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Estimating extreme quantiles of Weibull tail-distributions

Laurent Gardes & Stéphane Girard

SMS/LMC, Université Grenoble 1, BP 53,
38041 Grenoble cedex 9, France.
{Laurent.Gardes,Stephane.Girard}@imag.fr

Abstract: We present a new estimator of extreme quantiles dedicated to Weibull tail-distributions.
This estimate is based on a consistent estimator of the Weibull tail-coefficient. This parameter
is defined as the regular variation coefficient of the inverse cumulative hazard function. We give
conditions in order to obtain the weak consistency and the asymptotic distribution of the extreme
quantiles estimator. Its asymptotic as well as its finite sample performances are compared to
classical ones.

1 Introduction

Let X1, X5, ..., X, be asequence of independent and identically distributed random variables with
cumulative distribution function F. We address the problem of estimating extreme quantiles of
Weibull tail-distributions. In such a case, the tail of such distributions satisfies

(A1) 1= F(z) =exp(—H(x)), V(t) = H(t) = inf{z, H(z) >t} =t%4(1),
where 6 > 0 is called the Weibull tail-coefficient and where £ is a slowly varying function i.e.

L(Az)/l(x) = 1 as ¢ — oo for all A > 0.

The inverse cumulative hazard function V is said to be regularly varying at infinity with index 6
and this property is denoted by V € Ry, see [4] for more details on this topic. When £ is a
constant function, this problems reduces to estimating extreme quantiles of a Weibull distribution.
Distributions with non-constant slowly varying functions include for instance normal, gamma and
extended Weibull distributions (see Section 3 for their definitions). Such distributions have been
used to model large claims in non-life insurance [3]. They can be be classified as sub-exponential
distributions (6 < 1), exponential-like distributions (# = 1) and super-exponential distributions
(@ >1).

An extreme quantile ,, of order p, is defined by the equation
1= F(zp,) = pn, with 0 < p, < 1/n. (1)

The condition p, < 1/n is very important in this context. Tt usually implies that z, is larger than
the maximum observation of the sample. This necessity to extrapolate sample results to areas
where no data are observed occurs in reliability [10], hydrology [24], finance [13],... Dedicated
estimation methods have been proposed to address the problem of estimating extreme quantiles.
Most of these methods rely on two steps (see Section 5 for some examples). First, a classical
quantile u, of order ¢, defined by

1= F(un) = cn, with 1/n <e, <1, (2)

is estimated by the corresponding order statistic X,,_4,41,, Wwhere k, = nc,. The condition
¢, — 0 as n — 00 1s required so that u, remains in the distribution tail. Second, an extrapolation



of the inverse distribution tail is computed from ¢, to p,. Our estimate belongs to this family. It

is defined by

et /pn))* 5

log(1/¢n)

where én is an estimator of the Weibull tail-coefficient . Some conditions will be imposed to én

i‘pn = Xn_kn+17n (

later, and some examples will be given in Section 4. The estimator (3) is motivated by the remark
that, under (A.1), we have

F*m—m:vw%un»~<byumy
Fe(l—y)  V(og(l/y)) — \log(l/y)/ ’

where z and y are close to zero. In Section 2 we state the main asymptotic properties of our esti-

mate. These results are illustrated in Section 3 on some examples of distributions. Some examples
of Weibull tail-estimates are compared in Section 4 and some estimates of extreme quantiles are
listed in Section 5. Finally, these estimates are compared in Section 6 on finite sample situations.

2 Asymptotic results

In this section, we state our main results on the limiting behavior of the estimate &,,. Its weak
consistency is established in Theorem 1 and its asymptotic normality is studied in Theorem 2 and
Theorem 3. The proofs are postponed to the Appendix. For the sake of simplicity, in the following,
we shall use the notation

o log(l/pn)

™ Tog(1/cn)’
leading to &, = Xn_kn+1,n(7'n)é"~ Let us note that (1) and (2) imply 7, > 1. The weak consistency

of Z,, requires the weak consistency of ,:

Theorem 1 Suppose (A.1) holds. If k, — oo, kn/n — 0 and

1 <liminf 7, < limsup 7, < oo (4)

5P P
then 0, — 0 implies &p, [z, — 1 as n — oo.

