are concerned with numerical approximation for nonlocal equations of the form

u t (x, t) = H[1 {u≥0} ](x, t, Du, D 2 u) in R N × (0, T ), u(•, 0) = u 0 in R N , (1.1) 
which, in the level-set approach for front propagation (see [START_REF] Osher | Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF][START_REF] Giga | Surface evolution equations. A level set approach[END_REF] for a complete overview of this method), describe the movement of a family {K(t)} t∈[0,T ] of compact subsets of R N such that K(t) = {x ∈ R N ; u(x, t) ≥ 0}

for some function u : R N ×[0, T ] → R. Here u t , Du and D 2 u denote respectively the time derivative, space gradient and space Hessian matrix of u, while 1 A denotes the indicator function of any set A.

The function H corresponds to the velocity of the front. In our setting, it depends not only on local properties of the front, such as its position, the time, the normal direction and its curvature matrix, but also, at time t, on the family {K(s)} s∈[0,t] itself. This non-local dependence is carried by the notation H[1 {u≥0} ]: for any indicator function χ or more generally for any χ ∈ L ∞ (R N × [0, T ]) with values in [0, 1], the Hamiltonian H[χ] depends on χ in a nonlocal way; typically in our examples, it is obtained by a convolution procedure between χ and a physical kernel (either only in space or in space and time). In particular, H[χ] is continuous in space but has no particular regularity in time. However, the H[χ]-equation is always well-posed.

The initial datum u 0 : R N → R is a bounded and Lipschitz continuous function on R N which represents the initial front, i.e. such that {u 0 ≥ 0} = K 0 and {u 0 = 0} = ∂K 0 for some fixed compact set K 0 ⊂ R N . Since in the level-set approach, the family {K(t)} t∈[0,T ] only depends on the 0-level set of u 0 (see [START_REF] Giga | Surface evolution equations. A level set approach[END_REF]), we assume for simplicity that there exists R 0 > 0 such that

u 0 = -1 in R N \ B(0, R 0 ).
(1.

2)

The main issue linked with these nonlocal equations is the fact that they do not satisfy a comparison principle (or, geometrically, an inclusion principle on the fronts). Indeed, in general the fact that {u 1 ≥ 0} ⊂ {u 2 ≥ 0} does not imply that H [1 {u1≥0} ] ≤ H [1 {u2≥0} ]. The consequence of this absence of monotonicity is that one cannot build viscosity solutions to (1.1) by the classical methods, a comparison principle being crucial for both existence and uniqueness of solutions.

To overcome these difficulties, a notion of weak solution to (1.1) has therefore been introduced in [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF][START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]. It uses the notion of L 1 -viscosity solution, a notion of solution adapted to Hamiltonians H[χ] which are merely measurable in time, that is, we assume that for any χ ∈ L ∞ (R N × [0, T ]; [0, 1]), H[χ](x, t, p, A) defines a measurable function of (x, t, p, A) ∈ R N × [0, T ] × R N \ {0} × S N , while for almost every t ∈ [0, T ], H[χ](x, t, p, A) defines a continuous function of (x, p, A). Here S N denotes the set of real square symmetric matrices of size N . We refer to [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF][START_REF] Nunziante | Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with discontinuous time-dependence[END_REF][START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF][START_REF] Bourgoing | Vicosity solutions of fully nonlinear second order parabolic equations with L 1 -time dependence and Neumann boundary conditions. existence and applications to the level-set approach[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 -time dependence and Neumann boundary conditions[END_REF] for a complete presentation of the theory of L 1 -viscosity solutions. Moreover the equations we consider are degenerate parabolic, which means that for any χ ∈ L ∞ (R N × [0, T ]; [0, 1]), for any (x, p) ∈ R N × R N \ {0}, for almost every t ∈ [0, T ] and for all A, B ∈ S N , we have

H[χ](x, t, p, A) ≤ H[χ](x, t, p, B) if A ≤ B,
where ≤ stands for the usual partial ordering for symmetric matrices.

Let us now recall the definition of a weak solution to (1.1): Definition 1.1. Let u : R N × [0, T ] → R be a continuous function. We say that u is a weak solution of (1.1) if there exists χ ∈ L ∞ (R N × [0, T ]; [0, 1]) such that:

1. u is a L 1 -viscosity solution of u t (x, t) = H[χ](x, t, Du, D 2 u) in R N × (0, T ), u(•, 0) = u 0 in R N . (1.3) 2.
For almost all t ∈ [0, T ],

1 {u(•,t)>0} ≤ χ(•, t) ≤ 1 {u(•,t)≥0} a.e. in R N .
Moreover, we say that u is a classical viscosity solution of (1.1) if in addition, for almost all t ∈ [0, T ],

1 {u(•,t)>0} = 1 {u(•,t)≥0} a.e. in R N .
In [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF], Barles, Cardaliaguet, Ley and the author proved a general result of existence of weak solutions for these nonlocal equations. The essential assumptions under which existence is known are the following; they concern the local equation (1.3), where the nonlocal dependence is frozen, that is to say, 1 {u≥0} is replaced by a fixed function

χ ∈ L ∞ (R N × [0, T ]; [0, 1]): (A1) If χ n ⇀ χ weakly- * in L ∞ (R N ×[0, T ]; [0, 1]), and if Supp(χ) is uniformly bounded, then for all (x, t, p, A) ∈ R N × [0, T ] × R N \ {0} × S N , t 0 H[χ n ](x, s, p, A)ds -→ n→+∞ t 0 H[χ](x, s, p, A)ds locally uniformly in x, t, p, A. (A2) A comparison principle holds for (1.3): for any fixed χ ∈ L ∞ (R N × [0, T ]; [0, 1]),
if u is a bounded and upper semicontinuous viscosity subsolution of (1.3) and v is a bounded, lower semicontinuous viscosity supersolution of (1.3) 

with u(x, 0) ≤ v(x, 0) in R N , then u ≤ v in R N × [0, T ).
These assumptions are the classical ingredients to carry out a stability argument: assumption (A1) provides stability for L 1 -viscosity solutions under very weak convergence of the Hamiltonians, thanks to a new stability result of Barles [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF], while assumption (A2) enables to identify the limit by a comparison principle. This is the idea of the proof of the existence result of [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]. We assume throughout the paper that these assumptions hold, and we refer to [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for conditions on H[χ] under which they hold. We also point out that assumption (A2) implies that for any fixed

χ ∈ L ∞ (R N × [0, T ]; [0, 1]), (1.3) has a unique continuous L 1 -viscosity solution u : R N × [0, T ] → R.
Considering this existence result, our motivation is to provide numerical schemes, and a general convergence result, for these nonlocal and non-monotone front propagation equations with L 1 dependence in time. This work is inspired by [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] where Barles and Souganidis proved a general convergence result for monotone, stable and consistent schemes in the local framework. We also refer to the works of Cardaliaguet and Pasquignon [START_REF] Cardaliaguet | On the approximation of front propagation problems with nonlocal terms[END_REF] and Slepčev [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions[END_REF] on the approximation of moving fronts in the nonlocal but monotone case. This paper is organized as follows: in Section 2, we define a class of approximation schemes and prove the general convergence result. In Section 3, we give two explicit examples of such schemes, for a dislocation dynamics equation and Fitzhugh-Nagumo type system (see (3.1) and (3.3)).

