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1 Introduction

The role of measures in the study of nonlinear partial differential equations has became
more and more important in the last years, not only because it belongs to the mathematical
spirit to try to extend the scope of a theory, but also because the extension from the
function setting to the measure framework appeared to be the only way to bring into
light nonlinear phenomena and to explain them. In a very similar process, the theory
of linear equations shifted from the function setting to the distribution framework. The
aim of this chapter is to bring into light several aspects of this interaction, in particular
its connection with the singularity theory and the nonlinear trace theory. Our intention
is not to present a truly self-contained text : clearly we shall assume that the reader is
familiar with the standard second order linear elliptic equations regularity theory, as it is
explained in Gilbarg and Trudinger’s classical treatise [47]. Part of the results will be fully
proven, and, for some of them, only the statements will be exposed. The starting point is
the linear theory, in our case the study of

Lu = λ in Ω,

u = µ on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R
n, L is a linear elliptic operator of second order,

and λ and µ are Radon measures, respectively in Ω and ∂Ω. Under some structural and
regularity assumptions on L (essentially that the maximum principle holds), it is proven
that (1.1) admits a unique solution. Moreover this solution admits a linear representation,
i.e.

u(x) =

∫

Ω
GΩ

L(x, y)dλ(y) +

∫

∂Ω
PΩ

L (x, y)dµ(y), (1.2)
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for any x ∈ Ω, where GΩ
L and PΩ

L are respectively the Green and the Poisson kernels
associated to L in Ω. The presentation that we adopt is a combination of the classical
regularity theory for linear elliptic equations and Stampacchia duality approach which
provides the most powerful tool for the extension to semilinear equations. In Section 3 we
shall concentrate on semilinear equations with an absorption-reaction term of the following
type

Lu+ g(x, u) = λ in Ω,

u = 0 on ∂Ω,
(1.3)

where (x, r) 7→ g(x, r) is a continuous function defined in Ω×R, satisfying the absorption
principle

sign(r)g(x, r) ≥ 0, ∀(x, r) ∈ Ω× (−∞,−r0] ∪ [r0,∞), (1.4)

for some r0 ≥ 0. Under general assumptions on g, which are the natural generalisation of
the Brezis-Bénilan weak-singularity condition [11], it is proven that for any Radon measure
λ in Ω satisfying

∫

Ω
ρα

∂Ω
d |λ| <∞, (1.5)

with ρ
∂Ω

(x) = dist (x, ∂Ω) and α ∈ [0, 1], Problem (1.3) admits a solution. Notice that the
assumption on g depends both on n and α. Furthermore, uniqueness holds if r 7→ g(x, r)
is nondecreasing, for any x ∈ Ω. However, the growth condition on g is very restrictive.
Thus the problem may not be solved for all the measures, but only for specific ones. A
natural condition is to assume that the measure λ satisfies

∫

Ω
g
(

x,GΩ
L(|λ|)

)

ρ
∂Ω
dx <∞, (1.6)

where G
Ω
L(|λ|), defined by

G
Ω
L(|λ|)(x) =

∫

Ω
GΩ

L(x, y)d |λ| (y), ∀x ∈ Ω,

is called the Green potential of |λ|. Under an additional condition on g, called the ∆2-
condition, which excludes the exponential function, but not any positive power, it is shown
that, in Condition (1.6), the measure λ can be replaced by its singular part with respect
to the n-dimensional Hausdorff measure in the Lebesgue decomposition, in order Problem
(1.3) to be solvable. In the case where

g(x, r) = |r|q−1 r,

with r > 0, Problem (1.3) can be solved for any bounded measure if 0 < q < n/(n − 2),
but this is no longer the case if q ≥ n/(n− 2). Baras and Pierre provide in [9] a necessary
and sufficient condition on the measure λ in terms of Bessel capacities. The solvability
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of nonlinear equations with measure is closely associated to removability question, the
standard one being the following : assume K is a compact subset of Ω and u a solution of

Lu+ g(x, u) = 0 in Ω \K, (1.7)

does it follows that u can be extended, in a natural way, so that the equation is satisfied
in all Ω? The answer is positive if some Bessel capacity, connected to the growth of g,
of the set K is zero. In Section 4 we give an overview of the semilinear problem with a
source-reaction term of the following type

Lu = g(x, u) + λ in Ω,

u = 0 on ∂Ω,
(1.8)

For this equation, not only the concentration of the measure is important, but also the
total mass. The first approach, due to Lions [66] is to construct a supersolution, the
conditions are somehow restrictive. In the convex case, a rather complete presentation is
provided by Baras and Pierre [10], with the improvement of Adams and Pierre [2]. The
idea is to write the solution u of (1.8) under the form

u(x) =

∫

Ω
GΩ

Lg(y, u(y))dy + G
Ω
L(λ) in Ω. (1.9)

The convexity of r 7→ g(x, r) gives a necessary condition expressed in term of the conjugate
function g∗(x, r). The difficulty is to prove that this condition is also sufficient and to link
it to a functional analysis framework. An extension of this method is given by Kalton and
Verbitsky [52] in connection with weighted inequalities in Lq spaces. Finally, conditions
for removability of singularities of positive solutions are treated by Baras and Pierre [9].
In Section 5 we consider the problem of solving boundary value problems with measures
data for nonlinear equations with an absorption-reaction term,

Lu+ g(x, u) = 0 in Ω,

u = µ on ∂Ω,
(1.10)

The first results in that direction are due to Gmira and Véron [48] who prove that the
Bénilan-Brezis method can be adapted in a framework of weighted Marcinkiewicz spaces
for obtaining existence of solutions in the so-called subcritical case : the case in which the
problem is solvable with any boundary Radon measure. In a similar way as for Problem
(1.3), it is shown that Problem (1.10) is solvable if the measure µ satisfies

∫

Ω
g
(

x,PΩ
L(|µ|)

)

ρ
∂Ω
dx <∞, (1.11)

where

P
Ω
L(|µ|)(x) =

∫

∂Ω
PΩ

L (x, y)d |µ| (y), ∀x ∈ Ω.
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It is also possible to extend the range of solvability if µ is replaced by its singular part
with respect to the (n− 1)-dimensional Hausdorff measure, for specific functions g which
verify a power like growth. In the last years the model case of equation

Lu+ |u|q−1 u = 0, (1.12)

acquired a central role because of its applications. The case q = (n + 2)/(n − 2) is
classical in Riemannian geometry and corresponds to conformal change of metric with
prescribed constant negative scalar curvature [67], [87]. The case 1 < q ≤ 2 is associated
to superprocess in probability theory. It has been developed by Dynkin, [34], [35] and
Le Gall [62] who introduced very powerful new tools for studying the properties of the
positive solutions of this equation. The central idea is the discovery by Le Gall [61], in
the case q = 2 = n, and the extension by Marcus and Véron [68], in the general case
q > 1 and n ≥ 2, of the existence of a boundary trace of positive solutions of (1.12) in
a smooth bounded domain Ω. This boundary trace denoted by Tr

∂Ω
(u) is no longer a

Radon measure, but a σ-finite Borel measure which can takes infinite value on compact
subsets of the boundary. The critical value for this equation, first observed by Gmira and
Véron, is qc = (n+ 1)/(n− 1). It is proven in [61], [70] that for any positive σ-finite Borel
measure µ on ∂Ω the problem

Lu+ |u|q−1 u = 0 in Ω,

T r
∂Ω

(u) = µ on ∂Ω,
(1.13)

admits a unique solution provided 1 < q < qc. This is no longer the case when q ≥ qc.
Although many results are now available for solving the super-critical case of Problem
(1.13), the full theory is not yet completed. An important colateral problem deals with
the question of boundary singularities, an example of which is the following : suppose
K is a compact subset of ∂Ω, u ∈ C2(Ω) ∩ C(Ω \ K) is a solution of (1.13) in Ω which
vanishes on ∂Ω \K ; does it imply that u is identically zero ? The answer to this question
is complete, and expressed in terms of boundary Bessel capacities.

2 Linear equations

2.1 Elliptic equations in divergence form

We call x = (x1, . . . , xn the variables in the space R
n. Let Ω be a bounded domain in R

n.
The type of operators under consideration are linear second order differential operators in
divergence form

Lu = −
n
∑

i,j=1

∂

∂xi

(

aij
∂u

∂xj

)

+

n
∑

i=1

bi
∂u

∂xi
−

n
∑

i=1

∂

∂xi
(ciu) + du (2.1)

where the aij, bi, ci and d are at least bounded measurable functions satisfying the uniform
ellipticity condition in Ω :

n
∑

i,j=1

aij(x)ξiξj ≥ α
n
∑

i=1

ξ2i , ∀ξ = (ξ1, . . . , ξn) ∈ R
n, (2.2)
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for almost all x ∈ Ω, where α > 0 is some fixed constant. It is classical to associate to L
the bilinear form AL

AL(u, v) =

∫

Ω
aL(u, v)dx, ∀u, v ∈W 1,2

0 (Ω), (2.3)

where

aL(u, v) =
n
∑

i,j=1

aij
∂u

∂xj

∂v

∂xi
+

n
∑

i=1

(

bi
∂u

∂xi
v + ci

∂v

∂xi
u

)

+ duv. (2.4)

An important uniqueness condition, symmetric in the bi and ci, which also implies the
maximum principle, is the following :

∫

Ω

(

dv +
n
∑

i=1

1

2
(bi + ci)

∂v

∂xi

)

dx ≥ 0, ∀v ∈ C1
c (Ω), v ≥ 0. (2.5)

Lemma 2.1 Let the coefficients of L be bounded and measurable, and conditions (2.2)
and (2.5) hold. Then for any φ ∈ W 1,2(Ω) and fi ∈ L2(Ω) (i = 0, . . . , n) there exists a
unique u ∈W 1,2(Ω) solution of

Lu = f0 −
n
∑

i=1

∂fi

∂xi
in Ω,

u = φ on ∂Ω,

(2.6)

Proof. By a solution, we mean u− φ ∈W 1,2
0 (Ω) and

AL(u, v) =

∫

Ω

(

f0v +

n
∑

i=1

fi
∂v

∂xi

)

dx, ∀v ∈W 1,2
0 (Ω). (2.7)

We put ũ = u− φ. Then solving (2.6) is equivalent to finding ũ ∈W 1,2
0 (Ω) such that

AL(ũ, v) =

∫

Ω

(

f0v +

n
∑

i=1

fi
∂v

∂xi
− aL(φ, v)

)

dx, ∀v ∈W 1,2
0 (Ω). (2.8)

The bilinear form AL is clearly continuous on W 1,2
0 (Ω) and

AL(v, v) =

∫

Ω





n
∑

i,j=1

aij
∂v

∂xj

∂v

∂xi
+ dv2 +

1

2

n
∑

i=1

(bi + ci)
∂v2

∂xi



 dx.

By (2.2) and (2.5),

AL(v, v) ≥ α
∫

Ω
|∇v|2 dx, ∀v ∈ C1

0 (Ω).

By density AL is coercive and thanks to Lax-Milgram’s theorem, it defines an isomorphism
between the Sobolev space W 1,2

0 (Ω) and its dual space W−1,2(Ω). �
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The celebrated De Giorgi-Nash-Moser regularity theorem asserts that, for p > n and
f ∈ Lp

loc(Ω), any W 1,2
loc (Ω) function u which satisfies

∫

Ω
aL(u, φ)dx =

∫

Ω
fφdx, ∀φ ∈ C∞

0 (Ω), (2.9)

is locally Hölder continuous, up to a modification on a set of measure zero. Furthermore
the weak maximum principle holds in the sense that if u ∈W 1,2(Ω) satisfies

AL(u, φ) ≤ 0, ∀φ ∈ C∞
0 (Ω), φ ≥ 0, (2.10)

such a u is called a weak sub-solution, there holds

sup
Ω
u ≤ sup

∂Ω
u. (2.11)

In the above formula,

sup
∂Ω

v := inf{k ∈ R : (v − k)+ ∈W 1,2
0 (Ω)}.

At end, the strong maximum principle holds : if for some ball B ⊂ B̄ ⊂ Ω,

sup
B
u = sup

Ω
u, (2.12)

then u is constant in the connected component of Ω containing B.

If the aij and the ci are Lipschitz continuous, and the bi and d are bounded measurable
functions, the operator L can be written in non-devergence form

Lu = −
n
∑

i,j=1

aij
∂2u

∂xi∂xj
+

n
∑

j=1

b′j
∂u

∂xj
+ d′u, (2.13)

where

b′j = bj − cj −
n
∑

i=1

∂aij

∂xi
, d′ = d−

n
∑

i=1

∂ci
∂xi

.

Conversely, an operator L in the non-divergence form (2.13) with Lipschitz continuous
coefficients aij and bounded and measurable coefficients b′i can be written in divergence
form

Lu = −
n
∑

i,j=1

∂

∂xi

(

aij
∂u

∂xj

)

+
n
∑

j=1

b̃j
∂u

∂xj
+ d̃, (2.14)

with

b̃j = b′j +

n
∑

i=1

∂aij

∂xi
.

7



This duality between operators in divergence or in non-divergence form is very useful in
the applications, in particular in the regularity theory of solutions of elliptic equations. If
L is defined by (2.1), the adjoint operator L∗ is defined by

L∗φ = −
n
∑

i,j=1

∂

∂xj

(

aij
∂φ

∂xi

)

+
n
∑

i=1

ci
∂φ

∂xi
−

n
∑

i=1

∂

∂xi
(biφ) + dφ. (2.15)

Under the mere assumptions that the coefficients aij, bi, ci and d are bounded and mea-
surable in Ω, the uniform ellipticity (2.2), and the uniqueness condition (2.5), the two
operators L and L∗ define an isomorphism between W 1,2

0 (Ω) and W−1,2(Ω). If the aij and
the bi are Lipschitz continuous, for any u ∈ L1

loc(Ω), Lu can be considered as a distribution
in Ω if we define its action on test functions in the following way :

〈Lu, φ〉 =

∫

Ω
uL∗φdx, ∀φ ∈ C∞

0 (Ω). (2.16)

2.2 The L
1 framework

Let Ω be a bounded domain with C2 boundary and L the operator given by (2.1).

Definition 2.2 We say that the operator L given by (2.1) satisfies the condition (H), if
the functions aij, bi and ci are Lipschitz continuous in Ω, d is bounded and measurable,
and if the uniform ellipticity condition (2.2) and the uniqueness condition (2.5) hold.

Notice that this condition is symmetric in L and L∗. We put

ρ
∂Ω

(x) = dist (x, ∂Ω), ∀x ∈ Ω. (2.17)

We denote by C1,L
c (Ω) the space of C1(Ω) functions ζ, vanishing on ∂Ω and such that

L∗ζ ∈ L∞(Ω), and by

∂ζ

∂nL∗
=

n
∑

i,j=1

aij
∂ζ

∂xi
nj, (2.18)

the co-normal derivative on the boundary following L∗ (here the nj are the components
of outward normal unit vector n to ∂Ω).

Definition 2.3 Let f ∈ L1(Ω; ρ
∂Ω
dx) and g ∈ L1(∂Ω). We say that a function u ∈ L1(Ω)

is a very weak solution of the problem

Lu = f in Ω,

u = g on ∂Ω,
(2.19)

if, for any ζ ∈ C1,L
c (Ω), there holds

∫

Ω
uL∗ζdx =

∫

Ω
fζdx−

∫

∂Ω

∂ζ

∂nL∗
gdS. (2.20)
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The next result is an adaptation of a construction, essentially due to Brezis in the case of
the Laplacian, although various forms of existence theorems were known for a long time.

Theorem 2.4 Let L satisfy the condition (H). Then for any f and g as in Definition 2.3,
there exists one and only one very weak solution u of Problem (2.19). Furthermore, for
any ζ ∈ C1,L

c (Ω), ζ ≥ 0, there holds

∫

Ω
|u|L∗ζdx ≤

∫

Ω
fsign(u)ζdx−

∫

∂Ω

∂ζ

∂nL∗
|g| dS. (2.21)

and
∫

Ω
u+L

∗ζdx ≤
∫

Ω
fsign+(u)ζdx−

∫

∂Ω

∂ζ

∂nL∗
g+dS. (2.22)

The following result shows the continuity of the process.

Lemma 2.5 There exists a positive constant C = C(L,Ω) such that if f and g are as in
Definition 2.3 and u is a very weak solution of (2.19),

‖u‖L1(Ω) ≤ C
(

‖ρ
∂Ω
f‖L1(Ω) + ‖g‖L1(∂Ω)

)

. (2.23)

Proof. We denote by ηu the solution of

L∗ηu = sign(u) in Ω,

ηu = 0 on ∂Ω,
(2.24)

Notice that ηu exists by Lemma 2.1. Since the coefficients of L are Lipschitz continuous,
ηu ∈ C1

c (Ω) and L∗ηu ∈ L∞(Ω). Thus ηu ∈ C1,L
c (Ω). By the maximum principle

|ηu| ≤ η := η1,

thus
∣

∣

∣

∣

∂ηu

∂nL∗

∣

∣

∣

∣

≤ − ∂η

∂nL∗
.

Pluging this estimates into (2.20) one obtains

∫

Ω
|u| dx ≤

∫

Ω
|f | ηdx−

∫

∂Ω

∂η

∂nL∗
|g| dS, (2.25)

from which (2.23) follows. �

Proof of Theorem 2.4 -Existence Let {fn}, {gn} be two sequences of C2 functions defined
respectively in Ω and ∂Ω, fn with compact support, and such that

‖(f − fn)ρ
∂Ω
‖L1(Ω) + ‖g − gn‖L1(∂Ω) → 0 as n→∞.
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Let un be the classical solution (derived from Lemma 2.1 for example) of

Lun = fn in Ω,

un = gn on ∂Ω.
(2.26)

Then un ∈ W 2,p(Ω) for any finite p ≥ 1. By (2.23), {un} is a Cauchy sequence in L1(Ω).
Because un satisfies

∫

Ω
unL

∗ζdx =

∫

Ω
fnζdx−

∫

∂Ω

∂ζ

∂nL∗
gndS, (2.27)

for any ζ ∈ C1,L
c (Ω), letting n→∞ leads to (2.20).

Estimates (2.21) and (2.22). Let γ be a smooth, odd and increasing function defined on
R such that −1 ≤ γ ≤ 1, and ζ a nonnegative element of C1,L

c (Ω). Since

∫

Ω
fnγ(un)ζdx =

n
∑

i,j=1

∫

Ω
aij

∂un

∂xj

∂(γ(un)ζ)

∂xi
dx

+
n
∑

i

∫

Ω

(

bi
∂un

∂xi
γ(un)ζ + ciun

∂(γ(un)ζ)

∂xi

)

dx+

∫

Ω
dunγ(un)ζdx

≥
n
∑

i,j=1

∫

Ω
aij

∂un

∂xj

∂ζ

∂xi
γ(un)ζdx

+
n
∑

i

∫

Ω

(

bi
∂un

∂xi
γ(un)ζ + ciun

∂(γ(un)ζ)

∂xi

)

dx+

∫

Ω
dunγ(un)ζdx.

Put

j1(r) =

∫ r

0
γ(s)ds, j2(r) = rγ(r) and j3(r) =

∫ r

0
sγ′(s)ds.

Then
n
∑

i,j=1

∫

Ω
aij
∂un

∂xj

∂ζ

∂xi
γ(un)dx =

n
∑

i,j=1

∫

Ω
aij
∂j1(un)

∂xj

∂ζ

∂xi
dx

= −
n
∑

i,j=1

∫

Ω
j1(un)

∂

∂xj

(

aij
∂ζ

∂xi

)

dx+

∫

∂Ω
j1(gn)

∂ζ

∂nL∗
dS,

and
n
∑

i=1

∫

Ω

(

bi
∂un

∂xi
γ(un)ζ + ciun

∂(γ(un)ζ)

∂xi

)

dx

=

n
∑

i=1

∫

Ω

(

bi
∂j1(un)

∂xi
ζ + ci

(

j2(un)
∂ζ

∂xi
+ ζ

∂j3(un)

∂xi

))

dx

=

n
∑

i=1

∫

Ω

(

−j1(un)
∂

∂xi
(biζ) + cij2(un)

∂ζ

∂xi
− j3(un)

∂

∂xi
(ciζ)

)

dx.
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Therefore

∫

Ω
fnγ(un)ζdx−

∫

∂Ω
j1(gn)

∂ζ

∂nL∗
dS ≥ −

∫

Ω





n
∑

i,j=1

∂

∂xj

(

aij
∂ζ

∂xi

)

+

n
∑

i=1

∂

∂xi
(biζ)



 j1(un)dx

+

∫

Ω

(

n
∑

i=1

cij2(un)
∂ζ

∂xi
− j3(un)

∂

∂xi
(ciζ) + dj2(un)ζ

)

dx,

and finally,

∫

Ω
j(un)L∗ζdx ≤

∫

Ω
fnγ(un)ζdx−

∫

∂Ω
j(gn)

∂ζ

∂nL∗
dS.

When γ(r)→ sign(r), j1(r) and j2(r) both converge to |r|, and j3(r) converges to 0 if, for
example, we impose 0 ≤ γ′ǫ(r) ≤ 2ǫ−1χ

(−ǫ,ǫ)
(r) and send ǫ to 0. Letting successively n→∞

and γ → sign yields to (2.21). We obtain (2.22) in the same way while approximating
sign+ by γ. �

Corollary 2.6 Under the assumptions of Theorem 2.4, the mapping (f, g) 7→ u defined
by (2.19) is increasing.

For the regularity of solutions, the following result is due to Brezis and Strauss [22]
using Stampacchia’s duality method [91].

Theorem 2.7 Let L satisfy the condition (H). Then for any 1 ≤ q < n/(n − 1), there
exists C = C(Ω, q) > 0 such that for any f ∈ L1(Ω), the very weak solution u of (2.19)
with g = 0 satisfies

‖u‖
W 1,q

0 (Ω)
≤ C ‖f‖L1(Ω) . (2.28)

This theorem admits a local version.

Corollary 2.8 Let L be the elliptic operator defined by (2.1), with Lipschitz continuous
coefficients and satisfying (2.2). Let u ∈ L1

loc(Ω) and f ∈ L1
loc(Ω) be such that

∫

Ω
uL∗ζdx =

∫

Ω
fζdx, (2.29)

for any ζ ∈ C1
c (Ω) such that L∗ζ ∈ L∞(Ω). Then for any open subsets G ⊂ G ⊂ G′ ⊂ G′ ⊂

Ω, with G
′
compact and 1 ≤ q < n/(n− 1), there exists a constant C = C(G,G′, q, L) > 0

such that
‖u‖W 1,q(G) ≤ C

(

‖f‖L1(G′) + ‖u‖L1(G′)

)

. (2.30)
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2.3 The measure framework

We denote by M(Ω) and M(∂Ω) the spaces of Radon measures on Ω and ∂Ω respectively,
by M+(Ω) and M+(∂Ω) their positive cones. For 0 ≤ α ≤ 1, we also denote by M(Ω; ρα

∂Ω
)

the subspace of the µ ∈M(Ω) satisfying

∫

Ω
ρα

∂Ω
d |µ| <∞,

and by C(Ω; ρ−α
∂Ω

) the subspace of C(Ω) of functions ζ such that

sup
Ω
|ζ| /ρα

∂Ω
<∞.

For the sake of clarity, we denote by

M(Ω; ρ0
∂Ω

) = M
b(Ω),

the space of bounded Radon measures in Ω. Both M(Ω; ρα
∂Ω

) and C(Ω; ρ−α
∂Ω

) are endowed
with the norm corresponding to their definition. If λ ∈ M(Ω; ρ

∂Ω
) and µ ∈ M(∂Ω), the

definition of a very weak solution to the measure data problem

Lu = λ in Ω,

u = µ on ∂Ω,
(2.31)

is similar to Definition 2.3 : u ∈ L1(Ω) and the equality

∫

Ω
uL∗ζdx =

∫

Ω
ζdλ−

∫

∂Ω

∂ζ

∂nL∗
dµ, (2.32)

holds for every ζ ∈ C1,L
c (Ω).

Theorem 2.9 Let L satisfy the condition (H). For every λ ∈M(Ω; ρ
∂Ω

) and µ ∈M(∂Ω)
there exists a unique very weak solution u to Problem (2.32). Furthermore the mapping
(λ, µ) 7→ u is increasing.

Proof. Uniqueness follows from Lemma 2.5. For existence, let {λn} be a sequence of
smooth functions in Ω such that

lim
n→∞

∫

Ω
λnφdx =

∫

Ω
φdλ,

for every φ ∈ C(Ω; ρ−1
∂Ω

). Let {µn} be a sequence of C2 functions on ∂Ω converging to µ
in the weak sense of measures and un denote the classical solution of

Lun = λn in Ω,

un = µn on ∂Ω.
(2.33)
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Thus
∫

Ω
unL

∗ζdx =

∫

Ω
ζλndx−

∫

∂Ω

∂ζ

∂nL∗
µndS, (2.34)

holds for every ζ ∈ C1,L
c (Ω). Since ‖λnρ∂Ω

‖L1(Ω) and ‖µn‖L1(∂Ω) are bounded indepen-

dently of n, it is the same with ‖un‖L1(Ω) by Lemma 2.5. Let ω be a Borel subset of Ω,
and θω,n the solution of

L∗θω,n = χωsign(un) in Ω,

θω,n = 0 on ∂Ω.
(2.35)

Since θω is an admissible test function,
∫

ω
|un| dx =

∫

Ω
θω,nλndx−

∫

∂Ω

∂θω,n

∂nL∗
µndS.

Moreover −θω ≤ θω,n ≤ θω, where θω is the solution of

L∗θω = χω in Ω,

θω = 0 on ∂Ω.
(2.36)

Therefore
∫

ω
|un| dx ≤ ‖λnρ∂Ω

‖L1(Ω) ‖θω/ρ∂Ω
‖L∞(Ω) + ‖µn‖L1(∂Ω) ‖∂θω/∂nL∗‖L∞(∂Ω). (2.37)

By the Lp regularity theory for elliptic equations and the Sobolev-Morrey imbedding
Theorem, for any n < p <∞, there exists a constant C = C(n, p) > 0 such that

‖θω‖C1(Ω) ≤ C‖χω‖Lp(Ω) = C|ω|1/p. (2.38)

This estimate, combined with (2.37), yields to
∫

ω
|un| dx ≤ C(‖λnρ∂Ω

‖L1(Ω) + ‖µn‖L1(∂Ω))|ω|1/p ≤ CM |ω|1/p, (2.39)

for some M independent of n. Therefore the sequence {un} is uniformly integrable, thus
weakly compact in L1(Ω) by the Dunford-Pettis Theorem, and there exist a subsequence
{unk

} and an integrable function u such that unk
→ u, weakly in L1(Ω). Passing to the

limit in (2.34) leads to (2.32). Because of uniqueness the whole sequence {un} converges
weakly to u. The monotonicity assertion follows from uniqueness and Corollary 2.6. �

Remark. Estimate (2.22) in the statement of Theorem 2.4 admits the following extension
: Let the two measures λ and µ have Lebesgue decomposition

λ = λr + λs and µ = µr + µs,

λr and µr being the regular parts with respect to the n and the n−1 dimensional Hausdorff
measures and λs and µs the singular parts. If λs and µs are nonpositive, there holds

∫

Ω
u+L

∗ζdx ≤
∫

Ω
λr +sign+(u)ζdx−

∫

∂Ω

∂ζ

∂nL∗
µr +dS, (2.40)
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for any ζ ∈ C1,L
c (Ω), ζ ≥ 0.

Remark. The above proof implies the following weak stability result. If {λn} ⊂M(Ω; ρ
∂Ω

)
and {µn} ⊂ M(∂Ω) are sequences of measures wich converge respectively to λ in duality
with C(Ω; ρ−1

∂Ω
), and to µ in the weak sense of measures on ∂Ω, the corresponding very

weak solutions un of (2.33) converge weakly in L1(Ω) to the very weak solution u of (2.31).

2.4 Representation theorems and boundary trace

If Ω is a bounded domain with a C2 boundary, L the elliptic operator defined by (2.1),
with Lispchitz countinuous coefficients and u and v two functions in W 2,p(Ω), with p > n,
the Green formula implies

∫

Ω
(vLu− uL∗v) dx =

∫

∂Ω

(

u
∂v

∂nL∗
− v ∂u

∂nL

)

dS, (2.41)

where L∗ and ∂v/∂nL∗ are respectively defined by (2.15) and (2.18), and

∂ζ

∂nL
=

n
∑

i,j=1

aij
∂ζ

∂xj
ni, (2.42)

is the co-normal derivative following L. If we assume that condition (H) is fulfilled, and if
x ∈ Ω, we denote by GΩ

L(x, .) the solution of

L∗GΩ
L(x, .) = δx in Ω,

GΩ
L(x, .) = 0 on ∂Ω.

(2.43)

The function GΩ
L is the Green function of the operator L in Ω. Notice an ambiguity in

terminology between L and L∗, but it has no consequence because the condition (H) is
invariant by duality and the following symmetry result holds :

GΩ
L(x, y) = GΩ

L∗(y, x), ∀(x, y) ∈ Ω× Ω, x 6= y. (2.44)

The function GΩ
L(x, .) is nonnegative by Theorem 2.9 and belongs to W 2,p

loc (Ω \ {x}) for
any 1 < p <∞. Thus it is C1 in Ω \ {x}. We denote

PΩ
L (x, y) = −∂G

Ω
L(x, y)

∂nL∗
, ∀(x, y) ∈ Ω× ∂Ω. (2.45)

If u ∈ C2(Ω̄), the following Green representation formula derives from (2.41)

u(x) =

∫

Ω
GΩ

L(x, y)Lu(y)dy +

∫

∂Ω
PΩ

L (x, y)u(y)dS(y), ∀x ∈ Ω. (2.46)

By extension this representation formula holds almost everywhere if (λ, µ) ∈M(Ω)×(∂Ω),
and u is the very weak solution of (2.31), in the sense that

u(x) =

∫

Ω
GΩ

L(x, y)dλ(y) +

∫

Ω
GΩ

L(x, y)dµ(y), a.e. in Ω. (2.47)
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Actually the representation formula is equivalent to the fact that u is a very weak solution
of Problem 2.31 (see [14] for a proof). We set

G
Ω
L(λ)(x) =

∫

Ω
GΩ

L(x, y)dλ(y), (2.48)

and call it the Green potential of λ, and

P
Ω
L(λ)(x) =

∫

∂Ω
PΩ

L (x, y)dλ(y), ∀x ∈ Ω, (2.49)

the Poisson potential of µ. The Green kernel presents a singularity on the diagonal DΩ =
{(x, x) : x ∈ Ω}, while the Poisson kernel becomes singular when the x variable approaches
the boundary point y. Many estimates on the singularities have been obtained in the last
thirty years [56], [78], [47], [35]. We give below some useful estimates in which ρ

∂Ω
is

defined by (2.17).

Theorem 2.10 Assuming that Ω is bounded with a C2 boundary and assumption (H)
holds, then

GΩ
L(x, y) ≤ C(L,Ω)

min {1, |x− y| ρ
∂Ω

(x)}
|x− y|n−2 , ∀(x, y) ∈ (Ω× Ω) \DΩ, (2.50)

if n ≥ 3,

GΩ
L(x, y) ≤ C(L,Ω)min {1, |x− y| ρ

∂Ω
(x)} ln+ |x− y| , ∀(x, y) ∈ (Ω× Ω) \DΩ, (2.51)

if n = 2. Moreover, for any n ≥ 2,

K ′(L,Ω)
ρ

∂Ω
(x)

|x− y|n ≤ P
Ω
L (x, y) ≤ K(L,Ω)

ρ
∂Ω

(x)

|x− y|n , ∀(x, y) ∈ Ω× ∂Ω. (2.52)

Another useful notion, from which some of the above estimates can be derived is the
notion of equivalence (see [4], [85]).