Condition (4) can be interpreted as a limitation on the order of the extreme quantiles that can be
consistently estimated. The order log p,, of such extreme quantiles should be asymptotically close to
the order log ¢y, of the classical quantile u,,. Let us now introduce the deterministic approximation

F, =u 710g(1/pn) 9 = u,r?
o= e (o) =t ®)

where uy, is defined in (2): u, = V(log(1/cn)).

In the following, we examine the asymptotic distribution of &, /%,, and &, /zp,. Two main

of the extreme quantile

situations appear: Either 6, converges to f sufficiently rapidly and then the asymptotic normality
of the two previous ratios can be established. This situation is denoted by (S.1) and can be
summarized by:

(S.1) There exists a sequence (3,) such that: log(7,) log(l/cn)k,ll/z(én — Bn —0) £o.

Or, in the converse situation, the limit distribution of z, /%, and Z, [z, is driven by f,. This
situation is described by the following conditions:

(S.2) There exist two sequences (a,,) and (43,) and a distribution £ such that: an(én — B, —1) Ny

with log(7,) = o(a,) and a, = o(log(r,) log(l/cn)k}lﬂ).



In both situations, §, represents the asymptotic bias of the Weibull tail-coefficient estimate. In
situation (S.2), a, controls the asymptotic rate of convergence of the estimate. Of course, Z,, /Zp,
inherits the bias term from 6,,:

Theorem 2 Suppose (A.1) holds, k, — oo, and ky,/n — 0 as n — co.
e Under (S.1):
log(l/cn)kiﬂm_ﬁ" <f’i - T,f") 4 N(0,6%).
E,,
e Under (S.2):
L )Tn_ﬁ” (f;ﬁ —Tﬁ”) 4.

log(m, ),

n

The study of the limit distribution of &, /x, requires a second order condition on £: There exist
p < 0and b(x) — 0 such that uniformly locally on A > 1 when z — oo,

(A.2): log (%&‘?) ~b(z) K, (N),

with K,(A) = ff‘ uf~ldu. It can be shown [15] that necessarily |b| € R,. The second order
parameter p < 0 tunes the rate of convergence of £(Az)/£(z) to 1. The closer p is to 0, the slower
is the convergence. Condition (A.2) is the cornerstone in all proofs of asymptotic normality for
extreme value estimates. It is used in [19] to prove the asymptotic normality of the Hill estimate
and in [1] for one of its refinements. Our result is the following:

Theorem 3 Suppose (A.1) and (A.2) hold, k, = o0, ky/n — 0 and 1, > 1 as n — co.
e Under (S.1), if moreover

kL2 log(7,) log(1/cn)b(log(1/en)) — 0 (6)

then i
log(1/en )k 277 (iL - rff") 4 N(0,67).
Pn
e Under (S.2), if moreover
anb(log(l/cs)) = 0 (7)
then .
ot (2 n) S

log(m, zp

n

Conditions (6) and (7) impose that the bias induced by the slowly varying function vanishes at
infinity. On the contrary, the bias term due to 6, cannot always be cancelled, depending on the
asymptotic order of (8,), see Section 4 for examples. Finally, condition 7, — 1 is a stronger version

of (4).

3 Examples of Weibull tail-distribution

In this section, we give some examples of distributions satisfying assumptions (A.1) and (A.2).
Gaussian distribution N(y, ¢?), ¢ > 0. From [13], Table 3.4.4, we have V (z) = 2'/2¢(z) and
an asymptotic expansion of the slowly varying function is given by:

o logz
Uz) = 21245 _ W% +O0(1/x).

