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1 Introduction

The role of measures in the study of nonlinear partial differential equations has became
more and more important in the last years, not only because it belongs to the mathematical
spirit to try to extend the scope of a theory, but also because the extension from the
function setting to the measure framework appeared to be the only way to bring into
light nonlinear phenomena and to explain them. In a very similar process, the theory
of linear equations shifted from the function setting to the distribution framework. The
aim of this chapter is to bring into light several aspects of this interaction, in particular
its connection with the singularity theory and the nonlinear trace theory. Our intention
is not to present a truly self-contained text : clearly we shall assume that the reader is
familiar with the standard second order linear elliptic equations regularity theory, as it is
explained in Gilbarg and Trudinger’s classical treatise [47]. Part of the results will be fully
proven, and, for some of them, only the statements will be exposed. The starting point is
the linear theory, in our case the study of

Lu= X in§,

1.1
w=p on 0f, (1)

where €2 is a smooth bounded domain in R”, L is a linear elliptic operator of second order,
and A and p are Radon measures, respectively in Q and 0f2. Under some structural and
regularity assumptions on L (essentially that the maximum principle holds), it is proven
that (1.1) admits a unique solution. Moreover this solution admits a linear representation,
ie.

ulz) = /Q Gz, y)dA(y) + /a PRle.)dut), (1.2)



for any x € ), where G% and P{l are respectively the Green and the Poisson kernels
associated to L in €2. The presentation that we adopt is a combination of the classical
regularity theory for linear elliptic equations and Stampacchia duality approach which
provides the most powerful tool for the extension to semilinear equations. In Section 3 we
shall concentrate on semilinear equations with an absorption-reaction term of the following
type

Lu+g(x,u) =X in Q,

1.3
u=0 on 0, (13)

where (z,7) — g(x,r) is a continuous function defined in Q2 x R, satisfying the absorption
principle

sign(r)g(z,r) >0, V(z,r) € Q x (—o0,—ro] U [rg, ), (1.4)

for some rg > 0. Under general assumptions on g, which are the natural generalisation of
the Brezis-Bénilan weak-singularity condition [11], it is proven that for any Radon measure
A in Q satisfying

/ng‘ﬂd])\\ < 00, (1.5)

with p,, (z) = dist (x,0€) and « € [0, 1], Problem (1.3) admits a solution. Notice that the
assumption on g depends both on n and «. Furthermore, uniqueness holds if r — g(z,r)
is nondecreasing, for any x € 2. However, the growth condition on g is very restrictive.
Thus the problem may not be solved for all the measures, but only for specific ones. A
natural condition is to assume that the measure X satisfies

/Q 9 (2, GL(A) pondz < o0, (1.6)

where G$(]\]), defined by

GR(N) (@) = /Q G, y)d N (), Ve,

is called the Green potential of |A|. Under an additional condition on g, called the Ag-
condition, which excludes the exponential function, but not any positive power, it is shown
that, in Condition (1.6), the measure A can be replaced by its singular part with respect
to the n-dimensional Hausdorff measure in the Lebesgue decomposition, in order Problem
(1.3) to be solvable. In the case where

gla,r)=[r|"""r,

with » > 0, Problem (1.3) can be solved for any bounded measure if 0 < ¢ < n/(n — 2),
but this is no longer the case if ¢ > n/(n —2). Baras and Pierre provide in [9] a necessary
and sufficient condition on the measure A in terms of Bessel capacities. The solvability



of nonlinear equations with measure is closely associated to removability question, the
standard one being the following : assume K is a compact subset of 2 and u a solution of

Lu+g(z,u) =0 in Q\ K, (1.7)

does it follows that u can be extended, in a natural way, so that the equation is satisfied
in all 27 The answer is positive if some Bessel capacity, connected to the growth of g,
of the set K is zero. In Section 4 we give an overview of the semilinear problem with a
source-reaction term of the following type

Lu=g(x,u) + X in

1.8
u=20 on 0f), (18)

For this equation, not only the concentration of the measure is important, but also the
total mass. The first approach, due to Lions [66] is to construct a supersolution, the
conditions are somehow restrictive. In the convex case, a rather complete presentation is
provided by Baras and Pierre [10], with the improvement of Adams and Pierre [2]. The
idea is to write the solution u of (1.8) under the form

/ Gg(y,u(y))dy +GE(\)  in Q. (1.9)

The convexity of r — g(x,r) gives a necessary condition expressed in term of the conjugate
function ¢g*(z,r). The difficulty is to prove that this condition is also sufficient and to link
it to a functional analysis framework. An extension of this method is given by Kalton and
Verbitsky [52] in connection with weighted inequalities in L? spaces. Finally, conditions
for removability of singularities of positive solutions are treated by Baras and Pierre [9].
In Section 5 we consider the problem of solving boundary value problems with measures
data for nonlinear equations with an absorption-reaction term,

Lu+ g(xz,u) =0 in Q,
(e, u) (1.10)
u=pu on 0L,

The first results in that direction are due to Gmira and Véron [48] who prove that the
Bénilan-Brezis method can be adapted in a framework of weighted Marcinkiewicz spaces
for obtaining existence of solutions in the so-called subcritical case : the case in which the
problem is solvable with any boundary Radon measure. In a similar way as for Problem
(1.3), it is shown that Problem (1.10) is solvable if the measure u satisfies

/Q 9 (2, PL(|ul)) panda < oo, (1.11)

where

PY (| (x / Pi(z,y)d|pl (y), Ve



It is also possible to extend the range of solvability if u is replaced by its singular part
with respect to the (n — 1)-dimensional Hausdorff measure, for specific functions g which
verify a power like growth. In the last years the model case of equation

Lu+ |u|" ' u =0, (1.12)

acquired a central role because of its applications. The case ¢ = (n + 2)/(n — 2) is
classical in Riemannian geometry and corresponds to conformal change of metric with
prescribed constant negative scalar curvature [67], [87]. The case 1 < ¢ < 2 is associated
to superprocess in probability theory. It has been developed by Dynkin, [34], [35] and
Le Gall [62] who introduced very powerful new tools for studying the properties of the
positive solutions of this equation. The central idea is the discovery by Le Gall [61], in
the case ¢ = 2 = n, and the extension by Marcus and Véron [68], in the general case
g > 1 and n > 2, of the existence of a boundary trace of positive solutions of (1.12) in
a smooth bounded domain 2. This boundary trace denoted by T'r,,(u) is no longer a
Radon measure, but a o-finite Borel measure which can takes infinite value on compact
subsets of the boundary. The critical value for this equation, first observed by Gmira and
Véron, is ¢. = (n+1)/(n —1). It is proven in [61], [70] that for any positive o-finite Borel
measure p on JS€2 the problem

Lu+ |ul'u=0 inQ,

(1.13)
Tr,,(u)=p on 09,

admits a unique solution provided 1 < ¢ < g.. This is no longer the case when ¢ > ¢..
Although many results are now available for solving the super-critical case of Problem
(1.13), the full theory is not yet completed. An important colateral problem deals with
the question of boundary singularities, an example of which is the following : suppose
K is a compact subset of 9, u € C%(Q) N C(Q\ K) is a solution of (1.13) in Q which
vanishes on 00\ K ; does it imply that u is identically zero ? The answer to this question
is complete, and expressed in terms of boundary Bessel capacities.

2 Linear equations

2.1 Elliptic equations in divergence form

We call x = (z1,...,x, the variables in the space R". Let {2 be a bounded domain in R™.
The type of operators under consideration are linear second order differential operators in
divergence form

"9
Lu=— Azl pr <ama > Zb oz, Z oz, (c;u) + du (2.1)
J= 1=

where the a;;, b;, ¢; and d are at least bounded measurable functions satisfying the uniform
ellipticity condition in €2 :
n n
Z al-j(:c)figj > Oéz 522, \V/f = (51, A ,£n) S Rn, (22)
=1

i,j=1



for almost all x € 2, where a > 0 is some fixed constant. It is classical to associate to L
the bilinear form Ay,

Ap(u,v) = / ap(u,0)dz, Vu,v € WI(Q), (2.3)
Q
where
= Ou Ov = ou ov
ar(u,v) = Z.]Zl aij%ja—xi + Zzl (bia—xiv + CZ[‘)—JUZU> + duv. (2.4)

An important uniqueness condition, symmetric in the b; and ¢;, which also implies the
maximum principle, is the following :

O 1
> > 0. .
/Q<dv+ E —(b; —i—cz)axZ) dex >0, YveC.(Q),v>0 (2.5)

Lemma 2.1 Let the coefficients of L be bounded and measurable, and conditions (2.2)
and (2.5) hold. Then for any ¢ € WY2(Q) and f; € L*>(Q) (i = 0,...,n) there exists a
unique u € WH2(2) solution of

B ofi .
Lu = fo_zam, in &, (2.6)

u=0o on 08,

Proof. By a solution, we mean u — ¢ € Wol’Q(Q) and

Ap(u,v) = /Q <fov +) fi g;) dx, v e Wy Q). (2.7)
i=1 v

We put @ = u — ¢. Then solving (2.6) is equivalent to finding a € VVO1 2(€2) such that

AL(ﬁvU):/Q <fOU+Zfi§;) —ar
i=1

i

(¢,v)> dz, Yve W,?(9Q). (2.8)

The bilinear form Ay, is clearly continuous on WO1 2(Q) and

- ov Ov
AL(v,v)—/Q Z U@ (933@ +dv? + = Zb+czf dx.

7]7 Z
By (2.2) and (2.5),
Ar(v,v) > a/ \Vo|? dz, Vv e CHR).
Q

By density Ay, is coercive and thanks to Lax-Milgram’s theorem, it defines an isomorphism
between the Sobolev space Wol’Q(Q) and its dual space W~12(Q). O



The celebrated De Giorgi-Nash-Moser regularity theorem asserts that, for p > n and
feLl (), any I/Vllg’f(Q) function u which satisfies

/aL(u,qﬁ)dm:/fqﬁdx, Vo € C5° (), (2.9)
Q Q

is locally Holder continuous, up to a modification on a set of measure zero. Furthermore
the weak maximum principle holds in the sense that if u € W12(Q) satisfies

Ar(u,¢) <0, V¢ e CiE (), ¢ >0, (2.10)
such a u is called a weak sub-solution, there holds

supu < sup u. (2.11)
Q oN

In the above formula,

supv :=inf{k e R: (v — k)4 € WOIQ(Q)}
o0

At end, the strong maximum principle holds : if for some ball B C B C £,

supu = sup u, (2.12)
B Q

then u is constant in the connected component of {2 containing B.

If the a;; and the ¢; are Lipschitz continuous, and the b; and d are bounded measurable
functions, the operator L can be written in non-devergence form

n

/ /
Lu=-) a ”axam ij%—i—d (2.13)

ij=1

where

Oa;; Jdc;
b J
Z 1 Z 5o
Conversely, an operator L in the non-divergence form (2.13) with Lipschitz continuous

coefficients a;; and bounded and measurable coefficients b; can be written in divergence
form

"9
L“:‘Z_la—xi@a >+ija (2.14)

with
Oa;
b = b' bt
* Z ox;



This duality between operators in divergence or in non-divergence form is very useful in
the applications, in particular in the regularity theory of solutions of elliptic equations. If
L is defined by (2.1), the adjoint operator L* is defined by

o N~ O (99N N~ 00 N~ 0
Lo Z@xj <a”axz‘>+;cz&m ;axi (big) + do. (2.15)

ij=1

Under the mere assumptions that the coefficients a;;, b;, ¢; and d are bounded and mea-
surable in €2, the uniform ellipticity (2.2), and the uniqueness condition (2.5), the two
operators L and L* define an isomorphism between Wol’z(Q) and W~12(Q). If the a;; and

the b; are Lipschitz continuous, for any u € Lllo .(Q), Lu can be considered as a distribution

in Q if we define its action on test functions in the following way :
(Lu, 6) = / uL*édz, o€ CP(Q). (2.16)
Q

2.2 The L' framework
Let Q be a bounded domain with C? boundary and L the operator given by (2.1).

Definition 2.2 We say that the operator L given by (2.1) satisfies the condition (H), if
the functions a;;, b; and c; are Lipschitz continuous in ), d is bounded and measurable,
and if the uniform ellipticity condition (2.2) and the uniqueness condition (2.5) hold.