Notation. In what follows,

| • | denotes the standard euclidean norm on R N , B(x, R) (resp. B(x, R)) is the open (resp. closed) ball of radius R centered at x ∈ R N . We denote the essential supremum of f ∈ L ∞ (R N ) or f ∈ L ∞ (R N × [0, T ]) by f ∞ .

Convergence of approximation schemes

Let h = T /n for some n ∈ N * , and ∆ 1 , . . . , ∆ N ∈ (0, 1) be our respective time and space steps: a choice of h determines fixed ∆ i 's by the relation

∆ i = λ i h for λ i > 0 fixed. We define for (i 1 , . . . , i N ) ∈ Z N , x i1,...,i N = (i 1 ∆ 1 , . . . , i N ∆ N ), and Q i1,...,i N = N k=1 [(i k -1/2)∆ k , (i k + 1/2)∆ k ).
Let us also define the space grid

Π h = (i1,...,i N )∈Z N x i1,...,i N ,
and for x = (x 1 , . . . , x N ) ∈ R N , its projection on this grid, We keep in mind that H[χ](x, kh, u) possibly depends on the entire history {χ(•, lh)} for l up to k.

x h := ([x 1 /∆ 1 + 1/2]∆ 1 , . . . , [x N /∆ N + 1/2]∆ N ) ∈ Π h , where [•] denotes the integer part, so that if x ∈ Q i1,...,i N , then x h = x i1,...,i N . For x ∈ Π h , k ∈ N such that kh ≤ T , u : Π h → R and χ : Π h × [0, T ] → [0,
We consider approximation schemes of the following form: for any k ∈ N such that (k + 1)h ≤ T , and for any x ∈ Π h , we set

u h (x, (k + 1)h) = u h (x, kh) + h H h [1 {u h ≥0} ](x, kh, u h (•, kh)), u h (x, 0) = u 0 (x). (2.1) 
We finally extend u h to a piecewise constant function on R N × [0, T ] by setting for any (x, t), u h (x, t) = u h (x h , [t/h]h).

In particular we have for any x ∈ R N , u h (x, 0) = u 0 (x h ).

Let us now state our assumptions on H

h ; in what follows C 2 b (R N ; R) denotes the set of C 2 functions on R N such that the norm φ = φ ∞ + Dφ ∞ + D 2 φ ∞ is finite.
Let us first state an assumption on the behavior of H h with respect to its last variable, which represents space derivatives. It is a trivial assumption which is linked to the fact that H[χ] is geometric for any fixed χ; it will be satisfied for all reasonnable schemes at no cost, so we state it separately:

(H0) consistency with respect to derivatives:

(i) For any x ∈ Π h , k, h with kh ≤ T , u : Π h → R, λ ∈ R, and any function χ : Π h × [0, T ] → [0, 1] with bounded support, H h [χ](x, kh, u + λ) = H h [χ](x, kh, u), and H h [χ](x, kh, 0) = 0.
(ii) There exists r ∈ N * such that for any x ∈ Π h , k, h with kh ≤ T , and χ :

Π h × [0, T ] → [0, 1] with bounded support, for all u, v : Π h → R, if u(y) = v(y) ∀ y ∈ Π h s.t. ∀i, |x i -y i | ≤ r∆ i , then H h [χ](x, kh, u) = H h [χ](x, kh, v).
We easily deduce from this and (1.2) that there exists R = R 0 + rT max λ i such that if u h is defined by the scheme (2.1), then u h (x, t) = -1 if x ∈ R N \ B(0, R), for all t ∈ [0, T ]; hence we only need to consider functions χ with uniformly bounded support. This shows in addition that the domain of space computation is uniformly bounded. In particular we set B h (R N × [0, T ]; [0, 1]) to be the set of functions χ defined on R N × [0, T ] with values in [0, 1] such that Supp(χ) ⊂ B(0, R) × [0, T ] and χ is piecewise constant on ∪ Q i1,...,i N × [kh, (k + 1)h).

Our assumptions are the following:

(H1) H h is conditionally monotone: for any x ∈ Π h , k, h with kh ≤ T , and

χ ∈ B h (R N × [0, T ]; [0, 1]), for all u, v : Π h → R, u ≤ v ⇒ u(x) + H h [χ](x, kh, u) ≤ v(x) + H h [χ](x, kh, v).
(H2) H h is stable: there exists L > 0 such that for any x ∈ Π h , k, h with kh ≤ T , and

χ ∈ B h (R N × [0, T ]; [0, 1]), the solution u h of (2.1) satisfies |u h (x, kh)| ≤ L. (H3) H h is consistent with H: for any x ∈ R N , for any φ ∈ C 2 b (R N ; R), if χ h ∈ B h (R N × [0, T ]; [0, 1]) is such that χ h ⇀ χ weakly- * in L ∞ (R N × [0, T ]; [0, 1]) as h → 0, then h [t/h]-1 l=0 H h [χ h ](x h , lh, φ) -→ h→0 t 0 H[χ](x, s, Dφ(x), D 2 φ(x)) ds locally uniformly for t ∈ [0, T ] (the sum is set to 0 if t < h). (H4) Regularity: for any compact subset K of R N × C 2 b (R N ; R), there exist uniformly bounded moduli of continuity m h (η, ε) such that for any h > 0, (x, φ), (y, ψ) ∈ K with x, y ∈ Π h , for any k, h with kh ≤ T , any χ ∈ B h (R N × [0, T ]; [0, 1]), |H h [χ](x, kh, φ) -H h [χ](y, kh, ψ)| ≤ m h (|x -y|, |Dφ(x) -Dψ(y)| + |D 2 φ(x) -D 2 ψ(y)|),
and such that m h (η, ε) → 0 as h, η, ε → 0.

Assumptions (H1) to (H3) are the classical assumptions introduced by Barles and Souganidis in [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. Moreover (H3) is the discrete equivalent of (A1) on the weak convergence of the Hamiltonians. As a matter of fact, the proof of our convergence theorem is based on the proof of the stability result of [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF], the key assumption of which is (A1).

Finally assumption (H4) appears naturally alongside (H3), just like in the continous case (see [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF]).

Remark 2.1. Under assumption (H0) (ii), if (H1) holds, then it also holds for all functions u and v such that u(y) ≤ v(y) for any y ∈ Π h with |x i -y i | ≤ r∆ i for all i = 1 . . . N , that is, also for functions that are comparable only locally. Indeed in this case, we can change u and v to 0 out of the set {y ∈ Π h ; |x i -y i | ≤ r∆ i ∀i = 1 . . . N }. This provides new functions ũ and ṽ such that ũ ≤ ṽ in Π h , whence, using (H1),

ũ(x) + H h [χ](x, kh, ũ) ≤ ṽ(x) + H h [χ](x, kh, ṽ). But ũ(x) = u(x), H h [χ](x, kh, ũ) = H h [χ](x,
kh, u) thanks to (H0) (ii), and the same holds for v. This proves our assertion.