Theorem 2.11 Assuming that Ω is bounded with a C2 boundary and assumption (H)
holds, there exists a positive constant C such that

CGΩ
−∆ ≤ GΩ

L ≤
1

C
GΩ

−∆ in (Ω× Ω) \DΩ, (2.53)

and

CPΩ
−∆ ≤ PΩ

L ≤
1

C
PΩ
−∆ in Ω× ∂Ω. (2.54)

In order to study the boundary behaviour of harmonic functions, we introduce, for
β > 0,

Ωβ = {x ∈ Ω : ρ
Ω
(x) > β}, Gβ = Ω \ Ωβ , Σβ = ∂Ωβ = {x ∈ Ω : ρ

Ω
(x) = β}, (2.55)
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and Σ0 := Σ := ∂Ω. Since Ω is C2, there exists β0 > 0 such that for every 0 < β ≤ β0

and x ∈ Gβ there exists a unique σ(x) ∈ Σ such that |x− σ(x)| = ρ
∂Ω

(x). We denote by
Π the mapping from Gβ to (0, β) × Σ defined by

Π(x) = (ρ
∂Ω

(x), σ(x)). (2.56)

The mapping Π is a C2 diffeomorphism with inverse given by

Π−1(t, σ) = σ − tn, ∀(t, σ) ∈ (0, β) ×Σ, (2.57)

where n is the normal unit outward vector to ∂Ω at x (see [71] for details). If the distance
coordinate is fixed in (0, β0], the mapping Ht defined by

Ht(x) = σ(x) ∀x ∈ Σt,

is the orthogonal projection from Σt to ∂Ω. Thus H
−1
t (.) = Π−1(t, .) is a C2 diffeomorphism

and the set {Σt}0<t≤β0 is a C2 foliation of Gβ0 . For 0 < t ≤ β0 we can transfer naturally
a Borel measure µ, or a function f , on Σt into a Borel measure or a function on ∂Ω as
follows :

µt(E) := µ(H−1
t (E)), for every Borel subset E ⊂ ∂Ω,

f t(x) := f(σ(x)− tn(x)), ∀x ∈ ∂Ω.
(2.58)

The Lebesgue classes on Σt and Σ are exchanged by this projection operator and actually

µ ∈M(Σt), f ∈ L1(Σt, µ) =⇒







f t ∈ L1(Σ, µt),
∫

Σt

fdµ =

∫

Σ
f tdµt.

(2.59)

Definition 2.12 Let L be an elliptic operator defined by (2.1) in Ω, with bounded and
measurable coefficients. We say that a function u ∈W 1,2

loc (Ω) is weakly L-harmonic if

AL(u, v) = 0 ∀v ∈ C1
c (Ω). (2.60)

Remark. If (2.2) holds, any weakly L-harmonic function is Hölder continuous by the De
Giorgi-Nash-Moser Theorem. If the coefficients of L are Lispchitz continuous, the notion
of weak L-harmonicity can be understood in the sense of distributions in Ω, by assuming
that u is locally integrable in Ω and

∫

Ω
uL∗φdx = 0, ∀φ ∈ C∞

0 (Ω). (2.61)

It can be verified that any locally integrable function L-harmonic in the sense of distri-
butions in Ω is actually weakly L-harmonic. Therefore it belongs to W 2,p

loc (Ω), for any
1 < p <∞, by the Lp-regularity theory of elliptic equations.

Theorem 2.13 Let Ω be a bounded domain of class C2 and L the elliptic operator defined
by (2.1) satisfying condition (H). Let u be a nonnegative locally integrable L-harmonic
function in Ω. Then there exists a unique nonnegative Radon measure µ on ∂Ω such that

lim
t→0

∫

Σt

u(x)θ(σ(x))dS =

∫

Σ
θdµ, ∀θ ∈ C0(Σ). (2.62)
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Moreover u is uniquely determined by µ and

u(x) =

∫

∂Ω
PΩ

L (x, y)dµ(y), ∀x ∈ Ω. (2.63)

Proof. Step 1 The function u is integrable. Let 0 < β ≤ β0. Since u is continuous in Ωβ,
its restriction to this set is the very weak solution of

Lv = 0 in Ωβ,

v = uΣβ
on Σβ.

(2.64)

Thus, if ζ ∈ C1,L
c (Ωβ), there holds

∫

Ωβ

uL∗ζdx = −
∫

Σβ

∂ζ

∂nL∗
udS. (2.65)

We fix ζ = η1,β as the solution of

L∗η1,β = 1 in Ωβ,

η1,β = 0 on Σβ.
(2.66)

By Hopf’s lemma, there exists c > 0 such that

c ≤ −∂η1,β

∂nL∗
≤ c−1 on Σβ.

Moreover, c can be taken independent of β ∈ (0, β0]. It follows

Ψ(β) =

∫

Ωβ

udx ≥ c
∫

Σβ

udS = −cΨ′(β), (2.67)

from (2.65), and
d

dβ

(

eβ/cΨ(β)
)

≥ 0.

Therefore

lim
β→0

Ψ(β) =

∫

Ω
udx <∞.

Notice that (2.67) implies that ‖u‖L1(Σβ) remains bounded independently of β.

Step 2 End of the proof. Let θ ∈ C2(∂Ω), wθ be the solution of

L∗wθ = 0 in Ωβ,

wθ = θ on Σβ,
(2.68)

and h ∈ C(Σβ) defined by

h = −∂η1,β

∂nL∗
.

17



Then ζ = η1,βwθh
−1 belongs to C1,L

c (Ωβ). Since ∂ζ/∂nL∗ = θ on Σβ,
∫

Ωβ

uL∗ζdx = −
∫

Σβ

∂ζ

∂nL∗
dS =

∫

Σβ

θudS.

It is easy to check that L∗ζ is bounded in L∞(Ωβ), independently of β. Therefore

lim
β→0

∫

Ωβ

uL∗ζdx

exists. The same holds true with

lim
β→0

∫

Σβ

θudS,

which defines a positive linear functional on C2(∂Ω). This characterizes the Radon mea-
sure µ in a unique way. �

Definition 2.14 The measure µ is called the boundary trace of u.

Remark. In the above theorem, many assumptions can be relaxed : the boundedness of Ω
plays no role except that it allows a simpler statement of the result, and the integral repre-
sention (2.63). The regularity of the boundary of the domain is not a key assumption, but
in the case of a general domain, the boundary has to be replaced by the Martin boundary
[76], and the Poisson kernel by the Martin kernel in order to have a representation formula
valid for all the positive L-harmonic functions.

Remark. The Fatou Theorem asserts that for almost all y ∈ ∂Ω (for the n−1-dimensional
Hausdorff measure dHn−1) and for any cone Cy interior to Ω the following limit exists,

lim
x → y
x ∈ Cy

u(x) = µr , (2.69)

where µr is the regular part of the measure µ with respect to dHn−1 in the Lebesgue
decomposition. The proof of this result [30], [32], is much more involved that the one of
Theorem 2.13. The trace in the sense of Radon measures is much more useful for our next
considerations.

Definition 2.15 A locally integrable function u defined in Ω is said super-L-harmonic if
∫

Ω
uL∗φdx ≥ 0, ∀φ ∈ C∞

0 (Ω), φ ≥ 0. (2.70)

Theorem 2.13 admits an extension to positive proven by Doob [60], [32].

Theorem 2.16 Let Ω be a bounded domain of class C2 and L the elliptic operator defined
by (2.1). We assume that condition (H) holds. Let u a nonnegative super-L-harmonic in
Ω. Then there exist two Radon measures λ ∈M+(Ω) and µ ∈M+(∂Ω), such that

∫

Ω
ρ

∂Ω
dλ <∞,

and u is the unique very weak solution to Problem (2.31). Furthermore (2.69) holds.
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3 Semilinear equations with absorption

In this section we consider the semilinear Dirichlet problem with right-hand side measure

Lu+ g(x, u) = λ in Ω,

u = 0 on ∂Ω,
(3.1)

in a bounded domain Ω of R
n, where g is a continuous function defined on R × Ω, λ a

Radon measure in Ω and L the elliptic operator with Lipschitz continuous coefficients,
defined by (2.1).

Definition 3.1 Let λ ∈ M(Ω; ρ
∂Ω

). A function u is a solution of (3.1), if u ∈ L1(Ω),

g(., u) ∈ L1(Ω; ρ
∂Ω
dx), and if for any ζ ∈ C1,L

c (Ω), there holds

∫

Ω
(uL∗ζ + g(x, u)ζ) dx =

∫

Ω
ζdλ. (3.2)

The nonlinearity is understood as an absorption term, this means that rg(x, r) is nonneg-
ative for |r| ≥ r0, uniformly with respect to x ∈ Ω.

Proposition 3.2 Let L be the elliptic operator defined by (2.1), satisfying the condition
(H), and λ ∈M(Ω; ρα

∂Ω
) for some 0 ≤ α ≤ 1. If g ∈ C(Ω,R) is an absorption nonlinearity

satisfying
rg(x, r) ≥ 0, ∀(x, r) ∈ Ω× ((−∞,−r0] ∪ [r0,∞)) ,

and g bounded on Ω× (−r0, r0), any solution u of (3.1) verifies g(., u) ∈ L1(Ω; ρα
∂Ω
dx).

Proof. We set h = g(., u), then u is the unique very weak solution of

Lu = λ− h in Ω,

and, by assumption, u ∈ L1(Ω), h ∈ L1(Ω; ρ
∂Ω
dx). Let {λn} be a sequence of smooth

functions in Ω converging to λ in the weak sense of measures with duality with the space
C(Ω; ρ−α

∂Ω
) (thus ‖λn‖M(Ω;ρα

∂Ω
) is bounded independently of n) and {un} the corresponding

sequence of solutions of
Lun = λn − h in Ω.

By Theorem 2.4, ‖un‖L1(Ω) is bounded independently of n, and for any ζ ∈ C1,L
c (Ω), ζ ≥ 0,

there holds
∫

Ω
(|un|L∗ζ + hζsign(un)) dx ≤

∫

Ω
λnζsign(un)dx.

For test function ζ, we take jǫ(η1) = (η1 + ǫ)α − ǫα where ǫ > 0. Then 0 ≤ jǫ(η1) ≤ ηα
1 ,

and, if we put r1 = supΩ η1, one obtains
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L∗(jǫ(η1)) = −j′ǫ(η1)

n
∑

i,j=1

∂

∂xj

(

aij
∂η1

∂xi

)

+ j′ǫ(η1)

n
∑

i=1

ci
∂η1

∂xi
−

n
∑

i=1

∂

∂xi
(bijǫ(η1)) + djǫ(η1)

−j′′ǫ (η1)

n
∑

i,j=1

aij
∂η1

∂xj

∂η1

∂xi

= j′ǫ(η1)L
∗η1 +

(

jǫ(η1)− η1j
′
ǫ(η1)

)

(

d−
n
∑

i=1

∂bi
∂xi

)

− j′′ǫ (η1)

n
∑

i,j=1

aij
∂η1

∂xj

∂η1

∂xi

≥ −
(

jǫ(r1)− r1j′ǫ(r1)
)

∣

∣

∣

∣

∣

d−
n
∑

i=1

∂bi
∂xi

∣

∣

∣

∣

∣

,

since L∗η1 = 1, jǫ is a concave and increasing function on R+, r 7→ jǫ(r)−rj′ǫ(r) is positive
and increasing, and ellipticity condition (2.2) holds. Because (jǫ(r1)− r1j′ǫ(r1)) is bounded
when 0 < ǫ ≤ 1, and the coefficients bi and d are respectively Lipschitz continuous and
bounded in Ω, there exists a constant M > 0 independent of ǫ such that L∗(jǫ(η1)) ≥ −M
in Ω. Therefore

−M
∫

Ω
|un| dx+

∫

Ω
hjǫ(η1)sign(un)dx ≤ ‖λn‖M(Ω;ρα

∂Ω
).

Letting n→∞ yields to

∫

Ω
g(x, u)jǫ(η1)sign(u)dx ≤M

∫

Ω
|u| dx+ sup

n
‖λn‖M(Ω;ρα

∂Ω
), (3.3)

since h ∈ L1(Ω; ρ
Ω
dx). To be more precise, it is necessary to take a sequence of smooth

approximations γκ of the function sign, then let κ → 0 and γκ → sign as in the proof of
Theorem 2.4. Therefore there exists a positive constant C such that

∫

{x:|u(x)|≥r0}
g(x, u)jǫ(η1)sign(u)dx ≤ C +

∫

{x:|u(x)|<r0}
g(x, u)jǫ(η1)sign(u)dx.

Using the fact that g(x, r)sign(r) is positive for |r| ≥ r0 and bounded for |r| < r0, we can
let ǫ→ 0 and conclude, thanks to Fatou’s lemma, that

∫

Ω
|g(x, u)| ηα

1 dx < C + sup
n
‖λn‖M(Ω;ρα

∂Ω
dx) <∞, (3.4)

which ends the proof. �

3.1 The Marcinkiewicz spaces approach

At first we recall some definitions and basic properties of the Marcinkiewicz spaces. Let
G be an open subset of R

d and λ a positive Borel measure on G.
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Definition 3.3 For p > 1, p′ = p/(p− 1) and u ∈ L1
loc(G), we introduce

‖u‖Mp(G;dλ) = inf

{

c ∈ [0,∞] :

∫

E
|u| dλ ≤ c

(
∫

E
dλ

)1/p′

, ∀E ⊂ G, E Borel

}

, (3.5)

and

Mp(G; dλ) = {u ∈ L1(G; dλ) : ‖u‖Mp(G;dλ) <∞}. (3.6)

Mp(G; dλ) is called the Marcinkiewicz space of exponent p, or weak Lp-space. It is a
Banach space and the following estimates can be found in [12] and [26].

Proposition 3.4 Let 1 ≤ q < p <∞ and u ∈ L1
loc(G; dλ). Then

C(p) ‖u‖Mp(G;dλ) ≤ sup

{

s > 0 : sp

∫

{x: |u(x)|>s}
dλ

}

≤ ‖u‖Mp(G;dλ) . (3.7)

Furthermore

∫

E
|u|q dλ ≤ C(p, q) ‖u‖Mp(G;dλ)

(∫

E
dλ

)1−q/p

, (3.8)

for any Borel set E ⊂ G.

The key role of Marcinkiewicz spaces is to give optimal estimates when solving elliptic
equations in a measure framework. In particular, using (2.50) and (2.52) it is not difficult
to prove the following result (see [14] for a more general set of estimates in the case of the
Laplacian operator).

Theorem 3.5 Let Ω ⊂ R
n, n ≥ 2, be a C2 bounded domain and L an elliptic operator

satisfying condition (H). Let α ∈ [0, 1], λ ∈ M(Ω; ρα
∂Ω

), µ ∈ M(∂Ω). If n + α > 2, there
holds

∥

∥G
Ω
L(λ)

∥

∥

M (n+α)/(n+α−2)(Ω;ρα
∂Ω

)
≤ C‖λ‖

M(Ω;ρα
∂Ω

), (3.9)

and

∥

∥∇G
Ω
L(λ)

∥

∥

M (n+α)/(n+α−1)(Ω;ρα
∂Ω

)
≤ C‖λ‖

M(Ω;ρα
∂Ω

). (3.10)

Furthermore, for any γ ∈ [0, 1],

∥

∥P
Ω
L(µ)

∥

∥

M (n+γ)/(n−1)(Ω;ργ
∂Ω )
≤ C‖µ‖

M(∂Ω). (3.11)

The following definition is inspired by Bénilan and Brezis classical work [11] (with α = 0)
and used by Gmira and Véron [48] (with α = 1).
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Definition 3.6 A real valued function g ∈ C(Ω× R) satisfies the (n, α)-weak-singularity
assumption, n ≥ 2, α ∈ [0, 1], n+ α > 2, if there exists r0 ≥ 0 such that

rg(x, r) ≥ 0, ∀(x, r) ∈ Ω× (−∞,−r0] ∪ [r0,∞), (3.12)

and a nondecreasing function g̃ ∈ C([0,∞)) such that g̃ ≥ 0,

∫ 1

0
g̃(r2−n−α)rn+α−1dr <∞, (3.13)

and

|g(x, r)| ≤ g̃(|r|), ∀(x, r) ∈ Ω× R. (3.14)

Theorem 3.7 Let Ω be a C2 bounded domain in R
n, n ≥ 2, L the elliptic operator defined

by (2.1) and g ∈ C(Ω × R) a real valued function. If L satisfies assumptions (H) and g
the (n, α)-weak-singularity assumption (then n ≥ 3 if α = 0), for any λ ∈M(Ω; ρα

∂Ω
) there

exists a solution u to Problem (3.1).

Proof. Step 1 Construction of approximate solutions. The technique developed below is
adapted from Brezis and Strauss classical article [22]. Let λn be a sequence of smooth
functions, with compact support in Ω, with uniformly bounded L1(Ω; ρ

∂Ω
dx)-norm, with

the property

lim
n→∞

∫

Ω
λnζdx→

∫

Ω
ζdλ,

for any ζ ∈ C(Ω) such that supΩ(ρ−α
∂Ω
|ζ|) < ∞. For k > 0, we introduce the truncation

gk(., r) of g(., r) by

gk(x, r) =

{

g(x, r) if |g(x, r)| ≤ k,
k sign(g(x, r)) if |g(x, r)| > k.

(3.15)

By Lax-Milgram’s theorem, for any z ∈ L2(Ω), there exists a unique w = Tk(z) such that

AL(w,φ) +

∫

Ω
gk(x, z)φdx =

∫

Ω
λnφdx, ∀φ ∈W 1,2

0 (Ω). (3.16)

Using (2.2),

α‖∇w‖2L2(Ω) ≤
(

k|Ω|1/2 + ‖λn‖L2(Ω)

)

‖w‖L2(Ω).

The mapping Tk is continuous in L2(Ω). By the above estimate and Rellich-Kondrachov’s
theorem, Tk sends L2(Ω) into a relatively compact subset of L2(Ω). By Schauder’s theorem,
it admits a fixed point, say v = vk, and vk solves

Lvk + gk(., vk) = λn in Ω. (3.17)

The functions vk belongs to C1,L∗

c (Ω), since λn and gk are bounded. Multiplying by vk and
using (3.14) (one notices that the two inequalities are uniform with respect to k), yields
to

α‖∇vk‖2L2(Ω) ≤
(

Θ|Ω|1/2 + ‖λn‖L2(Ω)

)

‖vk‖L2(Ω),
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since rg(x, r) ≥ −Θ |r|, for some Θ verifying

0 ≤ Θ ≤ sup{|g(x, r)| : x ∈ Ω, −r0 ≤ r ≤ r0}. (3.18)

Hence the set of functions {vk} remains bounded in W 1,2
0 (Ω) independently of k.

Step 2 Uniform estimates. In order to prove that there exists some k such that vk satisfies

Lvk + g(., vk) = λn in Ω. (3.19)

it is sufficient to prove that vk is uniformly bounded in Ω. The technique used is due to
Moser [79]. For θ ≥ 1, |vk|θ−1 vk belongs to W 1,2

0 (Ω). For simplicity we denote it by vθ
k,

thus

AL(vk, v
θ
k) +

∫

Ω
gk(x, vk)v

θ
kdx =

∫

Ω
λnv

θ
kdx. (3.20)

But, using (2.2) and (2.5),

AL(vk, v
θ
k) ≥ αθ

∫

Ω
|∇vk|2vθ−1

k dx+

n
∑

i=1

∫

Ω
(bi + θci)v

θ
k

∂vk

∂xi
dx+

∫

Ω
dvθ+1

k dx

≥ 4αθ

(θ + 1)2

∫

Ω

∣

∣

∣
∇
(

|vk|(θ+1)/2
)∣

∣

∣

2
dx+

θ − 1

2

n
∑

i=1

∫

Ω
(ci − bi)

∂vk

∂xi
vθ
kdx

≥ 4αθ

(θ + 1)2

∫

Ω

∣

∣

∣
∇
(

|vk|(θ+1)/2
)∣

∣

∣

2
dx− θ − 1

2(θ + 1)

∫

Ω
|vk|θ+1divHdx

where Hi = ci − bi and
∫

Ω
gk(x, vk)v

θ
kdx ≥ −Θ

∫

Ω
|vk|θdx.

By using the previous estimates and Gagliardo-Nirenberg’s inequality, it follows that, for
some σ > 0 and Ci ≥ 0 depending on λn but not on k, there holds

σθ

(θ + 1)2
‖vk‖θ+1

L(θ+1)n/(n−2)(Ω)
≤ C1‖vk‖θLθ+1(Ω) + C2‖vk‖θ+1

Lθ+1(Ω)

≤ C3 max{1, ‖vk‖θ+1
Lθ+1(Ω)}.

Putting a = n/(n− 2), γ = θ + 1,

‖vk‖Laγ(Ω) ≤ C
1/γ
4 γ2/γ max{1, ‖vk‖Lγ(Ω)}.

Iterating from γ = 2, we obtain

‖vk‖Lam+1γ(Ω)
≤ C

Σm
j=0a−j

5 2Σm
j=0ja−j

max{1, ‖vk‖L2(Ω)}
≤ C6 max{1, ‖vk‖L2(Ω)}.

Consequently |vk(x)| is uniformly bounded by some k0. Taking k > k0, vk is a solution of

Lvk + g(., vk) = λn in Ω. (3.21)
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In order to emphasize the fact that vk is actually independent of k, but not on n, we shall
denote it by un.

Step 3 Uniform integrability. It follows from Step 2 that g(., un)un is integrable in Ω
and the same is true with g(., un), because of (3.14). The space C1,L

c (Ω) is a subspace of
W 1,2

0 (Ω), therefore (3.16) implies

∫

Ω
(unL

∗ζ + g(x, un)ζ) dx =

∫

Ω
λnζdx, (3.22)

for every ζ ∈ C1,L
c (Ω). By Theorem 2.4, for any ζ ∈ C1,L

c (Ω), ζ ≥ 0, one has

∫

Ω
(|un|L∗ζ + sign(un)g(x, un)ζ) dx ≤

∫

Ω
|λn| ζdx. (3.23)

We take ζ = η1 as Lemma 2.5, and derive from (3.12),

‖un‖L1(Ω) + ‖ρ
∂Ω
g(., un)‖L1(Ω) ≤ Θ

∫

Ω
ρ

∂Ω
dx+ C1 ‖ρ∂Ω

λn‖L1(Ω) . (3.24)

Consequently, by using (3.4) in Proposition 3.2 and (3.9) in Theorem 3.5,

‖un‖M (n+α)/(n+α−2)(Ω;ρα
∂Ω

) ≤ C2 ‖λn − g(., un)‖
M(Ω;ρα

∂Ω
) ≤ C3

(

Θ + ‖ρ
∂Ω
λn‖L1(Ω)

)

. (3.25)

By the local regularity result of Corollary 2.8, there exist a subsequence {unk
} and a

function u ∈W 1,q
loc (Ω), for any 1 ≤ q < n/(n− 1), such that unk

→ u a.e. in Ω and weakly

in W 1,q
loc (Ω). Notice that W 1,q

loc (Ω) can be replaced by W 1,q
0 (Ω) if α = 0, by Theorem 2.7.

Combining (3.24) and estimate (2.39) with µn = 0 and λn replaced by λn − g(., un), one
obtains that, for any Borel subset ω ⊂ Ω, there holds

∫

ω
|un| dx ≤

(

C ′ |Ω|+ C ′
1 ‖ρ∂Ω

λn‖L1(Ω)

)

|ω|1/p ,

if p > n. Thus, by the Vitali Theorem, it can also be assumed that unk
→ u in L1(Ω).

Furthermore, for any R ≥ 0,
∫

ω

∣

∣g(., un)

∣

∣ ρα
∂Ω
dx ≤

∫

ω
g̃(|un|)ρα

∂Ω
dx

≤
∫

ω∩{|un|≤R}
g̃(|un|)ρα

∂Ω
dx+

∫

ω∩{|un|>R}
g̃(|un|)ρα

∂Ω
dx

≤ g̃(R)

∫

ω
ρα

∂Ω
dx−

∫ ∞

R
g̃(s)dθn(s),

where

θn(s) =

∫

{x∈Ω:|un|>s}
ρα

∂Ω
(x)dx ≤ s−(n+α)/(n+α−2)‖un‖M (n+α)/(n+α−2)(Ω;ρα

∂Ω
)

≤ Cs−(n+α)/(n+α−2),
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by (3.7). Moreover

−
∫ ∞

R
g̃(s)dθn(s) = g̃(R)θn(R) +

∫ ∞

R
θn(s)dg̃(s)

≤ g̃(R)θn(R) + C

∫ ∞

R
s−(n+α)/(n+α−2)dg̃(s)

≤ g̃(R)θn(R)− Cg̃(R)R−(n+α)/(n+α−2)

+
C(n+ α)

n+ α− 2

∫ ∞

R
g̃(s)s−2(n+α−1)/(n+α−2)ds

≤ C(n+ α)

n+ α− 2

∫ ∞

R
g̃(s)s−2(n+α−1)/(n+α−2)ds.

Since condition (3.9) is equivalent to

∫ ∞

1
g̃(s)s−2(n+α−1)/(n+α−2)ds <∞, (3.26)

given ǫ > 0, we first choose R > 0 such that

C(n+ α)

n+ α− 2

∫ ∞

R
g̃(s)s−2(n+α−1)/(n+α−2)ds ≤ ǫ/2.

Then we put δ = ǫ/(2(1 + g̃(R)) and derive

∫

ω
ρα

∂Ω
dx ≤ δ =⇒

∫

ω
|g(un)| ρα

∂Ω
dx ≤ ǫ.

Therefore {ρα
∂Ω
g(., un)} is uniformly integrable, and we can assume that the previous

sequence {nk} is such that

lim
nk→∞

∫

Ω
|gnk

(., unk
)− g(., u)| ρα

∂Ω
dx = 0 =⇒

∫

Ω
|gnk

(., unk
)− g(., u)| ρ

∂Ω
dx = 0, (3.27)

since α ∈ [0, 1]. Letting nk →∞ in (3.22), one obtains

∫

Ω
(uL∗ζ + g(x, u)ζ) dx =

∫

Ω
ζdλ. (3.28)

�

Since the uniform integrability conditions depends only on the total variation norm of
the measure ρα

∂Ω
λ, the following stability result holds.

Corollary 3.8 Let Ω and α be as in Theorem 3.7, g satisfy the (n, α)-weak-singularity
assumption and r 7→ g(x, r) is nondecreasing, for any x ∈ Ω. Then the solution u is
unique. If we assume that {λm} is a sequence of measures in M(Ω; ρα

∂Ω
) such that

lim
m→∞

∫

Ω
ζdλm = lim

m→∞

∫

Ω
ζdλ,
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for any ζ ∈ C(Ω) satisfying supΩ ρ
−α
∂Ω
|ζ| < ∞, then the corresponding solutions um of

problem
Lum + g(x, um) = λm in Ω,

um = 0 on ∂Ω,
(3.29)

converge in L1(Ω) to the solution u of (3.1), when m→∞.

Remark. If g(x, r) = |r|q−1 r, the (n, α)-weak-singularity assumption is satisfied if and
only if

0 < q <
n+ α

n+ α− 2
. (3.30)

3.2 Admissible measures and the ∆2-condition

Definition 3.9 Let g̃ be a continuous real valued nondecreasing function defined in R+,
g̃ ≥ 0. A measure λ in Ω is said (g̃, k)-admissible if

∫

Ω
g̃(GΩ

L(|λ|) + k)ρ
∂Ω
dx <∞, (3.31)

where GΩ
L(|λ|) is the Green potential of λ and k ≥ 0.

Theorem 3.10 Let Ω be a C2 bounded domain in R
n, n ≥ 2, L an elliptic operator

defined by (2.1), and g ∈ C(Ω×R). We assume that L satisfies the condition (H), and g
(3.12) for some r0 ≥ 0 and (3.14) for some function g̃ as in Definition 3.9. Then for any
(g̃, r0)-admissible Radon measure λ ∈M(Ω; ρ

∂Ω
), Problem (3.1) admits a solution.

Proof. For k > 0, we take the same truncation gk(., r) of g(., r) defined by (3.15). Since
gk satisfies (3.13) and (3.14), we denote by uk a solution of

Luk + gk(x, uk) = λ in Ω,

uk = 0 on ∂Ω,
(3.32)

which exists by Theorem 3.7. As in the proof of Theorem 3.7 the following estimates hold,

‖uk‖L1(Ω) + ‖ρ
∂Ω
gk(., uk)‖L1(Ω) ≤ Θ

∫

Ω
ρ

∂Ω
dx+ C1 ‖ρ∂Ω

λ‖
M(Ω) , (3.33)

where Θ is defined by (3.18), and

‖uk‖M (n+1)/(n−1)(Ω;ρ
∂Ω

) ≤ C3

(

Θ + ‖ρ
∂Ω
λ‖L1(Ω)

)

. (3.34)

By Corollary 2.8, there exist a subsequence {ukj
} and a function u ∈ W 1,q

loc (Ω), for any

1 ≤ q < n/(n − 1), such that ukj
→ u a.e. in Ω and weakly in W 1,q

loc (Ω). Moreover
gkj

(., ukj
)→ g(., u) almost everywhere in Ω. Put

wλ+ = G
Ω
L(λ+) + r0.
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Then
L(uk − wλ+) + gk(x, uk) = λ− λ+,

and, for any ζ ∈ C1,L
c (Ω), ζ ≥ 0,

∫

Ω
(uk − wλ+)+L

∗ζdx+

∫

Ω
gk(x, uk)sign+(uk − wλ+)ζdx

≤ −
∫

∂Ω

∂ζ

∂nL∗
(uk − wλ+)+dS,

(3.35)

by Inequality (2.40). Since the boundary term in (3.35) vanishes, and wλ+ ≥ r0, there
holds gk(x, uk)sign+(uk − wλ+) ≥ 0, which implies

∫

Ω
(uk − wλ+)+L

∗ζdx ≤ 0.

Taking ζ = η1 defined by (2.24) (with u = 1, hence L∗η1 = 1), yields to (uk − wλ+)+ = 0
a.e. in Ω. Thus

uk ≤ wλ+ = G
Ω
L(λ+) + r0.

In the same way
uk ≥ −G

Ω
L(λ−)− r0.

Therefore

|uk| ≤ G
Ω
L(|λ|) + r0 =⇒ |gk(uk)| ≤ g̃(|uk|) ≤ g̃(GΩ

L(|λ|) + r0). (3.36)

Because the right-hand side of (3.36) belongs to L1(Ω; ρ
∂Ω
dx), the sequence {gk(., uk)} is

uniformly integrable for the measure ρ
∂Ω
dx. As in the proof of Theorem 3.7, we conclude

by the Vitali Theorem that u is a solution of (3.1). �

The condition of (g, r0)-admissibility on λ is too restrictive if the function g has a strong
power growth, in particular it leads to exclude some λ which are regular with respect the
n-dimensional Hausdorff measure, even if we know, from the Brezis and Strauss Theorem
(see Theorem 3.7-Step 1), that Problem (3.1) is solvable for such measures. A natural
extension is to impose only the (g, r0)-admissibility on the singular part λs of the measure.
However, a generic power-like growth condition called the ∆2-condition is needed.

Definition 3.11 A real valued function g ∈ C(Ω×R) satisfies a uniform ∆2-condition if
there exist two constants ℓ ≥ 0, θ > 1 such that

∣

∣g(x, r + r′)
∣

∣ ≤ θ(|g(x, r)|+
∣

∣g(x, r′)
∣

∣) + ℓ, ∀x ∈ Ω, ∀(r, r′) ∈ R× R. (3.37)

Theorem 3.12 Let Ω and L be as in Theorem 3.10. Assume g ∈ C(Ω × R) satisfies
the ∆2-condition, r 7→ g(x, r) is nondecreasing for any x ∈ Ω and (3.14) holds for some
function g̃ as in Definition 3.9. For any Radon measure λ ∈M(Ω; ρ

∂Ω
), with λ = λ̃+ λ∗,

where λ̃ ∈ L1(Ω; ρ
∂Ω
dx), and λ∗ is (g̃, 0)-admissible and singular with respect to the n-

dimensional Lebesgue measure, Problem (3.1) admits a unique solution.
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Proof. Uniqueness comes from the monotonicity of r 7→ g(x, r).