Therefore § = 1/2, p = —1 and b(z) = log(z)/(4x).



Gamma distribution I'(8,«), o, 8 > 0. We use the following parameterization of the density

flx) = mz exp( Bx).

We thus have § = 1, p = —1 and b(z) = (1 — o) log(z)/x.

Weibull distribution W(a, ), a, A > 0. The inverse cumulative hazard function is V(z) =
A2/ and then § = 1/a, f(z) = X for all # > 0. Therefore b(z) = 0 and we use the usual
convention p = —oo.

Extended Weibull distribution EW(a, 8), a € (0,1), § € R. This distribution is introduced
in [22]. Its distribution tail is given by:

1— F(z) = r(¢) exp(—a%), (8)

where r € Rg. Tt follows that V(z) = 1‘1/"‘[(1‘) and the following asymptotic expansion holds:

It is easily seen that § = 1/a, p = —1 and b(z) = —Blog(z)/(a’z). In [22], it is remarked that
this model encompasses the normal and gamma distributions.

The parameters § and p as well as the auxiliary function b(z) associated to these distributions are
summarized in Table 1.

4 Some estimates of the Weibull tail-coefficient

Asymptotically unbiased estimates. Beirlant et al [2] propose the following estimate
- 1og(n/k 1
6,7 = n—itln — Xn— n)-
" Xn—kptin bn —1 Z +L, kntin) 9)

Tt is proved that (see [2], Theorem 3.2(i)),
kL2025 — ) 5 N(0,67), (10)
for any sequence (k) satisfying
kn — oo and k2/? max{b(log(1/c,)), 1/ log(1/cn)} — 0. (11)

The same asymptotic result (10) is also obtained for the estimate proposed in [16]:

kn—1 kn—1
5 = 3 (108(Xatr1) ~108(niria)) /3 (g (0/) —logs (n/ b))
i=1
where log, (z) = log(log(z)), # > 1. Moreover, this convergence holds under the same condi-

tions (11), see [16], Theorem 2. Then, in both cases we are in situation (S.2), with a,, = k1/2

B, = 0and £ = N(0,6%). Denote by zp . and z; the estimates obtained by plugging respectlvely

0, =67*™ and §, = 6% in (3). The following corollary can be given:



Corollary 1 Assume (A.1) and (A.2) hold and (11) is verified. If 7, — 1, then, for &, = &5°""

G Pn
12 .-
log(1/cn) ki (”"P" - 1> % N(0,6%).

or &y, =&, ,
log(cn/pn) \2p,

In the Weibull distribution case, conditions reduce to
kn, — 00, k?/log(1/c,) = 0, log(1/p,) ~ log (1/e,).

Possible choices are k, = &, (logn)? and log(1/p,) ~ log(n), where &, — 0 and &, (logn)? — cc.
For Extended-Weibull distributions (including gamma and Gaussian distributions, see Section 3),
conditions are

kn — o0, kM/?log, (L/en) [log(1/en) = 0, log(1/pn) ~ log(1/cn).

Possible choices are ky, = ¢, (logn)?, log(1/pn) ~ log(n), where ¢, (log, n)* — 0, £,(logn)? — co.
Estimates ;7" and z; are compared on simulated data in Section 6.
Asymptotically biased estimates. In [6], another estimate of the Weibull tail coefficient is

proposed. It is defined by
kn—1
g L log(Xn—i41,n)
" kn = logy (n/i)

and the author proved that
o/ 10g(1/cn) logy (1/en) (07 — fn — 0) 5 N(0, 26), (12)
for any sequence (ky) satisfying

log(1/cn) log, (1/¢n) log(n)
k,ll/2 log, (n)

kn, — 0o, kp/n — 0, and — 0, (13)

where 3, is a bias coefficient that we do not reproduce here. Tt is shown in [16], Paragraph 4.1,
that this bias term is not asymptotically negligible in the case of a Weibull distribution (i.e. when
£ is a constant function) since

Bkl 1og(1/cn) log, (1/c¢n) — 0.