In the same spirit, we notice that assumption (H4) also holds for two functions φ and ψ in C 2 (R N ; R), because one can always modify φ and ψ to obtain new functions in

C 2 b (R N ; R) without changing the values of H h [χ](x, kh, φ) or H h [χ](y, kh, ψ).
Let us now state our main result:

Theorem 2.2. Let u 0 be a bounded and Lipschitz continuous function which satisfies (1.2). Let (u h ) h be defined by the scheme (2.1) satisfying assumptions (H0) to (H4).

Then there exist

h n → 0 and u ∈ C 0 (R N × [0, T ]; R) such that u hn → u locally uniformly in R N × [0, T ],
and u is a weak solution of (1.1).

If (1.1) has a unique weak solution u, then the whole sequence (u h ) converges locally uniformly to u.

Proof. By compactness of L ∞ (R N × [0, T ]; [0, 1]) for the weak- * topology, we can find χ ∈ L ∞ (R N × [0, T ]; [0, 1]) and (h n ) converging to 0 such that 1 {u hn ≥0} ⇀ χ weakly- * in L ∞ (R N × [0, T ]; [0, 1]).
By the stability assumption (H2), there exists L > 0 such that u h ∞ ≤ L for any h. We can therefore set

u(x, t) = lim sup * (u hn )(x, t) = lim sup{u h ′ n (x n , k n h ′ n ); (h ′ n ) ⊂ (h n ), x n → x with x n ∈ Π hn , k n h ′ n → t with k n → +∞},
which defines an upper semi-continuous function on

R N × [0, T ]. Let us prove that u is an L 1 -viscosity subsolution of (1.3). We could prove in the same way that u(x, t) = lim inf{u h ′ n (x n , k n h ′ n ); (h ′ n ) ⊂ (h n ), x n → x, k n h ′ n → t} is an L 1 -viscosity supersolution of (1.3).
Step 1. We first prove that for any x ∈ R N , u(x, 0) ≤ u 0 . To do this we adapt the proof of the same statement in the proof of Theorem 3.1 of [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]. First of all, u 0 is Lipschitz continuous, so that for any fixed 0 < ε ≤ 1, we have, for any x, y ∈ R N ,

u 0 (y) ≤ u 0 (x) + Du 0 ∞ |x -y| ≤ u 0 (x) + |x -y| 2 2ε 2 + Du 0 ∞ ε 2 2 .
We fix x and set φ(y) = |x -y| 2 /2ε 2 . In the ball B(x, ε + rT max λ i ), using (H0) (i), we see that the function defined by

ψ ε (y, kh n ) = u 0 (x) + φ(y) + Du 0 ∞ ε 2 2 + C ε kh n is a supersolution of (2.1) associated to H[1 {u hn ≥0} ] provided that C ε is large enough, namely as soon as H hn [1 {u hn ≥0} ](y, kh n , φ) ≤ C ε for all y with |x -y| < ε + rT max λ i and kh n ≤ T.
This condition can be fulfilled using (H4) and the fact that H[χ](x, kh, 0) = 0 (assumption (H0) (i)). Indeed, for some uniformly bounded moduli of continuity, we have

H hn [1 {u hn ≥0} ](y, kh n , φ) ≤ m hn (|x -y|, |Dφ(y)| + |D 2 φ(y)|)
for any n ∈ N, y ∈ Π hn such that |x -y| < ε + rT max λ i , and kh n ≤ T . The function φ does not belong to C 2 b (R N ; R), but using Remark 2.1, we recall that (H4) can also be applied to two functions in C 2 (R N ; R). By the conditional monotonicity assumption (H1) (using again Remark 2.1), we obtain that for any y ∈ Π hn with |y -

x| < ε + r(T - h n ) max λ i , u hn (y, h n ) ≤ ψ ε (y, h n ).
Reproducing the argument, we get that for any y ∈ Π hn with |y -x| < ε and k, h n with

kh n ≤ T , u hn (y, kh n ) ≤ ψ ε (y, kh n ),
and in particular

u(x, 0) ≤ lim sup * ψ ε (x, 0) = u 0 (x) + Du 0 ∞ ε 2 2 .
Sending ε to 0 proves the claim.

Step

2. Now let φ ∈ C 2 (R N × (0, T ); R) and b ∈ L 1 ((0, T ); R) be such that (x, t) → u(x, t) -φ(x, t) - t 0 b(s) ds
has a global strict maximum at some (x 0 , t 0 ) ∈ R N × (0, T ). Let G be a continuous function such that for almost all t in a neighborhood of t 0 , for all (x, p, A) in a neighborhood of (x 0 , Dφ(x 0 , t 0 ), D 2 φ(x 0 , t 0 )),

H[χ](x, t, p, A) -b(t) ≤ G(x, t, p, A).
To check the L 1 -viscosity subsolution property, we have to prove that

φ t (x 0 , t 0 ) ≤ G(x 0 , t 0 , Dφ(x 0 , t 0 ), D 2 φ(x 0 , t 0 )).
We can assume without loss of generality that sup t∈[0,T ] φ(•, t) < +∞. Let us set for simplicity x h = (x 0 ) h and introduce the functions

f h : t → h [t/h]-1 l=0 H h [1 {u h ≥0} ](x h , lh, φ(•, t 0 )) - t 0 H[χ](x 0 , s, Dφ(x 0 , t 0 ), D 2 φ(x 0 , t 0 )) ds,
so that by the consistency assumption (H3), f hn (t) → 0 as n → +∞, locally uniformly for t ∈ [0, T ]. As a consequence, the functions

v hn : (x, t) → u hn (x, t) -φ(x, t) - t 0 b(s) ds -f hn (t) satisfy lim sup * (v hn )(x, t) = u(x, t) -φ(x, t) - t 0 b(s) ds.
By a standard stability argument, there exists a subsequence of (h n ), still denoted (h n ) for simplicity, and a sequence

(x n , k n h n ) → (x 0 , t 0 ) of global maximum points of v hn with x n ∈ Π hn . We set ξ n = v hn (x n , k n h n ), so that u hn (x, t) ≤ φ(x, t) + t 0 b(s) ds + f hn (t) + ξ n (2.2)
for every (x, t) ∈ R N × (0, T ), with equality at (x n , k n h n ). Now the definition of the scheme (2.1) shows that

u hn (x n , k n h n ) = u hn (x n , (k n -1)h n )+h n H hn [1 {u hn ≥0} ](x n , (k n -1)h n , u hn (•, (k n -1)h n )).
Replacing u hn in this expression thanks to (2.2), and using the assumption (H1) of conditional monotonicity of the scheme, we therefore have

φ(x n , k n h n ) + knhn 0 b(s) ds + f hn (k n h n ) + ξ n ≤ φ(x n , (k n -1)h n ) + (kn-1)hn 0 b(s) ds + f hn ((k n -1)h n ) + ξ n + h n H hn [1 {u hn ≥0} ](x n , (k n -1)h n , φ(•, (k n -1)h n ) + (kn-1)hn 0 b(s)ds + f hn ((k n -1)h n ) + ξ n ),
which, using assumption (H0) (i), reduces to

φ(x n , k n h n ) + knhn 0 b(s) ds + f hn (k n h n ) ≤ φ(x n , (k n -1)h n ) + (kn-1)hn 0 b(s) ds + f hn ((k n -1)h n ) + h n H hn [1 {u hn ≥0} ](x n , (k n -1)h n , φ(•, (k n -1)h n )).
Replacing f hn by its value, this transforms into