Step 1 If we write g(x, r) = g(x, r)− g(x, 0)+ g(x, 0) = ĝ(x, r)+ g(x, 0), then the equation
is transformed into

Lu+ ĝ(x, u) = λ− g(x, 0) = λ̂,

where r 7→ ĝ(x, r) nondecreasing and ĝ(x, 0) = 0. Notice that |ĝ(x, 0)| ≤ g̃(0) by (3.14),
and that λ∗ is singular with respect to λ̃ − g(x, 0). Finally the new function ĝ satisfies
Inequality (3.37) with the same θ and ℓ replaced by ℓ̂ = ℓ + (2θ + 1) |g̃(0)|, and (3.14)
with g̃ replaced by g̃ + |g̃(0)|. From now we shall suppose that the function g satisfies
g(x, 0) = 0 for any x ∈ Ω. We introduce the truncation gk(., r) by (3.15). The truncated
function gk satisfies also (3.37) (with θ replaced by 1 + θ).

Step 2 We suppose that λ is nonnegative. Then λ̃ and λ∗ inherit the same property. Let
{λ̃i} be a sequence of smooth nonnegative functions with compact support in Ω, converging
to λ̃ in the weak sense of L1(Ω; ρ

∂Ω
). Let ui,k be the solution of

Lui,k + gk(x, ui,k) = λ̃i + λ∗ in Ω,

ui,k = 0 on ∂Ω,
(3.38)

and vi,k the one of

Lvi,k + gk(x, vi,k) = λ̃i in Ω,

vi,k = 0 on ∂Ω.
(3.39)

Both solutions exist by Theorem 3.10. By the maximum principle

0 ≤ ui,k ≤ vi,k + G
Ω
L(λ∗), (3.40)

and by the monotonicity of gk and (3.37),

0 ≤ gk(., ui,k) ≤ θ
(

gk(., vi,k) + gk(.,G
Ω
L(λ∗))

)

+ ℓ ≤ θ
(

gk(., vi,k) + g̃(GΩ
L(λ∗))

)

+ ℓ.(3.41)

By Theorem 3.10), if i is fixed and k → ∞, the sequence {vi,k} converges weakly in

W 1,q
loc (Ω) and a.e. in Ω to the solution vi of

Lvi + g(x, vi) = λ̃i in Ω,

vi = 0 on ∂Ω.
(3.42)

Since the vi,k are uniformly bounded with respect to k, the same property holds with the
gk(vi,k), hence their convergence to vi and g(., vi) are uniform in Ω. Because of (3.41) and
the elliptic equations regularity theory, the sequence {ui,k}k∈N∗ is relatively compact in

the W 1,q
loc (Ω)-topology. Thus there exist a subsequence {ui,kj

} and a function ui such that
ui,kj

→ ui as kj →∞ in this topology and a.e. in Ω. By continuity, gkj
(., ui,kj

)→ g(., ui)
a.e. in Ω. Because of (3.41) and the (g̃, 0)-admissibility condition on λ∗, Lebesgue’s
theorem implies that

lim
kj→∞

gkj
(., ui,kj

) = g(., ui) in L1(Ω; ρ
∂Ω
dx).
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It follows from inequality (3.40) that ui,kj
→ ui in L1(Ω) (we recall that G

Ω
L(λ∗) ∈ L1(Ω)).

Letting kj →∞ in (3.38) we see that ui is the solution of

Lui + g(x, ui) = λ̃i + λ∗ in Ω,

ui = 0 on ∂Ω.
(3.43)

By uniqueness of ui the whole sequence ui,k converges to ui as k →∞. Moreover

(i) 0 ≤ ui ≤ vi + G
Ω
L(λ∗),

(ii) 0 ≤ g(., ui) ≤ θ
(

g(., vi) + g(GΩ
L(λ∗))

)

+ ℓ ≤ θ
(

g(., vi) + g̃(GΩ
L(λ∗))

)

+ ℓ.
(3.44)

By Theorem 2.4 with ζ = GΩ
L(1),

‖vi − vj‖L1(Ω) + ‖g(., vi)− g(., vj)‖L1(Ω;ρ
∂Ω

dx) ≤ C
∥

∥

∥
λ̃i − λ̃j

∥

∥

∥

L1(Ω)
. (3.45)

Therefore vi → v in L1(Ω) and g(., vi)→ g(., v) in L1(Ω; ρ
∂Ω
dx) where v is the solution of

Lv + g(x, v) = λ̃ in Ω,

v = 0 on ∂Ω.
(3.46)

By (3.44)-(i) there exists a subsequence {uij} which converges in L1(Ω) and a.e. in Ω to
some function u. Because of (3.44)-(ii), the admissibility condition on λ∗ and the Vitali
Theorem, the sequence {g(., uij )} converges to g(., u) in L1(Ω; ρ

∂Ω
dx). Thus u is the

solution of (3.1).

Step 3 In the general case we construct the solution ui,k of (3.38) and the functions
U = ui,k and U = ui,k solutions of

LU + gk(x,U) = Λ̃ in Ω,

U = 0 on ∂Ω.
(3.47)

where Λ =
∣

∣

∣λ̃i

∣

∣

∣+ |λ∗| in the case of ui,k and Λ = −
∣

∣

∣λ̃i

∣

∣

∣− |λ∗| in the case of ui,k. We also

construct the solutions V = vi,k and V = vi,k of the same equation with Λ =
∣

∣

∣λ̃i

∣

∣

∣ in the

case of vi,k and Λ = −
∣

∣

∣λ̃i

∣

∣

∣ in the case of vi,k. Since

vi,k −G
Ω
L(|λ∗|) ≤ ui,k ≤ vi,k + G

Ω
L(|λ∗|), (3.48)

and

θ
(

gk(., vi,k) + g(.,GΩ
L(− |λ∗|))

)

− ℓ ≤ gk(., ui,k) ≤ θ
(

gk(., vi,k) + g(.,GΩ
L(|λ∗|))

)

+ ℓ,(3.49)

we conclude by using the Vitali Theorem and the convergence arguments of Step 2. �
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3.3 The duality method

Let Ω be a domain in R
n and L is an elliptic operator in Ω. In this section we study

the sharp solvability of Problem (3.1) when g(x, r) = |u|q−1 u with q > 0. For this type
of nonlinearity, the (n, 0)-weak-singularity assumption is satisfied if and only if 0 < q <
n/(n− 2). Thus we shall concentrate on the case n ≥ 3 and q ≥ n/(n− 2) and for such a
task the theory of Bessel capacities is needed.

3.3.1 Bessel capacities

Let p > 1 be a real number and p′ = p/(p − 1). If m in an integer we endow the Sobolev
space Wm,p(Rn) with the usual norm

‖φ‖W m,p(Rn) =





∑

|γ|≤m

∫

Ω
|Dγφ|pdx





1/p

,

and we introduce the associated capacity Cm,p by

Cm,p(K) = inf
{

‖φ‖pW m,p(Rn) : φ ∈ C∞
c (Rn), φ ≥ 1 in a neighborhood of K

}

,

if K is compact,

Cm,p(G) = sup {Cm,p(K) : K ⊂ G, K compact } ,

if G is open, and
Cm,p(E) = inf {Cm,p(G) : E ⊂ G, G open } ,

for an arbitrary set E. The scale of Sobolev spaces is not accurate enough to describe the
subets of R

n by means of their capacities. If α is a real number, we introduce the Bessel
kernel of order α by

Gα = F−1
(

(1 + |ξ|2)−α/2
)

(3.50)

were F−1 is the inverse Fourier transform on the Schwartz space S ′(Rn). If

Gα = (I −∆)−α/2,

there holds the Bessel potential representation

f = Gαg = Gα ∗ g ⇐⇒ g = G−αg = G−α ∗ f ∀f, g ∈ S(Rn). (3.51)

Definition 3.13 Let α and p > 1 be two real numbers. The Bessel potential space of
order α and power p is

Lα,p(Rn) = {f : f = Gα ∗ g, g ∈ Lp(Rn)} ,

with norm
‖f‖Lα,p(Rn) = ‖g‖Lp(Rn) = ‖G−α ∗ f‖Lp(Rn).
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As usual, Lα,p′

0 (Rn) denotes the closure of C∞
c (Rn) in Lα,p′(Rn). Thanks to a result due

to Calderon, the functions in Wm,p(Rn) can be represented by mean of Bessel potentials.
Actually for any α ∈ N∗ and 1 < p <∞, Wα,p(Rn) = Lα,p(Rn) and their exists a positive
constant A such that

A−1‖f‖Lα,p(Rn) ≤ ‖f‖W α,p(Rn) ≤ A‖f‖Lα,p(Rn), ∀f ∈Wα,p(Rn). (3.52)

By generalization (see [28] for a general construction of capacities), the Bessel capacity of

order (α, p) (α > 0, p > 1) of a compact set K is defined by

Cα,p(K) = inf
{

‖φ‖pLα,p(Rn) : φ ∈ S(Rn), φ ≥ 1 in a neighborhood of K
}

, (3.53)

with the same extension to open sets and arbitrary sets as for Sobolev capacities. A dual
definition involving measures is the following [1] :

Cα,p(K) = sup

{(

µ(K)

‖Gα ∗ µ‖Lp′ (Rn)

)p

: µ ∈M+(K)

}

, (3.54)

where M+(K) is the set of positive Radon measures with support in K. An important
result due to Maz’ya (see [1]) states that the following expression

C̃α,p(K) = inf
{

‖φ‖pLα,p(Rn) : φ ∈ S(Rn), φ ≡ 1 in a neighborhood of K
}

, (3.55)

defines a new capacity which is equivalent to the Cα,p-capacity in the sense that there
exists a positive constant B such that

B−1Cα,p(K) ≤ C̃α,p(K) ≤ BCα,p(K),

for any compact subset K. In the particular case of sets with zero capacity, the following
useful result holds.

Proposition 3.14 Let α > 0, 1 < p < ∞, K be a compact subset of R
n and O an open

subset containing K. If Cα,p(K) = 0, there exists a sequence {φn} ⊂ C∞
c (O) such that

0 ≤ φn ≤ 1, φn ≡ 1 in a neighborhood of K and φn → 0 in Lα,p(Rn) as n→∞.

By using smooth cut-off function with value in [0, 1], support in a neighborhood of
K and taking the value 1 in a smaller neighborhood of K, the proof of this result is
straightforward if α is an integer, and more delicate if not (see [1, Th. 3.3.3]).

Definition 3.15 Let α > 0 and 1 < p <∞.

(i) A property is said to hold Cα,p-quasi everywhere if it holds everywhere but on a set of
Cα,p-capacity zero.

(ii) A function φ defined in R
n is said to be Cα,p-quasicontinuous if for any ǫ > 0, there is

an open set G ⊂ R
n with Cα,p(G) < ǫ and f ∈ C(Gc).
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(iii) Let O be an open subset of R
n and λ ∈M(O) . The measure λ is said not to charge

subsets of O with Cα,p-capacity zero if

∀E ⊂ O, Cα,p(E) = 0 =⇒
∫

E
d |λ| = 0,

where, d |λ| denote in the same way the unique complete regular Borel measure generated
by the Radon measure |λ|.

It is proven in [1] that for any α > 0, 1 < p <∞ and g ∈ Lp(Ω), the function Gα ∗ g is
Cα,p-quasicontinuous. Therefore, any element φ ∈ Lα,p(Rn) admits a (unique) quasicon-
tinuous representative, φ̃. Furthermore, from any converging sequence {φn} ⊂ Lα,p(Rn)
it can be extracted a subsequence {φn} which converges Cα,p-quasi everywhere. The link
between the measures which do not charge capacitary sets and elements of negative Bessel
spaces is enlighted by three results. The first one is due essentially to Grun-Rehomme [50]
(see also [1]).

Proposition 3.16 Let α > 0 and 1 < p < ∞. If λ ∈M(Ω) ∩ L−α,p(Ω), then λ does not
charge sets with Cα,p′-capacity zero.

Proof. By the Jordan decomposition Theorem of a measure, there exist two disjoint Borel
subsets A and B such that

A ∪B = Ω, λ+(B) = 0, λ−(A) = 0.

Let E ⊂ R
n with Cα,p′(E) = 0. With no loss of generality E can be assumed as being a

Borel set. It is therefore sufficient that λ+(A ∩ E) = λ−(B ∩ E) = 0. Because

λ+(A ∩ E) = sup{λ+(K) : K compact , k ⊂ A ∪ E},

it is sufficient to prove that for any compact subset K ⊂ A ∩ E, λ+(K) = 0. Let ǫ > 0,
since λ−(K) = 0, there exists an open subset ω of Ω containing K such that λ−(ω) ≤ ǫ.
Let η ∈ C∞

c (ω), with value in [0, 1] and equal to 1 on K. By Proposition 3.14, since
Cα,p′(K) = 0, there exists a sequence {φn} ⊂ C∞

c (Ω), of functions with value in [0, 1],
equal to 1 in a neighborhood of K and such that φn → 0 in Lα,p′(Ω) as n→∞. Then

∫

K
dλ+ ≤

∫

K
φnηdλ+ ≤

∫

γ
φnηdλ+ =

∫

Ω
φnηdλ+

∫

ω
φnηdλ−.

But
∫

ω
φnηdλ− ≤

∫

ω
dλ− ≤ ǫ,

and
∫

Ω
φnηdλ ≤

∫

Ω
φndλ = 〈λ, φn〉[L−α,p,Lα,p′ ] ≤ ‖λ‖L−α,p‖φ‖nLα,p′ ,

which goes to zero as n→∞. Therefore
∫

K
dλ+ ≤ ǫ.
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Since ǫ is arbitrary, λ+(K) = 0. In the same way λ−(B ∩ E) = 0. Therefore |λ| (E) = 0.
�

The second result is due to Feyel and de la Pradelle [42]. It shows the constructivity
of certain measures which do not charge sets a given capacity of which vanishes.

Proposition 3.17 Let α > 0 and 1 < p < ∞. If λ ∈ M+(Ω) does not charge sets with
Cα,p′-capacity zero, there exists an increasing sequence {λn} ⊂Mb

+(Ω)∩L−α,p(Ω), λn with
compact support in Ω, which converges to λ.

Proof. We first assume that λ has compact support in Ω. Let φ ∈ Lα,p′

0 (Ω) and φ̃ its
quasicontinuous representative. Since the function φ̃+ is quasicontinuous too, the following

functional is well defined on Lα,p′

0 (Ω), with values in [0,∞],

P (φ) =

∫

Ω
φ̃+dλ. (3.56)

If {φn} converges to φ in Lα,p′

0 (Ω), there exists a subsequence {φnk
} which converges

Cα,p′-quasi everywhere. Hence
∫

Ω
φ̃+dλ ≤ lim inf

nk→∞

∫

Ω
φ̃n +dλ,

by Fatou’s lemma, and φ 7→ P (φ) is lower semicontinuous. Since P is convex and positively
homogeneous of order 1, it is the upper hull of all the continuous linear functionals it
dominates, by the Hahn-Banach Theorem.

Step 1 Let ǫ > 0, and φ0 ∈ Lα,p′

0 (Ω). Then we claim that there exists a positive Radon
measure θ belonging to L−α,p(Ω) such that 0 ≤ θ ≤ λ, and

∫

Ω
φ0d(ν − θ) < ǫ. (3.57)

Clearly

(φ0, P (φ0)− ǫ) /∈ Epi(P ) =
{

(φ, t) ∈ Lα,p′

0 (Ω)× R : t ≥ P (φ)
}

.

Since Epi(P ) is a closed convex subset of Lα,p′

0 (Ω) × R, it follows by the Hahn-Banach

Theorem that there exist a continuous form ℓ on Lα,p′

0 (Ω) and two constants a and b such
that

a+ bt+ ℓ(φ) ≤ 0, ∀(φ, t) ∈ Epi(P ), (3.58)

and

a+ b(P (φ0)− ǫ) + ℓ(φ0) > 0. (3.59)

But (0, 0) ∈ Epi(P ) =⇒ a ≤ 0. Thus (3.59) holds with a = 0. If we apply (3.58) to (τφ, τt)
with τ > 0 arbitrary (such a couple belongs to Epi(P ) since P is positively homogeneous)
and let τ →∞, it follows

bt+ ℓ(φ) ≤ 0, ∀(φ, t) ∈ Epi(P ). (3.60)
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In the particular case φ = 0 and t > 0 (possible since (0, t) ∈ Epi(P ), ∀t > 0), it gives
b ≤ 0. If b were zero one would have ℓ(φ) ≤ 0 for any (φ, t) ∈ Epi(P ), and in particular
ℓ(φ0) ≤ 0, which would contradict (3.59) if we impose b = 0. Since b < 0, we define θ by

θ(φ) = −ℓ(φ)

b
, ∀φ ∈ Lα,p′

0 (Ω),

and derive

P (φ) ≥ θ(φ), (3.61)

for any φ ∈ Lα,p′

0 (Ω), since (P (φ), φ) ∈ Epi(P ). In the particular case where φ ≤ 0, there

holds θ(φ) ≤ 0. This means that θ is a continuous positive linear functional on Lα,p′

0 (Ω),
dominated by P . It defines a unique Radon measure, still denoted by θ, and (3.57) holds.

Step 2 End of the proof. We assume now that λ has no longer a compact support in Ω.
There exists an exhaustive sequence of open subsets {Ωk}, compactely included in Ω such
that

Ωk ⊂ Ωk ⊂ Ωk+1 ⊂ Ωk+1 ⊂ . . .Ω.
We put λk = λΩk

. We apply the result of step 1 to λk, with ǫ = 1/k and φ ≡ 1 on Ωk and
derive the existence of a positive Radon measure θk ∈ Lα,p′(Ω), with compact support in
Ω satisfying 0 ≤ θk ≤ λ and

∫

Ωk

d(λ− θk) < 1/k.

The measure λn = sup{θ1, θ2, . . . , θn} has compact support in Ω, λn ≤ λn+1 ≤ λ for any
n, and

lim
n→∞

∫

Ω
ζdλm =

∫

Ω
ζdλ, ∀ζ ∈ Cc(Ω).

�

Corollary 3.18 Let α > 0 and 1 < p < ∞. If λ ∈ Mb(Ω) does not charge sets with
Cα,p′-capacity zero, there exist a function λ∗ ∈ L1(Ω) and a measure λ̃ ∈ L−α,p(Ω) such
that

λ = λ̃+ λ∗. (3.62)

Proof. By assumption, both the positive and the negative parts of λ do not charge sets
with Cα,p′-capacity zero. Therefore it is sufficient to prove (3.62) with λ ∈ M

+
b (Ω). Let

{λn} ⊂ L−α,p(Ω) ∩M+(Ω) be the increasing sequence of measures with compact support
in Ω which converges to λ weakly. We set

ρj = λj − λj−1, for j ∈ N∗, and ρ0 = λ0.

Then

λ =

∞
∑

j=0

ρj,
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and the series converges strongly in the space Mb(Ω). In particular

∞
∑

j=0

‖ρj‖Mb(Ω) <∞.

Let {ηk}k∈N∗ be a sequence of C∞ nonnegative functions in R
n, with compact support in

the open ball Bk−1(0), satisfying
∫

Ω
ηkdx = 1.

For any j ∈ N∗ there exists k0
j ∈ N∗ such that for k ≥ k0

j , ρj,k = ρj ∗ ηk ∈ C∞
c (Ω). Since

ρj,k → ρj as k →∞, we fix kj ≥ k0
j such that

∥

∥ρj,kj
− ρj

∥

∥

L−α,p(Ω)
≤ 2−j .

We set ρ̃j,kj
= ρj − ρj,kj

. The series

∞
∑

j=0

ρ̃j,kj
is normaly convergent in L−α,p(Ω) and, if λ̃

denotes its sum, it belongs to L−α,p(Ω). Moreover
∥

∥ρj,kj

∥

∥

L1(Ω)
=
∥

∥ρj ∗ ηkj

∥

∥

L1(Ω)
= ‖ρj‖Mb(Ω).

Thus the series

∞
∑

j=0

ρj,kj
is normaly convergent in L1(Ω) with sum λ∗. The three series

∞
∑

j=0

ρj,

∞
∑

j=0

ρ̃j,kj
and

∞
∑

j=0

ρj,kj
converge in the sense of distributions in Ω, therefore (3.62)

holds. �

Remark. If λ ≥ 0, it is the same with λ∗. Unfortunately it is not clear that λ̃ inherits the
same property. Notice that λ∗ and λ̃ may not be mutually singular.

Another important and useful result concerning measures which do not charge sets
with zero capacity is the following [29].

Theorem 3.19 Let α > 0 and 1 < p < ∞. If λ ∈ M+(Ω) does not charge sets with
Cα,p′-capacity zero, there exist ν ∈M+(Ω) ∩ L−α,p(Ω) and a Borel function f with value
in [0,∞) such that

λ(E) =

∫

E
fdν, ∀E ⊂ Ω, E Borel. (3.63)

3.3.2 Sharp solvability

The following theorem due to Baras and Pierre [9] characterizes the bounded measures
for which the problem

Lu+ |u|q−1 u = λ in Ω,

u = 0 on ∂Ω,
(3.64)

admits a solution.
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Theorem 3.20 Let Ω be a C2 bounded domain in R
n, n ≥ 3, L the elliptic operator

defined by (2.1) satisfying the condition (H), q ≥ n/(n − 2) and λ ∈ Mb(Ω). Then
Problem (3.64) admits a solution if and only if λ does not charge sets with C2,q′-capacity
zero. The solution is unique and the mapping λ 7→ u is nondecreasing.

For proving this theorem we need the following regularity result.

Lemma 3.21 Let Ω and L be as in Theorem 3.20. Then for any 1 < p < ∞ and
λ ∈ W−2,p(Ω) ∩Mb(Ω), G

Ω
L(λ) ∈ Lp(Ω). Moreover there exists C = C(Ω, L, p) > 0 such

that
∥

∥G
Ω
L(λ)

∥

∥

Lp(Ω)
≤ C‖λ‖W−2,p(Ω). (3.65)

Proof. Put v = G
Ω
L(λ), then

∫

Ω
vL∗ζdx =

∫

Ω
ζdλ, ∀ζ ∈ C1,L

c (Ω).

Let φ ∈ C∞
0 (Ω), ζ = G

Ω
L∗(φ), then

∣

∣

∣

∣

∫

Ω
vφdx

∣

∣

∣

∣

≤ ‖λ‖W−2,p(Ω)‖ζ‖W 2,p′ (Ω) ≤ C‖λ‖W−2,p(Ω)‖φ‖Lp′ (Ω),

by the Lp-regularity theory of elliptic equations. Hence v ∈ Lp(Ω) and (3.65) follows.
�

Proof of Theorem 3.20. (i) Assume that u is a solution of (3.64). Since |u|q−1 u ∈ L1(Ω)
by Proposition 3.2, it does not charge set with C2,q′-capacity zero, which are negligible
sets for the n-dimensional Hausdorff measure. Therefore Lu ∈Mb(Ω), and

|〈Lu, φ〉| =
∣

∣

∣

∣

∫

Ω
uL∗φdx

∣

∣

∣

∣

≤ ‖u‖Lq(Ω)‖L∗φ‖Lq′ (Ω) ≤ C‖u‖Lq(Ω)‖φ‖W 2,q′(Ω),

for any φ ∈ C∞
0 (Ω). Therefore the measure Lu defines a continuous linear functional on

W 2,q′

0 (Ω). Consequently λ is the sum of an integrable function and a measure in W−2,q(Ω).

(ii) Conversely, we first assume that λ is a positive measure. By Proposition 3.17 there
exists an increasing sequence of positive measures λj belonging to W−2,q converging to λ
in the weak sense of measures. By Theorem 3.10 there exists uj solution to

Luj + |uj |q−1 uj = λj in Ω,

uj = 0 on ∂Ω.
(3.66)

Moreover uj is nonnegative and uj ≥ uj−1 for any j ∈ N∗. For any ζ ∈ C1,L
c (Ω) there

holds
∫

Ω

(

ujL
∗ζ + uq

jζ
)

dx =

∫

Ω
ζdλj . (3.67)
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Let u = limj→∞ uj . If ζ ≥ 0, we have, by the Beppo-Levi Theorem,

∫

Ω
(uL∗ζ + uqζ) dx =

∫

Ω
ζdλ. (3.68)

Hence u ∈ L1(Ω) ∩ Lq(Ω; ρ
∂Ω
dx) and u is the solution to Problem (3.64). Because λ is

bounded we have u ∈ Lq(Ω) by Proposition 3.2.

If λ is no longer positive, λ+ and λ− do not charge Borel sets with C2,q′-capacity
zero. Hence there exist two nondecreasing sequences of positive measures belonging to
W−2,q(Ω), {λj,+} and {λj,−}, converging to λ+ and λ− respectively. As in the proof of
Theorem 3.10 we truncate the nonlinearity by putting gk(r) =sign (r)min{kq, |r|q} for
k ∈ N∗, and we denote by vk, (resp. vk,+ and vk,−) the solutions of

Lv + gk(v) = ν in Ω,

v = 0 on ∂Ω,
(3.69)

when ν = λj,+− λj,− (resp. ν = λj,+ and ν = λj,−). By Theorem 3.7, −vk,− ≤ vk ≤ vk,+,
which implies −gk(vk,−) ≤ gk(vk) ≤ gk(vk,+). When k → ∞, the sequences {vk,+} and
{vk,−} decrease and converge respectively to uj,+ and uj,−, the solutions of (3.64) with
respective right-hand side λj,+ and λj,−. Moreover

−
(

G
Ω
L(λj,−)

)q ≤ −gk(G
Ω
L(λj,−)) ≤ gk(vk) ≤ gk

(

G
Ω
L(λj,+)

)

≤
(

G
Ω
L(λj,+)

)q
. (3.70)

Since the left and right-hand side terms are L1(Ω)-functions, the sequence {gk(vk)} is
uniformly integrable. As in the proof of Theorem 3.10, the sequence {vk} converges in
Lq(Ω) to the solution uj of (3.66) with right-hand side λj,+ − λj,−. Furthermore

−uj,− ≤ uj ≤ uj,+, and − uq
j,− ≤ |uj |q−1 uj ≤ uq

j,+.

Because {uj,+} and {uj,−} are monotone and converge in Lq(Ω), the sequence {uj,} is
uniformly integrable in Lq(Ω) and converges a.e. in Ω. Since λj,+−λj,− converges weakly
to λ in the sense of measures, there exists a function u ∈ Lq(Ω), solution of (3.64). �

3.4 Removable singularities

3.4.1 Positive solutions

In this section Ω is an arbitrary open set in R
n. Let Lm be a linear differential operator

of order m (m ∈ N∗), defined by

Lmu =
∑

0≤|α|≤m

Dα(aαu), (3.71)

where
aα ∈ L∞

loc(Ω), ∀α ∈ N
n, |α| ≤ m. (3.72)
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Definition 3.22 Let G ⊂ Ω be open, u ∈ L1
loc(G) and T a distribution on G. We shall

say that u satisfies
Lmu = T (resp. Lmu ≤ T ) in D′(G), (3.73)

or, equivalently, that u is a distribution solution (resp. subsolution) of (3.73), if
∫

G
uL∗

mζdx = 〈T, ζ〉 (resp.

∫

G
uL∗

mζdx ≤ 〈T, ζ〉),

∀ζ ∈ C∞
c (G) (resp. ∀ζ ∈ C∞

c (G) , ζ ≥ 0),
(3.74)

where 〈., .〉 denote the duality pairing between D′(G) and D(G), and L∗
m the formal adjoint

of Lm defined by

L∗
mζ =

∑

0≤|α|≤m

(−1)|α|aαD
αζ. (3.75)

The following result is due to Baras and Pierre [9].

Theorem 3.23 Let m ∈ N∗, q > 1, F be a relatively closed subset of G, λ a Radon
measure which does not charge sets with Cm,q′-capacity zero and g a continuous real valued
function which satisfies

lim inf
r→∞

g(r)/rq > 0. (3.76)

Let u ∈ L1
loc(Ω \ F ), such that u ≥ 0 and g(u) ∈ L1

loc(Ω \ F ), be a solution of

Lmu+ g(u) ≤ λ in D′(Ω \ F ). (3.77)

If Cm,q′(F ) = 0, then u ∈ L1
loc(Ω), g(u) ∈ L1

loc(Ω) and there holds

Lmu+ g(u) ≤ λ in D′(Ω). (3.78)

Proof. Step 1 Let ζ ∈ C∞
c (Ω), and K =supp(ζ). Since K ∩ F is a compact subset of

Ω with Cm,q′-capacity zero, it follows by Proposition 3.14 that there exists a sequence
{φn} ⊂ C∞

c (Ω) such that 0 ≤ φn ≤ 1, φn ≡ 1 in a neighborhood of K ∩ F and φn → 0 as
n→∞, in Wm,q′(Ω) and Cm,q′-quasi everywhere. Therefore, ζn = (1− φn)ζ satisfies :

(i) ζn ∈ C∞
c (Ω \ F ),

(ii) 0 ≤ ζn ≤ 1,

(iii) ζn → ζ in Wm,q′(Ω) and Cm,q′-quasi everywhere as n→∞, and the sequence {ζn} is
increasing.

Step 2 We claim that g(u) ∈ L1
loc(Ω). We take ζ ∈ C∞

c (Ω), ζ ≥ 0 and {ζn} be defined by
the procedure in Step 1. Let p ∈ N, p ≥ mq′. Since ζp

n ∈ C∞
c (Ω \ F ), (3.77) implies

∫

Ω
(uL∗

m(ζp
n) + g(u)ζp

n) dx ≤
∫

Ω
ζp
ndλ. (3.79)

Because ζp
n ≤ ζ, there holds

∫

Ω
g(u)ζp

ndx ≤
∫

Ω
ζd |λ|+

∫

Ω
u |L∗

m(ζp
n)| dx. (3.80)
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Since the aα are locally bounded,

|L∗
m(ζp

n)| ≤ C
∑

0≤|α|≤m

|Dα(ζp
n)|.

The zero order term is estimated by

∫

Ω
uζp

ndx ≤
(
∫

Ω
uqζp

ndx

)1/q (∫

Ω
ζp
ndx

)1/p′

≤
(
∫

Ω
uqζp

ndx

)1/q′

‖ζn‖W m,q′(Ω). (3.81)

If |α| ≥ 1,

Dα(ζp
n) =

|α|
∑

j=1

cjζ
p−j
n

∑

|βi| ≥ 1
β1 + ... + βj = α

cβ1,...,βj
Dβ1ζn...D

βjζn,

where the cj and cβ1,...,βj
are positive constants depending on the indices. Thus we are led

to estimate a finite sum involving terms of the form

A =

∫

Ω
uζp−j

n

∣

∣

∣Dβ1ζn...D
βjζn

∣

∣

∣ dx.

By Hölder’s inequality

A ≤
(
∫

Ω
uqζp

ndx

)1/q (∫

Ω
ζp−jq′

n

∣

∣

∣
Dβ1ζn...D

βjζn

∣

∣

∣

q′

dx

)1/q′

.

Because p ≥ mq′ ≥ jq′, it follows 0 ≤ ζp−jq′
n ≤ 1. By applying again Hölder’s inequality,

and using the fact that |β1|+ ...+ |βj | = |α|, it follows

A ≤
(∫

Ω
uqζp

ndx

)1/q j
∏

i=1

(∫

Ω

∣

∣

∣Dβiζn

∣

∣

∣

q′|α|/|βi|
dx

)|βi|/|α|q′

.

By the Gagliardo-Nirenberg inequality, there holds

∣

∣

∣Dβiζn

∣

∣

∣

q′|α|/|βi| ≤ C‖ζn‖|βi|/|α|

W |α|,q′(Ω)
≤ C‖ζn‖|βi|/|α|

W m,q′(Ω)
.