Notice that this condition is symmetric in L and L*. We put
Do (z) = dist (z,09), Vz e Q. (2.17)

We denote by C¢ ’L(ﬁ) the space of C1(Q) functions ¢, vanishing on 9§ and such that
L*¢ € L™(R2), and by

¢ " ¢
> @5 5P (2.18)

3nL* ij=1
the co-normal derivative on the boundary following L* (here the n; are the components

of outward normal unit vector n to 092).

Definition 2.3 Let f € L'(Q;p,,dx) and g € L*(99). We say that a function u € L' ()
s a very weak solution of the problem

Lu=f inQQ,
(2.19)
u=g9 on 0f,

if, for any ¢ € Ccl’L(ﬁ), there holds

wbicde — | fear— [ -2 gas (2.20)
0 Q o0 Onp-




The next result is an adaptation of a construction, essentially due to Brezis in the case of
the Laplacian, although various forms of existence theorems were known for a long time.

Theorem 2.4 Let L satisfy the condition (H). Then for any f and g as in Definition 2.3,
there exists one and only one very weak solution u of Problem (2.19). Furthermore, for
any ¢ € Ccl’L(Q), ¢ > 0, there holds

/ lu| L*(dx < / fsign(u)(dx — &% lg| dS. (2.21)
Q0 Q o Onp-
and
x : a¢
/u+L (dx < / fsign, (u)(dx — g.+dS. (2.22)
Q Q o0 Onp-

The following result shows the continuity of the process.

Lemma 2.5 There ezists a positive constant C = C(L,2) such that if f and g are as in
Definition 2.3 and u is a very weak solution of (2.19),

el < € (Iosa iy + 9l o) - (2:23)
Proof. We denote by 7, the solution of

L*n, =sign(u) in £,

(2.24)
My =0 on 0f),

Notice that 7, exists by Lemma 2.1. Since the coefficients of L are Lipschitz continuous,
nu € CHQ) and L*n, € L>=(2). Thus n, € CCI’L(Q). By the maximum principle

7| <=,
thus
Oy B In
8HL* GnL* '

Pluging this estimates into (2.20) one obtains

/\u!dm</ ]f]ndm—/ 20 g/ as, (2.25)

from which (2.23) follows. 0

Proof of Theorem 2.4 -Eristence Let {f,}, {gn} be two sequences of C? functions defined
respectively in Q and 02, f,, with compact support, and such that



Let uy, be the classical solution (derived from Lemma 2.1 for example) of

Lu, = f, in Q,
S (2.26)
Up = gn on Of.
Then u,, € W2P(Q) for any finite p > 1. By (2.23), {u,} is a Cauchy sequence in L!(12).
Because u,, satisfies

/unL*Cdﬂ::/fnCdx— o gndS, (2.27)
Q Q

o0 Onps

for any ¢ € Ccl’L(ﬁ), letting n — oo leads to (2.20).

Estimates (2.21) and (2.22). Let 7 be a smooth, odd and increasing function defined on
R such that —1 <~ < 1, and ¢ a nonnegative element of Co**(Q). Since

/an'Y(un)Cdx = Z/ Qi axj axz ————%dx

5,j=1

+ Z/( D, —y(un)C + ciug 00y (u i)o>dx+/dun'y(un)g“dx

> [ a5 2 unyca

5,j=1

+ Z/( Bz, fyung—i—c,un )dx—l—/gdun'yun)g“dx

Y

Put .
ji(r) = / ~v(s)ds, jo(r) =rvy(r) and js(r /
0 0
Then
Ouy, OC _ g1 (u
Z/ i 63: ox; o, (Un)dz = Z/ 63:] xidx
7] 1 ,] 1

_ o< ()25
= Z /]1 Un) 75— <azg axi> dw—i—/m]l(gn)any ds,

2,7=1

> / (s Gr e o PO )
_ Z ) (bﬁggnk e it + P50 )

—Z / < Ji(un) 5 <b &) + cija (1) g’gfi—j:),(un)ai%(cio) iz,

10



Therefore

‘ s —~ 0 ¢ =~ 0 _
/wa(un)de - Agjl(g")an—pds = —/Q > oz, (aija—x) + ; o, 0i¢) | 1 (un)d

ij=1

+/Q <Z Cij2(un)% - j3(un)8ixi(0i0 + dj2(“n)<> dz,

i=1 v

and finally,

/Q jun) L*Cdr < /Q For ()G — /a i)

When ~(r) — sign(r), ji(r) and jo(r) both converge to |r|, and j3(r) converges to 0 if, for
example, we impose 0 < ~/(r) < 26_1)((7676) (r) and send € to 0. Letting successively n — oo
and v — sign yields to (2.21). We obtain (2.22) in the same way while approximating
signy by 7. 0

Corollary 2.6 Under the assumptions of Theorem 2.4, the mapping (f,g) — u defined
by (2.19) is increasing.

For the regularity of solutions, the following result is due to Brezis and Strauss [22]
using Stampacchia’s duality method [91].

Theorem 2.7 Let L satisfy the condition (H). Then for any 1 < q¢ < n/(n — 1), there
exists C = C(Q,q) > 0 such that for any f € L' (), the very weak solution u of (2.19)
with g = 0 satisfies

[ellyraq) < Cllf Il - (2.28)

This theorem admits a local version.

Corollary 2.8 Let L be the elliptic operator defined by (2.1), with Lipschitz continuous
coefficients and satisfying (2.2). Let u € L}, () and f € L} (Q) be such that

loc loc

/Q uL*Cdx = /Q fdz, (2.29)

for any ¢ € CL(Q) such that L*¢ € L>®(2). Then for any open subsets G C G C G' C G c
Q, with G compact and 1 < g < n/(n—1), there exists a constant C = C(G,G',q,L) >0
such that

lullwrae) < € (Il + el ) - (2.30)

11



2.3 The measure framework

We denote by M(£2) and M(9N) the spaces of Radon measures on 2 and 952 respectively,
by M () and M (0K2) their positive cones. For 0 < a < 1, we also denote by IM(€2; pb )
the subspace of the p € 9MM(Q) satisfying

| il < .
Q

and by C(; p, @) the subspace of C(Q2) of functions ¢ such that

Sgp!d/pg‘ﬂ < oo.

For the sake of clarity, we denote by
M 5,) = (),

the space of bounded Radon measures in . Both 9(; p% ) and C(9; p, *) are endowed
with the norm corresponding to their definition. If A € M(Q; p,,) and p € M(0N), the
definition of a very weak solution to the measure data problem

Lu=X 1in Q,
(2.31)
u=pu on 0L,

is similar to Definition 2.3 : u € L'(Q2) and the equality

/Q uL*Cdx = /Q CdA — /8 ) aii* dp, (2.32)

holds for every ¢ € C2*(0Q).

Theorem 2.9 Let L satisfy the condition (H). For every A € M(Q; p,,,) and p € M(OQ)
there exists a unique very weak solution u to Problem (2.32). Furthermore the mapping
(A, p) — u is increasing.

Proof. Uniqueness follows from Lemma 2.5. For existence, let {\,} be a sequence of
smooth functions in €2 such that

lim [ A\ppda = / P,
Q Q

n—oo

for every ¢ € C(&; ,0591) Let {{n} be a sequence of C? functions on 99 converging to
in the weak sense of measures and u,, denote the classical solution of

Lu, =X, in Q,

(2.33)
Up = fp  on 0L

12



Thus

/ unL*Cda = / Cnda — / 9 ,,.ds, (2.34)
Q Q a0 Onpx

holds for every ¢ € Co*(Q). Since [Anpoall 1) and [[pnll L1 q) are bounded indepen-
dently of n, it is the same with [|un| ;1) by Lemma 2.5. Let w be a Borel subset of Q,
and 6, ,, the solution of

L*0,,, = x,sign(u,) in Q,

(2.35)
Hu},n =0 on 0f).
Since 6, is an admissible test function,
00
/ lup| dz = / O nAndr — 28 dS.
w Q o0 Ongs
Moreover —0,, < 0, < 0., where 0, is the solution of
L*0, =x, in,
- (2.36)

0,=0 on 0f).
Therefore

/ |un| dz < HAanQHLl(Q) ||9w/PaQHLoo(Q) + HMnHLl(aQ) 106,/ On - L20(89)" (2.37)

By the LP regularity theory for elliptic equations and the Sobolev-Morrey imbedding
Theorem, for any n < p < oo, there exists a constant C' = C(n,p) > 0 such that

10ullcr @) < Cllxll ooy = Clwl 2. (2.38)

This estimate, combined with (2.37), yields to
/ lun|dz < C([|Anpoq ll 110y + il 11 o) ] 7? < CM ], (2.39)

for some M independent of n. Therefore the sequence {u,} is uniformly integrable, thus
weakly compact in L'(2) by the Dunford-Pettis Theorem, and there exist a subsequence
{un,} and an integrable function u such that u,, — u, weakly in L'(2). Passing to the
limit in (2.34) leads to (2.32). Because of uniqueness the whole sequence {u,} converges
weakly to u. The monotonicity assertion follows from uniqueness and Corollary 2.6. O

Remark. Estimate (2.22) in the statement of Theorem 2.4 admits the following extension
: Let the two measures A and p have Lebesgue decomposition

A=A+ As and p = pyp + ps,

A and u, being the regular parts with respect to the n and the n—1 dimensional Hausdorff
measures and g and pg the singular parts. If A; and g are nonpositive, there holds

9¢

/u+L*Cdaz < / Ar+sign (u)(dx — —— iy 4+ dS, (2.40)
Q 0 o Onp-

13



for any ¢ € Ccl’L(ﬁ), ¢>0.

Remark. The above proof implies the following weak stability result. If {\,} C M(; p,,)
and {p,} C M(ON) are sequences of measures wich converge respectively to A in duality
with C($; pggl), and to p in the weak sense of measures on 0S), the corresponding very
weak solutions uy, of (2.33) converge weakly in L' () to the very weak solution u of (2.31).