φ(x n , k n h n ) -φ(x n , (k n -1)h n ) h n ≤ 1 h n knhn (kn-1)hn H[χ](x 0 , s, Dφ(x 0 , t 0 ), D 2 φ(x 0 , t 0 )) -b(s) ds + H hn [1 {u hn ≥0} ](x n , (k n -1)h n , φ(•, (k n -1)h n )) -H hn [1 {u hn ≥0} ](x hn , (k n -1)h n , φ(•, t 0 )).
We now use the definition of G to deduce that

φ(x n , k n h n ) -φ(x n , (k n -1)h n ) h n ≤ 1 h n knhn (kn-1)hn G(x 0 , s, Dφ(x 0 , t 0 ), D 2 φ(x 0 , t 0 )) ds + H hn [1 {u hn ≥0} ](x n , (k n -1)h n , φ(•, (k n -1)h n )) -H hn [1 {u hn ≥0} ](x hn , (k n -1)h n , φ(•, t 0 )).
Since φ and G are sufficiently regular, we have

φ(x n , k n h n ) -φ(x n , (k n -1)h n ) h n - 1 h n knhn (kn-1)hn G(x 0 , s, Dφ(x 0 , t 0 ), D 2 φ(x 0 , t 0 )) ds -→ n→+∞ φ t (x 0 , t 0 ) -G(x 0 , t 0 , Dφ(x 0 , t 0 ), D 2 φ(x 0 , t 0 )).
To conclude, it therefore suffices to prove that

H hn [1 {u hn ≥0} ](x n , (k n -1)h n , φ(•, (k n -1)h n )) -H hn [1 {u hn ≥0} ](x hn , (k n -1)h n , φ(•, t 0 ))
has a non-positive upper limit as n → +∞. But as n goes to +∞, x n → x 0 , x hn → x 0 , and φ(•, (k n -1)h n ) → φ(•, t 0 ), so that thanks to assumption (H4), we have for some moduli of continuity m hn ,

|H hn [1 {u hn ≥0} ](x n , (k n -1)h n , φ(•, (k n -1)h n )) -H hn [1 {u hn ≥0} ](x hn , (k n -1)h n , φ(•, t 0 ))| ≤ m hn (|x n -x hn |, |Dφ(x n , (k n -1)h n ) -Dφ(x hn , t 0 )| + |D 2 φ(x n , (k n -1)h n ) -D 2 φ(x hn , t 0 )|),
which converges to 0 as n → +∞, and the result follows.

Step 3. We just proved that u is a bounded upper semicontinuous L 1 -viscosity subsolution of (1.3), while u is a bounded lower semicontinuous L 1 -viscosity supersolution of (1.3).

The comparison principle (A2) for this equation then implies that u ≤ u in R N × [0, T ), while the converse inequality is a direct consequence of their definition. This shows that in R N × [0, T ), u = u coincide with the unique continuous L 1 -viscosity solution u of (1.3), and that (u hn ) converges locally uniformly in R N × [0, T ) to u. Since of course we can extend H[χ] by 0 after time T , and use the previous argument on the extended time interval, we deduce that the convergence is in fact locally uniform in

R N × [0, T ].
Moreover, χ being taken as the weak- * limit of (1 {u hn ≥0} ), we can prove as in [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF] that for almost all t ∈ [0, T ],

1 {u(•,t)>0} ≤ χ(•, t) ≤ 1 {u(•,t)≥0} .
This finally proves that u is a weak solution of (1.1).

In fact, this proof shows that any sequence (u hn ) of solutions of the scheme (2.1) admits a subsequence which converges locally uniformly to a weak solution of (1.1). As a consequence if this equation has a unique weak solution, then the whole sequence (u h ) converges locally uniformly to the weak solution u of (1.1).

Applications

Dislocation dynamics

We are interested in particular in the dislocation dynamics equation (see [START_REF] Rodney | Phase field methods and dislocations[END_REF][START_REF] Alvarez | Dislocation dynamics: short-time existence and uniqueness of the solution[END_REF][START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] and the references therein), namely

u t = [c 0 (•, t) ⋆ 1 {u(•,t)≥0} (x) + c 1 (x, t)]|Du| in R N × (0, T ), u(•, 0) = u 0 in R N , (3.1) 
where the nonlocal part of the velocity is defined by the space convolution

c 0 (•, t) ⋆ 1 {u(•,t)≥0} (x) = R N c 0 (x -y, t) 1 {u(•,t)≥0} (y) dy.
We assume that c 0 and c 1 satisfy the following assumptions, under which (A1) and (A2) are satisfied (see [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF][START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]):

(D) (i) c 0 ∈ C 0 ([0, T ]; L 1 R N ), c 1 ∈ C 0 (R N × [0, T ]; R).
(ii) For any t ∈ [0, T ], c 0 (•, t) is locally Lipschitz continuous and there exists a constant

C > 0 such that Dc 0 L ∞ ([0,T ];L 1 (R N )) ≤ C.
(iii) There exists a constant C > 0 such that, for any x, y ∈ R N and t ∈ [0, T ],

|c 1 (x, t)| ≤ C and |c 1 (x, t) -c 1 (y, t)| ≤ C|x -y|.
Under these assumptions, there exists a weak solution of (3.1), as proved by Barles, Cardaliaguet, Ley and Monneau [4, Theorem 1.2] or Barles, Cardaliaguet, Ley and the author [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]Theorem 3.3]. We are going to study the convergence in any dimension of the following approximation algorithm proposed by Alvarez, Carlini, Monneau and Rouy [START_REF] Alvarez | A convergent scheme for a nonlocal Hamilton-Jacobi equation, modeling dislocation dynamics[END_REF] for N = 2, which is a particular case of (2.1). We set if

x = x i1,...,i N ∈ Π h , H h [χ](x, kh, φ) =    j1,...j N ∈Z c 0 (i 1 -j 1 , . . . , i N -j N , k) χ(j 1 ∆ 1 , . . . , j N ∆ N , kh)    |D h |(φ)(x i1,...,i N ) + c 1 (i 1 , . . . , i N , kh) |D h |(φ)(x i1,...,i N ), where c 0 (m 1 , . . . , m N , k) = Qm 1 ,...,m N c 0 (y, kh) dy,
and

|D h |(φ)(x)
is a monotone approximation of |Dφ(x)| adapted to the sign of the nonlocal term, such as the one proposed by Osher and Sethian [START_REF] Osher | Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF] and used in [START_REF] Alvarez | A convergent scheme for a nonlocal Hamilton-Jacobi equation, modeling dislocation dynamics[END_REF]: let (e 1 , . . . , e N ) denote the canonical basis of R N ; then for x ∈ Π h ,

|D h |(φ)(x) = N i=1 max φ(x + e i ) -φ(x) ∆ i , 0 2 + min φ(x) -φ(x -e i ) ∆ i , 0 2 1/2
if the nonlocal term is nonnegative, and

|D h |(φ)(x) = N i=1 min φ(x + e i ) -φ(x) ∆ i , 0 2 + max φ(x) -φ(x -e i ) ∆ i , 0 2 1/2
otherwise. In particular H h satisfies (H0) with r = 1. Let M > 0 be such that

c 0 (•, t) L 1 (R N ) + c 1 (x, t) ≤ M for any (x, t) ∈ R N × [0, T ].
The CFL condition to ensure the conditional monotonicity (H1) of the scheme is

√ 2N M h ∆ i ≤ 1 for any i = 1, . . . , N. (3.2) 
The discrete convolution in the definition of H h is efficiently computed using Fast Fourier Transform, see [START_REF] Alvarez | A convergent scheme for a nonlocal Hamilton-Jacobi equation, modeling dislocation dynamics[END_REF]. We now state our convergence result:

Theorem 3.1. Let c 0 and c 1 satisfy (D), and let u 0 be a bounded and Lipschitz continuous function which satisfies (1.2). Let us fix space steps ∆ i = λ i h for any i = 1, . . . , N , for some constants λ i > 0 such that (3.2) holds.