Therefore

A ≤ C
(
∫

Ω
uqζp

ndx

)1/q

‖ζn‖W m,q′ (Ω), (3.82)

from which derives

∫

Ω
g(u)ζp

ndx ≤ C1 + C2

(
∫

Ω
uqζp

ndx

)1/q

‖ζn‖W m,q′ (Ω). (3.83)

By assumption, there exist two positive constants a and b such that

g(r) ≥ arq − b, ∀r ≥ 0.
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Consequently, up to changing the constants Ci,

∫

Ω
(g(u) + b)ζp

ndx ≤ C1 + C2

(∫

Ω
(g(u) + b)ζp

ndx

)1/q

‖ζn‖W m,q′(Ω). (3.84)

Finally, the left-hand side integral remains bounded independently of n and we conclude
by Fatou’s lemma that (g(u) + b)ζp ∈ L1(Ω). Since ζ is arbitrary, we find g(u) ∈ L1

loc(Ω).
The growth estimate on g implies also u ∈ Lq

loc(Ω).

Step 3 We claim that (3.78) holds. Let ζ ∈ C∞
c (Ω), ζ ≥ 0. By constructing the same

functions ζn as above, we have
∫

Ω
(uL∗

mζn + g(u)ζn) dx ≤
∫

Ω
ζndλ. (3.85)

Since |λ| does not charge sets with Cm,q′-capacity zero and ζn → ζ, Cm,q′-quasi everywhere
in Ω, this convergence holds also |λ|-a.e. in Ω. By the Lebesgue Theorem

lim
n→∞

∫

Ω
ζndλ =

∫

Ω
ζdλ.

Because g(u) is locally integrable in Ω,

lim
n→∞

∫

Ω
g(u)ζndx =

∫

Ω
g(u)ζdx,

and finally, the convergence of {ζn} to ζ in Wm,q′(Ω) implies the convergence of {L∗
mζn}

to L∗
mζ in Lq′(Ω). Passing to the limit in (3.85) yields to (3.78). �

Remark. Contrary to the case of semilinear elliptic equations with an absorbing nonlin-
earity, which will be studied in next section, the removability of F does not imply that
the function u is regular in whole Ω : the singularity is just not seen at the distributions
level.

3.4.2 Semilinear elliptic equations with absorption

The first result of unconditional removability of isolated sets for semilinear elliptic equa-
tions with absorption term is due to Brezis and Véron [23]. It deals with equation

−∆u+ g(u) = 0, (3.86)

in Ω \ {0}, where Ω is an open subset of R
n (n ≥ 3) containing 0 and g a continuous

function. They proved the following.

Theorem 3.24 Suppose g satisfies

lim inf
r→∞

g(r)/rn/(n−2) > 0 and lim sup
r→−∞

g(r)/ |r|n/(n−2) < 0. (3.87)

If u ∈ L∞
loc(Ω \ {0}) satisfies (3.86) in the sense of distributions in Ω \ {0}, there exists a

function ũ ∈ C1(Ω) ∩W 2,p
loc (Ω) for any 1 ≤ p <∞, which coincides with u a.e. in Ω, and

is a solution of (3.86) in whole Ω.
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The proof of this result is settled upon a particular case of a general a priori estimate
discovered by Keller [53] and Osserman [83] separately. In this particular case, and in
assuming that BR(0) ⊂ Ω, it reads

|u(x)| ≤ A |x|2−n +B, ∀x ∈ BR/2(0) \ {0}, (3.88)

for some positive constants A and B. From this estimate is derived the local integrability
of u in Ω and then of g(u). Finally, it leads to the fact that Equation (3.86) holds in
the sense of distributions in Ω. The conclusion follows by the maximum principle (which
implies the boundedness of u near 0), and the elliptic equations regularity theory. Later
on, this result was extended by Véron [102] as follows :

Theorem 3.25 Let Σ ⊂ Ω be a complete and compact d-dimensional submanifold of class
C2 (1 ≤ d < n− 2) and g is a continuous real valued function such that

lim inf
r→∞

g(r)/r(n−d)/(n−2−d) > 0 and lim sup
r→−∞

g(r)/ |r|(n−d/(n−2−d) < 0. (3.89)

If u ∈ L∞
loc(Ω \ Σ) satisfies (3.86) in the sense of distributions in Ω \ Σ, there exists a

function ũ ∈ C1(Ω) ∩W 2,p
loc (Ω) for any 1 ≤ p < ∞, which coincides with u a.e. in Ω and

is a solution of (3.86) in whole Ω.

Although more technical, the idea of the proof is similar to the one of Theorem 3.24,
except that the a priori estimate (3.88) is replaced by

|u(x)| ≤ A (dist (x,Σ))2−n−d +B, ∀x ∈ G \ Σ, (3.90)

where G is open and bounded and Σ ⊂ G ⊂ G ⊂ Ω. The method developed by Baras and
Pierre [9] is settled upon integral identity, without using pointwise a priori estimates as
the previous authors do.

Theorem 3.26 Let Ω be a bounded open subset of R
n, n ≥ 2, with a C2 boundary, L

an elliptic operator defined by 2.1 satisfying condition (H) and q > 1. If F is a compact
subset of Ω, any solution u ∈ Lq

loc(Ω \K) of

Lu+ |u|q−1u = 0, (3.91)

in Ω \K, belongs to Lq
loc(Ω) and satisfies (3.91) in whole Ω, if and only if C2,q′(K) = 0.

If this holds, u ∈W 2,p
loc (Ω) for any 1 ≤ p <∞, and (3.91) is satisfied a.e. in Ω.

Proof. (i) Let us assume that C2,q′(K) > 0. By (3.54), there exists a positive Radon
measure λ concentrated on K such that

∫

Ω
|G2 ∗ µ|qdx <∞.

This means that λ ∈W−2,q(Ω). By Theorem 3.20, Problem (3.64) admits a solution in Ω.
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(ii) Conversely we assume that C2,q′(K) = 0. By Theorem 2.4, for any ζ ∈ C1,L
c (Ω \ F ),

ζ ≥ 0, there holds
∫

Ω
(|u|L∗ζ + |u|q ζ) dx ≤ 0.

Therefore v = |u| is a subsolution of (3.91) in the sense of Definition 3.22. Since C2,q′(K) =
0, we can extend v as a solution of (3.91) in whole Ω, and because K has zero Lebesgue
measure, u ∈ Lq

loc(Ω). Let ζn = (1 − φn)ζ be the functions defined in Theorem 3.23 for

an arbitrary ζ ∈ C∞
c (Ω) (we do not impose the positivity). Then ζn → ζ in W 2,q′(Ω) and

C2,q′-quasi everywhere. By assumption
∫

Ω

(

uL∗ζn + |u|q−1 uζn

)

dx = 0.

By Lebesgue’s theorem, |u|q−1 uζn → |u|q−1 uζ in L1(Ω). Moreover L∗ζn → L∗ζ in Lq′(Ω).
Therefore, by letting n→∞, it is infered that

∫

Ω

(

uL∗ζ + |u|q−1 uζ
)

dx = 0, (3.92)

which proves that (3.91) holds in Ω. Let G be any smooth open domain containing K
and such that G ⊂ Ω. For β > 0 small enough we put Gβ = {x ∈ G : dist (x, ∂G > β},
and Γβ = {x ∈ G : dist (x, ∂G) = β} = ∂Gβ . There exists β0 such that Γβ is a smooth
surface in R

n. Because u ∈ Lq(G\Gβ0), it follows, by Fubini’s theorem, that uΓβ
∈ Lq(Γβ)

(endowed with the (n− 1)-dimensional Hausdorff measure), for almost all β ∈ [0, β0]. We
fix a β such that this property holds and denote by V the Poisson potential of u+Γβ

in

Gβ . By (2.22), for any ζ ∈ C1,L
c (Gβ), ζ ≥ 0, there holds

∫

Gβ

(

(u− V )+L
∗ζ + (u− V )+ |u|q−1 uζ

)

dx ≤ −
∫

∂Gβ

∂ζ

∂nL∗
(u− u+)+dS. (3.93)

Taking ζ = G
Gβ

L (1) implies (u− V )+ ≡ 0 in Gβ . Thus u ≤ V in Gβ. Since V ∈ L∞
loc(Gβ),

the same property holds with u+. Since G is arbitrary, u+ ∈ L∞
loc(Ω). In the same way

u− ∈ L∞
loc(Ω). We conclude with the elliptic equations regularity theory that u ∈W 2,p

loc (Ω).
�

Remark. The following extension of Theorem 3.26 is easy to establish : Let g be a contin-
uous real valued function which satisfies

lim inf
r→∞

g(r)/rq > 0 and lim sup
r→−∞

g(r)/ |r|q < 0, (3.94)

for some q > 1. Let λ ∈M(Ω) which does not charge sets with C2,q′-capacity zero and K
a compact subset of Gw with C2,q′-capacity zero. Then any function u, locally integrable
in Ω \K and such that g(u) ∈ L1

loc(Ω \K), which verifies

Lu+ g(u) = λ, (3.95)

in D′(Ω \K), can be extended as a solution of the same equation in D′(Ω). Furthermore
g(u) ∈ C(Ω) and u ∈W 2,p

loc (Ω), for any 1 ≤ p <∞.
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3.5 Isolated singularities

The description of the behaviour of solutions of semilinear elliptic equations near an iso-
lated singularity deals with the following question : let u be a solution of

Lu+ g(u) = 0 in Ω \ {0}, (3.96)

where Ω is an open subset of R
n containing 0, L a elliptic operator under the form (2.2)

and g a continuous real-valued function, can one describe the behaviour of u(x) as x→ 0
? When L = −∆ and g = 0, it is known that u admits an expansion in series of spherical
harmonics. For the equation

−∆u+ |u|q−1 u = 0 in Ω \ {0}, (3.97)

(q > 1), much work on this subject has been done by Véron in [101]. Notice that if
q ≥ n/(n − 2) Brezis-Véron’s result (see Theorem 3.24) applies and the function u is C2

in whole Ω. When 1 < q < n/(n − 2) this is no longer the case. For example there exists
an explicit radial singular solution of (3.97),

x 7→ us(x) = ℓq,n |x|−2/(q−1) (3.98)

defined in R
n \ {0}, where

ℓq,n =

((

2

q − 1

)(

2q

q − 1
− n

))1/(q−1)

. (3.99)

When 1 < q < (n+1)/(n−1) there exist separable singular solutions. For expressing them,
let (r, σ) be the spherical coordinates in R

n and ∆Sn−1 the Laplace-Beltrami operator on
the unit sphere Sn−1 := {x ∈ R

n : |x| = 1}. If 1 < q < (n + 1)/(n − 1), one has
ℓq,n > n − 1 = λ1(S

n−1), the first nonzero eigenvalue of ∆Sn−1. Therefore, the classical
variational analysis applies and there exist non-trivial solutions of

−∆Sn−1ω − ℓq,nω + |ω|q−1 ω = 0 in Sn−1. (3.100)

Hence the function

x 7→ uω(x) = uω(r, σ) = r−2/(q−1)ω(σ) (3.101)

is a singular solution of (3.97). Notice that us is one of these solutions. Furthermore the
constants ℓq,n and −ℓq,n are the only solutions of (3.100) which have a constant sign. The
following result is proven in [101].

Theorem 3.27 Let 1 < q < n/(n − 2) (q > 1 if n = 2) and u be positive solution of
(3.97) in some open set Ω containing 0. Then,

(i) either

lim
x→0
|x|2/(q−1) u(x) = ℓq,n, (3.102)
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(ii) or there exists some c ≥ 0 such that

lim
x→0
|x|n−2 u(x) = c, (3.103)

if n ≥ 3, and |x|n−2 replaced by 1/ ln(1/ |x|) in the above formula if n = 2. Furthermore
u is a solution of

−∆u+ uq = Cncδ0 in D′(Ω), (3.104)

for some positive constant Cn depending only on n.

There are several proofs of this result, based either on a sharp use of the radial case
and the Harnack inequality, or on a Lyapounov style analysis. If the function u is no
longer supposed to have constant sign, it is proven in [101] that the above dichotomy still
holds provided (n+ 1)/(n − 1) ≤ q < n/(n − 2). However (i) has to be replaced by

(i’) either

lim
x→0
|x|2/(q−1) u(x) = ℓ ∈ {ℓq,n,−ℓq,n}, (3.105)

and (ii) by

(ii’) or there exists some real number c such that

lim
x→0
|x|n−2 u(x) = c, (3.106)

(if n ≥ 3, with the classical modification if n = 2). Moreover u is a solution of

−∆u+ |u|q−1 u = Cncδ0 in D′(Ω). (3.107)

Actually, the Lyapounov analysis leads easily to a more general result [27].

Theorem 3.28 Let 1 < q < n/(n − 2) and u be solution of (3.97) in some open set Ω
containing 0. Then there exists a compact and connected subset E of the set of solutions
of (3.100) such that

lim
r→0

dist C2(Sn−1)(r
2/(q−1)u(r, .), E) = 0, (3.108)

where dist C2(Sn−1) denotes the distance associated to the C2(Sn−1)-norm.

This result leaves open two difficult questions :

1- Does it exist a particular element ω ∈ E such that

lim
r→0

∥

∥

∥
r2/(q−1)u(r, .) − ω

∥

∥

∥

C2(Sn−1)
= 0? (3.109)

2- What is the precise behaviour of u when E = {0} ?

Besides the results above mentioned proven in [101], the two questions have been
thoroughly answered in [27] in the two-dimensional case.
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Theorem 3.29 Assume n = 2, q > 1 and u is solution of (3.97) in Ω \ {0}. Then there
exists a 2π-periodic function ω, solution of

−d
2ω

dσ2
−
(

2

q − 1

)2

ω + |ω|q−1 ω = 0 (3.110)

such that (3.109) holds on S1.

Theorem 3.30 Under the assumption of Theorem 3.29, if ω = 0, let k0 be the largest
integer smaller than 2/(q − 1). Then

(i) either there exist an integer k ∈ [1, k0] and two constants A 6= 0 and φ ∈ S1 such that

lim
r→0

rku(r, σ) = A sin(kσ + φ), (3.111)

in the C2(Sn−1)-topology,

(ii) or there is a nonzero c such that

lim
r→0

u(r, σ)/ ln(1/r) = c, (3.112)

in the C2(Sn−1)-topology,

(iii) or u can be extended as a C2 solution of (3.97) in whole Ω.

In cases (ii) and (iii), u is a solution of (3.107) in D′(Ω).

The proofs are extremely technical and use, in a fundamental manner, the Sturmian
argument about the oscillations of solutions of 2 dimensional elliptic equations jointly with
the Jordan curve separation Theorem.

Many of the above results can be extended in a standard way to elliptic equations of
the type

Lu+ |u|q−1 u = 0, (3.113)

where L is the elliptic operator defined by (2.1) subject to condition (H), and assuming
aij(x) = aji(x), an assumption which is not a real restriction. If we fix a linear change of
variable in R

n, y = y(x), and write u(x) = ũ(y), then

∂2u

∂xi∂xj
=
∑

k,l

blibkj
∂2ũ

∂yl∂yk
,

where

bαβ =
∂yα

∂xβ
.

Then
∑

i,j

aij(0)
∂2u

∂xi∂xj
=
∑

k,l

∂2ũ

∂yl∂yk

∑

i,j

aij(0)blibkj.
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Since the matrix (aij(0)) is symmetric, the bαβ can be chosen such that

∑

i,j

aij(0)blibkj = δkl.

With this transformation most of the above results can be restated with the variable y
replacing x. For example Theorem 3.27 transforms into

Theorem 3.31 Let 1 < q < n/(n− 2) and u be positive solution of (3.113) in some open
set Ω containing 0. Then,

(i) either

lim
y→0
|y|2/(q−1) ũ(y) = ℓq,n, (3.114)

(ii) or there exists some c ≥ 0 such that

lim
y→0
|y|n−2 ũ(y) = c, (3.115)

in which case u is a solution of

Lu+ uq = Cn,Lcδ0 in D′(Ω), (3.116)

for some positive constant Cn,L depending only on n and L.

The description given by (3.105) of isolated singularities in the case of signed solutions of
(3.113) holds in the new unknown ũ and variable y, provided (n+1)/(n−1) < q < n/(n−2),
and similarly the method which gives (3.108) applies without restriction. However the
sharp analysis of the the limit case q = (n + 1)/(n − 1) when the limit set is reduced to
the zero function cannot be covered by this rough analysis. Moreover, the extension of
the results given in [27] (even in the non-critical cases where 2/(q − 1) is not an integer)
has not yet been done.

3.6 The exponential and 2-dimensional cases

3.6.1 Unconditional solvability

As we have seen it above, the Bénilan-Brezis weak-singularity assumption [11] is mean-
ingless in the 2-dimensional case for solving semilinear elliptic equations with bounded
measures : the (n, 0)- weak-singularity assumption imposes n ≥ 3 in Definition 3.6. If
Ω ⊂ R

2 is a smooth bounded domain, L an elliptic operator, g ∈ C(Ω×R) is an absorbing
nonlinearity and λ ∈Mb(Ω), a specific approach, developped by Vazquez [94], is needed,
for solving

Lu+ g(x, u) = λ in Ω,

u = 0 on ∂Ω.
(3.117)
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Definition 3.32 Let g̃ ∈ C([0,∞)), g̃ ≥ 0. We denote by

a+(g̃) := inf

{

a ≥ 0 :

∫ ∞

0
g̃(s)e−asds <∞

}

, (3.118)

the exponential order of growth of g̃ at infinity.

If g∗ ∈ C((−∞, 0]), g∗ ≤ 0, the exponential order of growth of g∗ at minus infinity is
by definition the opposite of the exponential order of growth at infinity of the function
r 7→ −g∗(−r), thus

a−(g∗) := sup

{

a ≤ 0 :

∫ 0

−∞
g∗(s)easds > −∞

}

. (3.119)

Those two quantities may be zero (for example if g̃ is a power), finite and nonzero ( if g̃
is an exponential) or infinite (if g̃ is a super-exponential).

Definition 3.33 A real valued function g ∈ C(Ω × R) satisfies the 2-dimensional weak-
singularity assumption, if there exists r0 ≥ 0 such that

rg(x, r) ≥ 0, ∀(x, r) ∈ Ω× (−∞,−r0] ∪ [r0,∞), (3.120)

and two nondecreasing functions g̃1 ∈ C([0,∞)), g̃1 ≥ 0, with zero exponential order of
growth at infinity, and g̃2 ∈ C((−∞, 0]) , g̃2 ≤ 0, with zero exponential order of growth at
minus infinity such that

g(x, r) ≤ g̃1(r), ∀(x, r) ∈ Ω× R+, (3.121)

and

g̃2(r) ≤ g(x, r), ∀(x, r) ∈ Ω× R−. (3.122)

Notice that the zero exponential of growth assumptions can be written under the form
∫ ∞

0
(g̃1(s)− g̃2(−s)) e−asds <∞, ∀a > 0. (3.123)

Theorem 3.34 Let Ω ⊂ R
2 be a C2 bounded domain and g ∈ C(Ω × R) satisfy the 2-

dimensional weak-singularity assumption. For any λ ∈Mb(Ω) Problem (3.117) admits a
solution. Furthermore, δ is invariant if we replace g by ℓg, for any ℓ > 0.

One of the tool of the proof is John-Nirenberg’s theorem [47, Th. 7.21].

Theorem 3.35 Let G be a convex open domain in R
n and v ∈ W 1,1(G). Assume that

there exists K > 0 such that
∫

G∩Br(a)
|∇v| dx ≤ Krn−1, ∀a ∈ G, ∀r > 0. (3.124)

Then there exist two positive constants C and µ0, depending only on n, such that
∫

G
exp

( µ

K
|v − vG|

)

dx ≤ C (diam(G))n , (3.125)

where µ = µ0 |G| (diam(G))−n, and vG =
1

|G|

∫

G
vdx.
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Notice that for any bounded domain G ⊂ R
n, diam(G) = diam(convG). Then the

following consequence of Theorem 3.35 is valid.

Corollary 3.36 Let G be a bounded open domain in R
n and v ∈ W 1,1

0 (G). Assume that
there exists K > 0 such that (3.124) holds. Then there exist two positive constants C and
µ0, depending only on n, such that (3.125) holds with µ = µ0 |conv G| (diam(G))−n and

vG replaced by vconv G =
1

|conv G|

∫

G
vdx.

Proof of Theorem 3.34. Step 1 Approximation. First we multiply λ by the characteristic
function χ

Ωn
of Ωn = {x ∈ Ω : ρ

∂Ω
(x) > 1/n}, and we regularize χ

Ωn
λ by convolution

with positive smooth functions with compact support and total mass 1. By the property
of convolution can replace λ+ and λ− by λn + and λn− ∈ C∞

c (Ω), and they satisfy,

‖λn+‖L1(Ω) ≤ ‖λ+‖Mb(Ω),

and
‖λn−‖L1(Ω) ≤ ‖λ−‖Mb(Ω).

Let un be the solution of

Lun + g(x, un) = λn in Ω,

un = 0 on ∂Ω.
(3.126)

Such a problem admits solutions (see Steps 1-3 of the proof of Theorem 3.7). The following
two estimates hold

‖un‖L1(Ω) + ‖ρ
∂Ω
g(., un)‖L1(Ω) ≤ Θ

∫

Ω
ρ

∂Ω
dx+ C1 ‖λn‖L1(Ω) ≤ C2, (3.127)

where −Θ ≤ min{sign(r)g(x, r) : (x, r) ∈ Ω×R} is nonpositive, and

‖∇un‖M2(Ω) ≤ C4(Θ + ‖λn‖L1(Ω)) ≤ C5. (3.128)

Notice that (3.128), which replaces (3.25), follows from (3.10). As in the proof of Theo-
rem 3.7 there exist a subsequence {unk

} and a function u ∈ W 1,q
0 (Ω), for any 1 ≤ q < 2,

such that unk
→ u in L1(Ω) and a.e. in Ω.

Step 2 Convergence. Because (3.128) holds,
∫

Ω∩Br(a)
|∇un| dx ≤ C5|Ω ∩Br(a)|1/2 ≤ C5

√
πr, ∀r > 0, a ∈ Ω, (3.129)

and Corollary 3.36 implies
∫

Ω
exp(µ |un| /C5

√
π)dx ≤ C6 |Ω| exp(µ |un conv Ω| /C5

√
π) ≤ C7, (3.130)

since ‖un‖L1(Ω) is uniformly bounded. If we set

θn(s) =

∫

{x∈Ω:|un(x)|>s}
dx and β =

µ

C5
√
π
,
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then

0 ≤ θn(s) ≤ C7e
−βs, ∀s ≥ 0. (3.131)

Let ω be any Borel subset of Ω. As in Theorem 3.7-Step 3, for any R > 0, we have
∫

ω
|g(x, un| dx ≤

∫

ω
(g̃1(|un|)− g̃2(− |un|)) dx,

≤ (g̃1(R)− g̃2(−R)) |ω| −
∫ ∞

R
(g̃1(s)− g̃2(−s))dθn(s).

Therefore, as in the proof of Theorem 3.7,
∫ ∞

R
(g̃1(s)− g̃2(−s))dθn(s) = (g̃1(R)− g̃2(−R))θn(R) +

∫ ∞

R
θn(s)d(g̃1(s)− g̃2(−s)),

≤ (g̃1(R)− g̃2(−R))θn(R) + C7

∫ ∞

R
e−βsd(g̃1(s)− g̃2(−s)),

≤ C7

β

∫ ∞

R
(g̃1(s)− g̃2(−s))e−βsds.

Let ǫ > 0 arbitrary. By (3.123) there exists R > 0 such that

C7

β

∫ ∞

R
(g̃1(s)− g̃2(−s))e−βsds ≤ ǫ/2.

Now

|ω| ≤ ǫ/2(1 + g̃1(R)− g̃2(−R)) =⇒
∫

ω
|g(x, un)| dx ≤ ǫ.

We conclude by the Vitali Theorem that g(., unk
)→ g(., u) in L1(Ω), and we end the proof

as for Theorem 3.7. �

If g(x, r) = ear for some a > 0, the previous result does not apply for any bounded
measure λ. However, if the constant C5 is small enough, which means that Θ and ‖λ‖

Mb(Ω)

are, accordingly, small, the uniform integrability may hold. The proof of the following
variant is parallel to the one of Theorem 3.34.

Theorem 3.37 Let Ω ⊂ R
2 be a C2 bounded domain and g ∈ C(Ω × R) with finite

exponential orders of growth at plus and minus infinity. Then there exists δ > 0 such that
for any λ ∈Mb(Ω), if ‖λ‖

Mb(Ω) ≤ δ, Problem (3.117) admits a solution.

The monotonicity and uniform integrability arguments imply also the following stabil-
ity result.

Corollary 3.38 Let Ω ⊂ R
2 be a C2 bounded domain and g ∈ C(Ω × R) satisfy the 2-

dimensional weak-singularity assumption. Assume also that r 7→ g(x, r) is nondecreasing
for any x ∈ Ω. Then, for any λ ∈ Mb(Ω), the solution u of Problem (3.117) is unique
and the mapping λ 7→ u is nondecreasing. Furthermore, if {λm} is a sequence of bounded
measures in Ω which converges in the sense of measures to λ, the corresponding solutions
um to problem (3.117) converge to u in L1(Ω).
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3.6.2 Subcritical measures

For simplicity we shall consider only nondecreasing absorption nonlinearities g ∈ C(R) in
the problem

−∆u+ g(u) = λ in Ω,

u = 0 on ∂Ω,
(3.132)

where Ω is a smooth bounded domain of the plane, and λ ∈Mb(Ω).

Definition 3.39 Let λ be a bounded measure in Ω, with Lebesgue decomposition λ =
λ∗ + λs +

∑

j∈J cjδxj where λ∗ is the absolutely continuous part with respect to the 2-
dimensional Hausdorff measure, λs the singular non-atomic part and {(cj , xj)}j∈J the set,
at most countable, of atoms. Let g be a continuous nondecreasing real valued function.
We say that λ is subcritical with respect to g if

4π

a−(g)
≤ cj ≤

4π

a+(g)
, ∀j ∈ J. (3.133)

The following result is due to Vazquez [94].

Theorem 3.40 Let λ ∈ Mb(Ω). Problem (3.132) admits a solution if and only if λ is
subcritical with respect to g.

The local version of the necessary condition is the following.

Proposition 3.41 Assume g has positive and finite exponential order of growth at infin-
ity, a+(g). Let R > 0 and ν ∈Mb(BR(0)) with no atom. If c > 4π/a+(g) there exists no
function u ∈ L1(BR(0)) such that g(u) ∈ L1(BR(0)) and

∫

BR(0)
(−u∆ζ + g(u)ζ) dx = cζ(0) +

∫

BR(0)
ζdν, ∀ζ ∈ C∞

c (BR(0)). (3.134)

The next result is a particular case of a remarkable relaxation phenomenon which occurs
above the critical level 4π/a+(g). We denote by BR the ball of center 0 and radius R and
by B∗

R = BR\{0}.

Lemma 3.42 Let g be a continuous nondecreasing function with positive and finite expo-
nential order of growth at infinity a+(g) and, for n ∈ N∗, gn(r) = min{g(r), g(n)}. Let
R > 0, c > c+(g) = 4π/a+(g) and b be three constants, and υn the solution of

−∆υn + gn(υn) = cδ0 in D′(BR),

υn = b on ∂BR.
(3.135)

When n → ∞, {υn} decreases and converges, locally uniformly in B∗
R, to the solution

υc+(g) of

−∆υc+(g) + g(υc+(g)) = c+(g)δ0 in D′(BR),

υc+(g) = b on ∂BR.
(3.136)
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Proof. Since a+(gn) = 0, we know by Theorem 3.34, that for any c > 0, there exists a
unique solution υn to (3.135), which is therefore a radially symmetric function. Because
gn is increasing, the sequence {υn} is nonincreasing.

Step 1 Existence of a solution to problem (3.136) in the case c < c+(g). By comparing υn

with the solution Ψ = Ψc of

−∆Ψ = cδ0 + |g(0)| in D′(BR),

Ψ = |b| on ∂BR,
(3.137)

there holds Ψ ≥ max{0, υn}. But Ψ has the explicit form

Ψ(x) =
c

2π
ln(1/ |x|) +K. (3.138)

for some constant K. The function υn is bounded from below by the solution Φ of

−∆Φ + g(Φ) = 0 in D′(BR),

Φ = b on ∂BR,
(3.139)

and Φ is a bounded function. Therefore, for n large enough,

g(Φ) ≤ gn(υn) ≤ g(υn) ≤ g(Ψ) = g
( c

2π
ln(1/ |x|) +K

)

.

But
∫

BR

g
( c

2π
ln(1/ |x|) +K

)

dx ≤
∫

BR

g
( c

2π
ln(k/ |x|)

)

dx =
2kπ

c

∫ ∞

ρ
g(s)e−4πs/cds,

for some k > 0, ρ > 0. This last integral is finite because 4π/c > a+(g). We conclude
with Lebesgue’s theorem that υn converges to the solution υc to (3.136).

Step 2 Existence of a solution to problem (3.136) in the case c = c+(g). Let {cn} be a
positive increasing sequence converging to c+(g). Then the sequence {υcn} is increasing.
Since Φ ≤ υcn ≤ Ψc+ (given by (3.129) and (3.130)), the limit υ∗ of the υcn is attained in
the L1(BR)-norm, and

Φ ≤ υ∗ ≤ Ψc+.

The sequence {g(υcn)} is increasing and converges pointwise to g(υ∗). Let η1 ∈ C2
c (BR)

be the solution of
−∆η1 = 1 in BR,

η1 = b on ∂BR.
(3.140)

Hence η1 ≥ 0 and
∫

BR

(−υcn∆η1 + g(υcn)η1) dx = cnη1(0)− 2πbη′1(R). (3.141)

Letting n→∞ and using the Beppo-Levi Theorem implies

lim
n→∞

‖(g(υcn)− g(υ∗)) η1‖L1(BR) = 0.
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Thus υ∗ is the solution of (3.136) with c = c+.

Step 3 Nonexistence of a solution to problem (3.136) in the case c > c+(g). Suppose that
such a solution υc exists. Because of uniqueness, it is a radial function, and g(υc) ∈ L1(BR).
The function

r 7→ w(r)− c

2π
ln(1/r),

satisfies (rw′(r))′ = rg(υc) on (0, R). Therefore r 7→ rw′(r) admits a limit when r → 0. If
the limit were not zero, say α, it would imply

w(r) = α ln(1/r)(1 + ◦(1)) as r→ 0,

and
∆w = rg(υc)− 2πcδ0,

contradiction. Thus rw′(r)→ 0 as r→ 0, and by integration,

υc(r) =
c

2π
ln(1/r)(1 + ◦(1)). (3.142)

Then, for any 0 < γ < c, there exists Rγ ∈ (0, R] such that

υc(r) ≥
γ

2π
ln(1/r), in (0, Rγ ].

Thus g(υc) ≥ g(γ/(2π) ln(1/r)). Put a = 2π/γ. Since g(υc) ∈ L1(B), it implies
∫ ∞

0
g(s)e−2asds <∞ =⇒ 2a ≥ a+(g),

and finally c ≤ c+(g), a contradiction.

Step 4 The relaxation phenomena when c > c+(g). For any n and any ǫ > 0, the solution
υn of (3.135) is bounded from below by the solution Vn of

−∆Vn + gn(Vn) = (c+(g) − ǫ)δ0 in D′(BR),

Vn = b on ∂BR.
(3.143)

Let υ̃ be the limit of the υn. Then υ̃ is a solution of

−∆υ̃ + g(υ̃) = 0 in B∗
R,

υ̃ = b on ∂BR.
(3.144)

Because Vn converges to υc+(g)−ǫ, there holds υ̃ ≥ υc+(g)−ǫ. Letting ǫ→ 0 finally yields to
υ̃ ≥ υc+(g). Taking the same test function η1 defined by (3.140), one obtains

∫

BR

(−υn∆η1 + gn(υn)η1) dx = cη1(0)− 2πbη′1(R). (3.145)

Using the fact that υn ≤ Ψ (see Step 1) and Fatou’s lemma,
∫

BR

g(υ̃)η1dx ≤ lim inf
n→∞

∫

BR

gn(υn)η1dx <∞.
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Thus g(υ̃) ∈ L1(BR). Since υ̃ ∈ L1(BR), the distribution T = −∆υ̃ + g(υ̃) has the point
0 for support, therefore there exist real numbers cp, (p ∈ N

m) such that

T =
∑

|p|≤m

cpD
pδ0.