2.4 Representation theorems and boundary trace

If Q is a bounded domain with a C? boundary, L the elliptic operator defined by (2.1),
with Lispchitz countinuous coefficients and u and v two functions in W2P(2), with p > n,
the Green formula implies

. B ov ou
/Q (vLu — uL*v)dx = /aQ <u8nL* - ’UE> ds, (2.41)

where L* and dv/0np« are respectively defined by (2.15) and (2.18), and

et T . 2.42
3nL 'Zl al] axj n;, ( )

is the co-normal derivative following L. If we assume that condition (H) is fulfilled, and if
z € Q, we denote by G%(z,.) the solution of

L*G%(x,.) =6, inQ,

2.43
G¥(z,.) =0 on 9Q. (243)

The function G% is the Green function of the operator L in §2. Notice an ambiguity in
terminology between L and L*, but it has no consequence because the condition (H) is
invariant by duality and the following symmetry result holds :

Gl(z,y) = GL(y,2), Y(z,y)€QxQ, x#y. (2.44)

The function G(x,.) is nonnegative by Theorem 2.9 and belongs to Wli’f(Q \ {z}) for
any 1 < p < oo. Thus it is C! in Q\ {z}. We denote
OGE(x,y)

Pp(ey) = =50

, V(z,y) € Qx 00 (2.45)
If u € C?(Q), the following Green representation formula derives from (2.41)

u(x) = / G%(m,y)Lu(y)dy + Pg(x,y)u(y)dS(y), Yz € Q. (2.46)
Q 00

By extension this representation formula holds almost everywhere if (A, ) € () x (09),
and u is the very weak solution of (2.31), in the sense that

u(z) :/QG%(x,y)d)\(y)+/QG%(3:,y)d,u(y), a.e. in Q. (2.47)
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Actually the representation formula is equivalent to the fact that u is a very weak solution
of Problem 2.31 (see [14] for a proof). We set

GEN @) = [ GRa ). (2.48)
and call it the Green potential of A\, and

PEN(x) = | PPz, y)dAy), Ve, (2.49)

[2/9]
the Poisson potential of . The Green kernel presents a singularity on the diagonal Dq =
{(z,z) : = € Q}, while the Poisson kernel becomes singular when the x variable approaches
the boundary point y. Many estimates on the singularities have been obtained in the last

thirty years [56], [78], [47], [35]. We give below some useful estimates in which p,, is
defined by (2.17).

Theorem 2.10 Assuming that Q is bounded with a C? boundary and assumption (H)
holds, then

Gz, y) < C(L, Q)mm“"x'“’”_ ;ﬁjgm @} ) € @ x )\ Do, (2.50)

ifn>3,
G%(m,y) < C(L,Q)min{1, |z — y| pyo (z)} Ing |z —y|, V(z,y) € (2 xQ)\ Dq, (2.51)

if n = 2. Moreover, for any n > 2,

K'(L,Q) ‘iai(;’)n < P2(z,y) < K(L,Q) i@@ (;) Y(z,y) € Q x 9. (2.52)

Another useful notion, from which some of the above estimates can be derived is the
notion of equivalence (see [4], [85]).

Theorem 2.11 Assuming that Q0 is bounded with a C? boundary and assumption (H)
holds, there exists a positive constant C' such that

1
G\ <G < EGQA in (QxQ)\ Dq, (2.53)
and
1
CP% < PP < EP?A in Q x 80, (2.54)

In order to study the boundary behaviour of harmonic functions, we introduce, for
B >0,

Qﬁ:{1‘€Q:pQ(.%')>ﬁ}, Gﬁ:Q\ﬁﬁ, 25:89ﬁ2{$692p9(x):ﬂ}, (2.55)
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and Xg := X := 9. Since Q is C?, there exists By > 0 such that for every 0 < 3 < f3y
and x € Gg there exists a unique o(z) € ¥ such that |z — o(x)| = p,o(x). We denote by
IT the mapping from G to (0, 3) x ¥ defined by

() = (pye (), 0 (). (2.56)
The mapping II is a C? diffeomorphism with inverse given by
O (t,o)=0—tn, V(t,o)e(0,6) x%, (2.57)

where n is the normal unit outward vector to 92 at x (see [71] for details). If the distance
coordinate is fixed in (0, Fy], the mapping $; defined by

Ni(z) =o(x) Vo e Xy,

is the orthogonal projection from %; to dQ. Thus H; () = II~1(t,.) is a C? diffeomorphism
and the set {;}o<t<g, is a C? foliation of Gg,. For 0 < ¢t < 3y we can transfer naturally
a Borel measure pu, or a function f, on X; into a Borel measure or a function on 9f) as

follows :
pt(E) := u($H; ' (E)), for every Borel subset E C 09,

fi(x) := f(o(x) — tn(x)), Vax e ON.

The Lebesgue classes on Y; and ¥ are exchanged by this projection operator and actually
fte LY, i),

i = [

(2.58)

pEME), feL (S, p) = (2.59)

p

Definition 2.12 Let L be an elliptic operator defined by (2.1) in €, with bounded and
measurable coefficients. We say that a function u € VV&)’S(Q) is weakly L-harmonic if

Ap(u,v) =0 Yo e CHQ). (2.60)

Remark. If (2.2) holds, any weakly L-harmonic function is Holder continuous by the De
Giorgi-Nash-Moser Theorem. If the coefficients of L are Lispchitz continuous, the notion
of weak L-harmonicity can be understood in the sense of distributions in €2, by assuming
that u is locally integrable in 2 and

/ ul*¢dr =0, V¢ e C°(Q). (2.61)
Q

It can be verified that any locally integrable function L-harmonic in the sense of distri-
butions in € is actually weakly L-harmonic. Therefore it belongs to Wi’f(Q), for any
1 < p < o0, by the LP-regularity theory of elliptic equations.

Theorem 2.13 Let Q be a bounded domain of class C? and L the elliptic operator defined
by (2.1) satisfying condition (H). Let u be a nonnegative locally integrable L-harmonic
function in Q. Then there exists a unique nonnegative Radon measure p on 02 such that

lim u(m)@(a(m))dS:/Hd,u, Vo € Co(). (2.62)
t—0 v, »
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Moreover u is uniquely determined by p and

u(x) = /m PP (x,y)du(y), Vo e Q.

(2.63)

Proof. Step 1 The function u is integrable. Let 0 < 8 < (By. Since u is continuous in ﬁﬁ,

its restriction to this set is the very weak solution of
Lv=0 in QB,
v=1uyg, onXg.
Thus, if ¢ € Ccl’L(ﬁg), there holds

/ ul*(dx = — % udS.
2 s, 0N

We fix ¢ = 1y 3 as the solution of

L'mpg=1 1in Qg,
m,p = 0 on 25.

By Hopf’s lemma, there exists ¢ > 0 such that

_Omp

c <
3nL*

< ¢ on 23.
Moreover, ¢ can be taken independent of § € (0, Gy]. It follows

v (p) = /Q udx > c/E udS = —c¥'(3),
B8 8

from (2.65), and
d
L (Ble >
i <e \I/(B)) > 0.
Therefore
lim ¥(3) = / udxr < oo.
Q

p—0

Notice that (2.67) implies that |u]| Li(s,) remains bounded independently of 5.

Step 2 End of the proof. Let 8 € C%(92), wg be the solution of
L*wg =0 in Qg,
wg =0 on Xg,

and h € C'(X3) defined by
o8
h=——-.
3nL*
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Then ¢ = 1 gwph ™! belongs to Ccl’L(ﬁg). Since 0¢/Onp- =6 on g,

/ ul*{dr = — 9¢ ds = fudS.
Q5 5, Ongs D

It is easy to check that L*( is bounded in L*°(€g), independently of 3. Therefore
lim uL*(dx
B=0Jq,

exists. The same holds true with

lim OudS,

B—0 25
which defines a positive linear functional on C?(9€2). This characterizes the Radon mea-
sure p in a unique way. ]

Definition 2.14 The measure y is called the boundary trace of u.

Remark. In the above theorem, many assumptions can be relaxed : the boundedness of 2
plays no role except that it allows a simpler statement of the result, and the integral repre-
sention (2.63). The regularity of the boundary of the domain is not a key assumption, but
in the case of a general domain, the boundary has to be replaced by the Martin boundary
[76], and the Poisson kernel by the Martin kernel in order to have a representation formula
valid for all the positive L-harmonic functions.

Remark. The Fatou Theorem asserts that for almost all y € 9Q (for the n — 1-dimensional
Hausdorff measure dH,_1) and for any cone C,, interior to 2 the following limit exists,

lim u(z) =p,, (2.69)
2ed,

where p, is the regular part of the measure p with respect to dH,_; in the Lebesgue
decomposition. The proof of this result [30], [32], is much more involved that the one of
Theorem 2.13. The trace in the sense of Radon measures is much more useful for our next
considerations.

Definition 2.15 A locally integrable function u defined in €2 is said super-L-harmonic if
/ ul*pdx >0, Vo e C5°(Q), ¢ > 0. (2.70)
Q

Theorem 2.13 admits an extension to positive proven by Doob [60], [32].

Theorem 2.16 Let Q) be a bounded domain of class C? and L the elliptic operator defined
by (2.1). We assume that condition (H) holds. Let u a nonnegative super-L-harmonic in
Q. Then there exist two Radon measures A € M () and p € M, (0N), such that

/ PagdA < 00,
Q

and wu 1s the unique very weak solution to Problem (2.31). Furthermore (2.69) holds.
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3 Semilinear equations with absorption
In this section we consider the semilinear Dirichlet problem with right-hand side measure

Lu+g(x,u) =X in ),

3.1
u=0 on 0, (3.1)

in a bounded domain 2 of R™, where ¢ is a continuous function defined on R x 2, A\ a
Radon measure in €2 and L the elliptic operator with Lipschitz continuous coefficients,

defined by (2.1).

Definition 3.1 Let A\ € M(Q;p,,,). A function u is a solution of (3.1), if u € L(R),
g(.,u) € LY(Q; pyndx), and if for any ¢ € Ccl’L(ﬁ), there holds

/ (uL*¢ + g(x,u)() de = / Cd. (3.2)
Q o)

The nonlinearity is understood as an absorption term, this means that rg(x,r) is nonneg-
ative for |r| > rg, uniformly with respect to = € Q.

Proposition 3.2 Let L be the elliptic operator defined by (2.1), satisfying the condition
(H), and A € M(Q; ps,) for some 0 < a < 1. If g € C(Q,R) is an absorption nonlinearity
satisfying

rg(x,r) >0, VY(z,r)e Qx ((—o0,—ro]U][rg,0)),

and g bounded on Q x (—ro,ro), any solution u of (3.1) verifies g(.,u) € L' (; p% dx).
Proof. We set h = g(.,u), then wu is the unique very weak solution of
Lu=XA—h inQ,

and, by assumption, u € LY(Q), h € LY(Q;p,odz). Let {\,} be a sequence of smooth
functions in Q converging to A in the weak sense of measures with duality with the space
C(Q;p, %) (thus [Anllomo; o) is bounded independently of n) and {u,} the corresponding
sequence of solutions of

Lu, =M, —h in Q.