It can be shown that this corresponds to situation (S.1). Thus, denoting by #7 the estimate

obtained by plugging 62 in (3) yields the following corollary:
Corollary 2 Assume (A.1) and (A.2) hold and (6), (13) are verified. If 7, — 1, then

log(1/c, ) kL 77 Fn <ﬂcl'i - Tf") LN N(0,67).

Tp

n

5 Other estimates of extreme quantiles

Most of extreme quantile estimates are dedicated to a specific class of distributions. To describe
these classes, it is convenient to introduce the notion of domain of attraction. First, define the
excesses above u, (see equation (2)) on the basis of the X; > u, by ¥; = X; — u,,. The tail
distribution of the excesses is thus defined by

I-F
1= Py (2) = i d) oy

1—Flun) '~



Pickand’s theorem [23, 14] states that under some regularity conditions, this tail distribution can
be approximated by a generalized Pareto distribution (GPD), which tail distribution is defined by

(1+%)_1/E i€ 0

1= G(z;0,6) = (14)

exp (—g) if&=0

with z > 0if ¢ > 0 and z € [0, —o /€[ otherwise. The parameter £ is called the extreme value index,
it describes the asymptotic behaviour of the tail of the distribution: When ¢ > 0, then the distri-
bution F' is heavy tailed, it belongs to the domain of attraction of Fréchet (noted DA (Fréchet)).
If ¢ = 0, then the distribution F' has a tail decreasing exponentially fast, it belongs to the domain
of attraction of Gumbel (noted DA (Gumbel)). Let us highlight that the Weibull-tail distributions
described by (A.1) belong to this domain of attraction. Finally, when & < 0, then the distribution
F has a finite end point, it belongs to the domain of attraction of Weibull (noted DA (Weibull)).

Hill estimate.  The Hill estimate [20] of the extreme value index & is defined by:

En—1
1

HTS,]) = k 1 Z (log(Xn_i‘I'lyn) - log(X”_kn‘I'Ln))'
n i=1

The associated Hill estimate for extreme quantiles is [25]:

- (1)
B = Xk 41,0 (cn/pa)

which is dedicated to the DA(Fréchet). We can note that z can be obtained by choosing in (3):

6"71;[ — log(cn/pn) H;sl)
log(7)

GPD estimates. They are defined by

) &n .
B0 = Xomsin = 2 (1= (en/o)®) (15)

kel

where 6, and &, are estimators of the corresponding GPD parameters, see (14). Let us focus on
~DEH

two approaches. " is obtained by plugging into (15):

On = Xn—kn+1,nHr(11)¢(H(3))a and én = Hr(LS)

n

where ¢(t) = 1ift > 0 and ¢(¢) = 1 —t otherwise. Y is the Generalized Hill estimate [7], defined
as

(121"
H<3):H511)+1_1[1_M

" 2 a® ’
where
1 kn—1
2 Z 2
Hr(:) - kn — 1 2 [log(Xn—H—l,n) — log(Xn_kn+17n)] .

z," 1s obtained by estimating the GPD parameters by the probability weighted moments [21]:

200 - v
&n:# and £n:2—%,
Vg — 201 Ug — 211
where
knp—1
R 1 < . 1—0.35
Vp = ko —1 Z (] —pi)r (Xn—kn+1+i,n — ‘Xn—kn+1,n) , TE {0, ]}; with pPi = b —1 .
n i=1 n
Both estimates i';’f" and i';':" cover all the domains of attraction.



ET estimate. This estimate, introduced in [5], is dedicated to the DA(Gumbel). It is obtained
by setting &, = 0 and

kn—1
1 n
An - Xn—i n — Xn— n) 16
7 M—lgy o kutin) (16)
in (15) leading to
2y = Xn—knti,n + 0nlog(ca/pn). (17)

Weak consistency and asymptotic normality of this estimate are established in [8, 9].