Then there exists h n → 0 such that (u hn ) converges locally uniformly to a weak solution of (3.1) in R N × [0, T ].

If in addition we have (D')

There exist c, c > 0 such that, for any x ∈ R N and t ∈ [0, T ],

|c 0 (x, t)| ≤ c, 0 < c ≤ -c 0 (•, t) L 1 (R N ) + c 1 (x, t) ≤ c 0 (•, t) L 1 (R N ) + c 1 (x, t) ≤ c,
then the whole sequence (u h ) converges locally uniformly in R N × [0, T ] to the unique weak solution of (3.1).

Proof. We check the assumptions of Theorem 2.2, but will assume to avoid repetition that c 1 = 0; the treatment of the term c 1 is similar to -but easier than -the treatment of the convolution term involving c 0 . To check the assumptions, we first notice as in [START_REF] Alvarez | A convergent scheme for a nonlocal Hamilton-Jacobi equation, modeling dislocation dynamics[END_REF] that for x ∈ Π h and χ

∈ B h (R N × [0, T ]; [0, 1]), H h [χ](x, kh, φ) = {c 0 (•, kh) ⋆ χ(•, kh)(x)} |D h |(φ)(x).
Assumption (H2) is satisfied with L = u 0 ∞ , by a simple comparison with the constant solutions ± u 0 ∞ . It only remains to prove assumptions (H3) and (H4). Let us pick

x ∈ R N , φ ∈ C 2 b (R N ; R), χ h ∈ B h (R N × [0, T ]; [0, 1]) such that χ h ⇀ χ weakly- * in L ∞ (R N × [0, T ]; [0, 1]), and let us prove that h [t/h]-1 l=0 {c 0 (•, lh) ⋆ χ h (•, lh)(x h )} |D h |(φ)(x h ) ds -→ h→0 t 0 {c 0 (•, s) ⋆ χ(•, s)(x)} |Dφ(x)| ds locally uniformly for t ∈ [0, T ].
We decompose the difference of the two above terms as

[t/h]h t {c 0 (•, [s/h]h) ⋆ χ h (•, s)(x h )} |D h |(φ)(x h ) ds + t 0 {c 0 (•, [s/h]h) ⋆ χ h (•, s)(x h )} (|D h |(φ)(x h ) -|Dφ(x)|) ds +|Dφ(x)| t 0 {c 0 (•, [s/h]h) ⋆ χ h (•, s)(x h ) -c 0 (•, s) ⋆ χ h (•, s)(x h )} ds +|Dφ(x)| t 0 {c 0 (•, s) ⋆ χ h (•, s)(x h ) -c 0 (•, s) ⋆ χ h (•, s)(x)} ds +|Dφ(x)| t 0 {c 0 (•, s) ⋆ χ h (•, s)(x) -c 0 (•, s) ⋆ χ(•, s)(x)} ds.

By definition of |D h | and regularity of φ, the first term of this expression satisfies

[t/h]h t {c 0 (•, [s/h]h) ⋆ χ h (•, s)(x h )} |D h |(φ)(x h ) ds ≤ |t -[t/h]h| M √ 2N Dφ ∞ ≤ M √ 2N Dφ ∞ h,
while the second is estimated by

t 0 {c 0 (•, [s/h]h) ⋆ χ h (•, s)(x h )} (|D h |(φ)(x h ) -|Dφ(x)|) ds ≤ T M | |D h |(φ)(x h ) -|Dφ(x)| | -→ h→0 0.
The third term is, in absolute value, less than

|Dφ(x)| t 0 c 0 (•, [s/h]h) -c 0 (•, s) L 1 (R N ) ds ≤ |Dφ(x)| T m(h),
where m is a modulus of continuity for c 0 ∈ C 0 ([0, T ]; L 1 (R N )). We estimate the fourth term by

|Dφ(x)| T C |x h -x| ≤ √ N 2 T C |Dφ(x)| (max λ i ) h using the facts that Dc 0 L ∞ ([0,T ];L 1 (R N )) ≤ C and |x h -x| 2 ≤ N i=1 ∆ i 2 2 = 1 4 N i=1 λ 2 i h 2 ≤ N 4 (max λ i ) 2 h 2 .
Finally, the last term is equal to

|Dφ(x)| t 0 R N c 0 (x -y, s) {χ h (y, s) -χ(y, s)} dyds
which converges to 0 as h → 0 by definition of the weak- * convergence of (χ h ) to χ. This convergence is a priori merely pointwise in time but we notice as in [4, Remark 5.2] that the bound

R N c 0 (x -y, s) χ h (y, s) dy ≤ M
valid for any (x, s) ∈ R N × [0, T ] and h > 0 implies that the convergence is in fact uniform, by Ascoli's theorem.

To check (H4), let K be a compact set of R N and R be a positive constant, and let us fix x, y

∈ K ∩ Π h , k ∈ N with kh ≤ T , φ, ψ ∈ C 2 b (R N ; R) with φ -ψ ≤ R and χ ∈ B h (R N × [0, T ]; [0, 1]
). We want to prove that

|H h [χ](x, kh, φ) -H h [χ](y, kh, ψ)| ≤ m h (|x -y|, |Dφ(x) -Dψ(y)| + |D 2 φ(x) -D 2 ψ(y)|),
for some uniformly bounded moduli of continuity m h . To do this we write

H h [χ](x, kh, φ) -H h [χ](y, kh, ψ) = {c 0 (•, kh) ⋆ χ(•, kh)(x)} |D h |(φ)(x) -{c 0 (•, kh) ⋆ χ(•, kh)(y)} |D h |(ψ)(y) = {c 0 (•, kh) ⋆ χ(•, kh)(x)} |D h |(φ)(x) -{c 0 (•, kh) ⋆ χ(•, kh)(x)} |Dφ(x)| + {c 0 (•, kh) ⋆ χ(•, kh)(x)} |Dφ(x)| -{c 0 (•, kh) ⋆ χ(•, kh)(x)} |Dφ(y)| + {c 0 (•, kh) ⋆ χ(•, kh)(x)} |Dφ(y)| -{c 0 (•, kh) ⋆ χ(•, kh)(y)} |Dφ(y)| + {c 0 (•, kh) ⋆ χ(•, kh)(y)} |Dφ(y)| -{c 0 (•, kh) ⋆ χ(•, kh)(y)} |Dψ(y)| + {c 0 (•, kh) ⋆ χ(•, kh)(y)} |Dψ(y)| -{c 0 (•, kh) ⋆ χ(•, kh)(y)} |D h |(ψ)(y).