By Theorem 2.4, ||un|| 1) is bounded independently of n, and for any ¢ € @), ¢c>o,
there holds

/(\un\L*C—i—thign(un))de/)\nCsign(un)dx.
Q Q

For test function ¢, we take je(n1) = (m1 + €)* — €* where € > 0. Then 0 < je(m1) < nf,
and, if we put r; = supg 11, one obtains
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. , "9 ) , - a - ,
L) = ) 3 g (o) +aln) g = 3 g (o) + i)
ij=1 """ v
) ~  Om O
Je(m) Z ij Oz Oz;

ij=1

= )L+ (Je(m) —mii(m) ( Z

d Z@xl

since L*n; = 1, j. is a concave and increasing function on Ry, r +— je(r) —rjl(r) is positive
and increasing, and ellipticity condition (2.2) holds. Because (jc(r1) — r1.(r1)) is bounded
when 0 < € < 1, and the coefficients b; and d are respectively Lipschitz continuous and
bounded in €2, there exists a constant M > 0 independent of € such that L*(je(n1)) > —M
in 2. Therefore

~  9m Im
) ) Z ij 8.%']‘ 8.%'1

1,j=1

> = (Je(r1) — rigi(r))

.Y / ] dz + / Rie(n)sign(un)dz < [Pallgnpe 1
Q 0 o0

Letting n — oo yields to

/g(m,u)jg(m)sign(u)dx < M/ |ul dz + sup [ An|lan(.po ) (3.3)
Q Q n G

since h € LY($; p,dz). To be more precise, it is necessary to take a sequence of smooth
approximations v, of the function sign, then let x — 0 and 7, — sign as in the proof of
Theorem 2.4. Therefore there exists a positive constant C' such that

/ g(x,u)je(n)sign(u)dx < C + / g(x,u)je(n)sign(u)dx.
{z:lu(@)|>ro} {z:|u(z)|<ro}

Using the fact that g(x,r)sign(r) is positive for |r| > r¢ and bounded for |r| < ry, we can
let ¢ — 0 and conclude, thanks to Fatou’s lemma, that

/ lg9(z, w)[ni'dz < C+ sup ([ Anllonq.po_az) < 00 (3.4)
Q n 29
which ends the proof. O

3.1 The Marcinkiewicz spaces approach

At first we recall some definitions and basic properties of the Marcinkiewicz spaces. Let
G be an open subset of R? and \ a positive Borel measure on G.
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Definition 3.3 For p > 1, p' =p/(p—1) and u € L} (G), we introduce

loc

1/p
[ull pro(Grany = inf {c € 10,00] : / lu| dX < ¢ (/ d)\> , VE C G, E Borel } , (3.5)
E E

and
MP(Gsd) = {u € LNG5 ) ¢ [lullypo(gany < o) (3.6)

MP(G;d)) is called the Marcinkiewicz space of exponent p, or weak LP-space. It is a
Banach space and the following estimates can be found in [12] and [26].

Proposition 3.4 Let 1 < g<p< oo andu € L} (G;d)\). Then

loc

C<p>HuHMp<G;d»ésup{s>o:sp [ }d/\}SHUHMp(G;dA)- 1)
T |u >s

Furthermore

1—q/p
[t ax < 0.0 el ( / dA) , (3.8)

for any Borel set E C G.

The key role of Marcinkiewicz spaces is to give optimal estimates when solving elliptic
equations in a measure framework. In particular, using (2.50) and (2.52) it is not difficult
to prove the following result (see [14] for a more general set of estimates in the case of the
Laplacian operator).

Theorem 3.5 Let Q@ C R", n > 2, be a C? bounded domain and L an elliptic operator
satisfying condition (H). Let o € [0,1], X € M(Q; p5,), p € M(IQ). If n+ o > 2, there
holds

HG%(A)HM(n+a)/(n+af2)(Q;pgﬂ) < CH)‘Hgﬁ(Q;ng), (3.9)
and
IVGEMsewrorsinrei ) S ClAlamaugs, ) (3.10)
Furthermore, for any v € [0,1],
HP%(M)|’M("+7)/("—1)(Q;pgg) < C”M”gm(ag)- (3.11)

The following definition is inspired by Bénilan and Brezis classical work [11] (with a = 0)
and used by Gmira and Véron [48] (with a = 1).
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Definition 3.6 A real valued function g € C(2 x R) satisfies the (n, a)-weak-singularity
assumption, n > 2, a € [0,1], n + « > 2, if there exists ro > 0 such that

rg(z,r) >0, V(z,r)€ QX (—00,—1] U [rg, c0), (3.12)

and a nondecreasing function g € C([0,00)) such that g > 0,
1
/ glr¥ e ldr < oo, (3.13)
0

and
lg(z, )| < g(|r]), V(z,r)e QxR (3.14)

Theorem 3.7 Let Q be a C? bounded domain in R™, n > 2, L the elliptic operator defined
by (2.1) and g € C(Q x R) a real valued function. If L satisfies assumptions (H) and g
the (n, a)-weak-singularity assumption (thenn >3 if a = 0), for any A € M(8Y; p5 ) there
exists a solution u to Problem (3.1).

Proof. Step 1 Construction of approximate solutions. The technique developed below is
adapted from Brezis and Strauss classical article [22]. Let A, be a sequence of smooth
functions, with compact support in €, with uniformly bounded L*(; Poodx)-norm, with
the property

lim | AnCdx — / Cd,
Q Q

n—~o0

for any ¢ € C(2) such that supg(p, *[(|) < oo. For k > 0, we introduce the truncation
gr(.,r) of g(.,7) by

T, T if z,r)| <k,
gk@,r):{g( ) o) s

ksign(g(xz,r)) if |g(z,r)| > k.

By Lax-Milgram’s theorem, for any z € L?(f2), there exists a unique w = 73(z) such that

Ap(w, ¢) + /Q gk (z, 2)pdx = /Q Andpdz, Ve Wy2(Q). (3.16)

Using (2.2),
2 1/2
oIVl Fay < (I + IMall 2 ) 10l 2y
The mapping 7}, is continuous in L?(Q2). By the above estimate and Rellich-Kondrachov’s

theorem, 7, sends L?() into a relatively compact subset of L?(§2). By Schauder’s theorem,
it admits a fixed point, say v = v, and vy solves

Lvg + gr(.,vk) = Ap in Q. (3.17)

The functions v belongs to o L (92), since A, and g are bounded. Multiplying by vj, and
using (3.14) (one notices that the two inequalities are uniform with respect to k), yields
to

al[Vorlae < (1212 + 1l oy ) okl 2
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since rg(z,r) > —0O|r|, for some O verifying
0 <0 <sup{lg(z,7)|: z€Q, —rog <r <ro}. (3.18)

Hence the set of functions {vy,} remains bounded in W,*(€) independently of k.

Step 2 Uniform estimates. In order to prove that there exists some k such that vy satisfies
Lvg + g(.,v) = Ay in Q. (3.19)

it is sufficient to prove that v is uniformly bounded in €2. The technique used is due to
Moser [79]. For 6 > 1, |vx|° ! vy, belongs to Wy *(Q). For simplicity we denote it by v?,
thus

AL(vk,vz)—}—/gk(x,vk)vzdx:/)\nvzdx. (3.20)
Q Q
But, using (2.2) and (2.5),

" ov
AL(vk,vz) > a&/ \Vvk\zvz_ldac—i- E /(bi—i-Hc, vza kdx—i—/dvz“dm
; Q

B e 5 i

4ad (6+1)/2 / 0-+1
>
> Gip /(v (oxlf )( fog |+ divHdx

9 +1)
where ‘H; = ¢; — b; and
/ gk (z, vp)vida > —@/ lvg |’ da.
Q Q

By using the previous estimates and Gagliardo-Nirenberg’s inequality, it follows that, for
some o > 0 and C; > 0 depending on A, but not on k, there holds

0'9 9 0
(9_|_1)2|| k||L(0+1)n/(n 2)(Q) < Cl””kHLf)H(Q) +C2H”lc||;g+11(g)

IN

o+1
C3max{1, ||vk||L$+1(Q)}'

Puttinga=n/(n —2),y =60 +1,
1
0kl o ey < €477 max {1, [[vel 1oy }-

Iterating from v = 2, we obtain

IN

a=d _ym —J
[0kl pam+15 () CJO 9Sode max {1, ||vl| r2q)}

IN

Comax{1, [|vkl 120}
Consequently |vg(z)| is uniformly bounded by some ky. Taking k > ko, vy is a solution of

Lo+ g(.,,vp) = A in Q. (3.21)
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In order to emphasize the fact that vy is actually independent of &, but not on n, we shall
denote it by u,,.

Step 8 Uniform integrability. It follows from Step 2 that g(.,uy)u, is integrable in Q

and the same is true with g(.,uy), because of (3.14). The space Co'"(Q) is a subspace of
VVO1 (1), therefore (3.16) implies

/ (un L*C + g(x,up)() do = / An(dz, (3.22)
Q Q
for every ¢ € Ccl’L(ﬁ). By Theorem 2.4, for any ¢ € Ccl’L(ﬁ), ¢ > 0, one has

/(]un]L*C—i—sign(un)g(aﬂ,un)g)dmS/ |An| (d. (3.23)
Q )

We take ¢ =71 as Lemma 2.5, and derive from (3.12),

a1 + 10wl 1o < © /Q Pond + C1 pso Al 1 - (3.24)

Consequently, by using (3.4) in Proposition 3.2 and (3.9) in Theorem 3.5,

[unllprnrar/mra2gpn ) < C2 [ An = 90 un)lloniyps ) < Cs (9 + Hpag)‘NHLl(Q)> -(3.25)

By the local regularity result of Corollary 2.8, there exist a subsequence {u,,} and a
function u € VVZIO’Cq(Q), for any 1 < ¢ < n/(n—1), such that u,, — v a.e. in 2 and weakly
in W,29(2). Notice that VVlicq(Q) can be replaced by Wol’q(Q) if « = 0, by Theorem 2.7.

loc

Combining (3.24) and estimate (2.39) with p, = 0 and A, replaced by A\, — g(.,u,), one
obtains that, for any Borel subset w C €2, there holds

[ lunlde < (¢"1920+ C gl sy 1wl

if p > n. Thus, by the Vitali Theorem, it can also be assumed that u,, — u in LY(9).
Furthermore, for any R > 0,

/ 9| % de < / §(lunl)o% de

5(lunl)o2. dar + / §(lunl)ol de
/wﬂ{lunSR} e wn{jun|>R} o

) [ o= [ " (5)d0,(5),

IN

IN

) /{zeflzlzm>s}p Q(x)dx =7 HunHM( el mrem B (Qipg,)

< Csf(n+a)/(n+a72) ’
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by (3.7). Moreover

[T a6nats) = aRR)+ [ o))

f R
< g(R)OL(R) + C/ s~ (+a)/(n+a=2) gz oy
R
< §(R)0,(R) — C§(R)R~(mte)/(nta=2)
—{—M /OO 9(8)8_2(n+04—1)/(n+a_2)d8
n+a—2 Jp

< M /oo §(8)872(n+a71)/(n+a,2)ds.

n+a—2Jp

Since condition (3.9) is equivalent to
/ 9(5)5—2(n+a—1)/(n+a—2)d5 < 0, (3.26)
1

given € > 0, we first choose R > 0 such that

Cn+a) /°°~ ~2(n+a—1)/(n+a—2)
nr—o nr—o < 2.
pa— g(s)s ds <€/

Then we put § = €¢/(2(1 4+ g(R)) and derive

/pg‘ﬂdx <f= / lg(un)| pf,dr < e.

w

Therefore {pf g(.,un)} is uniformly integrable, and we can assume that the previous
sequence {ny} is such that

lim /Q |gnk("unk) —g(.,u)l p?gdx =0= /Q |gnk("unk) —g(.,u)l Poqdr =0, (3.27)

nj—00

since a € [0, 1]. Letting ny — oo in (3.22), one obtains

/ (uL*¢ + g(z,u)) de = / CdA. (3.28)
Q Q

0

Since the uniform integrability conditions depends only on the total variation norm of
the measure pf A, the following stability result holds.

Corollary 3.8 Let Q and « be as in Theorem 3.7, g satisfy the (n,«)-weak-singularity
assumption and r +— g(z,r) is nondecreasing, for any x € Q. Then the solution u is
unique. If we assume that {\m} is a sequence of measures in M(; pt ) such that

lim | Cd\p = lim [ Cd\,
Q m—oo Jo

m—00
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for any ¢ € C(Q) satisfying supg Pt I¢] < oo, then the corresponding solutions wum, of
problem
Ly, + g(x,um) = N\, in £,

(3.29)
Uy, =0 on 051,
converge in L1(2) to the solution u of (3.1), when m — co.
Remark. If g(xz,r) = |r|? "7, the (n,o)-weak-singularity assumption is satisfied if and
only if
n+«
O0<g< ———. 3.30
e n+a—2 ( )

3.2 Admissible measures and the A,-condition

Definition 3.9 Let ¢ be a continuous real valued nondecreasing function defined in R,
g > 0. A measure A in Q is said (g, k)-admissible if

/Q GGE(IA) + k)ppadz < oo, (3.31)

where G(|)\|) is the Green potential of A and k > 0.