Beirlant ef al estimate. In [2], the following estimate of extreme quantiles for Weibull tail-
distribution is proposed:

4BBTV

I\n] “N n "
FEETV2 X, 4 <1+ _On108(cn/Pn) ) , (18)
HEBTVXn—kn+1,n

where &, is defined by (16). Let us point out that the expression of this estimate can be simplified
by remarking that

o log(c
14+ 2n g(cn/pn) = 7,
HEBTVXn—kn+1,n
and thus i;fTV72 =z,"", the estimate studied in Corollary 1. The authors show that ;" can be

BBTV

seen as the first order Taylor expansion of z,”

6 Numerical experiments

First, the definition of the extrapolation parameter introduced in [12] is recalled. This parameter
is quite useful to compare the performances of extreme quantiles estimates. Next, our estimator
G

), 1s compared to other estimates of extreme quantiles through a simulation study.

Extrapolation parameter. The extrapolation parameter w, is an empirical measure of the
maximal distance between the largest observation X, , and the largest extreme quantile x, for
which the relative error

Cl?pn - ;'Epn

Dpn =

x,, — I,
of the estimate #,, remains smaller than 0.3. The introduction of the empirical mean Z, in
the relative error yields a measure which is invariant with respect to both scale and position

parameters. More precisely, to estimate this extrapolation parameter, the authors compute D, for
pn = 1/{n[In(n)]°} with & in the finite set {0,0.1,0.2,0.35,0.5,0.75,1,2,3.5,5,7.5,10, 16}. Linear

interpolation is then used to estimate the extrapolation parameter by @, such that:
Dy, ~ 0.3 with p, = 1/{n[In(n)]} and D, < 0.3 for p, > p,.
When D,, < 0.3 for all the values of §, then the extrapolation parameter wy is set to 15.

G

Simulations.  The finite sample behavior of our estimator 7

is investigated on 12 different
distributions classified as follows:

e DA(Fréchet): Pareto distribution with index o = 2,
o DA(Weibull): #[0, 1],
¢ DA(Gumbel) involves two subclasses of distributions:

— non Weibull tail-distribution: standard log-normal distribution,



— Weibull tail-distributions:
W(0.25,1), W(0.5,1), W(0.7,1) (Super-exponential distributions),
W(1.5,1), W(2,1) (Sub-exponential distributions),
W(1,1), I'(2,1) (Exponential-like distributions).

For the above mentioned distributions, N = 1000 samples (X, ;);=1 . n of size n were gener-
ated. On each sample X, ;, the estimation w, ; of the extrapolation parameter is computed for
n = 100,200,...,1000. The parameter k, is chosen as a realization of an uniform distribution
on the interval [n/10, n/5]. This permits to take into account of the fact that, for most methods,
the user does not know how to choose the optimal value of k,. A part of our future work will
consist in proposing a solution to select the best parameter k, for z; . Finally, we present the plot
obtained by drawing the points (n, W, ), where @y, is the median value of the sample (W, i)i=1,... N
ET

The same work is achieved with the estimators z;, 77 and #,°"". The results obtained with

estimator & are not presented here since it appeared that its extrapolation power is always close

to zero. Furthermore, the behav1or of the estimates 2, and 2®" is quite similar (or if not, the
extrapolation parameter of 2" is larger than the one of 2, °") and thus, we choose not to present

the results associated to the estimate J:I?EH

Results are collected in Figures 1-3. Figure 1 is dedicated to the results obtained on super-
exponential distributions in DA (Gumbel) and Figure 2 is dedicated to the results obtained on
sub-exponential distributions in DA(Gumbel). On the upper part of Figure 3 are presented the
results obtained on exponential-like distributions, and on its lower part, the results obtained on
non DA(Gumbel) distributions are collected. It appears that for the Weibull tail-distributions 7,
always gives better results than the other estimates. The best extrapolation power is obtained for
sub-exponential distributions. Let us note that, in case of exponential-like distributions, the ET
estimator .L‘ET is competitive with 27 and i‘EBTV In case of heavy tail distributions (DA(Frechet))
all the considered methods share a very poor extrapolatlon power. In case of distributions with
finite endpoint (DA(Weibull)), unsurprisingly, only &, is satisfying.