Let ζ ∈ C∞
c (B) such that

(−1)|p|Dpζ(0) = cp, ∀p ∈ N
m, |p| ≤ m,

and for ǫ > 0, put ζǫ(x) = ζ(x/ǫ). Then

∫

B
(−υ̃∆ζǫ + g(υ̃)ζǫ) dx =

∑

|p|≤m

c2p

ǫ|p|
. (3.146)

But
∣

∣

∣

∣

∫

B
υ̃∆ζǫdx

∣

∣

∣

∣

=
1

ǫ2

∣

∣

∣

∣

∫

B
υ̃∆ζ(x/ǫ)dx

∣

∣

∣

∣

≤ C

ǫ2

∫ Rǫ

0
ln(1/s)sds ≤ C ′ ln(1/ǫ). (3.147)

Comparing (3.146) and (3.147) implies cp = 0 for any |p| ≥ 1, from what is infered

−∆υ̃ + g(υ̃) = c0δ0 in D′(B). (3.148)

By Step 3 and the inequality υ̃ ≥ υc+(g), one has c0 = c+(g), which ends the proof. �

Proof of Proposition 3.41. Assume such a u exists. By changing R, we can assume that
u ∈ L1(∂BR) and that u is therefore the unique integrable function with g(u) ∈ L1(BR)
which satisfies

−∆u+ g(u) = cδ0 + ν in D′(BR),

u fixed on ∂BR.
(3.149)

Put gn(r) = min{g(r), g(n)}, and let υn be the solution of

−∆υn + gn(υn) = cδ0 in D′(BR),

υn = 0 on ∂BR,
(3.150)

and v the one of
−∆v = ν+ in D′(BR),

v = u+ on ∂BR.
(3.151)

Since g(υn + v) ≥ gn(υn + v) ≥ gn(υn), the function Un = υn + v is a super-solution for
Problem (3.149). Therefore u ≤ υn + v. Letting n→∞ and using Lemma 3.42 yields to

u ≤ υc+(g) + v. (3.152)

Writing again

u(r, θ) = u(x) =
c

2π
ln(1/ |x|) + ω(x),
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then
−∆ω = ν − g(u) =⇒ −∆ω̄(r) = (ν − g(u))(r),

where the overlining indicates the angular average. Because the measure ν has no atom
and g(u) ∈ L1(BR),

∫ r

0
(ν − g(u))(s)ds→ 0, as r→ 0.

Thus
u(r) =

c

2π
ln(1/r)(1 + ◦(1)).

In the same way
ω(r) = ◦(ln(1/r)),

and, from Lemma 3.42-Step 2,

υc+(g)(r) = υc+(g)(r) =
c+(g)

2π
ln(1/r)(1 + ◦(1)).

Since c > c+(g), this contradicts (3.152). �

Proof of Theorem 3.40. By replacing λ by λ − g(0), it is always possible to assume
g(0) = 0. The measure λ admits the decomposition

λ =
∑

j∈J

cjδxj + ν,

where {xj}j∈J is the set of atoms of λ, and ν is the sum of a measure absolutely continuous
with respect to the 2-dimensional Hausdorff measure and a singular measure without atom.

Step 1 We assume that λ is positive with compact support in Ω, and cj < c+(g) for any
j ∈ J . Let δ > 0 as in Theorem 3.37, J1 = {j ∈ J : cj ≥ δ/2} (with #(J1) = K), and
j2 = J \ J ′. We denote

λδ = λ−
∑

j∈J1

cjδxj .

First, there exists a finite covering {Ωi}i∈I of Ω (with #(I) = N) such that Ωi ∩ Ωi′ = ∅
if i 6= i′, and

∫

Ωi

dλδ < δ. (3.153)

This covering can be chosen such that any Ωi contains at most one xj for j ∈ J1, and
actually xj ∈ Ωi, we shall write i = i(j) and this correspondence is one to one from J1

into I. For such a xj , there exists σj > 0 such that Bσj (xj) ⊂ Ωi(j), and

lim
σ→0

∫

Bσ(xj)

d(λ− cjδxj ) = 0. (3.154)

Let R > 0 be such that Ω ⊂ BR(xj), ∀j ∈ J1. For 0 < σ ≤ infj∈J1 σj and i = i(j) for
some j ∈ J1, we set

Ωi(j) = Bσ(xj) ∪ Ω′
i(j),σ.
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By Lemma 3.42-Step 1, each of the following equations admits a solution uj ,

−∆uj +
1

2N
g(uj) = cjδxj in D′(BR(xj)), (3.155)

uj = 0 on ∂BR(xj),

for j ∈ J1. Let Ωi,σ = {x ∈ Ωi : dist (x,Ωc
i ) > σ}. If i ∈ I \ {i(j) : j ∈ J1}, we set

λi,σ = χΩi,σ
λδ, and if i = i(j) for some j ∈ J1, we put λi,σ = χ

Ω′
i,σ
λδ. By Theorem 3.37

there exist functions υi,σ solutions of

−∆υi,σ +
1

2N
g(υi,σ) = λi,σ inD′(Ω),

υi,σ = 0 on ∂Ω,
(3.156)

for i ∈ I. Furthermore the uj and υi,σ are respectively the limit of the uj,n and υi,σ,n

solutions of

−∆uj,n +
1

2N
g(uj,n) = cjδxj ∗ ρn in D′(BR(xj)),

uj,n = 0 on ∂BR(xj),
(3.157)

and

−∆υi,σ,n +
1

2N
g(υi,σ,n) = λi,σ ∗ ρn in D′(Ω),

υi,σ,n = 0 on ∂Ω,
(3.158)

where ρn is a positive radial and smooth convolution kernel with shrinking compact sup-
port. Hence, for n large enough and σ small enough, the support of the cjδxj ∗ ρn and
λi,σ ∗ ρn are all disjoint and included in Bσ/2(xj) or in Ωi,σ/2 (if i /∈ i(J1)), or in Ω′

i(j),σ/2.

Finally, g(uj,n) → g(uj) in L1(BR(xj)) (easy to check from Lemma 3.42-Step 1) and
g(υi,σ,n)→ g(υi,σ) in L1(Ω), as n→∞ (by the proof of Theorem 3.34). Put

Un =
∑

j∈J1

uj,n, U =
∑

j∈J1

uj,

both quantities defined in Ω, and

Vn =
∑

i∈I

υi,σ,n, Vσ =
∑

i∈I

υi,σ.

With the same convolution kernel ρn, we denote by un,σ the solution to

−∆uσ,n + g(uσ,n) = λσ ∗ ρn in D′(Ω),

uσ,n = 0 on ∂Ω,
(3.159)

where
λσ =

∑

j∈J1

cjδxj +
∑

i∈I\i(J1)

χ
Ωi,σ

λδ +
∑

i∈i(J1)

χ
Ω′

i,σ
λδ.
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As in the proof of Theorem 3.34, uσ,n → uσ in L1(Ω) and a.e. in Ω, g(uσ,n) is bounded in
L1(Ω), and g(uσ,n)→ g(uσ) a.e. in Ω. Because

−∆(Un + Vσ,n) + g(Un + Vσ,n) = −
∑

j∈J1

∆uj,n −
∑

i∈I

∆υi,σ,n + g(Un + Vσ,n)

≥
∑

j∈J1

(

−∆uj,n +
1

2N
g(uj,n)

)

(3.160)

+
N
∑

i=1

(

−∆υi,σ,n +
1

2N
g(υi,σ,n)

)

= λσ ∗ ρn in D′(Ω),

and Un + Vσ,n ≥ 0 on ∂Ω, one obtains

0 ≤ uσ,n ≤ Un + Vσ,n.

The estimate of the uniform integrability of {g(Un + Vσ,n)} derives from the following
argument : Let ω be a Borel subset of Ω and ωi = Ωi ∩ ω, i ∈ I. If i /∈ i(J1) we can write

Un + Vσ,n = υi,σ,n +K(x), ∀x ∈ ωi,

and, for σ fixed small enough, the function x 7→ K(x) is bounded uniformly with respect
to n and x ∈ ωi, since the distance of the supports of the λi′,σ ∗ ρn (i′ 6= i), and the
cjδxj ∗ ρn (j ∈ J1) to ωi is larger or equal to σ/2. As in the proof of Theorem 3.34, we set

θn,i(s) =

∫

{x∈ωi:|(Un+Vn,σ)(x)|>s}
dx,

and

θn,i(s) ≤
∫

{x∈ωi:υi,σ,n+K(x))>s}
dx.

The proof of Theorem 3.34 applies : for ǫ > 0 fixed, there exists δ > 0, such that

|ωi| ≤ δ =⇒
∫

ωi

g(Un + Vn,σ)dx < ǫ/2N. (3.161)

If i = i(j) we put ωi = ω′
i ∪ ω′′

i , where ω′
i ⊂ Ω′

i(j),σ and ω′′
i ⊂ Bσ(xj). On ω′

i we write

Un + Vn,σ = υi(j),σ,n +K ′(x),

and K ′(x) is bounded independently of n, thus (3.161) holds with ω′
i instead of ωi. On ω′′

i

there holds
Un + Vn,σ = ui(j),n +K ′′(x),

with K ′′(x) bounded independently of n. Thus

g(Un + Vn,σ) ≤ g(ui(j),n +K ′′(x)).
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Because g(ui(j),n) → g(ui(j)) in L1(BR(xi(j)))) as n → ∞, g(ui(j),n + k) → g(ui(j) + k)
for any k > 0. Thus {g(ui(j),n + k)} is uniformly integrable. The same holds with
{g(ui(j),n +K”(x))χ

Bσ(xi(j))
}, if we take k ≥ K ′′. Finally (3.161) holds with ω′′

i instead of

ωi. Consequently,

∀ω ⊂ Ω, ω Borel , |ω| ≤ δ =⇒
∫

ω
g(un,σ)dx ≤

∫

ω
g(Un + Vn,σ)dx < ǫ. (3.162)

We conclude by Vitali’s theorem that g(un,σ)→ g(uσ) in L1(Ω), thus uσ is the solution of

−∆uσ + g(uσ) = λσ in D′(Ω),

uσ = 0 on ∂Ω.
(3.163)

In particular there holds
∫

Ω
(uσ + g(uσ)η1dx =

∫

Ω
η1dλσ ,

if we take

−∆η1 = 1 in Ω,

η1 = 0 on ∂Ω.

Letting σ → 0, uσ increases to u and

∫

Ω
(u+ g(u)η1dx =

∫

Ω
η1dλ. (3.164)

From this integrability property it follows that u is the solution of (3.132).

Step 2 The case of a general positive bounded measure. We perform a double truncation,
replacing λ by λn (n ∈ N∗), by putting

λn =
∑

j∈Jc+

(c+(g) − n−1)δxj + χ
Ωn





∑

j∈J\Jc+

cxjδxjν



 ,

where Jc+{j ∈ J : cj = c+(g)}, ν is the non-atomic part of λ, and Ωn = {x ∈ Ω :
dist (x, ∂Ω) > 1/n}. If un is the solution corresponding to (3.132), with λ replaced by λn,
the sequence {un} is increasing and converges to some integrable function u. As in Step 1,
we conclude, by Beppo-Levi’s theorem and using Equality (3.164) with λn and un instead
of λ and u, that g(un) converges to g(u) a.e. and in L1(Ω; ρ

∂Ω
) and (3.164) still holds at

the limit. Furthermore g(u) ∈ L1(Ω) by Proposition 3.2.

Step 3 The case of a general bounded measure. If λ = λ+ − λ is a bounded measure,
subcritical with respect to g, we have

λ+ =
∑

j∈J+

cjδxj + ν+,
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−λ− =
∑

j∈J−

c′jδx′
j
− ν−,

where {(cj , xj)j∈J+} (resp. {(cj , x′j)j∈J−}) is the set of positive atoms cj > 0 (resp. c′j < 0).

We trunctate the measures λ+ and λ− as in Step 2, introduce the coverings {Ωi} and {Ω̃i}
and the separation parameter σ and construct the sets of solutions u+

j , υ+
j,σ, u−j and υ−j,σ

such that

−∆u+
j +

1

2N
g(u+

j ) = cjδxj in D′(BR(xj)),

u+
j = 0 on ∂BR(xj),

−∆υ+
j,σ +

1

2N
g(υ+

j,σ) = λ+ i,σ in D′(Ω),

υ+
j,σ = 0 on ∂Ω,

−∆u−j +
1

2N
g(u−j ) = c′jδx′

j
in D′(BR(x′j)),

u−j = 0 on ∂BR(x′j),

and

−∆υ−j,σ +
1

2N
g(υ−j,σ) = λ− i,σ in D′(Ω),

υ−j,σ = 0 on ∂Ω,

and their approximations u+
j,n, υ+

j,σ,n, u−j,n and υ−j,σ,n. We also construct un solution of
(3.159). As in Step 1, we obtain

U−n + V− σ,n ≤ uσ,n ≤ U+ n + V+ σ,n,

where U+ n, V+σ,n, U−n, V−σ,n are defined as Un and Vσ,n as in Step 1, from the u+
j,n,

υ+
j,σ,n, u−j,n and υ−j,σ,n. Because

g(U−n + V− σ,n) ≤ g(un) ≤ g(U+ n + V+ σ,n),

and the sets of functions {g(U− n +V−σ,n)} and {g(U+ n +V+ σ,n)} are uniformly integrable
from Step 1, the same property is shared by the set {g(un)}. We conclude by the Vitali
Theorem as in Step 1, letting n → ∞ and σ → 0. The other convergences, as in Step 2,
follow by the same uniform integrability arguments and the monotonity. �

The general approximation-relaxation result of [94] is the following.

Theorem 3.43 Let g be a continuous nondecreasing function with finite exponential or-
ders of growth at plus and minus infinity, and λ ∈Mb(Ω) with decomposition

λ = λ∗ + λs +
∑

j∈J

cjδxj ,
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λ∗, λs being respectively the absolute continuous part and the singular non-atomic part of
λ. Let

J+ = {j ∈ J : cj > c+(g)}, and J− = {j ∈ J : cj < c−(g)},
ρn be a regularizing kernel and un the solution of

−∆un + g(un) = λ ∗ ρn in D′(Ω),

un = 0 on ∂Ω.
(3.165)

Then un → u in L1(Ω) where u is the solution of

−∆u+ g(u) = λr in D′(Ω),

u = 0 on ∂Ω,
(3.166)

and
λr = λ∗ + λs +

∑

j∈J\{J+∪J−}

cjδxj +
∑

j∈J+

c+(g)δxj +
∑

j∈J−

c−(g)δxj .

The proof of this results follows by a combination of the arguments in Proposition 3.41
and Theorem 3.40.

4 Semilinear equations with source term

4.1 The basic approach

The equation under consideration is written under the form

Lu = g(x, u) + λ in Ω,

u = 0 on ∂Ω.
(4.1)

where Ω is a domain in R
n, L an elliptic operator defined in Ω, g a continuous function

defined in R×Ω and λ a Radon measure in Ω. The following general result plays an impor-
tant role in proving existence of solutions in presence of supersolutions and subsolutions
(see e.g. [82], [87]).

Theorem 4.1 Let Ω ⊂ R
n be any domain, L a second order elliptic operator defined by

the expression (2.1) with locally Lipschitz continuous coefficients. We assume that for any
compact subset K ⊂ Ω there exists αK > 0 such that

n
∑

i,j=1

aij(x)ξiξj ≥ αK

n
∑

i=1

ξ2i , ∀x ∈ K, ∀ξ = (ξ1, . . . , ξn) ∈ R
n. (4.2)

Let h∗, h† ∈ C(Ω × R) be such that r 7→ h∗(x, r) is nondecreasing for every x ∈ Ω, and
(x, r) 7→ h†(x, r) is locally Lipschitz continuous with respect to the r variable, uniformly
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when the x variable stays in a compact subset of Ω, and put h = h∗ + h†. If there exist
two C(Ω) ∩W 1,2

loc (Ω)-functions u∗ and u∗ satisfying

(i) Lu∗ + h(x, u∗) ≥ 0 in Ω,

(ii) Lu∗ + h(x, u∗) ≤ 0 in Ω,

(iii) u∗ ≤ u∗ in Ω,

(4.3)

where the equations are understood in the weak sense, then there is a C1(Ω)-function u
which satisfies

(i) Lu+ h(x, u) = 0 in Ω,

(ii) u∗ ≤ u ≤ u∗ in Ω.
(4.4)

The following construction is at the origin of most of the methods for solving semilinear
equations with reaction source term : if Ω is a bounded domain in R

n with a C2 boundary
and L the elliptic operator defined by (2.1) satisfying condition (H), if u is an integrable
function solution of (4.1) with λ ∈M(Ω; ρ

∂Ω
) such that g(., u) ∈ L1(Ω; ρ

∂Ω
dx), there holds

u(x) =

∫

Ω
GΩ

L(x, y)g(y, u(y)dy +

∫

Ω
GΩ

L(x, y)dλ(y), a.e. in Ω. (4.5)

Theorem 4.2 Assume g(x, 0) = 0, r 7→ g(x, r) is nondecreasing for any x ∈ Ω and
λ ∈ M(Ω; ρ

∂Ω
) satisfies G

Ω
L(λ) ≥ 0. If there exists some v ∈ L1(Ω), v ≥ 0 such that

g(., v) ∈ L1(Ω; ρ
∂Ω
dx) and

v ≥ G
Ω
L(g(., v) + G

Ω
L(λ), (4.6)

there exists a positive solution u to Problem (4.1).

Proof. The sequence {un}n∈N defined by u0 = 0 and

un+1 = G
Ω
L(g(., un) + G

Ω
L(λ), ∀n ∈ N, (4.7)

is nondecreasing, as soon as G
Ω
L(g(., un) exists, but the un are well defined because it is

easy to prove by induction that there holds

0 = u0 ≤ u1 ≤ u2 ≤ . . . ≤ un ≤ v. (4.8)

Therefore there exists u = limn→∞ un which satisfies 0 ≤ u ≤ v, u ∈ L1(Ω), g(., u) ∈
L1(Ω; ρ

∂Ω
dx) and

u = G
Ω
L(g(., u) + G

Ω
L(λ). (4.9)

This means that u is a solution of (4.1). �

4.2 The convexity method

The convexity method due to Baras and Pierre [10] applies to a large variety of problems
which contains Problem (4.1).
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4.2.1 The general construction

Let (U,µ) be a positive measured space with a σ-finite measure µ. We assume that
{Kn}n∈N is an increasing sequence of measurable subsets of U such that

µ(Kn) <∞, ∀n ∈ N,
⋃

n≥0

Kn = U. (4.10)

We denote by L+(U) (resp. L+(U×U)) the space of µ-measurable (resp. µ⊗µ-measurable)
functions with value in [0,∞]. We consider a kernel N ∈ L+(U × U) and a fuction
j : U × R 7→ [0,∞], µ⊗ dx-measurable such that

(i) r 7→ j(x, r) is nondecreasing, convex and l.s.c., for almost all x ∈ U,

(ii) j(x, 0) = 0, a.e. in U.
(4.11)

The conjugate function j∗, defined by

j∗(x, r) = sup
α∈R

(rα− j(x, r)) (4.12)

satisfies (4.11). If u ∈ L+(U),

j(u)(x) =

{

j(x, u(x)) if u(x) <∞,
lim

r→∞
j(x, r) if u(x) =∞. (4.13)

If h ∈ L+(U) we set

N(h)(x) =

∫

U
N(x, y)h(y)dµ(y),

and

N
∗(h)(y) =

∫

U
N(x, y)h(x)dµ(x).

Notice that these two quantities are positive or infinite. All the Lp(U)-spaces (1 ≤ p ≤ ∞)
are relative to the measure µ. We denote by Lp

+(U) their positive cones,

L∞
c (U) = {h ∈ L∞(U) : ∃n ∈ N s.t. h(x) = 0, a.e. in U \Kn}, (4.14)

and L∞
c+(U) = L∞

c (U)∩L+(U). Being given f ∈ L+(U), the general problem lies in finding
u ∈ L+(U) such that

u = N(j(u)) + f. (4.15)

Multiplying (4.15) by h and integrating over U implies
∫

U
fhdµ =

∫

U
(u−N

∗(j(u)))hdµ =

∫

U
(uh− j(u)N∗(h))dµ

=

∫

U
N
∗(h)

(

u
h

N∗(h)
− j(u)

)

dµ (4.16)

≤
∫

U
j∗
(

h

N∗(h)

)

N
∗(h)dµ,
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provided uh ∈ L1(U). Therefore a necessary condition for existence of a solution to
Equation (4.15) is

∫

U
fhdµ ≤

∫

U
j∗
(

h

N∗(h)

)

N
∗(h)dµ, ∀h ∈ L∞

c+(U) such that uh ∈ L1(U). (4.17)

Under a very mild additional assumption, this condition is also sufficient. Being given
C ≥ 1 and h ∈ L∞

c+(U), we denote

FC(h) =























∫

U
j∗
(

h

N∗(h)

)

N
∗(h)dµ if

h

N∗(h)
<∞ a.e.

and j∗
(

h

N∗(h)

)

N
∗(h) ∈ L1(U),

+∞ if not.

(4.18)

with the convention h(x)/N∗(h)(x) = 0 if h(x) = N
∗(h)(x) = 0. If C = 1, F1 = F . We

put
X = {h ∈ L∞

c (U) : F (h) <∞},
and

X̂ = {h ∈ L∞
c (U) : ∃C > 1 s.t. FC(h) <∞}.

In the sequel we adopt the convention uh(x) = 0 if h(x) = 0 and u(x) = ∞. The main
existence result is as follows.

Theorem 4.3 Let f ∈ L+(U). The following problem

(i) u ∈ L+(U), u(x) = N(j(u))(x) + f(x) µ-a.e. in U,

(ii) uh ∈ L1(U), ∀h ∈ X̂,
(4.19)

admits a solution if and only if
∫

U
fhdµ ≤ F (h), ∀h ∈ X̂. (4.20)

Scheme of the proof. For γ ∈ (0, 1) we introduce the sequence {un} defined by u0 = γf
and

un+1 = γ (N(j(un)) + f) , ∀n ∈ N. (4.21)

Step 1 We claim that
∫

U
un+1hdµ ≤

γ

1− γF (h), ∀h ∈ X̂. (4.22)

For 1 < C < 1/γ, and h ∈ X̂ such that FC(h) < ∞, we suppose that there exists some
ψ ∈ L+(U) such that

ψ(x) = max

{

1

C
j′(un)(x)N∗(ψ)(x), h(x)

}

. (4.23)
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It follows from (4.21),
∫

U
un+1ψdµ = γ

∫

U
j(un)N∗(ψ)dµ + γ

∫

U
fψdµ. (4.24)

By assumption (4.20)

∫

U
fψdµ ≤ FC(ψ) ≤

∫

U
j∗
(

max{j′(un)N∗(ψ), Ch}
N∗(ψ)

)

N
∗(ψ)dµ

≤
∫

U
max

{

j∗
(

j′(un)N∗(ψ)
)

, j∗
(

Ch

N∗(ψ)

)

N
∗(ψ)

}

dµ.

Since ψ ≥ h, one has N
∗(ψ) ≥ N

∗(h). By convexity j∗(αr) ≤ αj∗(r), ∀r ≥ 0, ∀α ∈ [0, 1],
therefore

j∗
(

Ch

N∗(ψ)

)

N
∗(ψ) ≤ j∗

(

Ch

N∗(h)

)

N
∗(h).

By definition j∗(j′(un)) = unj
′(un)− j(un). Thus, returning to (4.24) implies

∫

U
un+1ψdµ ≤ γ

∫

U
j(un)N∗(ψ)dµ + γ

∫

U

(

unj
′(un)− j(un)

)

N
∗(ψ)dµ + γFC(h).

By combining this inequality with the definition of ψ, one derives
∫

U
un+1ψdµ ≤ γ

∫

U
unψdµ + γFC(h).

Because un+1 ≥ un and ψ ≥ h, we obtain
∫

U
un+1hdµ ≤

∫

U
un+1ψdµ ≤

γ

1− γCFC(h).

Letting C → 1, (4.22) follows.

Step 2 Convergence. Letting n → ∞, un increases and converges to some uγ which
satisfies

(i) uγ ∈ L+(U), uγ = γ (N(j(uγ)) + f) in U,

(ii) uγh ∈ L1(U), ∀h ∈ X̂,
(4.25)

This implies in particular
∫

U
uγhdµ = γ

∫

U
j(uγ)N∗(h)dµ + γ

∫

U
fhdµ, ∀h ∈ X̂.

Let C > 1 such that FC(h) <∞, then

γ

∫

U

(

uγV
h

N∗(h)
− j(uγ)

)

N
∗(h)dµ = (γC − 1)

∫

U
uγhdµ + γ

∫

U
fhdµ,

and consequently
∫

U
uγhdµ ≤

γ

γC − 1
FC(h). (4.26)
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Since the correspondence γ 7→ uγ is increasing and, for almost all x ∈ U , r 7→ j(x, r)
is continuous on the left, we can let γ → 1 in (4.26) and (4.25)-(i) and deduce that the
function u = limγ→1 uγ is a solution to problem (4.19).

Step 3 Justification. The difficulties in the above proof are of two kinds :

(1) It is not clear that un < ∞ on a set of positive measure. It is even not known if
u0 = γf satisfies j(u0) < ∞ a.e. in U . To go arround this difficulty we approximate
j(un), formally equal to unj

′(un) − j∗(j′(un)), by unβn − j∗(βn) where the {βn} is an
increasing sequence of regular enough fonctions converging to j′(un).

(2) The existence of ψ ∈ X̂ has to be proven.

The full construction, which is extremely technical, is performed in [10]. �

In the presence of a subsolution v to Problem (4.19) it is possible to relax the assump-
tion on the sign of f and to produce a signed solution u. More precisely, we assume that
there exists a measurable function v such that

(i) v ∈ L1(Kn) and N(., .)j(v)(.) ∈ L1(Kn × U), ∀n ∈ N,

(ii) v(x) ≤ N(j(v))(x) + f(x) µ-a.e. in U,
(4.27)

If j : U × R 7→ (−∞,∞] is a measurable function which satisfies (4.11), we introduce j∗v
and X̂v :

j∗v (x, r) = sup
α≥v(x)

(rα− j(x, α),

and

X̂v =

{

h ∈ L∞
c (U) : ∃C > 1 s.t. j∗v

(

Ch

N∗(h)

)

N
∗(h) ∈ L1(U)

}

.

Corollary 4.4 There exists a measurable function u : U 7→ (−∞,∞] satisfying

(i) u ≥ v, u(x) = N(j(u))(x) + f(x) µ-a.e. in U,

(ii) uh ∈ L1(U), ∀h ∈ X̂v ,
(4.28)

if and only if

∫

U
fhdµ ≤

∫

U
j∗v

(

Ch

N∗(h)

)

N
∗(h)dµ, ∀h ∈ X̂v. (4.29)

Proof. Put w = u− v and define j̃ by

j̃(x, r) = 0, ∀(x, r) ∈ Ω× R−,

j̃(x, r) = j(x, r + v(x))− j(x, v(x)) if j(x, v(x)) <∞ and r > 0,

j̃(x, r) =∞ if j(x, v(x)) =∞ and r > 0.

Thus j̃ takes nonnegative values and satisfies (4.11). Moreover (4.28) is equivalent to

(i) w ∈ L+(U), w = N(j̃(w)) + f + N(j(v)) − v µ-a.e. in U,

(ii) wh ∈ L1(U), ∀h ∈ X̂v.
(4.30)
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Since
j̃∗(x, r) = jv(x, r) + j(v(x)) − rv(x) if j(x, v(x)) <∞,

j̃∗(x, r) = 0 if j(v) =∞,

for any h ∈ L∞
c (U), there holds

j̃∗
(

Ch

N∗(h)

)

N
∗(h) = j∗v

(

Ch

N∗(h)

)

N
∗(h) + j(v)N∗(h)− Chv, (4.31)

µ-a.e. on {x ∈ U : j(v)(x) <∞}. Therefore

j̃∗
(

Ch

N∗(h)

)

N
∗(h) ∈ L1(U)⇐⇒ j∗

(

Ch

N∗(h)

)

N
∗(h) ∈ L1(U). (4.32)

The proof of Corollary 4.4 follows from Theorem 4.3 applied to Problem (4.30). �

4.2.2 Application to elliptic semilinear equations

Let Ω be a bounded domain in R
n with a C2 boundary, L an elliptic operator defined

by (2.1) satisfying (H) and j : Ω × R 7→ [0,∞] a measurable function (for the (n + 1)-
dimensional Hausdorff measure) such that j(x, r) = 0, for almost all x ∈ Ω and every
r ≤ 0. The function r 7→ j(x, r) is also assumed to be convex, nondecreasing and l.s.c.,
thus it fulfills assumption (4.11). If λ ∈M+(Ω; ρ

∂Ω
), f = G

Ω
L(λ) ∈ L1(Ω). We denote by

Y (L) = {ξ ∈ C1,L
c (Ω)} : L∗ξ ∈ L∞

c (Ω) ∩ L+(Ω), (4.33)

the space C1-functions ξ vanishing on ∂Ω such that L∗ξ has compact support and is
essentially bounded. Notice that the elements of Y (L) are nonnegative by the maximum
principle.

Theorem 4.5 Assume there exist some C > 1 and ξ0 ∈ Y (L), ξ 6= 0, such that

j∗
(

C
L∗ξ0
ξ0

)

∈ L1(Ω). (4.34)

If λ ∈M+(Ω; ρ
∂Ω

), there exists at least one u ∈ L1
loc(Ω) such that G

Ω
L(j(u)) ∈ L1

loc(Ω) and

u = G
Ω
L(j(u)) + G

Ω
L(λ) ∈ L1(Ω), a.e. in Ω, (4.35)

if and only if

∫

Ω
ξdλ ≤

∫

Ω
j∗
(

L∗ξ

ξ

)

, ∀ξ ∈ Y (L). (4.36)

Moreover, if µ ≥ 0, there exists at least one positive solution.

Proof. We put µ = dx, the n-dimensional Hausdorff measure, and

N(x, y) = GΩ
L(x, y), ∀(x, y) ∈ Ω× Ω, x 6= y.
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Let v be defined by

v(x) =

{

0 if f(x) ≥ 0,

f(x) if f(x) ≤ 0.

Thus v ∈ L1(Ω), N∗(j(v)) ≡ 0 and (4.27) holds. Furthermore j∗v = j∗ on [0,∞), X̂v =
X̂ 6= {0}, because of (4.34). If it exists, any solution u of (4.35) satisfies u ≥ v, thus this
problem is equivalent to

{

u ≥ v, u = N(j(u)) + f,

u ∈ L1
loc(Ω).

If ξ ∈ Y (L), we put h = L∗ξ, which means equivalently

ξ = G
Ω
L∗(h) = N

∗(h).

By Corollary 4.4 there exists a measurable function u which satisfies u = N(j(u)) + f ,
u ≥ v and uh ∈ L1(Ω), for every h ∈ X̂. By (4.34), uL∗ξ0 ∈ L1(Ω), then u(x0) is finite
at least for one x0 ∈ Ω, thus N(x0, .)j(u)(.) ∈ L1(Ω), by the equation. For any compact
K ⊂ Ω and any compact neighborhood K0 of K ∪ {x0}, there exists a constant C such
that

GΩ
L∗(x, y) ≤ CGΩ

L∗(x0, y), ∀(x, y) ∈ K × (Ω \K0).