Theorem 3.10 Let Q be a C? bounded domain in R™, n > 2, L an elliptic operator
defined by (2.1), and g € C(2 x R). We assume that L satisfies the condition (H), and g
(8.12) for some ro > 0 and (3.14) for some function § as in Definition 3.9. Then for any
(g,70)-admissible Radon measure A € M(Q; p,,), Problem (3.1) admits a solution.

Proof. For k > 0, we take the same truncation gi(.,r) of g(.,7) defined by (3.15). Since
gr. satisfies (3.13) and (3.14), we denote by uj a solution of

Lug + gr(z,ux) = X in Q,

(3.32)
up =0 on 09,

which exists by Theorem 3.7. As in the proof of Theorem 3.7 the following estimates hold,

”uk‘”Ll(Q) + Hpaﬂgk(-7uk)”L1(Q) < @/Qp(mdx +C Hpaﬂ)‘”sm(ﬂ) ) (3.33)
where © is defined by (3.18), and
[ukllarnrn-n 9y, ) < O3 (9 + Hpag)‘”Ll(Q)) : (3.34)

By Corollary 2.8, there exist a subsequence {uy;} and a function u € I/Vli’cq(Q), for any

1 < ¢ < n/(n—1), such that ug, — w a.e. in Q and weakly in I/Vli’cq(Q) Moreover
gk; (s ur;) — g(.,u) almost everywhere in Q. Put

Wy, = G%()\+) +79.
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Then
L(up —wy, ) + gr(@, ugp) = X — A,

and, for any ¢ € Ccl’L(ﬁ), ¢>0,
/Q(uk —wy, )+ L*Cdz + /ng(907uk)81gn+(uk — Wy, )¢dx

¢
s Onp-

(3.35)

(uk - w)\+)+dsa

by Inequality (2.40). Since the boundary term in (3.35) vanishes, and wy,_ > ro, there
holds g (x, uy)sign, (ux — wx, ) > 0, which implies

/(uk —wy, )+ L*Cdx < 0.
)

Taking ¢ = 71 defined by (2.24) (with u = 1, hence L*n; = 1), yields to (ur —wx )4 =0
a.e. in 2. Thus
up < Wy, = G%()\+) +79.

In the same way
up > —G(A_) —ro.

Therefore
Jug| < GE(A) + 70 = lgi(we)l < §(Juxl) < GGE(A) + 7o) (3.36)

Because the right-hand side of (3.36) belongs to L'(Q; p,,dz), the sequence {gi(.,ux)} is
uniformly integrable for the measure p,,dz. As in the proof of Theorem 3.7, we conclude
by the Vitali Theorem that u is a solution of (3.1). O

The condition of (g, r¢)-admissibility on A is too restrictive if the function ¢ has a strong
power growth, in particular it leads to exclude some A which are regular with respect the
n-dimensional Hausdorfl measure, even if we know, from the Brezis and Strauss Theorem
(see Theorem 3.7-Step 1), that Problem (3.1) is solvable for such measures. A natural
extension is to impose only the (g, r9)-admissibility on the singular part As of the measure.
However, a generic power-like growth condition called the As-condition is needed.

Definition 3.11 A real valued function g € C(£2 x R) satisfies a uniform As-condition if
there exist two constants £ > 0, # > 1 such that

\g(@,m+ )| < 0(g(z,r)| + |g(z, 7)) + ¢, VoeQ V() eR xR, (3.37)

Theorem 3.12 Let Q and L be as in Theorem 3.10. Assume g € C(Q2 x R) satisfies
the Ag-condition, r — g(z,7) is nondecreasing for any x € Q and (3.14) holds for some
function g as in Definition 3.9. For any Radon measure X € M(Q; p,,), with X = P
where X € LY(Q; p,odx), and N\* is (§,0)-admissible and singular with respect to the n-
dimensional Lebesgue measure, Problem (3.1) admits a unique solution.
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Proof. Uniqueness comes from the monotonicity of r — g(z, 7).
Step 1 If we write g(x,r) = g(z,r) — g(x,0) + g(x,0) = g(x,r) + g(x,0), then the equation
is transformed into R

Lu+ §(w,u) = A — g(x,0) = A,

where 7 — g(z,r) nondecreasing and §(x,0) = 0. Notice that |g§(x,0)| < g(0) by (3.14),
and that A\* is singular with respect to A — g(x,0). Finally the new function ¢ satisfies
Inequality (3.37) with the same 6 and ¢ replaced by ¢ = £ + (26 + 1)|3(0)|, and (3.14)
with § replaced by g + [g(0)|. From now we shall suppose that the function g satisfies
g(x,0) = 0 for any = € Q. We introduce the truncation gx(.,r) by (3.15). The truncated
function gy, satisfies also (3.37) (with 0 replaced by 1 + 6).

Step 2 We suppose that A is nonnegative. Then A and \* inherit the same property. Let
{5\,} be a sequence of smooth nonnegative functions with compact support in §2, converging
to A in the weak sense of LY(Q;p,q)- Let u; 1, be the solution of

Lu; i + gi(x, u; g =X+ A\ inQ,
" (@) = A (3.38)
Ui =0 on 0f2,
and v; j; the one of
Lo i, + gi(x,vi ) = N\, in Q,
' (@ vip) = (3.39)
vy =0 on J.

Both solutions exist by Theorem 3.10. By the maximum principle

0 < wuip <vig+GEON), (3.40)

and by the monotonicity of g, and (3.37),

0 < gl uin) < 0 (gr(-vin) + g GEA))) +€ < 0 (gr(vix) + GGL(NY))) +£.(3.41)

By Theorem 3.10), if i is fixed and k — oo, the sequence {v;j} converges weakly in
Wllgcq(Q) and a.e. in € to the solution v; of

Lv; + g(x,v;) = X\, in Q,

(3.42)
v; =0 on 9.

Since the v; ;, are uniformly bounded with respect to k, the same property holds with the
gk (vi 1), hence their convergence to v; and g(.,v;) are uniform in Q. Because of (3.41) and
the elliptic equations regularity theory, the sequence {u;x}ren, is relatively compact in
the I/Vli’cq(Q)—topology. Thus there exist a subsequence {u;x, } and a function u; such that
Ujk; — ui as kj — oo in this topology and a.e. in Q. By continuity, gkj(.,ui,k].) — (. ui)
a.e. in Q. Because of (3.41) and the (g,0)-admissibility condition on A*, Lebesgue’s
theorem implies that
Hm gg, (- uie,) = g(,w)  in LN p,nda).

kj—o00
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It follows from inequality (3.40) that u;, — u; in L'(Q) (we recall that GE(\*) € LY(Q)).
Letting k; — oo in (3.38) we see that w; is the solution of

Lu; + g(x,u;) = N+ inQ,
(3.43)
u; =0 on 0f).
By uniqueness of u; the whole sequence u; ;, converges to u; as k — oo. Moreover
(1)0 <w <w + G%()\*), (3.44)
(i) 0 < g(.sui) <0 (g(,0:) + g(GFN))) +€ <0 (9(,v) +GCEN)D) + £
By Theorem 2.4 with ¢ = G$(1),
i = vl oy + N9oe) = 9w lrqaupany < [ = 5], - (3.45)

Therefore v; — v in LY(Q) and g(.,v;) — g(.,v) in L}(Q; p,,dx) where v is the solution of

Lv+g(z,v) =X inQ,

(3.46)
v=0 on 0.

By (3.44)-(i) there exists a subsequence {u;,} which converges in L'(Q2) and a.c. in Q to
some function u. Because of (3.44)-(ii), the admissibility condition on A* and the Vitali
Theorem, the sequence {g(.,u;;)} converges to g(.,u) in L'(;p,qdz). Thus u is the
solution of (3.1).

Step 3 In the general case we construct the solution w; of (3.38) and the functions
U =1u; and U = y; , solutions of

LU + gi(z,U) =A in Q,

(3.47)
U= on 0f.
where A = |\;| + |\*| in the case of @; 4 and A = — |\;| — [\*| in the case of u; - We also
construct the solutions V' = ;  and V' = v, of the same equation with A = Ai| in the
case of T; , and A = — Ai| in the case of Y, - Since
vig = GLIN]) < win <Tig+ GL(N)), (3.48)

and

0 (g (- vip) + 9L GE(= X)) — € < gl uig) < 0 (gk(Tik) + 9(, GE(NY)) + £(3.49)

we conclude by using the Vitali Theorem and the convergence arguments of Step 2. U
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3.3 The duality method

Let 2 be a domain in R™ and L is an elliptic operator in 2. In this section we study
the sharp solvability of Problem (3.1) when g(z,r) = |u|q71 u with ¢ > 0. For this type
of nonlinearity, the (n,0)-weak-singularity assumption is satisfied if and only if 0 < ¢ <
n/(n —2). Thus we shall concentrate on the case n > 3 and ¢ > n/(n — 2) and for such a
task the theory of Bessel capacities is needed.

3.3.1 Bessel capacities

Let p > 1 be a real number and p’ = p/(p — 1). If m in an integer we endow the Sobolev
space W P(R™) with the usual norm

1/p

F— /Q DgPdr|

[v]<m

and we introduce the associated capacity Ci, , by
Crnp(K) = inf {H(bH%,m,p(Rn) c 9 € CF(R"), ¢ > 1 in a neighborhood of K} ,
if K is compact,
Crnp(G) =sup{Cy p(K) : K C G, K compact },

if G is open, and
Crmp(E) =inf{Cy, ,(G) : E C G, G open },

for an arbitrary set E. The scale of Sobolev spaces is not accurate enough to describe the
subets of R™ by means of their capacities. If « is a real number, we introduce the Bessel
kernel of order a by

Go=F ' (1 +1¢)772) (3.50)
were F ! is the inverse Fourier transform on the Schwartz space S'(R™). If
Go = (I=A)72,
there holds the Bessel potential representation
=069 =Gaxg<=g=G_oag=G_oxf Vf, geSR"). (3.51)

Definition 3.13 Let a and p > 1 be two real numbers. The Bessel potential space of
order o and power p is

LYP[R") ={f:f=Gaxg, g€ LP(R")},
with norm

Hf”La,p(Rn) = ||9||Lp(Rn) = |G—a * fHLP(]R")'
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As usual, Lg? / (R") denotes the closure of C2°(R™) in L®P'(R™). Thanks to a result due
to Calderon, the functions in W™ P(R"™) can be represented by mean of Bessel potentials.
Actually for any o € N, and 1 < p < oo, W*P(R™) = L*P(R") and their exists a positive
constant A such that

AN F o @& < [ llwer@ny < Al fllpar@ny, Vf € WHP(R"). (3.52)

By generalization (see [28] for a general construction of capacities), the Bessel capacity of

order (a,p) (>0, p > 1) of a compact set K is defined by
Cop(K) = inf {H(ﬁHLM, Rn) P @€ S(R™), ¢ > 1 in a neighborhood of K } . (3.53)

with the same extension to open sets and arbitrary sets as for Sobolev capacities. A dual
definition involving measures is the following [1] :

Cop(K) = sup { <| HK) ) RS 9ﬁ+(K)} , (3.54)

|Ga *MHLp/(]Rn)

where M, (K) is the set of positive Radon measures with support in K. An important
result due to Maz’ya (see [1]) states that the following expression

Cop(K) = inf {H(bHLap Rn) P @€ S(R™), ¢ =1 in a neighborhood of K } . (3.55)

defines a new capacity which is equivalent to the C, ,-capacity in the sense that there
exists a positive constant B such that

B™'Cap(K) < Cap(K) < BCayp(K),

for any compact subset K. In the particular case of sets with zero capacity, the following
useful result holds.