By definition of |D h |, the first and the last terms of this equality are respectively estimated by

M | |D h |(φ)(x) -|Dφ(x)| | ≤ M √ 2N 2 D 2 φ ∞ (max λ i ) h and M | |D h |(ψ)(y) -|Dψ(y)| | ≤ M √ 2N 2 D 2 ψ ∞ (max λ i ) h ≤ M √ 2N 2 ( D 2 φ ∞ + R) (max λ i ) h.
The second term is easily dominated by

M √ N D 2 φ ∞ |x -y|
by regularity of φ, while the third term is, in absolute value, less than

C |x -y| Dφ ∞ , because Dc 0 L ∞ ([0,T ];L 1 (R N )) ≤ C.
Finally, the fourth term is estimated by

M (|Dφ(y)| -|Dψ(y)|) ≤ M |Dφ(x) -Dψ(y)| + M |Dφ(x) -Dφ(y)| ≤ M |Dφ(x) -Dψ(y)| + M √ N D 2 φ ∞ |x -y|.
This proves (H4) and concludes the proof of the first part of Theorem 3.1.

For the convergence of the entire sequence, we use the result of [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF] which states that under assumptions (D) and (D'), then (3.1) has a unique weak solution. The convergence of the whole sequence (u h ) to this solution then follows from Theorem 2.2.

A Fitzhugh-Nagumo type system

We are also interested in the following system:

     u t = α(v)|Du| in R N × (0, T ), v t -∆v = g + (v)1 {u≥0} + g -(v)(1 -1 {u≥0} ) in R N × (0, T ), u(•, 0) = u 0 , v(•, 0) = v 0 in R N , (3.3) 
which is obtained as the asymptotics as ε → 0 of the following Fitzhugh-Nagumo system arising in neural wave propagation or chemical kinetics:

u ε t -ε∆u ε = ε -1 f (u ε , v ε ), v ε t -∆v ε = g(u ε , v ε ) (3.4) in R N × (0, T ), where for (u, v) ∈ R 2 , f (u, v) = u(1 -u)(u -a) -v (0 < a < 1), g(u, v) = u -γv (γ > 0).
The functions α, g + and g -: R → R appearing in (3.3) are associated with f and g. This system has been studied in particular by Giga, Goto and Ishii [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF] and Soravia, Souganidis [START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF]. They proved existence of a weak solution to (3.3). Moreover in [START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF], the convergence of the solution of (3.4) to a solution of (3.3) as ε → 0 is proved.

If for χ ∈ L ∞ (R N × [0, T ]; [0, 1]), v denotes the solution of v t -∆v = g + (v)χ + g -(v)(1 -χ) in R N × (0, T ), v(•, 0) = v 0 in R N , (3.5) and if c[χ](x, t) := α(v(x, t)), then Problem (3.3) reduces to u t (x, t) = c[1 {u≥0} ](x, t)|Du(x, t)| in R N × (0, T ), u(•, 0) = u 0 in R N , (3.6)
which is a particular case of (1.1), and where c[χ] depends on χ in a nonlocal way in both space and time. In [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF], Barles, Cardaliaguet, Ley and the author were therefore able to recover the existence result of [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF][START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF], and in [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF], they proved uniqueness in the case where α > δ in R for some δ > 0.

Let us state the assumptions satisfied by the data; they imply that (A1) and (A2) hold:

(F) (i) α is Lipschitz continuous on R,
(ii) g + and g -are smooth on R N , and there exist g and g in R such that g ≤ g -(r) ≤ g + (r) ≤ g for all r in R.

We set γ = max{|g|, |g|}. Moreover we assume that

(g + ) ′ ∞ + (g + ) ′′ ∞ + (g -) ′ ∞ + (g -) ′′ ∞ < +∞. (iii) v 0 is of class C 4 on R N with D j v 0 ∞ < +∞ for any j = 0, . . . , 4.
Here we want to propose a numerical scheme to compute a weak solution, or the weak solution if α > δ, of (3.3)-(3.6). To solve the heat equation part

v t -∆v = g + (v)χ + g -(v)(1 -χ),
we use an approximation scheme that we write in the following abstract form: we build functions

v h : R N × [0, T ] → R, such that v h is piecewise constant, i.e. for any (x, t) ∈ R N × [0, T ], v h (x, t) = v h (x h , [t/h]h), and such that for any k ∈ N with (k + 1)h ≤ T , for any x ∈ Π h , v h (x, (k + 1)h) = S h [χ](x, kh, v h ), v h (x, 0) = v 0,h (x), (3.7) 
where S h [χ](x, kh, v) depends on {χ(x i1,...,i N , lh)} (i1,...,i N )∈Z N for l ∈ N up to k + 1, and on {v h (x i1,...,i N , lh)} (i1,...,i N )∈Z N for l ∈ N up to k. Moreover v 0,h is an approximation of the initial datum v 0 .

The scheme solving the heat equation being fixed, we then use our scheme (2.1) in the following form: for any k ∈ N such that (k + 1)h ≤ T , and for any x ∈ Π h , we set

u h (x, (k + 1)h) = u h (x, kh) + h α(v h (x, kh))|D h |(u h (•, kh)), v h (x, (k + 1)h) = S h [1 {u h ≥0} ](x, kh, v h ), (3.8) 
with the initial condition

u h (x, 0) = u 0 (x) v h (x, 0) = v 0,h (x).
We recall that |D h |(φ)(x) is the monotone approximation of |Dφ(x)| used in the previous section. We easily see that this scheme is of the form (2.1) where H[χ](x, kh, u) depends on χ through all the values χ(•, lh) for 0 ≤ l ≤ k. We now formulate assumptions on the functions S h which will guarantee convergence of (3.8) according to Theorem 2.2:

(S) (i) There exists M > 0 such that for any fixed χ ∈ L ∞ (R N × [0, T ]; [0, 1]), the solution v of (3.7) satisfies, for any x ∈ Π h and k ∈ N with kh ≤ T ,

|v(x, kh)| ≤ M independently of h. (ii) If χ h ∈ B h (R N ×[0, T ]; [0, 1]) is such that χ h ⇀ χ in L ∞ (R N ×[0, T ]; [0, 1]
) for the weak- * topology as h → 0, then the solution v h of (3.7) associated to χ h converges pointwise to the solution v of (3.5) in B(0, R) × [0, T ], where we set R = R 0 + T max λ i and R 0 is given by (1.2).

(iii) For any compact subset K of R N , there exist uniformly bounded moduli of continuity m h (η) such that for any h > 0, x, y

∈ K ∩ Π h , any k, h > 0 with kh ≤ T and χ ∈ L ∞ (R N × [0, T ]; [0, 1]), the solution v of (3.7) satisfies |v(x, kh) -v(y, kh)| ≤ m h (|x -y|),
and such that m h (η) → 0 as h, η → 0.

Our convergence result is the following: Theorem 3.2. Assume that α, g + , g -and v 0 satisfy (F), while u 0 is a bounded and Lipschitz continuous function which satisfies (1.2). Let u h be defined by the scheme (3.8) such that (S) holds and the ∆ i 's satisfy

√ 2N max{|α(r)|, |r| ≤ M } h ∆ i ≤ 1 for any i = 1, . . . , N, (3.9) 
where M is the constant given by assumption (S) (i). Then there exists h n → 0 such that (u hn ) converges locally uniformly in R N × [0, T ] to a weak solution of (3.6).