Conclusion and further work.  As a conclusion, our opinion is that estimator & yields very
good results for estimating quantiles of Weibull tail- dlstrlbutlons. It would be mterestmg to extend
its range of application to a larger class of distributions in DA(Gumbel). A first step could be to
adapt this method to the case H € Ry in order to include for instance the log-normal distribution.
From a practical point of view, an automatic selection method for %, should be developed. Various
approaches are proposed in the extreme index estimation context, see [18, 11, 17] among others,
and could be adapted to our problem.

Appendix: Proofs

Lemma 1 Suppose k, — oo and k,/n — 0. Then, under (A.1),

XTL— n
log(1/cn)kL/? <¢ - 1) 4 N(0,6%),

where uy, is defined by (2): u, = V(log(1/cyn)).
Proof : The first step of the proof consists of showing that

AXn kn+ln — Un
A, k1/°—
V'(log(1/cn))

converges in distribution to a standard Gaussian variable. In this aim, introduce E,_g,41n the
(n — ky, + 1)th order statistic generated by n independent standard exponential random variables.
We thus have
A, L kl/Zv( n—kntln) = (log(l/cn)).
V'(log(1/¢n))




Defining &, = k:/z(En_kn.l_Ln —log(1/cy)) yields
B 1V (s 4 log(1/en))
Ang’fn‘i‘ki/z/ ( gL /Cn —1) ds,
0 V'(log(1/cx))

and &, converges in distribution to a standard Gaussian distribution, see for instance Lemma 1(ii)
in [16]. Now, (A.1) implies that V' € Rs_1 and thus

V(s +log(1/¢n))
V(log(1/cn))

— 1lasn — oo,

uniformly locally on s € [0, k;]ﬂfn]. Tt follows that A, = &n(1+ 0p(1)). The second step of the
proof is based on the property of the regularly varying functions

log(1/ea)V"(t0g(1/cx)
V(log(1/cy))

— 0 as n — oo,
which gives the result. ]

Lemma 2 Suppose k, — oo and k,/n — 0. Then, under (A.1), the two following expansions
hold:

() &p, /Fp, = (1 + 7)1+ 7Y),

(i) &p,/2p, = L+ )1+ )1 +7Y),

where we have defined

(1) _ En 4 2
o Ty = ————— where & = N(0,6?),
k! *1og(1/c) o

. TT(LQ) = exp ((én —0)log (Tn)) -1,

(3) _ log(1/cn))
£(log(1/pn))

Proof : The proof is straightforward since (5) leads to

- 1.

i?pn Xn—k'n+]7n
Ton _ Znckadln g

n)en—o )

Lp, Un

Defining 1 + T,(ll) = Xn—kn+1,n/Un gives (1) with Lemma 1. Besides,

Ep, _ V(og(1/en)) <log(1/pn>>9 _ {(log(1/cn))

2y, V(log(1/pa)) \log(1/c,)) ~ t(log(1/pn))’

which yields (ii). [ ]

(1)

Proof of Theorem 1. The proofis based on the expansion given in Lemma 2(ii): First, 7 Lo.

. s P L
Then, since 6, — 6 and, 7, remains in a compact subset of (0, +00), we have

7 = (B, — ) log (m) (1 + 0p(1)) B 0. (19)
(3)

Finally, 7"/ — 0 as n — oo since £ is slowly varying. ]



Proof of Theorem 2. In both situations (S.1) and (S.2), the proof is based on the expansion

given in Lemma 2(1), where
%) = exp[(én — Bn — 0) log(r,)] 78" — 1.