Proposition 3.14 Let a >0, 1 < p < 0o, K be a compact subset of R™ and O an open
subset containing K. If Cyp(K) = 0, there exists a sequence {¢,} C C°(O) such that
0<¢n <1, ¢, =1 in a neighborhood of K and ¢, — 0 in L¥P(R™) as n — oo.

By using smooth cut-off function with value in [0, 1], support in a neighborhood of
K and taking the value 1 in a smaller neighborhood of K, the proof of this result is
straightforward if « is an integer, and more delicate if not (see [1, Th. 3.3.3]).

Definition 3.15 Let @ > 0 and 1 < p < o0.

(i) A property is said to hold Cy p-quasi everywhere if it holds everywhere but on a set of
Co p-capacity zero.

(ii) A function ¢ defined in R" is said to be C, p-quasicontinuous if for any € > 0, there is
an open set G C R™ with C, ,(G) < € and f € C(G°).
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(iii) Let O be an open subset of R™ and A € M(O) . The measure A is said not to charge
subsets of O with C,, )-capacity zero if

VE C O,Cop(E) = 0 —> / d|A =0,
E

where, d|\| denote in the same way the unique complete regular Borel measure generated
by the Radon measure |A|.

It is proven in [1] that for any a > 0, 1 < p < oo and g € LP(Q), the function G, * g is
Cq p-quasicontinuous. Therefore, any element ¢ € L*P(R") admits a (unique) quasicon-
tinuous representative, gz; Furthermore, from any converging sequence {¢,} C L*P(R™)
it can be extracted a subsequence {¢,} which converges C, p-quasi everywhere. The link
between the measures which do not charge capacitary sets and elements of negative Bessel
spaces is enlighted by three results. The first one is due essentially to Grun-Rehomme [50]
(see also [1]).

Proposition 3.16 Let a >0 and 1 < p < oco. If A € M(Q) N L™*P(QQ), then \ does not
charge sets with Cl, ,r-capacity zero.

Proof. By the Jordan decomposition Theorem of a measure, there exist two disjoint Borel
subsets A and B such that

AUB=Q, A.(B)=0, A_(A)=0.

Let E C R™ with C, ,(F) = 0. With no loss of generality E can be assumed as being a
Borel set. It is therefore sufficient that Ay (AN E) = A_(BN E) = 0. Because

A (ANE) =sup{\{(K): K compact ,k C AU E},

it is sufficient to prove that for any compact subset K C ANE, A;(K) =0. Let ¢ > 0,
since A_(K') = 0, there exists an open subset w of  containing K such that A\_(w) < e.
Let n € C°(w), with value in [0,1] and equal to 1 on K. By Proposition 3.14, since
Cop (K) = 0, there exists a sequence {¢,} C C°(f2), of functions with value in [0,1],
equal to 1 in a neighborhood of K and such that ¢, — 0 in L' (Q) as n — co. Then

/ iy < / dandA < / Gandrs — / dond) + / GandA_.
K K ¥ Q w

/ b < / i <e

[ 0unix < [ 6udh = (0 0udise oy < Wlgas [6llugo

But

and

which goes to zero as n — oo. Therefore

/ d)\+ SE.
K

32



Since € is arbitrary, A; (K) = 0. In the same way A_(B N E) = 0. Therefore |A| (E) = 0.
U

The second result is due to Feyel and de la Pradelle [42]. It shows the constructivity
of certain measures which do not charge sets a given capacity of which vanishes.

Proposition 3.17 Let « > 0 and 1 < p < oco. If X € M, (Q) does not charge sets with
Ca,p-capacity zero, there exists an increasing sequence {\,} C MY (Q)NL™*P(2), A, with
compact support in Q, which converges to .

Proof. We first assume that A has compact support in 2. Let ¢ € Lg? ,(Q) and ¢ its
quasicontinuous representative. Since the function ¢ is quasicontinuous too, the following
functional is well defined on Lg”* (), with values in [0, oo,

P(¢) = /Q bodA. (3.56)

If {¢n} converges to ¢ in Lg” /(Q), there exists a subsequence {¢,, } which converges
Co pr-quasi everywhere. Hence

/ dod\ < liminf / G 1 dN,
(¢} N — 00 Q
by Fatou’s lemma, and ¢ — P(¢) is lower semicontinuous. Since P is convex and positively

homogeneous of order 1, it is the upper hull of all the continuous linear functionals it
dominates, by the Hahn-Banach Theorem.

Step 1 Let € > 0, and ¢g € Lg” /(Q) Then we claim that there exists a positive Radon
measure # belonging to L~*P(2) such that 0 < 0 < A, and

/Qqﬁod(u —0) <e. (3.57)
Clearly
(é0, P(90) =€) & Epi(P) = {(6,8) € L{” (@) x R: t = P(g) }.

Since Epi(P) is a closed convex subset of Lg” "(Q) x R, it follows by the Hahn-Banach

Theorem that there exist a continuous form ¢ on Lg™* /(Q) and two constants a and b such
that

a+bt+l(p) <0, V(o,t) € Epi(P), (3.58)
and
a+ b(P(¢o) —€) + £(¢o) > 0. (3.59)

But (0,0) € Epi(P) = a < 0. Thus (3.59) holds with a = 0. If we apply (3.58) to (7¢, 7t)
with 7 > 0 arbitrary (such a couple belongs to Epi(P) since P is positively homogeneous)
and let 7 — oo, it follows

bt + €(¢) <0, V(o,t) € Epi(P). (3.60)
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In the particular case ¢ = 0 and ¢t > 0 (possible since (0,¢) € Epi(P), Vt > 0), it gives
b < 0. If b were zero one would have ¢(¢) < 0 for any (¢,t) € Epi(P), and in particular
£(¢p) < 0, which would contradict (3.59) if we impose b = 0. Since b < 0, we define 6 by

m@:—%? Vo € LIV (),
and derive
P(¢) = 6(9), (3.61)

for any ¢ € Lg’p,(Q), since (P(¢), ¢) € Epi(P). In the particular case where ¢ < 0, there
holds #(¢) < 0. This means that 6 is a continuous positive linear functional on Lg” ,(Q),

dominated by P. It defines a unique Radon measure, still denoted by 6, and (3.57) holds.

Step 2 End of the proof. We assume now that A has no longer a compact support in €.
There exists an exhaustive sequence of open subsets {€}, compactely included in €2 such
that

Qp Cﬁk CQk+1 Cﬁqul c ... 0.

We put A\, = Ng,. We apply the result of step 1 to A\, with e = 1/k and ¢ =1 on €, and
derive the existence of a positive Radon measure 0 € LO"I’/(Q)7 with compact support in
Q satisfying 0 < 0, < A and

/ d(A—0k) < 1/k.
Qp
The measure A\, = sup{61,60s,...,60,} has compact support in Q, A\, < A\,41 < A for any
n, and
lim CdA\, = / CdX, V(¢ e C.(9).

0

Corollary 3.18 Let a > 0 and 1 < p < oo. If A € MY (Q) does not charge sets with
Cop -capacity zero, there exist a function \* € L'(2) and a measure A € L™%P(Q) such
that

A=A+ (3.62)

Proof. By assumption, both the positive and the negative parts of A do not charge sets
with C,, ,-capacity zero. Therefore it is sufficient to prove (3.62) with A € 907 (2). Let
{An} C L™*P(Q2) N M, (Q) be the increasing sequence of measures with compact support
in Q which converges to A weakly. We set

pj =X —Aj_1, for j €N, and py= .

Then

e ¢}
A= ij’
=0
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and the series converges strongly in the space 9°(Q2). In particular

(0.0]
Z ”Pngmb(Q) < 0.
5=0

Let {n}ren, be a sequence of C*° nonnegative functions in R”, with compact support in
the open ball By,-1(0), satisfying

Nrdr = 1.
Q

For any j € N, there exists k;-] € N, such that for k£ > k:?, pik = pj*xnr € CF(Q). Since
pjk — pj as k — oo, we fix k; > k:? such that

sk, = ijL—aJ)(Q) <27,

[e.9]

We set pjx; = pj — pjk,;- The series Zﬁj,k]. is normaly convergent in L~*P({2) and, if A
j=0

denotes its sum, it belongs to L~*P(£2). Moreover

Hpj,ijL1(Q) = Hpj *nijLl(Q) = ||pJH9;7tb(Q)

Thus the series Z Pjk; 1s normaly convergent in LY(Q) with sum A*. The three series
=0

o o o
ij, Zﬁj,kj and ij,kj converge in the sense of distributions in 2, therefore (3.62)
j=0  j=0 §=0
holds. 0

Remark. If A > 0, it is the same with A*. Unfortunately it is not clear that X inherits the
same property. Notice that A* and A may not be mutually singular.

Another important and useful result concerning measures which do not charge sets
with zero capacity is the following [29].

Theorem 3.19 Let « > 0 and 1 < p < oo. If A € M (Q) does not charge sets with
Co p-capacity zero, there exist v € M () N L™*P(Q) and a Borel function f with value
in [0,00) such that

AE) :/ fdv, VE CQ, E Borel. (3.63)
E

3.3.2 Sharp solvability

The following theorem due to Baras and Pierre [9] characterizes the bounded measures
for which the problem
Lu+u/f'u=X inQ,

(3.64)
u=0 on 0L,

admits a solution.
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Theorem 3.20 Let Q be a C? bounded domain in R™, n > 3, L the elliptic operator
defined by (2.1) satisfying the condition (H), ¢ > n/(n —2) and X € M*(Q). Then
Problem (3.64) admits a solution if and only if A\ does not charge sets with Cy 4 -capacity
zero. The solution is unique and the mapping A — u is nondecreasing.

For proving this theorem we need the following regularity result.

Lemma 3.21 Let Q and L be as in Theorem 8.20. Then for any 1 < p < oo and
A€ W=2P(Q) N IMP(Q), G(N\) € LP(Q). Moreover there evists C = C(, L,p) > 0 such
that

IGEN)| 1o < ClA w200 (3.65)

Proof. Put v =G$()\), then

/ vL*Cdx = / Cd\, V¢ e CHEQ).
Q Q

Let ¢ € C°(Q), ¢ = G.(¢), then

‘/ﬂ vodx

by the LP-regularity theory of elliptic equations. Hence v € LP(€2) and (3.65) follows.
(]

Proof of Theorem 3.20. (i) Assume that u is a solution of (3.64). Since |u|?'u e L'(Q)
by Proposition 3.2, it does not charge set with Cy ,-capacity zero, which are negligible
sets for the n-dimensional Hausdorff measure. Therefore Lu € 9°(Q), and

< Il I ey < CIA -2y 16y

< Nl IL7 Gl L 0y < Cllull pagoy Il (@)

(Lu, 6)| = ‘ /Q uL* pda

for any ¢ € C3°(§2). Therefore the measure Lu defines a continuous linear functional on
VVO2 7(€). Consequently X is the sum of an integrable function and a measure in W ~=29(Q).

(ii) Conversely, we first assume that X is a positive measure. By Proposition 3.17 there
exists an increasing sequence of positive measures A; belonging to W =24 converging to A
in the weak sense of measures. By Theorem 3.10 there exists u; solution to

Luj + ‘u]"qil u; = A; in Q,
(3.66)
u; =0 on Of).