If in addition there exists δ > 0 such that α(r) ≥ δ for any r ∈ R, then the whole sequence (u h ) converges locally uniformly in R N × [0, T ] to the weak solution of (3.6).

Proof. Assumption (S) (i) guarantees the existence of a constant M such that for any fixed χ ∈ L ∞ (R N × [0, T ]; [0, 1]), the solution v ∈ B h (R N × [0, T ]) of (3.7) satisfies, for any x, y ∈ Π h and k ∈ N with kh ≤ T , |v(x, kh)| ≤ M independently of h.

The CFL condition to ensure the conditional monotonicity of the first part of the scheme (3.8) is exactly (3.9), while the stability of this scheme follows as in the dislocation case. It only remains to check assumptions (H3) and (H4) of Theorem 2.2. This verification is very similar to the above proof in the dislocation case: it uses assumption (S) and the Lipschitz continuity of α. As a consequence, Theorem 2.2 guarantees the existence of a subsequence (u hn ) converging locally uniformly in R N × [0, T ] to a weak solution of (3.6).

If in addition there exists δ > 0 such that α(r) ≥ δ for any r ∈ R, then (3.6) has a unique weak solution (see [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF]). The convergence of the whole sequence (u h ) to this solution follows once more from Theorem 2.2.

Let us now give an example of scheme (3.7) which satisfies (S). Due to the lack of regularity of the function χ, we will solve an approximate equation in which the term χ is regularized by convolution: for ε > 0, let (ρ ε ) be a mollifier on

R N × R such that Supp(ρ ε ) ⊂ [-ε, ε] N +1 , ρ ε (-x, -t) = ρ ε (x, t) for all (x, t) ∈ R N × R, ρ ε 1 = 1 and ∂ρ ε ∂t 1 ≤ A ε N +1 , D j ρ ε 1 ≤ A ε j(N +1) for j = 1, 2 (3.10) 
for some constant A > 0. To ensure that our scheme is non-anticipative, we shift ρ ε in time by ε and set

χ ε (x, t) = T 0 R N ρ ε (x -y, t -s -ε) χ(y, s) dyds.
Let us fix the space steps ∆ i by the relation ∆ i = λ i h for some fixed constants λ i > 0 so that (3.9) holds with

M = v 0 ∞ + γ T.
We also assume that ε is linked to h by the relation

ε N +1 = h β (3.11)
for some fixed β ∈ (0, 1).

We are going to solve (3.5) by the standard forward Euler scheme, with the regularization χ ε of χ. For reasons linked to this choice of scheme that will appear later, we need to solve (3.5) on a refined time grid: let h ′ be another time step such that h/h ′ =: p ∈ N * ; the integer p may depend on h. We define the operator T kh ′ h ′ [χ] corresponding to the k-th step of the forward Euler scheme for (3.5) on this refined grid, that is, for any function

v : Π h → R, χ ∈ L ∞ (R N × [0, T ]; [0, 1]), for any x ∈ Π h and k, h ′ such that (k + 1)h ′ ≤ T , T kh ′ h ′ [χ](v)(x) = v(x) + h ′ N i=1 v(x + ∆ i e i ) -2v(x) + v(x -∆ i e i ) ∆ 2 i + h ′ g + (v(x))χ ε (x, kh ′ ) + h g -(v(x))(1 -χ ε (x, kh ′ )), (3.12) 
where (e 1 , . . . , e N ) is the canonical basis of R N .

Then we set for any v : Π h → R, χ ∈ L ∞ (R N × [0, T ]; [0, 1]), for any x ∈ Π h and k, h such that (k + 1)h ≤ T ,

S h [χ](x, kh, v) = T kh+(p-1)h ′ h ′ [χ] • • • • • T kh+h ′ h ′ [χ] • T kh h ′ [χ](v)(x),
and we denote v ε h the solution of (3.7) with initial condition

v 0,h (x) = v ε 0 (x)
for some regularization v ε 0 of v 0 of class C ∞ with D j v ε 0 ∞ ≤ D j v 0 ∞ for any j = 0, . . . , 4 and such that v ε 0 → v 0 uniformly as ε → 0. This means that, to define v ε h (x, (k+1)h) knowing v ε h (x, kh), we split the time interval [kh, (k + 1)h] in p = p(h) intervals of length h ′ and make p iterations of the operator T h ′ , starting from v ε h (x, kh). To explain the choice of h ′ , we notice that the linear part of (3.12), which is represented by the operator

G(h ′ ) : v = (v(x)) x∈Π h → v(x) + h ′ N i=1 v(x + ∆ i e i ) -2v(x) + v(x -∆ i e i ) ∆ 2 i x∈Π h , is monotone and satisfies G(h ′ )v ∞ ≤ v ∞ under the CFL condition max h ′ ∆ 2 i ≤ 1 2N . (3.13)
Since in addition we have for any k, h ′ such that kh ′ ≤ T ,

|h ′ g + (v ε h (x, kh ′ ))χ ε (x, kh ′ ) + h ′ g -(v ε h (x, kh ′ ))(1 -χ ε (x, kh ′ ))| ≤ γ h ′ ,
it is easy to see that under condition (3.13), for any h and ε we have

v ε h ∞ ≤ v 0 ∞ + γ T = M.
We therefore choose our time step h ′ by the relation ∆ i = µ i √ h ′ for some constant µ i > 0 such that h/h ′ ∈ N * and (3.13) holds: more precisely, we fix constants µ i ≥ √ 2N independent of h such that λ i /µ i =: ν does not depend on i, and set

h ′ = (νh) 2 where h = 1 ν 2 p for some p ∈ N * .
Let us now check the assumptions of Theorem 3.2 for the choice of ε given by (3.11). First of all, (S) (i) is satisfied with M = v 0 ∞ + γ T , and the ∆ i 's were chosen so as to satisfy (3.9) with this M .

To check (S) (ii), let us fix a sequence of functions

χ h ∈ B h (R N × [0, T ]; [0, 1]) such that χ h ⇀ χ weakly- * in L ∞ (R N × [0, T ]; [0, 1 
]) as h → 0. We want to prove that for the choice of ε(h) given by (3.11), the solution v ε h of (3.7) associated to χ h with initial condition v ε 0 converges pointwise to the solution v of (3.5) in B(0, R) × [0, T ] as h → 0. To do so, we set χ ε h := (χ h ) ε and write

v ε h -v = (v ε h -w ε h ) + (w ε h -w h ) + (w h -v),
where w h (resp. w ε h ) denotes the solution of (3.5) associated to χ h (resp. χ ε h ) with initial condition v 0 (resp. v ε 0 ). That is, we split the error in three parts, the first part concerning the approximation error coming from the scheme, but with regular source terms χ ε h , the second part taking into account the error on exact solutions of (3.5), but as we relax the regularity of χ ε by letting χ ε h → χ h , and the third part dealing with the weak convergence of χ h to χ.