Therefore
∫

K

∫

Ω\K0

N(x, y)j(y, u(y))dydx ≤ C |K|
∫

Ω
N(x0, y)j(y, u(y))dy <∞,

from which it is infered that N(j(u)) ∈ L1
loc(Ω), since K is arbitrary. Furthermore u ∈

L1
loc(Ω), from the equation. �

When j(x, r) = rq
+, for some q > 1, the result is as follows.

Corollary 4.6 Let q > 1, λ ∈ M(Ω; ρ
∂Ω

) and σ > 0. Then there exists a function
u ∈ L1

loc(Ω) such that G
Ω
L(uq

+) ∈ L1
loc(Ω) satisfying

Lu = uq
+ + σλ in Ω,

u = 0 on ∂Ω,
(4.37)

if and only if

σ

∫

Ω
ξdλ ≤ γ − 1

γγ′

∫

Ω

(L∗ξ)q
′

ξq′−1
, ∀ξ ∈ Y (L), (4.38)

where q′ = q/(q − 1). Furthermore u is nonnegative if G
Ω
L(λ) is so.

Condition (4.38) has two meanings : the first one is that the positive part of λ should
not be too large, whatever is q > 1, the second is that if q is above some critical value,
measure λ should not be too concentrated. This concentration is expressed in terms
of Bessel capacities as for equations with absorption. If we assume for example that
λ = λ+ − λ− is a Lp-function, there holds,
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Corollary 4.7 Let q > 1, λ = λ+− λ− ∈ Lp(Ω) Then there exists a function u ∈ L1
loc(Ω)

solution of Problem (4.37) for σ > 0, small enough, if

(i) n = 1, 2 and 1 < q, or n ≥ 3 and 1 < q < n/(n− 2),

or

(ii) n ≥ 3, q > n/(n − 2) and λ+ ∈ Lp(Ω) with p ≥ n(q − 1)/2q,

or

(ii) n ≥ 3, q = n/(n − 2) and λ+ ∈ Lp(Ω) with p > 1.

Proof. Only condition (4.36) is to be checked. If ξ ∈ Y (L), we define w by

L∗ξ = w1/q′ξ1/q. (4.39)

If
1

p
+

1

γ
≤ 1, there holds

∫

Ω
ξdλ ≤

∫

Ω
ξdλ+ ≤ C‖λ+‖Lp‖ξ‖Lγ . (4.40)

If we assume
1

s
≤ 1

γ
+

2

n
, or

1

s
<

2

n
, if γ =∞, (4.41)

it follows, by (4.39) and the Gagliardo and Sobolev inequalities,

‖ξ‖Lγ ≤ C‖ξ‖W 2,s ≤ C‖∆ξ‖Ls ≤ C
(∫

Ω
ws/q′ξs/qdx

)1/s

.

for any 1 < s <∞. Furthermore, if
s ≤ q′, (4.42)

one gets

‖ξ‖Lγ ≤
(∫

Ω
wdx

)1/q′ (∫

Ω
ξsq′/q(q′−s)

)(q′−s)/q′s

.

If
γ ≥ sq′/q(q′ − s), (4.43)

we derive

‖ξ‖Lγ ≤ C
∫

Ω
wdx.

By combining this inequality with (4.40), it is infered
∫

Ω
ξdλ ≤ C

∫

Ω
wdx.

In order to get (4.41), (4.42), (4.43), we choose γ = ∞, s < n/2 if n = 1, 2 or n ≥ 3.
We take γ < ∞ and s such that equality holds in (4.41), if n ≥ 3, q > n/(n − 2), and
p ≥ n(q − 1)/2q. �

The next result expresses the condition of concentration which allows a measure to be
admissible in Problem (4.37).

67



Proposition 4.8 Let λσ = σλ be a positive measure with compact support satisfying
(4.38). Then there exists k = k(q, n, λσ) such that

λσ(K) ≤ kC2,q′(K), ∀Kcompact , K ⊂ Ω. (4.44)

Proof. We first notice that (4.38) implies

∫

Ω
vdλσ ≤

q − 1

qq′

∫

Ω

|L∗v|q′

vq′−1
dx, ∀v ∈ C∞

c (Ω), v ≥ 0. (4.45)

Indeed, if v ≥ 0 belongs to C∞
c (Ω), we apply (4.38) to ξ = G

Ω
L∗(|L∗v|) which is larger than

v by the maximum principle. We replace v by v2q′ in (4.45). Since

L∗v2q′ = −2q′v2q′−1





n
∑

i,j=1

∂

∂xj

(

aij
∂v

∂xi

)

+

n
∑

i=1

ci
∂v

∂xi
−

n
∑

i=1

∂

∂xi
(biv)





−2q′(2q′ − 1)v2q′−2
n
∑

i,j=1

aij
∂v

∂xj

∂v

∂xi
+

(

(2q′ − 1)v2q′ ∂bi
∂xi

+ d

)

v2q′ .

Then
∫

Ω

|L∗v2q′ |q′

v2q′(q′−1)
dx ≤ C‖v‖q′L∞‖v‖q

′

W 2,q′
+ ‖∇v‖2q′

L2q′
,

and finally
∫

Ω
v2q′dλσ ≤ C‖v‖q

′

L∞‖v‖q
′

W 2,q′
, (4.46)

by the Gagliardo-Nirenberg inequality. If K ⊂ Ω is compact, there exists a sequence

{vk} ⊂ C∞
c (Ω) such that 0 ≤ vk ≤ 1, vk ≡ 1 in a neighborhood of K and ‖v‖k

q′

W 2,q′
→

C2,q′(K) when k →∞. Therefore (4.46) implies (4.44). �

Remark. In the particular case where K = Br(x0) (for 0 < r < ρ
∂Ω

(x0), the measure λσ

satisfies

λσ(Br(x0)) ≤ C
{

rn−2q′ if q > n/(n − 2),

(ln(1 + 1/r))1−q′ if q = n/(n− 2).
(4.47)

Estimate (4.44) can be understood in saying that the measure λσ is Lipschitz continuous
with respect to the capacity C2,q′ , although it must be noticed that a capacity is only an
outer measure, not a regular one.

Later on, Adams and Pierre [2] proved a series of remarquable equivalent properties
linking estimates of type (4.44) and Bessel capacities.

Theorem 4.9 Let n > 2, p > 1 and λ be a nonnegative measure with compact support in
Ω. Then the following conditions are equivalent :

(i) There exists k1 > 0 such that for all compact subset K ⊂ Ω,

λ(K) ≤ k1C2,p(K). (4.48)
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(ii) There exists k2 > 0 such that

∫

Ω
ξpdλ ≤ k2

∫

Ω
|∆ξ|pdx, ∀ξ ∈ Y (−∆). (4.49)

(iii) There exists k3 > 0 such that

∫

Ω
ξdλ ≤ k3

∫

Ω
|∆ξ|pξ1−pdx, ∀ξ ∈ Y (−∆). (4.50)

(iv) There exists k4 > 0 such that

∫

Ω
ξdλ ≤ k4

∫

Ω
|L∗ξ|pξ1−pdx, ∀ξ ∈ Y (L∗). (4.51)

Their proof is performed with an elliptic operator with C1 coefficients, but it can be
adapted to an operator satisfying condition (H). It heavily relies on fine properties of
real valued functions in connection with the Hardy-Littlewood maximal function and the
Muckenhoupt weights.

Usually a positive measure λ ∈W−2,q(Ω) does not satisfies (4.48), but only

λ(G) ≤ ‖λ‖W−2,q(Ω)C
1/q
2,q′(G), ∀G ⊂ Ω, G compact. (4.52)

However, the capacitary measure λK of a compact subset of K ⊂ Ω does verify it. This
measure is the unique extremal for the dual definition of the capacity of K given by (3.54).
It is concentrated on K and has the property that

λK(K) = C2,q′(K), (4.53)

(see [1, Th 2.2.7]). Moreover

G1 ∗ λK ∈ Lq(Rn) and G1 ∗ (G1 ∗ λK)q−1 ∈ L∞(Rn). (4.54)

where G1 denotes the Bessel kernel of order 1 defined by (3.50). The following result is
proven in [84].

Proposition 4.10 Let K ⊂ Ω be compact subset with C2,q′(K) > 0 and λK the capacitary
measure of K. Then there exists k = k(n, q) such that

∫

Ω
ξdλK ≤ k

∥

∥G1 ∗ (G1 ∗ λK)q−1
∥

∥

L∞(Rn)

∫

Ω
|∆ξ|q′ ξ1−q′dx, ∀ξ ∈ Y (−∆). (4.55)

Hence, by Corollary 4.6, Problem 4.35 is solvable for any capacitary measure λ = λK , for
0 < σ ≤ σ0 for some σ0 > 0. Furthermore, since it is proven in [54, Th. 3.1] that there
exists a constant kn,q > 0 such that

∥

∥G1 ∗ (G1 ∗ λK)q−1
∥

∥

L∞(Rn)
≤ kn,q ∀K ⊂ Ω, K compact,

it follows that σ0 = σ0(n, q).

69



4.3 Semilinear equations with power source terms

In this section we develop a direct methods for constructing explicit super solutions in
order to apply Theorem 4.2. We assume that Ω is a bounded open subset with a C2

boundary and that L defined by (2.1) satisfies (H).

Theorem 4.11 Let q > 0, λ ∈M+(Ω; ρ
∂Ω

). If there exists some C0 > 0 such that

G
Ω
L

(

(

G
Ω
L(λ)

)q
)

≤ C0G
Ω
L(λ), a.e. in Ω, (4.56)

then problem
Lu = |u|q−1 u+ σλ in Ω,

u = 0 on ∂Ω,
(4.57)

admits a positive solution u ∈ L1(Ω) ∩ Lq(Ω; ρ
∂Ω
dx),

(i) if 0 < σ ≤ σ0 = σ0(q, C0), when q > 1,

(ii) for any σ > 0 when 0 < q ≤ 1.

Proof. Put w = θGΩ
L(σλ), for some parameters θ, σ > 0 > 0. Then, under condition

(4.56),
G

Ω
L(wq + σλ) ≤ (C0θ

qσq + σ)GΩ
L(λ).

Therefore

w ≥ G
Ω
L(wq) + G

Ω
L(σλ), (4.58)

as soon as

C0θ
qσq−1 + 1 ≤ θ. (4.59)

If q > 1 this is equivalent to

σ ≤ max
θ>0

(

θ − 1

C0θ

)1/(q−1)

=
1

q(C0q)1/(q−1)
,

and we get (i) by Theorem 4.2. If 0 < q ≤ 1, for any σ > 0 one can find θ > 0 such that
(4.59) holds. �

The next result due to [52] ([20] if L = −∆) points out how close to a necessary
condition estimate (4.56) is.

Theorem 4.12 Let q > 1, λ ∈ M+(Ω; ρ
∂Ω

), σ > 0. If there is a positive solution u ∈
L1(Ω) to Problem (4.57), there exists a constant C1 > 0 such that

G
Ω
L

(

(

G
Ω
L(σλ)

)q
)

≤ C1G
Ω
L(σλ), a.e. in Ω. (4.60)

If L = −∆, C1 = 1/(q − 1).
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Lemma 4.13 Let h ∈ L1(Ω; ρ
∂Ω
dx), h ≥ 0, and µ, η ∈ M+(Ω; ρ

∂Ω
), µ 6= 0, such that

µ−η ≥ h. If φ ∈ C2([0,∞)) is a concave nondecreasing function such that φ(1) ≥ 0, there
holds

hφ′

(

G
Ω
−∆(µ)

GΩ
−∆(η)

)

∈ L1(Ω; ρ
∂Ω
dx), (4.61)

and

−∆

(

φ

(

G
Ω
−∆(µ)

GΩ
−∆(η)

)

G
Ω
−∆(η)

)

≥ hφ′
(

G
Ω
−∆(µ)

GΩ
−∆(η)

)

. (4.62)

Proof. Put z = G
Ω
−∆(µ) and w = G

Ω
−∆(η). We write η = h + µ+ σ where σ is a positive

Radon measure. Let hn, µn and σn be elements of C∞
c (Ω) such that hn → h in L1(Ω; ρ

∂Ω
dx,

and µn → µ and σn → σ, in the weak sense of M+(Ω; ρ
∂Ω

). Put zn = G
Ω
−∆(µn) and

wn = G
Ω
−∆(hn + µn + σn), then zn → z and wn → w in L1(Ω) as n →∞, and a.e. (after

extraction of a subsequence). Thus zn > 0 in Ω, for n large enough. Because of the
concavity, φ(1) ≥ 0 and φ′ ≥ 0, there holds

−∆

(

znφ

(

wn

zn

))

≥ φ′
(

wn

zn

)

(hn + σn) ≥ φ′
(

wn

zn

)

hn.

Also

0 ≤ znφ
(

wn

zn

)

≤ zn
(

φ0 + φ′(0)
wn

zn

)

≤ C(zn + wn),

for some C > 0. Therefore znφ (wn/zn) converges in L1(Ω) as n → ∞. Since for any
ξ ∈ C1,1

c (Ω), ξ ≥ 0, there holds

−
∫

Ω
znφ

(

wn

zn

)

∆ξdx ≥
∫

Ω
φ′
(

wn

zn

)

hnξdx, (4.63)

we derive (4.62) by passing to the limit with Lebesgue and Fatou’s theorems. �

Proof of Theorem 4.12. First, we prove the result when L = −∆. Since σ > 0, we can
assume σ = 1 and apply Lemma 4.13 with w = u, the solution of (4.57), z = GΩ

−∆(λ) and

φ(s) =

{

(1− s1−q)/(q − 1), if s ≥ 1,

s− 1, if s ≤ 1.

Because u ≥ GΩ
−∆(λ),

−∆

(

GΩ
−∆(λ)φ

(

u

GΩ
−∆(λ)

))

≥ φ′
(

u

GΩ
−∆(λ)

)

uq =
(

GΩ
−∆(λ)

)q
, (4.64)

holds weakly. By the maximum principle,

1

q − 1
GΩ

−∆(λ)− 1

q − 1
u1−q

(

GΩ
−∆(λ)

)q ≥ GΩ
−∆

(

(

GΩ
−∆(λ)

)q
)

, (4.65)
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which is the expected inequality in the case L = −∆. We turn now to the general case.
By Theorem 2.11, the Green functions of L and −∆ are equivalent in the sense that

C−1GΩ
−∆(x, y) ≤ GΩ

L(x, y) ≤ CGΩ
−∆(x, y), ∀(x, y) ∈ Ω× Ω \DΩ,

for some C > 0. Thus (4.61) follows. �

Remark. In [52], inequality (4.61) is proven for a very general class of positive kernels, not
only for a Green kernel.

The next result, proven in [15], exhibits a large class of measures for which Problem
(4.57) will be solvable by applying Theorem 4.11.

Theorem 4.14 Let q > 0, α ∈ [0, 1] and λ ∈M+(Ω; ρα
∂Ω

) with ‖λ‖
M+(Ω;ρα

∂Ω
) = 1. If

q <
n+ α

n+ α− 2
, (4.66)

then G
Ω
L(λ) ∈ L1(Ω; ρα

∂Ω
dx), and there exists a positive constant C = C(n, q, α, λ,Ω) such

that
G

Ω
L

(

(

GΩ
L(λ)

)q
)

≤ CGΩ
L(λ) a.e. in Ω. (4.67)

Proof. As in the proof of Theorem 4.12, it is sufficient to consider the case L = −∆ and
then use the equivalence of Green kernels.

Step 1 The case λ = δy for y ∈ Ω, n ≥ 3. Since GΩ
−∆(x, y) ≤ C(n) |x− y|2−n we put

d =diam(Ω) and

h(x) =















|x− y|2−(n−2)q if q > 2/(n − 2),

d− |x− y|2−(n−2)q if q < 2/(n − 2),

ln(d/ |x− y|) if q = 2/(n − 2).

(4.68)

Hence
−∆h(.) = C1 |.− y|(2−n)q in D′(Ω),

and consequently

G
Ω
−∆

(

(

GΩ
−∆(., y)

)q
)

(x) ≤ C2h(x) ≤ C3 |x− y|2−n ,

with Ci = Ci(n, q, d) > 0. Let r > 0 be such that Br(y) ⊂ Ω. Clearly

G
Ω
−∆

(

(

GΩ
−∆(., y)

)q
)

(x) ≤ C ′
yρ∂Ω

(x) ≤ C ′′
yG

Ω
−∆(x, y),

on Br(y) \ {y}. On Ω \ Br(y) the function G
Ω
−∆

((

GΩ
−∆(., y)

)q)
is C1. We get a similar

inequality by Hopf boundary lemma. Finally there exists Cy > 0 such that

G
Ω
−∆

(

(

GΩ
−∆(., y)

)q
)

(x) ≤ CyG
Ω
−∆(x, y), ∀x ∈ Ω \ {y}. (4.69)
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As we shall see it in next step, Cy is bounded independently of y.

Step 2 The general case. By Theorem 3.5, G
Ω
−∆(λ) ∈ Lq(Ω; ρα

∂Ω
dx) since (4.66) holds.

First assume q ≥ 1, then

G
Ω
−∆(λ)(x) =

∫

Ω
GΩ

−∆(x, y)dλ(y) =

∫

Ω

GΩ
−∆(x, y)

ρα
∂Ω

(y)
ρα

∂Ω
(y)dλ(y).

By Jensen’s inequality,

(

G
Ω
−∆(λ)(x)

)q ≤
∫

Ω

(

GΩ
−∆(x, y)

ρα
∂Ω

(y)

)q

ρα
∂Ω

(y)dλ(y),

G
Ω
−∆

(

(

G
Ω
−∆(λ)

)q
)

(x) ≤
∫

Ω
G

Ω
−∆

(

GΩ
−∆(., y)

)

(x)ρα(1−q)
∂Ω

(y)dλ(y).

Now

G
Ω
−∆

(

GΩ
−∆(., y)

)

(x)ρα(1−q)
∂Ω

(y) =

∫

Ω
GΩ

−∆(x, z)GΩ
−∆(y, z)

(

GΩ
−∆(y, z)

ρ
∂Ω

(y)

)q−1

dz.

Because
GΩ

−∆(y, z) ≤ Cmin{|y − z|2−n , ρ
∂Ω

(y) |y − z|1−n}, (4.70)

it follows
GΩ

−∆(y, z) ≤ Cρα
∂Ω

(y) |y − z|2−n−α .

At that point of the proof we recall the following relation called the 3-G inequality (see
[30] for example),

GΩ
−∆(x, z)GΩ

−∆(y, z)

GΩ
−∆(x, y)

≤ C
(

|x− z|2−n + |y − z|2−n
)

, (4.71)

where C = C(Ω). It implies

G
Ω
−∆

(

GΩ
−∆(., y)

)

(x)ρα(1−q)
∂Ω

(y) ≤ GΩ
−∆(x, y)I(x, y),

for some C = C(q,Ω, α), and

I(x, y) =

∫

Ω
|y − z|(2−n−α)(q−1)

(

|x− z|2−n + |y − z|2−n
)

dz.

Since

I(x, y) ≤ C
∫

Ω

(

|x− z|2−n+(2−n−α)(q−1) + |y − z|2−n+(2−n−α)(q−1)
)

dz,

this last quantity is clearly bounded independently of x and y by some constant depending
on the various parameters and data. Notice that we have used

q < (n+ α)/(n + α− 2) ≤ n/(n− 2).
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Thus

G
Ω
−∆

(

(

G
Ω
−∆(λ)

)q
)

(x) ≤ C
∫

Gw
GΩ

−∆(x, y)dλ(y) = CG
Ω
−∆(x). (4.72)

Obviously, C = C(Ω) when q = 1.

Next we assume 0 ≤ q < 1. Then

G
Ω
−∆

(

(

G
Ω
−∆(λ)

)q
)

≤ G
Ω
−∆(1) + G

Ω
−∆

((

G
Ω
−∆(λ)

))

.

By Hopf boundary lemma G
Ω
−∆(1)(x) ≤ Cρ

∂Ω
(x). Let K be a compact subset contained

in the support of λ and denote by λK the restriction of λ to K. By the regularity results,
G

Ω
−∆(λK) ∈ C1(Ω \K). Then G

Ω
−∆(λ) ≥ G

Ω
−∆(λK) ≥ Cρ

∂Ω
in Ω \K. In turn it implies

G
Ω
−∆(λ) ≥ Cρ

∂Ω
for another constant C > 0 and (4.67) follows. �

Condition (4.66) on q is called α-subcriticality. However, as we have seen it in previous
sections, there exists measures for which (4.57) is solvable even if q is not α-subcritical.

Definition 4.15 A measure λ ∈ M+(Ω; ρα
∂Ω

) is called q-admissible if there exists some
σ0 ≥ 0 such that Problem (4.57) admits a solution u ∈ L1(Ω) ∩ Lq(Ω; ρ

∂Ω
dx) whenever

0 < σ ≤ σ0.

The following theorem summarizes the results of Baras and Pierre [10], Adams and
Pierre [2] and Kalton and Verbitsky [52] in the super-critical range of exponents.

Theorem 4.16 Let q > 1, α ∈ [0, 1] and λ ∈M+(Ω; ρα
∂Ω

). Then the following conditions
are equivalent :

(i) λ is q-admissible.

(ii) There exists some C0 > 0 such that

G
Ω
L

(

(

G
Ω
L(λ)

)q
)

≤ C0G
Ω
L(λ). (4.73)

(iii)
(

G
Ω
L(λ)

)q
is q-admissible.

(iv) There exists C > 0 such that

∫

Ω
G

Ω
L(λ)dx ≤ C

∫

Ω

gq′

(

GΩ
L(g)

)q′−1
dx, ∀g ∈ L∞

c (Ω), g ≥ 0. (4.74)

(iv) There exists c > 0 such that

∫

A
dλ ≤ cC2,q′,α(A), ∀A ⊂ Ω, A Borel, (4.75)

where C2,q′,α is the weighted capacity defined by

C2,q′,α(A) = inf

{∫

Ω
ηq′dx : η ∈ Lq′(Ω), η ≥ 0, G

Ω
L∗(λ) ≥ ρα

∂Ω
on A

}

. (4.76)
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4.4 Isolated singularities

If one looks for radial positive solutions of

−∆u = |u|q−1 u, (4.77)

with q > 1, in R
n \ {0} under the form x 7→ a |x|b, one immediately finds

u(x) = us(x) = γq,n |x|−2/(q−1) , (4.78)

where

γq,n =

((

2

q − 1

)(

n− 2q

q − 1

))1/(q−1)

. (4.79)

However such a solution exists if and only if q > n/(n − 2). Moreover, if q ≥ n/(n − 2),
it follows by Theorem 3.23 that, if Ω is an open subset of R

n containing 0, Ω∗ = Ω \ {0},
and if u ∈ Lq

loc(Ω
∗) is nonnegative and satisfies

−∆u = uq in D′(Ω∗), (4.80)

then u ∈ Lq
loc(Ω), and that Equation (4.80) holds in D′(Ω). In this way, the singularity

of u at 0 exists, but is not visible in the sense of distributions. In the subcritical range,
1 < q < n/(n− 2) it is proven by Brezis and Lions [21] that any positive solution of (4.80)
satisfies actually

−∆u = uq + Cnγδ0 in D(Ω), (4.81)

for some γ ≥ 0 (see Step 4 in the proof of Theorem 3.40). Furthermore u admits an
expansion near 0;

u(x) = γ |x|2−n (1 + ◦(1)) + C, as x→ 0, (4.82)

if n ≥ 3, with the usual modification if n = 2. Finally, although this was noticed before by
Lions [66], Theorem 4.14 implies that the Dirac mass δ0 is q-admissible. The classification
of isolated singularities of positive solutions of (4.77) has been performed by Lions [66] in
the case 1 < q < n/(n − 2), Aviles [6] in the case q = n/(n − 2), Gidas and Spruck [46]
when n/(n − 2) < q < (n + 2)/(n − 2) and Caffarelli, Gidas and Spruck [24] in the case
q = (n+ 2)/(n − 2). The case q > (n+ 2)/(n − 2) remains essentially open, except if the
solutions are supposed to be radial.

Theorem 4.17 Let Ω be an open subset of R
n containing 0, Ω∗ = Ω \ {0}, q > 0 and

u ∈ C2(Ω∗) be a positive solution of (4.77) in Ω∗.

(i) If q < n/(n− 2) : either u ∈ C∞(Ω), or there exists γ > 0 such that (4.82) and (4.81)
hold.

(ii) If q = n/(n− 2) : either u ∈ C∞(Ω), or

lim
x→0
|x|n−2 (ln(1/ |x|))(2−n)/2 u(x) =

(

n− 2√
2

)n−2

. (4.83)
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(iii) If n/(n− 2) < q < (n+ 2)/(n − 2) : either u ∈ C∞(Ω), or

lim
x→0
|x|2/(q−1)u(x) = γq,n. (4.84)

(iv) If q = (n+ 2)/(n − 2) : either u ∈ C∞(Ω), or

lim
x→0
|x|(n−2)/2(u(x)− v(|x|) = 0, (4.85)

where r 7→ v(r) is a radial solution of (4.77).

Notice that in the so-called conformal case q = (n+ 2)/(n− 2), all the radial solutions
v of (4.77) are classified by their reduced energy : if v(r) = r(2−n)/2w(t) and t = ln(1/r),
then w verifies

w′′ − (n − 2)2

4
w + |w|(4)/(n−2) w = 0. (4.86)

Therefore the reduced energy-function

E(w) = w′2 +
n+ 2

n
|w|2n/(n+2) − (n− 2)2

4
w2

is constant. The proofs of these different results relies on regularity estimates and boot-
strap arguments in case (i), the Lyapounov analysis as for Theorem 3.28 in cases (ii)
and (iii), and the asymptotic symmetry method in the case (iv). However, there are two
difficulties in case (iii) ((ii) being much simpler) : the first one is to prove the a priori
estimate

u(x) ≤ C |x|2/(q−1) near 0. (4.87)

The second one is to identify the limit set at the end of the Lyapounov analysis, in which
situation, it is to be proven that the only positive solutions to

−∆
Sn−1ω + γq−1

q,n ω − wq = 0 (4.88)

on Sn−1 are the constant solutions 0 and γq,n.

Remark. Part of the results can be extended to equation

Lu = uq, (4.89)

where L is a general elliptic operator, satisfying condition (H). This extension is easy for
(i), a little more complicated in case (iii) (and (ii) in the same way), in particular to get
(4.87). It is still completely open in case (iv).

5 Boundary singularities and boundary trace

In this chapter we shall study generalized boundary value problems for equation

Lu+ g(x, u) = 0 in Ω, (5.1)

where Ω is an open domain in R
n, n ≥ 2, with a C2 boundary, L is an elliptic operator

defined in Ω by (2.1) and g a continuous function of absorption type.
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5.1 Measures boundary data

5.1.1 General solvability

Let µ be a Radon measure on ∂Ω and g ∈ C(Ω × R. The semilinear Dirichlet problem
with measure data is written under the form

Lu+ g(x, u) = 0 in Ω,

u = µ on ∂Ω.
(5.2)

Definition 5.1 Let µ ∈ M(∂Ω). A function u is a solution of (5.2), if u ∈ L1(Ω),
g(., u) ∈ L1(Ω; ρ

∂Ω
dx), and if for any ζ ∈ C1,L

c (Ω), there holds

∫

Ω
(uL∗ζ + g(x, u)ζ) dx = −

∫

Ω

∂ζ

∂nL∗
dµ. (5.3)

Definition 5.2 A real valued function g ∈ C(Ω×R) holds the boundary-weak-singularity
assumption, if there exists r0 ≥ 0 such that

rg(x, r) ≥ 0, ∀(x, r) ∈ Ω× (−∞,−r0] ∪ [r0,∞), (5.4)

and a nondecreasing function g̃ ∈ C([0,∞)) such that g̃ ≥ 0,

∫ 1

0
g̃(r1−n)rndr <∞, (5.5)

and

|g(x, r)| ≤ g̃(|r|), ∀(x, r) ∈ Ω× R. (5.6)

The following result was proven first, but under a weaker form, by Gmira and Véron [48].

Theorem 5.3 Let Ω be a C2 bounded domain in R
n, n ≥ 2, L the elliptic operator defined

by (2.1) and g ∈ C(Ω × R) a real valued function. If L satisfies assumptions (H) and g
the boundary-weak-singularity assumption, for any µ ∈M(∂Ω) there exists a solution u to
Problem (5.2).

Proof. The general idea follows the proof of Theorem 3.7, with some significant changes.

Step 1 Approximate solutions. Let µn be a sequence of C2(Ω) functions converging to µ
in the weak sense of measures and mn = P

Ω
L(µn). The function gn defined by

gn(x, r) = g(x, r −mn(x)), ∀(x, r) ∈ Ω× R,

is continuous in Ω×R and satisfies (5.4) with r0 replaced by r0+‖mn‖L∞ . By Theorem 3.7
there exists a solution to

Lvn + gn(x, vn) = 0 in Ω,

vn = 0 on ∂Ω.
(5.7)
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Thus the function un = vn +mn is a solution of

Lun + g(x, un) = 0 in Ω,

un = µn on ∂Ω.
(5.8)

From the proof of Theorem 3.7, Steps 2-3, un is bounded in Ω and (5.3) holds with un

and mn. By Theorem 2.4, for any ζ ∈ C1,L
c (Ω), ζ ≥ 0,

∫

Ω
(|un|L∗ζ + sign(un)g(x, un)ζ) dx ≤ −

∫

Ω

∂ζ

∂nL∗
|µn| dx, (5.9)

which implies

‖un‖L1(Ω) + ‖ρ
∂Ω
g(., un)‖L1(Ω) ≤ Θ

∫

Ω
ρ

∂Ω
dx+ C1 ‖ρ∂Ω

µn‖L1(∂Ω) . (5.10)

Consequently, using also (3.11) in Theorem 3.5,

‖un‖M (n+α)/(n+α−2)(Ω;ρα
∂Ω

) ≤ C2 ‖λn − g(., un)‖
M(Ω;ρα

∂Ω
) ≤ C3

(

Θ + ‖ρ
∂Ω
µn‖L1(∂Ω)

)

,(5.11)

for α = 0, 1.

Step 2 Convergence. By Corollary 2.8 and (5.11), there exists a subsequence of {un}, still
denoted by {un} for simplicity, which converges to some u in L1(Ω) and a.e. in Ω. In order
to prove that g(., un) converges in L1(Ω; ρ

∂Ω
dx), we use Vitali’s theorem and we procede

as in the proof of Theorem 3.7- Step 3 with α = 1. �

The following stability result follows from the uniform integrability argument.

Corollary 5.4 Let g satisfy the boundary-weak-singularity assumption and r 7→ g(x, r) is
nondecreasing, for any x ∈ Ω. Then the solution u is unique. If we assume that {µk}
is a sequence of measures in M(Ω) which converges weakly to µ, then the corresponding
solutions uµk

of problem

Luµk
+ g(x, uµk

) = 0 in Ω,

uµk
= µk on ∂Ω,

(5.12)

converge in L1(Ω) to the solution u of (5.2), when k →∞.

Remark. If g(x, r) = |r|q−1 r, the boundary-weak-singularity assumption is satisfied if and
only if

0 < q <
n+ 1

n− 1
. (5.13)
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5.1.2 Admissible boundary measures and the ∆2-condition

Definition 5.5 Let g̃ be a continuous real valued nondecreasing function defined in R+,
g̃ ≥ 0. A Radon measure µ in ∂Ω is called (g̃, k)-boundary-admissible if

∫

Ω
g̃(PΩ

L(|µ|) + k)ρ
∂Ω
dx <∞, (5.14)

where PΩ
L (|µ|) is the Poisson potential of µ and k ≥ 0.

The proof of the following theorem is similar to the one of Theorem 3.10.