Moreover u; is nonnegative and u; > u;_q for any j € N,. For any ¢ € C&’L(ﬁ) there
holds

/Q <ujL*g + ugc) dz = /diAj. (3.67)
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Let u = lim;j_,o uj. If ( > 0, we have, by the Beppo-Levi Theorem,

/ (uL*C 4+ u9¢) dx = / CdA. (3.68)
Q Q

Hence u € LY(Q) N L4(Q; p,,dr) and u is the solution to Problem (3.64). Because A is
bounded we have u € L4(2) by Proposition 3.2.

If X\ is no longer positive, A, and A_ do not charge Borel sets with Cs ,-capacity
zero. Hence there exist two nondecreasing sequences of positive measures belonging to
W=24(Q), {N\j+} and {)\;_}, converging to Ay and A_ respectively. As in the proof of
Theorem 3.10 we truncate the nonlinearity by putting gx(r) =sign (r) min{k?,|r|?} for
k € Ny, and we denote by vy, (resp. v 4+ and vg ) the solutions of

Lv+gp(v) =v inQ,

(3.69)
v=0 on 012,

when v = X\j  — A _ (resp. v = \; 4 and v = \; ). By Theorem 3.7, —vp _ < v < v 4,
which implies —gg(vk,—) < gr(vr) < gr(vk4). When k — oo, the sequences {vy 1} and
{vg,—} decrease and converge respectively to w; 4 and u;_, the solutions of (3.64) with
respective right-hand side A;  and \; _. Moreover

— (GP(N2)" < —gr(GEN;-)) < gilvr) < g (GE(Nj4)) < (GE(N4)!. (3.70)

Since the left and right-hand side terms are L!(Q)-functions, the sequence {gy(vg)} is
uniformly integrable. As in the proof of Theorem 3.10, the sequence {vy} converges in
L49(Q) to the solution u; of (3.66) with right-hand side \; ; — A; . Furthermore

U , , 2 g1, q
uj— <uj <wjy, and —wuj o < up|fT uy <

Because {u;} and {u;_} are monotone and converge in L?(2), the sequence {u; } is
uniformly integrable in L9(€2) and converges a.e. in Q. Since A\; 4 — A; _ converges weakly
to A in the sense of measures, there exists a function u € L?(£2), solution of (3.64). O
3.4 Removable singularities

3.4.1 Positive solutions

In this section 2 is an arbitrary open set in R™. Let L,, be a linear differential operator
of order m (m € N,.), defined by

Lpu= > D%aqu), (3.71)
0<|a|<m
where
aq € L5 (), VaeN' |a] <m. (3.72)
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Definition 3.22 Let G C € be open, u € L], (G) and T a distribution on G. We shall
say that u satisfies
Lypu=T (resp. Lpu <T) in D'(G), (3.73)

or, equivalently, that u is a distribution solution (resp. subsolution) of (3.73), if
[uticde=(1.0) Gesp. [ uticin < (1.0
G G
Y e C(@) (resp. VC € C(C), ¢ > 0),

(3.74)

where (.,.) denote the duality pairing between D’(G) and D(G), and L}, the formal adjoint
of L,, defined by

Ly¢= Y (-1lla,Do¢. (3.75)
0<|a|<m

The following result is due to Baras and Pierre [9].

Theorem 3.23 Let m € N,, ¢ > 1, F be a relatively closed subset of G, A a Radon
measure which does not charge sets with Cy, . -capacity zero and g a continuous real valued

function which satisfies
liminf g(r)/r? > 0. (3.76)

r—00

Let we L}, (Q\ F), such that u >0 and g(u) € L, .(Q\ F), be a solution of

loc
Lpu+g(u) <X inD'(Q\F). (3.77)
If Cop (F) = 0, then u € L}, (), g(u) € L}, () and there holds

loc
Lpu+g(u) <X in D'(Q). (3.78)

Proof. Step 1 Let ( € C*(Q2), and K =supp(¢). Since K N F' is a compact subset of
1 with C,, y-capacity zero, it follows by Proposition 3.14 that there exists a sequence
{pn} C CX(Q) such that 0 < ¢, < 1, ¢, = 1 in a neighborhood of K N F and ¢,, — 0 as
n — oo, in W™ (Q) and Cpn,¢-quasi everywhere. Therefore, ¢, = (1 — ¢,,)( satisfies :

(i) Cn € CZ(Q\F),

(i) 0< G < 1,

(iii) ¢, — ¢ in W™9'(Q) and C,, »-quasi everywhere as n — oo, and the sequence {(,} is
increasing.

Step 2 We claim that g(u) € L} _(Q). We take ¢ € C°(Q2), ¢ > 0 and {(,,} be defined by

loc

the procedure in Step 1. Let p € N, p > mq’. Since ¢, € C(Q\ F), (3.77) implies

/ (WL, (C2) + g(u)CE) di < / crax. (3.79)
Q Q

Because ¢ < ¢, there holds
[ stwezds < [ caii+ [ ulz@ld (3.80)
Q Q Q
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Since the a,, are locally bounded,

Ll <c Y 1D

0<]al<m

The zero order term is estimated by

1/q 1/p’ 1/q
[ ([a)" ([ )" = ([0 bt

If |of > 1,

|al

DY) =YY ey, DTG DI,
Jj=1 18;1 > 1
Bi1+...+8j=«a

where the ¢; and ¢g, ., are positive constants depending on the indices. Thus we are led
to estimate a finite sum involving terms of the form

A:/ug’;j‘Dﬁlgn...Dﬁan‘dm.
Q

By Holder’s inequality

1/q ., q 1/q
A< ( / qugdx> < / ¢pia ‘Dﬁlgn...pﬁfgn dm) .
Q Q

Because p > mq’ > j¢, it follows 0 < Cﬁfj ¢ < 1. By applying again Holder’s inequality,
and using the fact that |81 + ... + |5;| = |a/, it follows

A< (/Q quﬁdﬂc) l/qilill (/Q ‘DﬁiCn

By the Gagliardo-Nirenberg inequality, there holds

"ol /18il 1Bil/1ald’
’ dx) )

- [ 1ed/18:] i1/l 16il/ |
D%, < LGl ) < CliGallgil 5l -
Therefore
1/q
A<cC ( /Q qugdm> [ (3.82)
from which derives
1/q
[ otwazas < e+ Ca ([ czas) " il (3.83)

By assumption, there exist two positive constants a and b such that

g(r) >ar?f—b, Vr>0.
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Consequently, up to changing the constants Cj,

1/q
[ (o) + 32z < €1+ ( / (g(u)+b)<£dm> Wllyme e (384)
Q Q

Finally, the left-hand side integral remains bounded independently of n and we conclude
by Fatou’s lemma that (g(u) + b)¢P € LY(R). Since ( is arbitrary, we find g(u) € L} (Q).

loc
The growth estimate on g implies also v € L{ ().

Step 3 We claim that (3.78) holds. Let ¢ € C°(2), ¢ > 0. By constructing the same
functions ¢, as above, we have

[ Lot s do < [ Guin (3.85)
Q Q

Since |A| does not charge sets with C,, ,-capacity zero and ¢, — ¢, Cy, o-quasi everywhere
in €2, this convergence holds also |\|-a.e. in 2. By the Lebesgue Theorem

lim | Cud\ = / CdA.
Q

n—oo [¢)

Because g(u) is locally integrable in €2,

tin [ g(u)ude = [ gu)éda,
and finally, the convergence of {(,} to ¢ in W9 (Q) implies the convergence of {L* (,}
to L,¢ in LY (Q). Passing to the limit in (3.85) yields to (3.78). O
Remark. Contrary to the case of semilinear elliptic equations with an absorbing nonlin-
earity, which will be studied in next section, the removability of F' does not imply that
the function u is regular in whole €2 : the singularity is just not seen at the distributions
level.

3.4.2 Semilinear elliptic equations with absorption

The first result of unconditional removability of isolated sets for semilinear elliptic equa-
tions with absorption term is due to Brezis and Véron [23]. It deals with equation

—Au+g(u) =0, (3.86)

in 2\ {0}, where Q is an open subset of R” (n > 3) containing 0 and g a continuous
function. They proved the following.

Theorem 3.24 Suppose g satisfies

liminf g(r)/r™ ™2 >0 and limsupg(r)/|r/” "2 <o0. (3.87)

rT——00

If u e L (Q\ {0}) satisfies (3.86) in the sense of distributions in Q \ {0}, there exists a

loc
function i € C*(Q) N VV;’?(Q) for any 1 < p < 0o, which coincides with u a.e. in €, and
is a solution of (3.86) in whole ).
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The proof of this result is settled upon a particular case of a general a priori estimate
discovered by Keller [53] and Osserman [83] separately. In this particular case, and in
assuming that Br(0) C €, it reads

lu(z)] < Al2f*" + B, Va € Brjs(0)\ {0}, (3.88)

for some positive constants A and B. From this estimate is derived the local integrability
of u in ©Q and then of g(u). Finally, it leads to the fact that Equation (3.86) holds in
the sense of distributions in Q. The conclusion follows by the maximum principle (which
implies the boundedness of u near 0), and the elliptic equations regularity theory. Later
on, this result was extended by Véron [102] as follows :

Theorem 3.25 Let X C Q be a complete and compact d-dimensional submanifold of class
C? 1<d<n—2)and g is a continuous real valued function such that

liminf g(r)/r=D/=2=4 5 0 gpd limsupg(r)/|r|"¥ "2 < 0. (3.89)

r—o00 r——00

If u € L2 (Q\ X) satisfies (3.86) in the sense of distributions in Q2 \ X, there exists a

loc
function @ € C1(Q) N VVlif(Q) for any 1 < p < oo, which coincides with uw a.e. in  and
is a solution of (3.86) in whole ).

Although more technical, the idea of the proof is similar to the one of Theorem 3.24,
except that the a priori estimate (3.88) is replaced by

lu(z)| < A(dist (z,2))> "+ B, VreG\Y, (3.90)

where G is open and bounded and ¥ € G € G C . The method developed by Baras and
Pierre [9] is settled upon integral identity, without using pointwise a priori estimates as
the previous authors do.

Theorem 3.26 Let Q) be a bounded open subset of R™, n > 2, with a C? boundary, L
an elliptic operator defined by 2.1 satisfying condition (H) and ¢ > 1. If F is a compact
subset of 1, any solution u € L] (Q\ K) of

Lu+ |u|"'u =0, (3.91)

in Q\ K, belongs to LiL (Q) and satisfies (3.91) in whole Q, if and only if Cyy(K) = 0.
If this holds, u € T/Vlif(Q) for any 1 < p < oo, and (3.91) is satisfied a.e. in SQ.

Proof. (i) Let us assume that Cy y(K) > 0. By (3.54), there exists a positive Radon
measure A concentrated on K such that

/ |G * p|?dx < oo.
Q

This means that A € W~24(Q). By Theorem 3.20, Problem (3.64) admits a solution in .
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(ii) Conversely we assume that Cy o (K) = 0. By Theorem 2.4, for any ¢ € crl@\ F),
¢ > 0, there holds

/ (Ju| L*¢ + [u|?¢) dz < 0.
Q

Therefore v = |u] is a subsolution of (3.91) in the sense of Definition 3.22. Since C o (K) =
0, we can extend v as a solution of (3.91) in whole €2, and because K has zero Lebesgue
measure, u € L} (). Let ¢, = (1 — ¢,)¢ be the functions defined in Theorem 3.23 for

loc

an arbitrary ¢ € C2°() (we do not impose the positivity). Then ¢, — ¢ in W24 (Q) and
Cy,g-quasi everywhere. By assumption

/Q (uL*Cn + |7t uCn) dz = 0.