Step 1: the term v ε h -w ε h . Let us set

E k = (E k (x)) x∈Π h := (v ε h (x, kh ′ ) -w ε h (x, kh ′ )) x∈Π h
to be the approximation error at step k. Let us also set e k = (e k (x)) x∈Π h , where

e k (x) := w ε h (x, (k + 1)h ′ ) -G(h ′ )w ε h (x, kh ′ ) h ′ -g + (w ε h (x, kh ′ ))χ ε h (x, kh ′ ) -g -(w ε h (x, kh ′ ))(1 -χ ε h (x, kh ′ )),
which represents the consistency error of the scheme. Classical error estimates on the explicit Euler scheme for the heat equation imply that there exists a constant C > 0 such that for any x ∈ Π h and k, h ′ with kh ′ ≤ T ,

|e k (x)| ≤ C ε 2(N +1) (h ′ + max ∆ 2 i ). (3.14)
Indeed, the theory of parabolic equations shows that

w ε h is of class C ∞ with ∂ 2 w ε h ∂t 2 ∞ ≤ A ε N +1 and D 4 w ε h ∞ ≤ A ε 2(N +1)
for some constant A > 0, thanks to (3.10) and the bounds on the derivatives of the initial datum v 0 . Then we remark that

E k+1 (x) = v ε h (x, (k + 1)h ′ ) -w ε h (x, (k + 1)h ′ ) = G(h ′ )v ε h (•, kh ′ )(x) + h ′ g + (v ε h (x, kh ′ ))χ ε h (x, kh ′ ) + h ′ g -(v ε h (x, kh ′ ))(1 -χ ε h (x, kh ′ )) -G(h ′ )w ε h (•, kh ′ )(x) -h ′ g + (w ε h (x, kh ′ ))χ ε h (x, kh ′ ) -h ′ g -(w ε h (x, kh ′ ))(1 -χ ε h (x, kh ′ )) -h ′ e k (x), which we rewrite E k+1 (x) = G(h ′ )[v ε h (•, kh ′ ) -w ε h (•, kh ′ )](x) -h ′ e k (x) + h ′ [g + (v ε h (x, kh ′ )) -g + (w ε h (x, kh ′ ))]χ ε h (x, kh ′ ) + h ′ [g -(v ε h (x, kh ′ )) -g -(w ε h (x, kh ′ ))](1 -χ ε h (x, kh ′ )).
If D denotes a Lipschitz constant for g + and g -, then we obtain, using the fact that

G(h ′ ) ≤ 1, E k+1 ∞ ≤ E k ∞ + h ′ e k ∞ + D h ′ E k ∞ = (1 + Dh ′ ) E k ∞ + h ′ e k ∞ .
By induction, and using the fact that E 0 = 0, we easily deduce that for any k with kh ′ ≤ T ,

E k ∞ ≤ h ′ k i=0 (1 + Dh ′ ) i e k-i ∞ .
Using (3.14), we obtain that for any k with kh ′ ≤ T ,

E k ∞ ≤ T e DT C ε 2(N +1) (h ′ + max ∆ 2 i ) ≤ T e DT C ε 2(N +1) (1 + max µ 2 i ) ν 2 h 2 , (3.15) 
thanks to the choices of ∆ i = µ i √ h ′ and h ′ = (νh) 2 . We therefore see that if we choose ε as in (3.11), i.e. ε N +1 = h β for some β ∈ (0, 1), then v ε h -w ε h converges to 0 uniformly on Π h as h → 0. Moreover, an easy consequence of the explicit resolution of (3.5) (see Lemma 3.5 in [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]) is that there exists a constant k N > 0 depending only on N such that for any x, y ∈ R N ,

|w ε h (x, kh) -w ε h (y, kh)| ≤ Dv 0 ∞ + k N γ √ T |x -y|.
As a consequence, v ε h -w ε h also converges to 0 uniformly on R N as h → 0. that is to say,

ρ ε (•, • + ε) ⋆ φ -φ L 1 (R N ×[0,T ]) ,
where φ is the extension of φ to R N × R by φ(•, t) = 0 if t / ∈ [0, T ]. Reproducing the standard proof on approximation by convolution (using the approximation of φ by a function of class C 1 ), we see that this term converges to 0 as ε = ε(h) → 0. This proves the claim.

We deduce from this assertion and the fact that v ε 0 → v 0 uniformly, that w ε h -w h converges locally uniformly to 0 as h → 0. This verification is similar to the proof of Theorem 3.4 of [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF], based on the explicit resolution of (3.5) in terms of the Green function of the heat equation.

Step 3: the term w h -v. We prove in the same manner that this term converges locally uniformly to 0 as h → 0, since χ h ⇀ χ weakly- * in L ∞ (R N ×[0, T ]; [0, 1]). This concludes the verification of (S) (ii).

Let us finally check (S) (iii) for the choice of ε given by (3.11) : let K be a compact subset of R N , let x, y ∈ K ∩ Π h , kh ≤ T and χ ∈ L ∞ (R N × [0, T ]; [0, 1]). To estimate v ε h (x, kh) -v ε h (y, kh), where v ε h is the solution of (3.7), we write v ε h (x, kh) -v ε h (y, kh) = (v ε h (x, kh) -w ε h (x, kh)) + (w ε h (x, kh) -w ε h (y, kh)) + (w ε h (y, kh) -v ε h (y, kh)).

Using the error estimate (3.15), we know that

|v ε h (x, kh) -w ε h (x, kh)| + |w ε h (y, kh) -v ε h (y, kh)| ≤ 2T e DT C ε 2(N +1) (1 + max µ 2 i ) ν 2 h 2 .
Moreover, as recalled above, the solution w ε h of (3.5) associated to χ ε h satisfies

|w ε h (x, kh) -w ε h (y, kh)| ≤ Dv 0 ∞ + k N γ √ T |x -y|.
With the previous choice of ε, we therefore obtain that (S) (iii) is satisfied with

m h (η) = 2T e DT C (1 + max µ 2 i ) ν 2 h 2(1-β) + Dv 0 ∞ + k N γ √ T η.
This concludes the proof of convergence for this scheme.
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Step 2 :

 2 the term w ε h -w h . Let us first prove that χ ε h -χ h ⇀ 0 in L ∞ (R N × [0, T ]; [0, 1]) weakly- * as h → 0. For any φ ∈ L 1 (R N × [0, T ]; R), h (y, s) ρ ε (x -y, t -s -ε) dyds φ(x, t) dxdt h (x, t) φ(x, t) dxdt.Exchanging the variables (x, t) and (y, s) in the first integral, which is permitted by the facts that χ h takes values in [0, 1], and that ρ ε and φ ∈ L 1 , we transform this difference of integrals intoT 0 R N χ h (y, s) T 0 R N ρ ε (x -y, t -s -ε) φ(x, t) dxdt dyds -T 0 R N χ h (y, s) φ(y, s) dyds which, in absolute value, is less than ε (x -y, t -s -ε) φ(x, t) dxdt -φ(y, s) dyds, since |χ h | ≤ 1.Using the fact that ρ ε is symmetric, this integral is equal to ε (y -x, s -t + ε) φ(x, t) dxdt -φ(y, s) dyds,

  1] with bounded support, we define an approximate Hamiltonian H h [χ](x, kh, u) which depends on {χ(x i1,...,i N , lh)} (i1,...,i N )∈Z N , 0≤l≤k and {u(x i1,...,i N , kh)} (i1,...,i N )∈Z N .