Introducing i
en = (0n — Bn — 0) log(m),

we have €, = op(1) and therefore

(14 1) =14 en + Op(}).

In situation (S.1), this yields

A, = log(1/cn) V12 —Pn <~— T")
mpn
= log(1/e,)kL/2rMr=8n (1 4 £(2) 4 log(1/e, )kt 2[r 7P (1 4 r(2)) — 1]
= &u(1+Op(en)) +log(1/cn)ky*en (1 + Op(en))

)
= En(1+0P(5n))+OP( )

and the result follows. The proof in the situation (S.2) is similar: Introduce

AI = @n _ﬁn j’ﬁ _ ﬁn
"7 Tog(m) ( i
= I WA 42Dy I =B 4 22y )
log(,) log(7,)
an Qanén
- 511 (1+0P(5n))+ ( +OP(5TL))
log (7 )kn!* log(1/cn) 7 log(my)
= an(fa —Bn —0)(1 +op(1)) +op(1),
which gives the result. ]
Proof of Theorem 3. In the situation (S.1), we define
A, = log(l/cn)k}l/znl_ﬁ" (ml& — T,f") .
Lpn
In view of Lemma 2(ii), it follows that
Ap = AL (14 73) + log(1/cn )k 273,
Theorem 2 yields A, N N(0,6%), and it has already been seen that 7',(13) = op(1) in the proof of
Theorem 1. It only remains to prove that log(1/¢,)k ,11/2 ®) 5 0asn — oco. Taking into account

that T,(ls) ~ log(1 + T,(LS)) yields

log(1/en) k273 = log(1/cn) kM2 log (%) (14 o(1)).

Now, (A.2) implies that
log(1/ea)ky*7(¥ = log(1/ca)ky? ( (72 = 1) (1 +0(1))

= —k?log(rn)log(1/cn)b(log(1/ca))(1 + o(1))

b(log(1/¢y))
p

10



which converges to 0 with condition (6). In the situation (S.2), the proof is similar. Introduce

« z
A’ = P =B [ ZPn _ pBn
" log(m,) " zp, n
an

log(m,)

®.

Theorem 2 yields A;L 4 L, and thus it remains to prove that anTr(LS)/ log(7,) — 0.

n __(3) _ RN {(log(1/cn)) o

og(m) "~ Tog(m) (f(log(l/pn»)(” M),
_on blog(/en) , oL
= o MO (14 o)

—anb(log(1/en)) (1 + o(1))

which converges to 0 with condition (7).

Proof of Corollary 1. Let us prove that condition (S.2) holds with «,, = k,ll/Q, Bn = 0 and
£ =N(0,60%). In view of (10), it only remains to verify that

log(m,) = o(an) and a, = o(log(7,) log(l/cn)k}lﬂ).
Remarking that log(7,) — 0 and a,, — oo straightforwardly yields log(7,) = o(ay,). Now,

a, 1 1

log(r ) Toa(1/en 6177~ ToBlen/pn) = Toglfn) 1

since p, < 1/n by definition of an extreme quantile. The conclusion follows.

Proof of Corollary 2. Tt suffices to prove that condition (S.1) holds. To this end, consider

ky/*log(1/c4) log (1/¢n) (67 — fn — g)lolgzg(%

log () log(1/en)ky/ (67 — B — 6)

_ log(,)
= O, (e

in view of (12). This converges to 0 in probability since 7, — 1 and ¢, — 0.
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0 b(z) p

N, o?) | 172 ilofz —1
log x

rBaz1) | 1 (1—a)f -1

W(a,)\) 1/a 0 —00

EW(a,B#0) | 1/a _%loiz —1

Table 1: Parameters 6, p and the function b(x) associated to some usual distributions
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