Theorem 5.6 Let Ω be a C2 bounded domain in R
n, n ≥ 2, L an elliptic operator defined

by (2.1) verifying condition (H), and g ∈ C(Ω × R) satisfying (5.4) for some r0 ≥ 0 and
(5.6) for some function g̃ as in Definition 3.9. Then for any (g̃, r0)-boundary-admissible
Radon measure µ ∈M(∂Ω), Problem (5.2) admits a solution.

The proof of the next result, is a boundary adaptation of the one of Theorem 3.12.

Theorem 5.7 Let Ω and L be as in Theorem 5.6. Assume g ∈ C(Ω × R) satisfies the
∆2-condition (3.37), r 7→ g(x, r) is nondecreasing for any x ∈ Ω and (5.6) holds for some
nonnegative, nondecreasing function g̃. For any Radon measure λ ∈ M(∂Ω), with λ =
λ̃ + λ∗, where λ̃ ∈ L1(∂Ω) and λ∗ is (g̃, 0)-boundary-admissible and singular with respect
to the (n − 1)-dimensional Hausdorff measure, problem (5.2) admits a unique solution.

5.1.3 Sharp solvability

The existence of a solution, necessarily unique, to

Lu+ |u|q−1 u = 0 in Ω,

u = µ on ∂Ω,
(5.15)

where µ is a boundary measure follows unconditionaly from Theorem 5.3 in the subcritical
range 0 < q < (n + 1)/(n − 1). The super-critical case q ≥ (n + 1)/(n − 1) is treated
separately according the value of q with respect to 2 by Le Gall [63], Dynkin and Kuznestov
[38], [39] and Marcus and Véron [71]. The synthetic presentation in all the super-critical
cases is found in [72].

Theorem 5.8 Let Ω be a bounded domain in R
n with a C2 boundary, L the elliptic

operator defined by (2.1) satisfying condition (H), q ≥ (n + 1)/(n − 1) and µ ∈ M(∂Ω).
Then Problem (5.15) admits a solution u = uµ if and only if µ does not charge boundary
sets with C2/q,q′-capacity zero. Moreover, the mapping µ 7→ uµ is increasing.

Following Definition 5.5, a Radon measure µ on ∂Ω is called boundary-q-admissible for
the operator L if

∫

Ω

(

P
Ω
L(|µ|)

)q
ρ

∂Ω
dx <∞. (5.16)
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However, under assumption (H), under which the Green and Poison kernels are con-
structed, this property is independent of L, since all the kernels are equivalent (see Theo-
rem 2.11). The proof is based upon a deep result concerning representation of boundary
Bessel classes in terms of integrability properties of Poisson potentials.

Proposition 5.9 Let the assumtions of Theorem 5.8, on Ω and the operator L, be satis-
fied, q ≥ (n + 1)/(n − 1) and µ ∈M(∂Ω). Then :

(i) If µ is boundary-q-admissible, then µ ∈W−2/q,q(∂Ω).

(ii) If µ ∈M+(∂Ω)∩W−2/q,q(∂Ω), then µ is boundary-q-admissible. Moreover there exists
a constant C = C(q,Ω, L) such that,

C−1‖µ‖W−2/q,q(∂Ω) ≤ ‖PΩ
L(µ)‖Lq(Ω;ρ

∂Ω
dx) ≤ C‖µ‖W−2/q,q(∂Ω). (5.17)

Proof. The proof we present here is settled upon the interpolation theory between a Ba-
nach space and the domain of an analytic semigroup of operators.

Step 1 The case where Ω is the unit ball B. We shall assume n ≥ 3, the 2-dimensional
case requiring some easy technical modifications. Let (r, σ) be the spherical coordinates
in R

n , t = − ln r. If µ ∈ W−2/q,q(Sn−1), we set u = P
Ω
−∆(µ), and ũ(t, σ) = u(r, σ). Then

relation (5.17) turns into

C−1 ‖µ‖W−2/q,q(Sn−1) ≤
∫ ∞

0

∫

Sn−1

|ũ|q (1− e−t)e−ntdσ dt ≤ C ‖µ‖W−2/q,q(Sn−1) . (5.18)

By density it can be assumed that µ is a regular function, and let f be the solution of

µ =
(n − 2)2

4
f −∆

Sn−1f in Sn−1.

By elliptic equations regularity theory, there exists c > 0 such that

c−1 ‖µ‖W−2/q,q(Sn−1) ≤ ‖f‖W 2−2/q,q(Sn−1) ≤ c ‖µ‖W−2/q,q(Sn−1) . (5.19)

Let v = P
Ω
−∆(f) in B and ṽ(t, σ) = v(r, σ). Then

L̃ṽ := ṽtt − (N − 2)ṽt + ∆
Sn−1 ṽ = 0 in R+ × Sn−1,

ṽ|t=0 = f on Sn−1.
(5.20)

This implies

L̃(∆
Sn−1sṽ) = 0 in R+ × Sn−1, and ∆

Sn−1 ṽt=0 = ∆
Sn−1f on Sn−1. (5.21)

This problem has a unique solution which is bounded near t =∞, therefore

P
Ω
−∆(∆

Sn−1f) = ∆
Sn−1 ṽ, (5.22)

and equivalently

ũ = P
Ω
−∆(µ) = P

Ω
−∆

(

(n− 2)2

4
f −∆

Sn−1f

)

=
(n − 2)2

4
ṽ −∆

Sn−1 ṽ. (5.23)
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Put v∗ := e−t(N−2)/2 ṽ, then

v∗tt −
(n− 2)2

4
v∗ + ∆

Sn−1v
∗ = 0 in R+ × Sn−1,

v∗(0, ·) = f on Sn−1.

(5.24)

One way to represent v∗ is to introduce semigroups of linear operators and to express the
above relations in terms of interpolation spaces between Banach spaces. Put

v∗ = etA(f) where A = −
(

(n− 2)2

4
I −∆

Sn−1

)1/2

.

It is wellknown that the square root of a densily defined closed operator A defines an
analytic semi-group in Lq(Sn−1) (see [103] for example). The domain of A2 is precisely
W 2,q(Sn−1). Therefore (see [93, p. 96]),

‖f‖q
W 2−2/q,q(Sn−1)

≈ ‖f‖q
Lq(Sn−1)

+

∫ ∞

0

(

t2/q
∥

∥A2v∗
∥

∥

Lq(Sn−1)

)q dt

t

≈ ‖f‖q
Lq(Sn−1)

+

∫ 1

0

(

t2/q
∥

∥A2v∗
∥

∥

Lq(Sn−1)

)q dt

t

= ‖f‖q
Lq(Sn−1)

+

∫ 1

0

(

t2/qe−t(N−2)/2
∥

∥A2ṽ
∥

∥

Lq(Sn−1)

)q dt

t
,

(5.25)

where the symbol ≈ denotes equivalence of norms. Notice that for q > 1 the exponent
2 − 2/q is an integer only if q = 2, in which case the Besov and Sobolev spaces coincide.
Thus, by (5.19),

‖f‖q
W 2−2/q,q(Sn−1)

≥ C ‖f‖q
Lq(Sn−1)

+ C

∫ 1

0

(

t2/qe−t(n−2)/2 ‖ũ‖Lq(Sn−1)

)q dt

t

≥ C ‖f‖q
Lq(Sn−1)

+ C

∫ 1

0
‖ũ‖q

Lq(Sn−1)
e−nttdt.

(5.26)

Since u is an harmonic function,

r 7→ r1−n

∫

∂Br

|u|qdS

is nonincreasing on (0, 1]. Equivalently

t 7→
∫

Sn−1

|ũ(t, .)|qdσ

is nonincreasing on [0,∞). Furthermore

∫ ∞

0
‖ũ‖q

Lq(Sn−1)
(1− e−t)e−ntdt ≤ C

∫ 1

0
‖ũ‖q

Lq(Sn−1)
(1− e−t)e−ntdt

≤ C

∫ 1

0
‖ũ‖q

Lq(Sn−1)
e−nttdt.

(5.27)
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This inequality implies that
∫

|x|<1
|u|q(1− r) dx ≤ c(γ)

∫

γ<|x|<1
|u|q(1− r) dx,

for every γ ∈ (0, 1). Because of (5.19),

‖µ‖q
W−2/q,q(Sn−1)

≈ ‖f‖q
W 2−2/q,q(Sn−1)

. (5.28)

Therefore, the right-hand side inequality in (5.17) follows from (5.18), (5.26) and (5.27).

Next assume that µ is a distribution on Sn−1 and P(µ) ∈ Lq(B; (1 − r) dx). In order
to prove that µ ∈ W−2/q,q(Sn−1) and that the left-hand side inequality in (5.17) holds,
we can assume that µ ∈ M(Sn−1). By (5.19), if f ∈ Lq(Sn−1) then µ ∈ W−2/q,q(Sn−1).
Therefore, if it is proven

‖f‖Lq(Sn−1) ≤ C ‖u‖Lq(B;(1−r) dx) , (5.29)

the left-hand side inequality in (5.17) follows. Equation (5.23) implies that

‖v(r, ·)‖W 2,q(Sn−1) ≤ C ‖u(r, ·)‖Lq(Sn−1) , ∀r ∈ (0, 1). (5.30)

for some C = C(n) > 0. Hence

‖v‖Lq(B;(1−r) dx) +
∥

∥∆
Sn−1v

∥

∥

Lq(B;(1−r) dx)
≤ C ‖u‖Lq(B;(1−r) dx) . (5.31)

We write (5.20) under the form
{

ṽtt − (N − 2)ṽt = h̃ := −∆
Sn−1 ṽ in R+ × Sn−1,

ṽ|t=0 = f, in Sn−1.
(5.32)

Since u ∈ Lq(B; (1−r) dx), (5.30) implies that h ∈ Lq(B; (1−r) dx) (where h(x) = h̃(t, σ)).
Let σ be a fixed but arbitrary point on Sn−1. Since Equation (5.32) is a first order o.d.e.
in ṽt(·, σ) with a forcing term h̃(., σ), we fix some initial time t0 ∈ (0,∞) and compute the
value of the solution in (0, t0). Integrating twice one derives

ṽ(t, σ) =

∫ t

t0

e(N−2)s

∫ s

t0

e−(N−2)τ h̃(τ, σ) dτ ds

+
1

N − 2
(e(N−2)(t−t0) − 1)ṽt(t0, σ) + ṽ(t0, σ).

(5.33)

Therefore

|v(0, σ)| = |f(σ)| ≤ C
(

∫ t0

0

∫ t0

s

∣

∣

∣h̃(τ, σ)
∣

∣

∣ dτ ds+ |ṽt(t0, σ)|+ |ṽ(t0, σ)|
)

= C
(

∫ t0

0
s
∣

∣

∣h̃(s, σ)
∣

∣

∣ ds+ |ṽt(t0, σ)| + |ṽ(t0, σ)|
)

(5.34)

≤ C
(

∫ 1

e−t0

(1− r) |h(r, σ)| rN−1dr + |ṽt(t0, σ)|+ |ṽ(t0, σ)|
)

,
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where C is a constant independent of t0, for t0 ≤ ln 2. Taking the q-power and integrating
over Sn−1 yields to

∫

Sn−1

|f |q dσ ≤ C
(

∫

r0<|x|<1
|h|q (x)(1 − |x|) dx

+

∫

Sn−1

|vr|q (r0, σ) dσ +

∫

Sn−1

|v|q (r0, σ) dσ
)

,

where C is independent of r0, for r0 ≥ 1/2. We multiply the inequality by rN−1
0 and

integrate with respect to r0 in (5/8, 6/8). It follows that

∫

Sn−1

|f |q dσ ≤ C
(

∫

1/2<|x|<1
|h|q (x)(1 − |x|) dx

+

∫

5/8<|x|<6/8
|vr|q dx+

∫

5/8<|x|<6/8
|v|q dx

)

.
(5.35)

By interior elliptic estimates,

∫

5/8<|x|<6/8
|vr|q dx ≤

∫

1/2<|x|<7/8
|v|q dx. (5.36)

Finally, by (5.35), (5.36) and (5.31) we obtain (5.29).

Step 2 The case of a general operator L in B. Because of the equivalence property of
Theorem 2.11 already mentioned, if µ ≥ 0, there exists a constant C such that, for every
measure µ ∈M+(SN−1),

C−1
P

Ω
−∆(µ) ≤ P

Ω
L(µ) ≤ CP

Ω
−∆(µ). (5.37)

Therefore, if (5.17) holds with respect to P
Ω
−∆, it holds for P

Ω
L, for every measure µ ∈

W−2/q,q(Sn−1)∩M+(Sn−1). If µ is a boundary-q-admissible measure for L, not necessarily
positive, then µ+ and µ− are boundary-q-admissible. Therefore µ+, µ− ∈W−2/q,q(SN−1),
and the same holds with µ. Furthermore

C−1‖µ±‖W−2/q,q(∂Ω) ≤ ‖PΩ
L(µ±)‖Lq(Ω;ρ

∂Ω
dx) ≤ C‖µ±‖W−2/q,q(∂Ω). (5.38)

Step 3 The case of a general operator L in a general bounded C2 domain Ω. There exists
a finite set of bounded open subdomains Ui (1 ≤ i ≤ k) of R

n such that

∂Ω ⊂
k
⋃

i=1

Ui,

and for each i there exists a C2 diffeomorphism Φi from Ui of into some open subset Vi such
that Φi(Ui∩Ω) = B, and Φi(Ui∩∂Ω) = Γi ⊂ ∂B ≈ Sn−1. This diffeomorphism induces an
isomorphism, say Φ∗

i , between M(Ui∩∂Ω) and M(Γi), W
−2/q,q(Ui∩∂Ω) and W−2/q,q(Γi),

and it preserves positivity. Moreover, by the change of variables x ∈ Ui 7→ y = Φi(x) ∈ Vi,
the operator L is transformed into an elliptic operator L∗

i on B, which still satisfies the
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maximum principle, not necessarily the condition (2.5), but this is not crucial for the
equivalence property in small domains. If µ ∈ M(∂Ω) has its support in Ui ∩ ∂Ω, the
function u = P

L
Ω(µ) satisfies

Lu = 0 in Ui ∩ Ω,

u = µ on Ui ∩ ∂Ω, (5.39)

u = uc on ∂Ui ∩ Ω,

where uc, the restriction of u to ∂Ui ∩ Ω, is C1. Thus the function vi = u ◦Φ−1
i satisfies

L∗
i vi = 0 in B,

vi = Φ∗
i (µ) on Γi, (5.40)

vi = uc ◦ Φ−1
i on ∂B \ Γi.

Therefore, if µ is nonnegative and P
Ω
L(µ) ∈ Lq(Ω; ρ

∂Ω
dx), vi ∈ Lq(B; (1 − |y|)dy), which

leads to Φ∗
i (µ) ∈W−2/q,q(Γi) and µ ∈W−2/q,q(∂Ω). Moreover

‖µ‖W−2/q,q(∂Ω) ≈ ‖Φ∗
i (µ)‖W−2/q,q(Sn−1) ≤ C ‖vi‖Lq(B;(1−|x|)dx)

≈ ‖u‖Lq(Ω∩Ui;ρ∂(Ω∩Ui)
dx) .

(5.41)

Since ρ
∂(Ω∩Ui)

≤ ρ
∂Ω

in Ui ∩ Ω, the integral term on the right in (5.41) is dominated by

the norm of P
Ω
L(µ) in Lq(Ω; ρ

∂Ω
dx). By using a partition of unity, any measure µ on ∂Ω

can be decomposed in the sum of measures µi with compact support in Γi. Hence the
following estimate holds when PL

Ω (µ) ∈ Lq(Ω; ρ
∂Ω
dx) :

‖µ‖W−2/q,q(∂Ω) ≤ C
∥

∥P
Ω
L(µ)

∥

∥

Lq(Ω;ρ
∂Ω

dx)
. (5.42)

Conversely, if we assume that µ ∈ M+(∂Ω) ∩ W−2/q,q(∂Ω) with support in some fixed
compact Ki ⊂ ∂Ω ∩ Ui, then Φ∗

i (µ) ∈M+(Sn−1) ∩W−2/q,q(Sn−1) with support in Γi and
equivalence of norms. Then P

B
L∗(Φ∗

i (µ)) ∈ Lq(B; (1− |x|)dx), with
∥

∥P
B
L∗(Φ∗

i (µ))
∥

∥

Lq(B;(1−|x|)dx)
≤ C ‖Φ∗

i (µ)‖W−2/q,q(Sn−1) ≈ ‖µ‖W−2/q,q(∂Ω) . (5.43)

But the left-hand side term in (5.43) is comparable to
∥

∥

∥P
Ui∩Ω
L (µ)

∥

∥

∥

Lq(Ω∩Ui;ρ∂(Ω∩Ui)
dx)

, and

∥

∥

∥P
B
L∗(uc ◦ Φ−1

i χ
∂B\Γi

)
∥

∥

∥

Lq(B)
≈
∥

∥

∥P
Ui∩Ω
L (uc)

∥

∥

∥

Lq(Ui∩Ω)
. (5.44)

Because u is an harmonic function,

‖uc‖L∞(∂Ui∩Ω) ≤ C ‖µ‖W−2/q,q(∂Ω) . (5.45)

Finally

u = P
Ω
L(µ) =











P
Ω\Ui

L (µ) + P
Ω\Ui

L (uc) in Ω \ Ui,

P
Ω∩Ui
L (uc) in Ω ∩ Ui.

(5.46)
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Moreover

(i)
∥

∥

∥
P

Ui∩Ω
L (uc)

∥

∥

∥

Lq(Ui∩Ω)
≤ C ‖µ‖W−2/q,q(∂Ω) ,

(ii)
∥

∥

∥
P

Ω\Ui

L (uc)
∥

∥

∥

Lq(Ω\Ui)
≤ C ‖µ‖W−2/q,q(∂Ω) .

Combining these inequalities with (5.43), (5.44) yields to

∥

∥P
Ω
L(µ)

∥

∥

Lq(Ω;ρ
∂Ω

dx)
= ‖u‖Lq(Ω;ρ

∂Ω
dx) ≤ C ‖µ‖W−2/q,q(∂Ω) , (5.47)

and we finish the proof with the help of a partition of unity. The proof of (5.17) is the
same as in Step 2. �

Remark. By using sharp estimates on the Green kernel of a general elliptic operator in
a general smooth domain it can be checked directely that (5.17) is valid for any signed
boundary q admissible measure. However, it is not known if the implication

µ ∈M(∂Ω) ∩W−2/q,q(∂Ω) =⇒ µ is boundary q-admissible, (5.48)

holds.

It is proven in [75] that Proposition 5.9 admits an extension in the framework of Besov
spaces B−s,q (see e.g. [93]). When s is not an integer or q = 2, the Besov space B−s,q

coincides with the Sobolev space W−s,q.

Proposition 5.10 Let s > 0, q > 1 and µ be a distribution on Sn−1. Then

µ ∈ B−s,q(Sn−1)⇐⇒ P
B
−∆(µ) ∈ Lq(B; (1 − |x|)sq−1dx).

Moreover there exists a constant C > 0 such that for any µ ∈ B−s,q(Sn−1),

C−1‖µ‖B−s,q(Sn−1) ≤
(
∫

B

∣

∣P
B
−∆(µ)

∣

∣

q
(1− |x|)sq−1dx

)1/q

≤ C‖µ‖B−s,q(Sn−1). (5.49)

The dual form of Proposition 5.9 is the following,

Proposition 5.11 Let q ≥ (n + 1)/(n − 1) and the assumptions on L and Ω be satisfied
as in Proposition 5.9. Then

ϕ ∈ Lq′(Ω; ρ−q′/q
∂Ω

dx)⇐⇒ ∂

∂nL∗
G

Ω
L∗(ϕ) ∈W 2/q,q′(∂Ω).

Moreover there exists a constant C > 0 such that, for any ϕ ∈ Lq′(Ω; ρ−q′/q
∂Ω

)dx),

C−1‖ϕ‖
Lq′ (Ω;ρ

−q′/q
∂Ω dx)

≤
∥

∥

∥

∥

∂

∂nL∗
G

Ω
L∗(ϕ)

∥

∥

∥

∥

W 2/q,q′ (∂Ω)

≤ C‖ϕ‖
Lq′ (Ω;ρ

−q′/q
∂Ω dx)

. (5.50)
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Proof. Let µ ∈M(∂Ω). By duality between Lq(Ω; ρ
∂Ω
dx) and Lq′(Ω; ρ

∂Ω
dx), we write

∫

Ω
P

Ω
L(µ)ψρ

∂Ω
dx =

∫

Ω
P

Ω
L(µ)L∗ζdx = −

∫

∂Ω

∂ζ

∂nL∗
dµ, (5.51)

where ζ = G
Ω
L∗(ψρ∂Ω

). Then the adjoint operator
[

P
Ω
L

]∗
of P

Ω
L is defined by

[

P
Ω
L

]∗
(ψ) = − ∂

∂nL∗
G

Ω
L∗(ψρ∂Ω

). (5.52)

Consequently, Proposition 5.9 implies that there exists a constant C > 0 such that

C−1 ‖ψ‖Lq′ (Ω;ρ
∂Ω

dx) ≤
∥

∥

∥

∥

∂

∂nL∗
G

Ω
L∗(ρ∂Ω

ψ)

∥

∥

∥

∥

W 2/q,q′(Sn−1)

≤ C ‖ψ‖Lq′ (Ω;ρ
∂Ω

dx) . (5.53)

But
ψ ∈ Lq′(Ω; ρ

∂Ω
dx)⇐⇒ ρ

∂Ω
ψ ∈ Lq′(Ω; ρ(1−q′)

∂Ω
dx).

Putting ϕ = ρ
∂Ω
ψ, implies (5.50). �

Proof of Theorem 5.8. (i) Assume that u is a solution of (5.15). Then u ∈ Lq(Ω; ρ
∂Ω
dx),

and for any ζ ∈ C1,L
c (Ω), there holds

∣

∣

∣

∣

∫

∂Ω

∂ζ

∂nL∗
dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

(

uL∗ζ + ζ |u|q−1 u
)

dx

∣

∣

∣

∣

,

≤ ‖u‖Lq(Ω;ρ
∂Ω

dx)‖L∗ζ‖
Lq′(Ω;ρ

−q′/q
∂Ω dx)

+

∫

Ω
|u|q |ζ| dx, (5.54)

≤ ‖u‖Lq(Ω;ρ
∂Ω

dx)

∥

∥

∥

∥

∂ζ

∂nL∗

∥

∥

∥

∥

W 2/q,q′ (∂Ω)

+

∫

Ω
|u|q |ζ| dx,

since G
Ω
L∗(L∗ζ) = ζ. Let η ∈W 2/q,q′∂Ω, and, for δ > 0, put ζ = δ−2ρ

∂Ω
(δ − ρ

∂Ω
)2+P

Ω
L(η),

∣

∣

∣

∣

∫

∂Ω
ηdµ

∣

∣

∣

∣

≤ ‖u‖Lq(Ω;ρ
∂Ω

dx)‖η‖W 2/q,q′ (∂Ω) + δ−2

∫

Ω
ρ

∂Ω
(δ − ρ

∂Ω
)2+
∣

∣P
Ω
L(η)

∣

∣ |u|q dx. (5.55)

Let K ⊂ ∂Ω be a compact subset such that C2/q,q′(K) = 0. Then there exists a sequence

{ηn} ⊂W 2/q,q′(∂Ω) with the property that 0 ≤ ηn ≤ 1, ηn ≡ 1 in a neigborhood of K and
ηn → 0 in W 2/q,q′(∂Ω) as n→∞. We take η = ηn in (5.55). Since u ∈ Lq(Ω; ρ

∂Ω
dx) and

K has measure zero, the two terms in the right-hand side of (5.55) converge to 0 when
n →∞. Thus µ does not charge Borel subsets with C2/q,q′-capacity zero. It follows that
µ is the sum of an integrable function and a mesure in W−2/q,q(∂Ω), by Corollary 3.18.

(ii) Conversely, let µ be a boundary measure which does not charge Borel subsets with
C2/q,q′-capacity zero. Assuming first that µ is positive, by Proposition 3.17 there exists

an increasing sequence {µj} of elements of W−2/q,q(∂Ω) ∩M+(∂Ω) which converges to µ.
By Proposition 5.9, the µj are boundary-q-admissible and the sequence {uj} of solutions
of

Luj + |uj|q−1 uj = 0 in Ω,

uj = µj on ∂Ω,
(5.56)
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is increasing. Moreover uj ≥ 0. If u = limj→∞ uj, then u ≥ 0. Since

∫

Ω

(

ujL
∗ζ + uq

jζ
)

dx = −
∫

∂Ω

∂ζ

∂nL∗
dµj , (5.57)

for any ζ ∈ C1,L
c (Ω). Taking ζ = η1, the solution of

L∗η1 = 1 in Ω,

η1 = 0 on ∂Ω,

we deduce u ∈ L1(Ω) ∩ Lq(Ω; ρ
∂Ω
dx) by the monotone convergence Theorem. Therefore

(5.57) implies that u is the solution of

Lu+ |u|q−1 u = 0 in Ω,

u = µ on ∂Ω.
(5.58)

If µ is a signed measure, we procede as in the proof of Theorem 3.20, by truncating
the nonlinearity and inroducing the solutions of (5.15) associated to µ+ and −µ− on the
boundary. �

5.2 Boundary singularities

5.2.1 Isolated singularities

The study of boundary singularities of solutions of semilinear elliptic equations started with
the work of Gmira and Véron [48]. As in the case of equations with internal singularities,
the starting idea is to study the model case where Ω = R

n
+, ∂Ω = ∂R

n
+ ≈ R

n−1 and the
singularity is located at x = 0. In spherical coordinates x = (r, σ) where r > 0, σ ∈ Sn−1,
the existence of a solution u to

−∆u+ |u|q−1 u = 0, (5.59)

in R
n
+ (q > 1) which vanishes on ∂R

n
+\{0} is enlighted if we look for it under the separable

form u(r, σ) = rαω(σ). Then α = −2/(q − 1) and ω is a solution of

−∆
Sn−1ω −

(

2

q − 1

)(

2q

q − 1
− n

)

ω + |ω|q−1 ω = 0 on Sn−1
+ = Sn−1 ∩R

n
+, (5.60)

which vanishes on the equator ∂Sn−1
+ ≈ Sn−2. Since the first nonzero eigenvalue of

the Laplace-Beltrami operator in W 1,2
0 (Sn−1

+ ) is n − 1, it is clear, by multiplying (5.60)
by ω and integrating over Sn−1

+ , that no nontrivial solution of (5.60) exists whenever
(2/(q − 1))(2q/(q − 1) − n) ≤ n − 1. Equivalently q ≥ (n + 1)/(n − 1). Conversely, if
(2/(q − 1))(2q/(q − 1) − n) < n − 1 solutions to (5.60) exist. The stable solutions are
obtained by minimizing the functional

η 7→ J(η) =

∫

Sn−1
+

(

1

2

∣

∣∇
Sn−1η

∣

∣

2 −
(

1

q − 1

)(

2q

q − 1
− n

)

η2 +
1

q + 1
|η|q+1

)

dσ, (5.61)
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over the space W 1,2
0 (Sn−1

+ ), where ∇
Sn−1 denotes the covariant derivative identified with

the tangential gradient thanks to the isometrical imbedding of Sn−1 into R
n. Put

Λq,n =

((

2

q − 1

)(

2q

q − 1
− n

))

= ℓq−1
q,n ,

and let S+ be the set of solutions of (5.60) in Sn−1
+ which vanishes on ∂Sn−1. As we

have already seen it, if q ≥ (n + 1)/(n − 1) this set is reduced to {0}. Conversely, if
1 < q < (n + 1)/(n − 1) ⇐⇒ Λq,n > n − 1, there exist minimizing solutions to (5.60).
Besides this fact, the positive solutions are unique. Moreover, if Λq,n ≤ 2n, which is the

second eigenvalue of ∆
Sn−1 in W 1,2

0 (Sn−1
+ ), all the solutions of (5.60) vanishing on the

equator have constant sign. Finally, if Λq,n > 2n there exist changing sign solutions.

Let Ω be an open subset of R
n with a boundary of class C2,θ for some θ ∈ (0, 1), and

0 ∈ ∂Ω. It can be performed an orthogonal change of coordinates in R
n in order the axis

{x : xj = 0, ∀j = 1, ..., n − 1} be the normal direction to ∂Ω, en be the unit outward
normal vector at 0 and ∂R

n
+ ≈ R

n−1 the tangent plane to ∂Ω at 0. Let u be any solution
to (5.59) in Ω which is continuous in Ω \ {0} and coincides on ∂Ω \ {0} with a function
g ∈ C(∂Ω). For R > 0 small enough and m+ = max{g(x) : x ∈ ∂Ω ∩BR}, the function

x 7→ ũ(x) =

{

(u(x)−m+)+ if x ∈ Ω ∩BR,

0 if x ∈ BR \ Ω,

is a subsolution of (5.59) in BR \ {0}. But the Keller-Osserman estimate implies

u(x) ≤ m+ +C |x|−2/q−1 ,∀x ∈ Ω ∩BR \ {0},

for some C = C(n, q,R) > 0. In the same way, u is bounded from below in the same

set by m− − C |x|−2/q−1, where m− = min{g(x) : x ∈ ∂Ω ∩ BR}. Hence the function

x 7→ |x|2/q−1 u(x) is uniformly bounded in Ω∩BR\{0}. We perform a change of coordinates
y = φ(x) which transforms Ω∩BR into R

n
+ ∩BR and ∂Ω∩BR into Rn−1 ∩BR. We define

v by

y 7→ v(y) = v(r, σ) =
∣

∣φ−1(y)
∣

∣

2/(q−1)
u(φ−1(y)), (r, σ) ∈ (0, R) × Sn−1

+ ,

and put w(t, σ) = v(r, σ) with t = ln r. Then w satisfies an equation of the type

0 = (1 + ǫ1(t))wtt +

(

n− 2
q + 1

q − 1
+ ǫ2(t)

)

wt + (Λq,n + ǫ3(t))w + ∆
Sn−1w

+〈∇
Sn−1w.ǫ4(t)〉+ +〈∇

Sn−1wt.ǫ5(t)〉+ 〈∇Sn−1 〈∇Sn−1w.en〉.ǫ6(t)〉+ |w|q−1 w
(5.62)

in (−∞, lnR]× Sn−1
+ , where the ǫj(t) depend on the change of coordinates and verify

|ǫj(t, σ)| ≤ Cje
t, ∀(t, σ) ∈ (−∞, lnR]× Sn−1

+ , j = 1, ..., 6. (5.63)

Since |w(t, σ)| ≤ Ce2qt/(q−1), we can use the elliptic equations regularity theory and a
Lyapounov style analysis at −∞. The following result is due to Gmira and Véron [48].
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Theorem 5.12 Suppose 1 < q < (n + 1)/(n − 1). Then, with the previous notations,
there exists a compact connected subset E+ of the set of the solutions of (5.60) in Sn−1

+

which vanish on ∂Sn−1
+ , such that

lim
t→−∞

distC2(Sn−1
+ )(w(t, .), E+) = 0, (5.64)

where distC2(Sn−1
+ ) denotes the distance associated with the C2(Sn−1

+ )-norm. Moreover, the

set E+ is reduced to a singleton in the following cases :

(i) u is nonnegative,

(ii) (n+ 2)/2n ≤ q < (n + 1)/(n − 1),

(iii) n = 2.

When E+ = {0} it is possible to make more precise the way the function w(t, .) con-
verges to 0 as t → −∞. By adapting the method developed in [27], it is proven in [48]
that the following result holds,

Theorem 5.13 Suppose 1 < q < (n + 1)/(n − 1) and let w be the solution of (5.62)
associated to u, solution of (5.59). Assume

lim
t→−∞

‖w(t, .)‖C2(Sn−1
+ ) = 0.

Then, if one of the following conditions holds :

(a) u is nonnegative,

(b) n = 2 and ∂Ω is locally a straight line near 0,

(c) 2/(q − 1) is not an integer,

(i) either u can be extended to Ω as continuous function solution of the Dirichlet problem

−∆u+ |u|q−1 u = 0 in Ω,

u = g on ∂Ω,
(5.65)

(ii) or there exists an integer k ∈ [n− 1, 2/(q − 1)) and a nonzero solution ψ of

∆
Sn−1ψ + k(n+ k − 2)ψ = 0 in Sn−1

+ ,

ψ = 0 on ∂Sn−1
+ ,

(5.66)

such that

lim
t→−∞

e(k−2/(q−1))tw(t, .) = ψ, (5.67)

in the C2(Sn−1
+ )-topology.
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The meaning of this result is the following : either u has a strong boundary singularity
which is described thanks to the set S+ of solutions of (5.60) vanishing on the equator,
either there exists a spherical harmonic of degree k such that

lim
x → 0

x/ |x| → σ

|x|k u(x) = ψ(σ), uniformly for σ ∈ Sn−1
+ , (5.68)

or u is regular function.

When −∆ is replaced by an elliptic operator L with variable Lipschitz continuous
coefficients, most of the above results extend in the same way as for the isolated internal
singularities (see the section on isolated singularities).

5.2.2 Removable singularities

The first result on removability (see [48]) is the following.

Theorem 5.14 Let Ω be a C2 domain in R
n, x0 a boundary point, and g a continuous

real valued function defined on Ω× R, such that

lim inf
r→∞

g(x, r)

r(n+1)/(n−1)
> 0 and lim sup

r→∞

g(x, r)

|r|(n+1)/(n−1)
< 0, ∀x ∈ Ω, (5.69)

uniformly with respect to x ∈ Ω. If u ∈ C2(Ω) ∩ C(Ω \ {x0}) is a solution of

−∆u+ g(x, u) = 0 in Ω, (5.70)

which coincides on ∂Ω \ {x0} with some φ ∈ C(∂Ω), then u can be extended as a C(Ω)
function, which verifies

−∆u+ g(x, u) = 0 in Ω,

u = φ on ∂Ω.
(5.71)

Actually, their proof could have been adapted, without any deep modification, to Equation
(5.1). A much more general result will be given later on.

Definition 5.15 Let Ω be a C2 domain in R
n and q ≥ (n+ 1)/(n − 1).

(i) A Borel subset K of ∂Ω is said q-removable if any nonnegative function u ∈ C2(Ω) ∩
C(Ω \K) solution of (5.59) which vanishes on ∂Ω is identically zero.

(ii) A Borel subset K of ∂Ω is said conditionally q-removable if any nonnegative function
u ∈ C2(Ω) ∩ C(Ω \K) solution of (5.59) belongs to Lq

loc(Ω; ρ
∂Ω
dx).

The condition q ≥ (n+ 1)/(n− 1) is necessary, since, below this value, only the empty
set is removable by Theorem 5.6. The main removability result is the folllowing,

Theorem 5.16 Let Ω be a C2 bounded domain in R
n, q ≥ (n+ 1)/(n− 1) and K ⊂ Ω be

compact. Then the following assertions are equivalent.

(i) K is q-removable.

(ii) K is conditionally q-removable.

(iii) C2/q,q′(K) = 0.
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This result was first proven by Le Gall [63] in the case q = 2, by probabilistic methods,
then by Dynkin and Kuznetsov [36] in the case q ≤ 2, by a combination of analytic and
probabilistic methods and by Marcus and Véron [71] when q > 2 with purely analytic
tools. All the proof are based upon the construction of suitable lifting operators which
transform functions defined on the boundary into functions defined in Ω. In [72] the first
unified proof, valid in all the cases q ≥ (n+ 1)/(n− 1) is given. We shall present a sketch
of it below.

Definition 5.17 A linear map R : C2(Ω) 7→ C2(Ω) is called a positive lifting if

R(η)∂Ω = η and η ≥ 0 =⇒ R(η) ≥ 0. (5.72)

Lemma 5.18 Let φ be the first eigenfunction of −∆ in W 1,2
0 (Ω) and q ≥ (n+1)/(n− 1).

There exists a positive lifting operator R : η 7→ R(η) = Rη with the additional property

‖Rη‖L∞(Ω) ≤ ‖η‖L∞(∂Ω) ,

and
∥

∥

∥

∣

∣

∣φ1/q′∆Rη

∣

∣

∣+ 2
∣

∣

∣φ−1/q〈∇Rη.∇φ〉
∣

∣

∣

∥

∥

∥

Lq′ (Ω)
≤ C‖η‖W 2/q,q′(∂Ω), ∀η ∈W 2/q,q′(∂Ω). (5.73)

Furthermore
∥

∥

∥

∣

∣

∣
φ1/q′Rη∆Rη

∣

∣

∣
+ 2

∣

∣φ−1/qRη〈∇Rη.∇φ〉
∣

∣+ φ1/q′ |∇Rη|2
∥

∥

∥

Lq′(Ω)

≤ C(1 + ‖η‖W 2/q,q′ (∂Ω)), ∀η ∈ T ∗,
(5.74)

where T ∗ = {η ∈W 2/q,q′(∂Ω) : 0 ≤ η ≤ 1}.

Proof. In Section 2.4 we have already introduced the foliation of ∂Ω by the Σβ

Σβ := {x ∈ Ω : ρΩ(x) = β}, 0 < β ≤ β0,

for β0 depending on the curvature of ∂Ω, with Σ0 = Σ = ∂Ω, Ωβ = {x ∈ Ω : ρ
∂Ω

(x) > β}
and Gβ = Ω \ Ωβ . For every 0 < β ≤ β0 and x ∈ Gβ there exists a unique σ(x) ∈ Σ such
that |x− σ(x)| = ρ

∂Ω
(x), and the correspondence x ←→ (ρ

∂Ω
(x), σ(x)) defines a smooth

change of coordinates near the boundary called the flow coordinates. In terms of flow
ccordinates, the Laplacian has the following form

∆ =
∂2

∂ρ2
+ b0

∂

∂ρ
+ ΛΣ,

where ρ stands for ρ
∂Ω

, b0 depends on x and ΛΣ is a second order elliptic operator on Σ
with coefficients depending also on x. Moreover

ΛΣ → ∆Σ and b0 → κ as ρ
∂Ω

(x)→ 0,
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where ∆Σ is the Laplace-Beltrami operator on Σ, and κ the mean curvature of Σ (see
[13]). If η ∈ C(Σ), let H = Hη be the solution of the initial value problem

∂H

∂τ
= ∆ΣH in R+ × Σ,

H(0, ·) = η(·) in Σ.
(5.75)

We can express H in terms of the two coordinates (τ, σ). Let h ∈ C∞(R+) be a truncation
function with value in [0, 1], h ≡ 1, on [0, β0/2] and h ≡ 0, on [β0,∞). The lifting R = Rη

of η is defined by

Rη(x) =







Hη(φ
2(x), σ(x))h(ρ

∂Ω
(x)), ∀x ∈ Gβ0

0, ∀x ∈ Ωβ0.
(5.76)

Clearly the positivity and contraction principle in uniform norms hold. The proof of
(5.73) and (5.74) is much more elaborated and settled upon analytic semigroups theory
and delicate interpolation results (see [72] for a detailled proof). �

Proof of Theorem 5.16. (iii)=⇒ (ii) Let

TK = {η ∈ C2(∂Ω) : 0 ≤ η ≤ 1, η ≡ 0 in an open relative neighborhood of K}.

Put ζη := φR2q′
η . Then 0 ≤ ζ ≤ φ, and ζη(x) = O

(

(ρ
∂Ω

(x))1+2q′
)

in a neighborhood Vη

of K. Since in the case of Equation (5.59), the Keller-Osserman a priori bound implies

|u(x)| ≤ C(N, q)(ρ
∂Ω

(x))−2/(q−1), ∀x ∈ Ω, (5.77)

and u(x) = O (ρ
∂Ω

(x)) if ρ
∂Ω

(x)→ 0, outside Vη, we derive

uq(x)ζη(x) = O (ρ
∂Ω

(x)) in Ω. (5.78)

Moreover, if λ1 is the eigenvalue corresponding to φ,

∆ζη = −λ1φR
2q′
η + φ∆R2q′

η + 2〈∇φ.∇R2q′
η 〉

= −λ1ζη + 2q′φR2q′−1
η ∆Rη + 2q′(2q′ − 1)R2q′−2

η |∇Rη|2 + 2q′R2q′−1
η 〈∇φ.∇Rη〉.

(5.79)
Therefore

u |∆ζη| ≤ C(η)uR2q′−2
η .

Because η ∈ TK , u∆ζη remains bounded in Ω. For 0 < β ≤ β0,

∫

Ω\Gβ

ζη∆u dx =

∫

Ω\Gβ

u∆ζη dx+

∫

Σβ

(

ζη
∂u

∂n
− u∂ζη

∂n

)

dS, (5.80)

and combining (5.77) with Schauder estimates,

∂u

∂n
Σβ

= O(β−(q+1)/(q−1)),
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hence
(

ζη
∂u

∂n
− u∂ζη

∂n

)

Σβ
= O(β).

Letting β → 0 in (5.80) implies

∫

Ω

(

− u∆ζη + uqζη

)

dx = 0. (5.81)

By Hölder’s inequality,

∫

Ω
u |∆ζη| dx ≤

(
∫

Ω
uqζη dx

)1/q (∫

Ω
ζ
−q′/q
η |∆ζη|q

′

dx

)1/q′

≤ c
(
∫

Ω
uqζη dx

)1/q (∫

Ω
(ζη +M(η)q

′
) dx

)1/q′

,

(5.82)

where
M(η) =

∣

∣

∣φ1/q′Rη∆Rη

∣

∣

∣+ 2
∣

∣

∣φ−1/qRη〈∇Rη .∇φ〉
∣

∣

∣+ φ1/q′ |∇Rη|2 .

Since by Lemma 5.18,

‖M(η)‖Lq′ (Ω) ≤ C1(1 + ‖η‖W 2/q,q′(∂Ω)),

it follows from (5.81) and (5.82),

∫

Ω
uqζηdx ≤ C2(1 + ‖η‖W 2/q,q′(∂Ω))

q′ . (5.83)

If we put η∗ = 1− η, then ‖η‖q′
W 2/q,q′(∂Ω)

≤ C ′ + ‖η∗‖q′
W 2/q,q′(∂Ω)

. If K has C2/q,q′-capacity

zero, there exists a sequence {η∗n} ⊂ C2(∂Ω) such that 0 ≤ η∗n ≤ 1, η∗n ≡ 1 in a relatively
open neighborhood of K and

‖η∗n‖W 2/q,q′ (∂Ω) → 0 as n→∞.

Since a boundary set with C2/q,q′-capacity zero has zero (n−1) -Hausdorff measure, η∗n → 0
as n→∞. Thus ζη∗

n
→ φ. If we let n→∞ in (5.83) we finally obtain

∫

Ω
uqφdx ≤ C2, (5.84)

with C2 = C2(K). Thus K is conditionally q-removable.

(ii) =⇒ (i) Since uq ∈ L1(Ω; ρ
∂Ω
dx), u ≥ 0 and

−∆u = −uq,

the function v = u+ G
Ω
−∆(uq) is positive and harmonic in Ω, thus it admits a boundary

trace µ ∈M+(∂Ω). Since the boundary trace of G
Ω
−∆(uq) is the zero measure, it is infered
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that u admits the same boundary trace µ, the support of which is included into the set
K. Moreover

0 ≤ u = P
Ω
−∆(µ)−G

Ω
−∆(uq) ≤ P

Ω
−∆(µ).

Therefore u = uµ, solution of Problem (5.15) with L = −∆. Consequently µ does not
charge boundary sets with C2/q,q′-capacity zero and the same property is shared by kµ,
for any k ∈ N∗. Put uk = ukµ. If µ is not zero, the sequence of solutions {uk} is increasing
and converges to some u∞ when k →∞. Because uk vanishes on ∂Ω \K, it follows from
the Keller-Osserman construction that u∞ inherits the same property. Furthermore

∫

Ω

(

−uk∆ζη∗ + ζη∗uq
k

)

dx = −k
∫

∂Ω

∂ζη∗

∂n
dµ, (5.85)

where η ∈ T , η∗ = 1 − η and ζη∗ = φR2q′

η∗ . Because µ is not zero, the right-hand side of

(5.85) tends to infinity with k. Since K is conditionally q-removable u∞ ∈ L1(Ω; ρ
∂Ω
dx).

Moreover, as we have seen it before,
∣

∣

∣

∣

∫

Ω
uk∆ζη∗dx

∣

∣

∣

∣

≤ C
(∫

Ω
uq

kφdx

)1/q
(

1 + ‖η∗‖W 2/q,q′ (∂Ω)

)

.

Hence, the right-hand side of (5.85) is bounded independently of k, which is a contradic-
tion.

(i) =⇒ (iii). If we assume C2/q,q′(K) > 0, there exists a measure µK ∈ M+(∂Ω) ∩
W−2/q,q(∂Ω), satisfying µK(∂Ω \ K) = 0 and C2/q,q′(K) = µK(K). This measure is an
extremal for the dual definition of the capacity of K (already introduced in (3.54 with
Bessel potentials) :

C2/q,q′(K) = sup
µ ∈ M+(∂Ω)
µ(∂Ω \ K) = 0





µ(K)
∥

∥PΩ
−∆(µ)

∥

∥

Lq(Ω;ρ
∂Ω

dx)





q′

,

see [1, Th. 2.2.7]. Hence Problem (5.15) with L = −∆ is solvable with µ = µK , thus K is
not conditionally q-removable. �

5.3 The boundary trace problem

One of the most striking aspects in the study on positive solutions of (5.15) in a domain Ω
relies on the possibility of defining a boundary trace which is no longer a Radon measure,
but a generalized Borel measure, that is a measure which can take infinite values on
compact boundary subsets. The second important task of the theory of boundary trace
is to analyse the connection between the set of all the boundary traces and the set of
solutions. These notions were first studied by Le Gall [61], [62] in the case L = −∆,
q = n = 2, and then extended by Marcus and Véron [68], [69], [70]. For simplicity we shall
consider first the model case

−∆u+ |u|q−1 u = 0 in Ω. (5.86)

We adopt the notations of Section 2.4
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Theorem 5.19 Let Ω ⊂ R
n be a smooth domain and q > 1. Let u be a positive solution

of (5.86). Then for any a ∈ ∂Ω the following dichotomy holds :
(i) either for every relatively open subset O ⊂ Ω containing a,

lim
t→0

∫

Ot

u(x)dSt =∞, (5.87)

(ii) or there exist a relatively open subset O ⊂ Ω containing a and a positive linear func-
tional ℓ on C∞

c (O) such that for every θ ∈ C∞
c (O),

lim
t→0

∫

Ot

u(x)θ(x)dS = ℓ(θ). (5.88)

Proof. The proof of this result is settled upon the following alternative which holds for
every boundary point a :

(I) either there exists an open ball Br0(a) such that
∫

Br0 (a)∩Ω
uqρ

∂Ω
dx <∞, (5.89)

(II) or for any r > 0,
∫

Br(a)∩Ω
uqρ

∂Ω
dx =∞. (5.90)

If (I) holds, let ǫ > 0 and Uǫ be a smooth open subdomain of Ω ∩ Br0(a) containing
Br−ǫ(a)Ω and such that

Br−ǫ(a) ∩ ∂Ω ⊂ U ǫ ∩ ∂Ω ⊂ Br(a) ∩ ∂Ω.

The function ũ = uUǫ is a nonnegative solution of (5.86) in Uǫ with ũq ∈ L1(Uǫ; ρ∂Uǫ
dx).

Thus it admits a boundary trace on ∂Uǫ which belongs to M+(∂Uǫ). Therefore, for any
θ ∈ C∞

c (∂Uǫ), there holds

lim
t→0

∫

∂Uǫ t

u(x)θ(x)dS = ℓǫ(θ). (5.91)

Since ǫ is arbitrary and ℓǫ is uniquely determined on ∂Uǫ, assertion (ii) follows.

If (II) holds, let η ∈ C∞
c (∂Ω ∩ Br(a)) such that 0 ≤ η ≤ 1, η ≡ 1 on ∂Ω ∩ Br/2(a). For

t ∈ (0, β0/2) small enough, we define ζη,t in the set Ωt \Ωβ0 by

ζη,t(x) = ζη,t(ρ∂Ω
(x)− t, σ(x)) = (φR2q′

η )(ρ
∂Ω

(x)− t, σ(x)).

Then
∫

Ωt\Ωβ0

(−u∆ζη,t + uqζη,t) dx =

∫

Σt

η2q′udS −
∫

Σβ0

∂ζη,t

∂n
(β0 − t, σ)dS. (5.92)

As we have already seen it

∫

Ωt\Ωβ0

|u∆ζη,t| dx ≤ C‖η‖W 2/q,q′

(

∫

Ωt\Ωβ0

uqζη,tdx

)1/q

.
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Because the surface integral term in (5.92) on Σβ0 is bounded independently of t, it follows

∫

Σt

η2q′udS ≥
∫

Ωt\Ωβ0

uqζη,tdx− C1‖η‖W 2/q,q′

(

∫

Ωt\Ωβ0

uqζη,tdx

)1/q

− C2. (5.93)

Moreover, as η ≡ 1 on ∂Ω∩Br/2(a), there exists δ > 0 such that φR2q′
η ≥ δ on Ω∩Br/2(a).

Hence, by (5.90) and the Beppo-Levi Theorem,

lim
t→0

∫

Ωt\Ωβ0

uqζη,tdx =∞,

which implies

lim
t→0

∫

Σt

η2q′udS =∞, (5.94)

and assertion (i) follows. �

We write ∂Ω = S(u)∪R(u) where S(u) is the closed subset of boundary points where
(i) occurs, and R(u) = ∂Ω \ S(u). By using a partition of unity, there exists a unique
positive Radon measure µ on R(u) such that

lim
t↓0

∫

R(u)
u(σ, t)ζt(σ, t)dSt =

∫

R(u)
ζ(σ)dµ, (5.95)

for every ζ ∈ Cc(R(u)). Thus we define the boundary trace by the following identification

Tr∂Ω(u) = (S(u), µ). (5.96)

The set S(u) is called the singular part of the boundary trace of u, while µ ∈M+(R(u))
is the regular part. The couple (S(u), µ) defines in a unique way an outer regular positive
Borel measure ν (an element of B

reg
+ (∂Ω)), with singular part S(u) and regular part µ.

In the subcritical case, an important pointwise characterization of the singular part is
the following minoration,

Proposition 5.20 Let Ω be a bounded domain in R
n with a C2 boundary ∂Ω, 1 < q <

(n+ 1)/(n − 1) and u be a positive solution of (5.86) in Ω with boundary trace (S(u), µ).
If a ∈ S(u), then

u(x) ≥ u∞a(x), ∀x ∈ Ω, (5.97)

where u∞a = limk→∞ ukδa, and ukδa is the solution of

−∆ukδa + |ukδa |q−1 ukδa = 0 in Ω,

ukδa = kδa on ∂Ω.
(5.98)

Proof. Since for any r > 0, there holds

lim
t→0

∫

Br(a)∩Σt

u(x)dSt =∞,
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for any k > 0 and t = tk = 1/k, there exists rk,t > 0 such that

∫

Brk,t
(a)∩Σt

u(x)dSt ≥ k.

Let mk be such that
∫

Brk,t
(a)∩Σt

min{mk, u(x)}dSt = k,

and denote by vk the solution of

−∆vk + |vk|q−1 vk = 0 in Ωt,

vk = χ
Brk,t

(a)∩Σt
on Σt.

(5.99)

By the maximum principle, vk ≤ u in Ωt and by the stability result of Corollary 5.4, vk

converges to ukδa locally uniformly in Ω (actually the proof is given for a fixed domain Ω,
but the adaptation to a sequence of expanding smooth domains is straightforward). Thus
ukδa ≤ u in Ω. Since k is arbitrary, (5.97) follows. �

Remark. Notice that the boundary behaviour of u∞a is given by Theorem 5.12 : with an
apropriate rotation in the space, it is

lim
x → a

(x − a)/ |x − a| → σ

|x− a|2/(q−1) u∞a(x) = ω(σ), uniformly on Sn−1
+ , (5.100)

where ω is the unique solution of (5.60) on Sn−1
+ which vanishes on the equator ∂Sn−1

+ .

The most general boundary value problem concerning positive solutions of (5.86) is to
solve the Dirichlet boundary value problem with a given outer regular Borel measure as
boundary trace. If ν ∈ B

reg
+ (∂Ω), we put

S = Sν = {σ ∈ ∂Ω : ν(U) =∞ for every relatively open neighborhood U of σ}.

Clearly Sν is closed and the restriction µ of ν to Rν = ∂Ω \ Sν is a Radon measure. This
establishes a one to one correspondence between B

reg
+ (∂Ω) and the set of couples (S, µ),

where S is a closed subset of ∂Ω and µ a positive Radon measure on R = ∂Ω \ S. The
following result is proven in [70].

Theorem 5.21 Let Ω ⊂ R
n be a smooth domain and 1 < q < (n + 1)/(n − 1). Then

for any ν ∈ B
reg
+ (∂Ω) with ν ≈ (S, µ), where S is a closed subset of ∂Ω and µ a positive

Radon measure on ∂Ω \ S, there exists a unique solution of

−∆u+ |u|q−1 u = 0 in Ω,

T r∂Ω(u) = ν.
(5.101)

97



Proof. The proof is long and technical, and we shall just indicate the main steps :

(1) By approximation, a minimal solution uS,µ and a maximal solution uS,µ of Problem
(5.101) are constructed, so any other solution u satisfies

uS,µ ≤ u ≤ uS,µ. (5.102)

(2) Using convexity and the approximations of the minimal and the maximal solutions, it
is proven that

uS,µ − uS,µ ≤ uS,0 − uS,0. (5.103)

(3) Using (5.77), (5.97), (5.100) and Hopf boundary lemma, there exists K = K(q,Ω) > 1
such that

uS,0 ≤ KuS,0. (5.104)

(4) Assuming that uS,0 6= uS,µ (and the strict inequality follows by the strong maximum
principle), a convexity argument implies that the function

w = uS,0 −
1

2K
(uS,0 − uS,0),

is a supersolution of (5.101) with ν ≈ (S, 0). Since for 0 < α < 1/(2K) αuS,0 is a
subsolution of the same problem with the same boundary trace, and

αuS,0 ≤ w,

it follows by (Theorem 4.1) that there exists a solution u of (5.86) in Ω and

αuS,0 ≤ u ≤ w < uS,0. (5.105)

Because both αuS,0 and w have the same boundary trace (S, 0) in the sense of Theo-
rem 5.19, u is a solution of Problem (5.101) with ν ≈ (S, 0). This fact contradicts the
minimality of uS,0, thus uS,0 = uS,0, which, in turn, implies uS,µ = uS,µ. �

When q ≥ (n + 1)/(n − 1) neither any positive Radon measure on ∂Ω is eligible for
being the regular part of the boundary trace of a positive solution of (5.86), nor any closed
boundary subset for being the singular part : these facts follow from Theorem 5.8 and
Theorem 5.16.

Definition 5.22 (i) Let A be a relatively open subset of ∂Ω and µ ∈M+(A). Then the
singular boundary of A relative to µ is defined by

∂µA = {σ ∈ A : µ(U ∩ A) =∞, for every neighborhood U of σ}. (5.106)

(ii) Let A be a Borel subset of ∂Ω. A boundary point σ is q-accumulation point of A if, for
every relatively open neighborhood U of σ, C2/q,q′(A∩U) > 0. The set of q-accumulation
points of A will be denoted by A∗

q.
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The following result, announced (under a slighly different form) in [69], is proven in
[71] (see also [38], [39]).

Theorem 5.23 Let Ω ⊂ R
n be a smooth domain, q ≥ (n + 1)/(n − 1) and ν ≈ (S, µ) an

element of B
reg
+ (∂Ω). Then Problem (5.101) admits a solution if and only if the following

condition is fulfilled :

(i) For every Borel subset A ⊂ R = ∂Ω \ S, C2/q,q′(A) = 0 =⇒ µ(A) = 0,

(ii)S = S∗q ∪ ∂ν(R).
(5.107)

One of the most striking aspect of the super-critical case is the loss of uniqueness. It
has been proven by Le Gall [64] in the case q = 2 and extended by Marcus and Véron
[71] that there exist infinitely many solutions of Problem (5.101) whenever the singular
set S has a non-empty relative interior. Actually there exists a maximal solution, but no
minimal solution. This fact has led Dynkin and Kuznetsov in [40] to introduce a thiner
notion of boundary trace called the fine trace. However their definition is only working
when q ≤ 2. When q = 2 and with a fundamental use of probability techniques (the
Brownian snake), Mselati proved in [80] the one to one correpondence between positive
solutions of (5.86) and the fine trace. The extension of this result in the general case
remains open.

5.4 General nonlinearities

5.4.1 The exponential

There are many extensions of the nonlinear boundary value problems when the nonlinearity
in no longer of a power type. In [49] the boundary trace of the prescribed Gaussian
curvature equation is studied

−∆u = K(x)e2u, (5.108)

in a 2-dimensional bounded domain Ω. In this equation, K is a given function ; the
question is to find out a new metric conformal to the standard metric of a subdomain on
the hyperbolic plane H

2 so that K is the Gaussian curvature of this metric (see [87] for
example). The existence of boundary trace in the set of outer regular Borel measures on
∂Ω is proven. In the case of a Radon measure the following existence result is obtained :

Theorem 5.24 Suppose β ≤ K(x) ≤ α < 0 is a continuous function in a smooth bounded
domain Ω of the plane and µ ∈M(∂Ω) with Lebesgue decomposition

µ = µRdH1 + µs,

where µR ∈ L1(∂Ω) and µs ⊥ µR. If there exists some p ∈ (1,∞] such that

(i) exp
(

2PΩ
−∆(µs)

)

∈ Lp′(Ω; ρ
∂Ω
dx),

(ii) exp(2µR) ∈ Lp−1(∂Ω),
(5.109)
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then there exists a unique u ∈ L1(Ω) with e2u ∈ L1(Ω; ρ
∂Ω
dx) solution of

−∆u−K(x)e2u = 0 in Ω,

u = µ.
(5.110)

As for the power case, sufficient conditions for solving

−∆u−K(x)e2u = 0 in Ω,

T r∂Ω(u) = ν.
(5.111)

where ν ∈ B
reg
+ (∂Ω) are given. They are expressed in terms of a boundary logarithmic

capacity.

5.4.2 The case of a general nonlinearity

For general semilinear equations of the form

−∆u+ g(x, u) = 0 in Ω, (5.112)

where Ω is a smooth domain in R
n, not necessarily bounded, and g a continuous function

defined on Ω × R, a new approach of the boundary trace problem is provided by Marcus
and Véron in [73]. As it has already been observed in the implication [(i) =⇒ (ii)] in the
proof of Theorem 5.16, if u is a positive solution of (5.112) with g(x, u) ≥ 0, and if for
some a ∈ ∂Ω there exists r > 0 such that

∫

Br(a)∩Ω
g(x, u)ρ

∂Ω
dx <∞, (5.113)

then u ∈ L1(Br′(a) ∩ Ω) for any 0 < r′ < r and there exists a positive linear functional ℓ
on C∞

c (Σ ∩Br(a)) such that, for any θ in this space,

lim
t→0

∫

Br(a)∩Σt

u(x)θ(x)dSt = ℓ(θ). (5.114)

This result leads to the notion of regular and singular points if it is assumed for example
that g satisfies

g(x, r) ≥ 0, ∀(x, r) ∈ Ω× R+. (5.115)

Definition 5.25 Let u be a continuous nonnegative solution of (5.112). A point a ∈ ∂Ω
is called a regular point of u if there exists an open neighborhood U of a such that (5.113)
holds. The set of regular points is denoted by R(u). It is a relatively open subset of ∂Ω.
Its complement, S(u) = ∂Ω \ R(u) is the singular set of u.

Using a partition of unity, it exists a positive Radon measure µ on R(u) such that

lim
t↓0

∫

R(u)t

u(σ, t)ζt(σ, t)dSt =

∫

R(u)
ζ(σ)dµ, (5.116)

for every ζ ∈ Cc(R(u)).
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Definition 5.26 A function g is a coercive nonlinearity in Ω if, for every compact subset
K ⊂ Ω, the set of positive solutions of (5.112) is uniformly bounded on K.

An example of coercive nonlinearity is the following :

g(x, r) ≥ h(x)g(r), ∀(x, r) ∈ Ω× R+, (5.117)

where h ∈ C(Ω) is continuous and positive, and f ∈ C(R+) is nondecreasing and satisfies
the Keller-Osserman assumption :

∫ ∞

θ

(
∫ t

0
f(s)ds

)−1/2

dt <∞, ∀θ > 0. (5.118)

The verification of this property is based upon the maximum principle and the construction
of local super solutions by the Keller-Osserman method.

Definition 5.27 A function g possesses the strong barrier property at a ∈ ∂Ω if there
exists r0 > 0 such that, for any 0 < r ≤ r0, there exists a positive super solution v = va,r

of (5.112) in Br(a) ∩ Ω such that v ∈ C(Br(a) ∩ Ω) and

lim
y → x
y ∈ Ω

v(y) =∞, ∀x ∈ Ω× ∂Br(a). (5.119)

If g(x, r) = f(r) where f satisfies the Keller-Osserman assumption, then it possesses
the strong barrier property at any boundary point. If

g(x, r) = (ρ
∂Ω

(x))α rq, ∀(x, r) ∈ Ω× R+

for some α > −2 and q > 1, it possesses also the strong barrier property, but the proof,
due to Du and Guo [33], is difficult in the case α > 0 (the nonlinearity is degenerate at
the boundary).

Proposition 5.28 Let u ∈ C(Ω) be a positive solution of (5.112) and suppose that a ∈
S(u). Suppose that at least one of the following sets of conditions holds :

(i) There exists an open neighborhood U ′ of a such that u ∈ L1(U ′ ∩ Ω).

(ii) (a) g(x, ·) is non-decreasing in R+, for every x ∈ Ω;
(b) ∃Ua, an open neighborhood of a, such that g is coercive in Ua ∩ Ω;
(c) g possesses the strong barrier property at a.

Then, for every open neighborhood U of a,

lim
t→0

∫

U∩Σt

u(x) dSt =∞. (5.120)

This result, jointly with (5.114), yields to the following trace theorem.

Theorem 5.29 Let g be a coercive nonlinearity which has the strong barrier property at
any boundary point. Assume also that r 7→ g(x, r) is nondecreasing on R+ for every x ∈ Ω.
Then any continuous nonnegative solution u of (5.112) possesses a boundary trace ν in
B

reg
+ (∂Ω) with

ν = Tr∂Ω(u) ≈ (S(u), µ), where µ ∈M+(R(u)). (5.121)
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This result applies in the particular case where g(x, r) = ρ
∂Ω

(x)αrq. Moreover a
complete extension of Theorem 5.21 in the subcritical range

1 < q <
n+ 1 + α

n− 1
, α > −2,

is valid. The super critical case is still completely open.
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semi-linéaires non monotones, Ann. Inst. H. Poincaré, Analyse Non Linéaire 2
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[44] Gallouët T. and Morel J. M., Resolution of a semilinear equation in L1, Proc. Roy.
Soc. Edinburgh A 96 (1984), 275-288.

104
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[91] Stampacchia, G., Some limit cases of Lp-estimates for solutions of second order
elliptic equations, Comm. Pure Appl. Math. 16 (1963) 505-510.

[92] Stein E., Singular Integrals and Differentiability Properties of Functions, Princeton
Univ. Press 30 (1970).

[93] Triebel H., Interpolation theory, function spaces, Differential operators, North–
Holland Publ. Co. (1978).

107



[94] Vazquez J. L., On a semilinear equation in R
2 involving bounded measures, Proc.

Roy. Soc. Edinburgh 95A (1983), 181-202.

[95] Vazquez J. L., An a priori interior estimate for the solution of a nonlinear problem
representing weak diffusion, Nonlinear Anal. T., M. & A. 5 (1981), 119-135.
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