By Lebesgue’s theorem, [u|?™ " u¢, — |u|? u¢ in L'(€2). Moreover L*¢, — L*¢ in L7 ().
Therefore, by letting n — oo, it is infered that

/Q (uL*C + |l uC) dz =0, (3.92)

which proves that (3.91) holds in Q. Let G be any smooth open domain containing K
and such that G C Q. For 8 > 0 small enough we put Gs = {z € G : dist (z,0G > 3},
and I'g = {z € G : dist (x,0G) = B} = 0Gg. There exists §y such that I'g is a smooth
surface in R™. Because u € LY(G\ Gg,), it follows, by Fubini’s theorem, that u‘pﬁ € L1(T'p)
(endowed with the (n — 1)-dimensional Hausdorff measure), for almost all § € [0, 5y]. We
fix a B such that this property holds and denote by V' the Poisson potential of ui|r, in

Gg. By (2.22), for any ¢ € C}L@;), ¢ > 0, there holds

¢
aGﬁ anL*

/G <(u — V)L L+ (u— V) ult? uC) de < — (u—wuy)rdS.  (3.93)
8

Taking ¢ = Gfﬁ(l) implies (v — V)4 =0 in Gg. Thus u <V in Gg. Since V € LY (Gp),
the same property holds with uy. Since G is arbitrary, uy € L7 (). In the same way

u_ € LS (€2). We conclude with the elliptic equations regularity theory that u € VVlif(Q)
(|

Remark. The following extension of Theorem 3.26 is easy to establish : Let g be a contin-

uwous real valued function which satisfies

liminf g(r)/r? >0 and limsupg(r)/|r|? <0, (3.94)
r—00

r——00

for some g > 1. Let A € M(QY) which does not charge sets with Cq o -capacity zero and K
a compact subset of Gw with Cy o -capacity zero. Then any function u, locally integrable
in Q\ K and such that g(u) € Li, (Q\ K), which verifies

Lu+ g(u) = A, (3.95)

in D'(Q\ K), can be extended as a solution of the same equation in D'(Q2). Furthermore
g(u) € C(Q) and u € W2P(Q), for any 1 < p < co.

loc
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3.5 Isolated singularities

The description of the behaviour of solutions of semilinear elliptic equations near an iso-
lated singularity deals with the following question : let u be a solution of

Lu+g(u) =0 in Q\ {0}, (3.96)

where 2 is an open subset of R" containing 0, L a elliptic operator under the form (2.2)
and g a continuous real-valued function, can one describe the behaviour of u(x) as x — 0
? When L = —A and g = 0, it is known that v admits an expansion in series of spherical
harmonics. For the equation

—Au+utu=0 inQ\{0}, (3.97)

(¢ > 1), much work on this subject has been done by Véron in [101]. Notice that if
q > n/(n — 2) Brezis-Véron’s result (see Theorem 3.24) applies and the function u is C?
in whole 2. When 1 < ¢ < n/(n — 2) this is no longer the case. For example there exists
an explicit radial singular solution of (3.97),

z = us(x) =Llyn |x|72/(q71) (3.98)

defined in R™ \ {0}, where

() )

When 1 < ¢ < (n+1)/(n—1) there exist separable singular solutions. For expressing them,
let (r,0) be the spherical coordinates in R™ and Agn-1 the Laplace-Beltrami operator on
the unit sphere S" 1 = {z € R* : || = 1}. If 1 < ¢ < (n+1)/(n — 1), one has
lyn > n —1 = X\ (S"1), the first nonzero eigenvalue of Agn—1. Therefore, the classical
variational analysis applies and there exist non-trivial solutions of

—Agn1w —Lypw+ |w tw =0 inS"L (3.100)
Hence the function
z = Uy () = uy(r,0) = 12/ y(o) (3.101)

is a singular solution of (3.97). Notice that us is one of these solutions. Furthermore the
constants £, , and —¢, ,, are the only solutions of (3.100) which have a constant sign. The
following result is proven in [101].

Theorem 3.27 Let 1 < ¢ < n/(n—2) (¢ > 1 if n = 2) and u be positive solution of
(8.97) in some open set Q containing 0. Then,

(i) either

lim || 9D u(z) = €y, (3.102)

x—0 ’
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(ii) or there exists some ¢ > 0 such that

lir% 2" u(x) = ¢, (3.103)
r—

if n >3, and |z|" "% replaced by 1/In(1/ |z|) in the above formula if n = 2. Furthermore
u 18 a solution of

—Au+u? = Cpedy  in D'(), (3.104)
for some positive constant C,, depending only on n.

There are several proofs of this result, based either on a sharp use of the radial case
and the Harnack inequality, or on a Lyapounov style analysis. If the function w is no
longer supposed to have constant sign, it is proven in [101] that the above dichotomy still
holds provided (n+1)/(n —1) < g <n/(n —2). However (i) has to be replaced by

(i’) either
lim 279D y(z) = 0 € {lypn, —Lyn} (3.105)

and (ii) by

(ii’) or there exists some real number ¢ such that
lim 2" 2 u(x) = ¢, (3.106)
(if n > 3, with the classical modification if n = 2). Moreover u is a solution of
—Au+ |u|t = Chedy  in D'(Q). (3.107)
Actually, the Lyapounov analysis leads easily to a more general result [27].

Theorem 3.28 Let 1 < ¢ < n/(n —2) and u be solution of (3.97) in some open set
containing 0. Then there exists a compact and connected subset £ of the set of solutions
of (3.100) such that

lim dist Cz(sn_l)(rw(q*l)u(r, ),€) =0, (3.108)

r—0
where dist g2(gn-1y denotes the distance associated to the C?(S"Y-norm.

This result leaves open two difficult questions :

1- Does it exist a particular element w € £ such that

=07 (3.109)

lim H?“z/(q’%(ﬁ ) - ”‘ C2(sn1)

r—0

2- What is the precise behaviour of u when £ = {0} 7

Besides the results above mentioned proven in [101], the two questions have been
thoroughly answered in [27] in the two-dimensional case.
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Theorem 3.29 Assume n =2, ¢ > 1 and u is solution of (3.97) in Q\ {0}. Then there
exists a 2mw-periodic function w, solution of

d2 2 \?
_dTC; a (ﬁ) ww|tw =0 (3.110)

such that (3.109) holds on S*.

Theorem 3.30 Under the assumption of Theorem 8.29, if w = 0, let ko be the largest
integer smaller than 2/(q — 1). Then

(i) either there exist an integer k € [1,ko] and two constants A # 0 and ¢ € S* such that

lim r*u(r, o) = Asin(ko + ¢), (3.111)

r—0

in the C%(S™~1)-topology,

(ii) or there is a nonzero ¢ such that

}i_)rrau(r,a)/ln(l/r) =c, (3.112)

in the C%(S™~1)-topology,
(i) or u can be extended as a C? solution of (3.97) in whole .
In cases (ii) and (iii), u is a solution of (3.107) in D'(2).

The proofs are extremely technical and use, in a fundamental manner, the Sturmian
argument about the oscillations of solutions of 2 dimensional elliptic equations jointly with
the Jordan curve separation Theorem.

Many of the above results can be extended in a standard way to elliptic equations of
the type

Lu+ |u|f u =0, (3.113)

where L is the elliptic operator defined by (2.1) subject to condition (H), and assuming
a;j(x) = aji(x), an assumption which is not a real restriction. If we fix a linear change of
variable in R", y = y(z), and write u(z) = a(y), then

0%u 9%
_ bribs
or; 0z, ; R Oy

where 9

_ OYq

bop = —Bxg'

Then 5 2

U m

7, a_ a. — ) bzb
Z ](0)8:U¢83:j 010y Za](O) Li%kg



Since the matrix (a;;(0)) is symmetric, the byg can be chosen such that
Z aij (O)blzbk] = 6191-
0,

With this transformation most of the above results can be restated with the variable y
replacing x. For example Theorem 3.27 transforms into

Theorem 3.31 Let 1 < ¢ <n/(n—2) and u be positive solution of (3.113) in some open
set  containing 0. Then,

(i) either

tim [y 0 (y) = £y, (3.114)

(ii) or there exists some ¢ > 0 such that

lim ly["aly) = e, (3.115)
y—)

in which case u is a solution of
Lu+u? = Cy, cdy in D'(Q), (3.116)
for some positive constant C,, 1, depending only on n and L.

The description given by (3.105) of isolated singularities in the case of signed solutions of
(3.113) holds in the new unknown @ and variable y, provided (n+1)/(n—1) < ¢ < n/(n—2),
and similarly the method which gives (3.108) applies without restriction. However the
sharp analysis of the the limit case ¢ = (n + 1)/(n — 1) when the limit set is reduced to
the zero function cannot be covered by this rough analysis. Moreover, the extension of
the results given in [27] (even in the non-critical cases where 2/(¢ — 1) is not an integer)
has not yet been done.

3.6 The exponential and 2-dimensional cases
3.6.1 Unconditional solvability

As we have seen it above, the Bénilan-Brezis weak-singularity assumption [11] is mean-
ingless in the 2-dimensional case for solving semilinear elliptic equations with bounded
measures : the (n,0)- weak-singularity assumption imposes n > 3 in Definition 3.6. If
Q) C R? is a smooth bounded domain, L an elliptic operator, g € C(Q x R) is an absorbing
nonlinearity and A € 9?(Q), a specific approach, developped by Vazquez [94], is needed,
for solving

Lu+g(z,u) =X inQ,

(3.117)
=0 on JN.
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Definition 3.32 Let g € C([0,00)), g > 0. We denote by

o
a;(g) := inf {a >0: / g(s)e *¥ds < oo} , (3.118)
0
the exponential order of growth of g at infinity.

If g* € C((—00,0]), g* <0, the ezponential order of growth of g* at minus infinity is
by definition the opposite of the exponential order of growth at infinity of the function
r+— —g*(—r), thus

—00

0
a_(g*) :=sup {a <0: / g (s)e*ds > —oo} . (3.119)
Those two quantities may be zero (for example if § is a power), finite and nonzero ( if g
is an exponential) or infinite (if § is a super-exponential).

Definition 3.33 A real valued function g € C'(2 x R) satisfies the 2-dimensional weak-
singularity assumption, if there exists rqg > 0 such that

rg(z,r) >0, V(z,r)€ QX (—o00, -1 U [rg,00), (3.120)

and two nondecreasing functions §; € C([0,00)), g1 > 0, with zero exponential order of
growth at infinity, and go € C((—00,0]) , g2 < 0, with zero exponential order of growth at
minus infinity such that

g(z,r) < Gi(r), V(z,r) € A xRy, (3.121)

and
ga(r) < g(z,7), V(z,r)e AxR_. (3.122)
Notice that the zero exponential of growth assumptions can be written under the form

/000 (91(8) — ga(—9)) e *ds < 00, Va > 0. (3.123)

Theorem 3.34 Let Q C R? be a C? bounded domain and g € C(Q x R) satisfy the 2-
dimensional weak-singularity assumption. For any A € IMy(Q) Problem (3.117) admits a
solution. Furthermore, § is invariant if we replace g by £g, for any £ > 0.

One of the tool of the proof is John-Nirenberg’s theorem [47, Th. 7.21].

Theorem 3.35 Let G be a conver open domain in R™ and v € WH(G). Assume that
there exists K > 0 such that

/ |Vo|dz < K™™', VaeG, Vr>0. (3.124)
GNBy(a)
Then there exist two positive constants C' and g, depending only on n, such that

/Gexp <% v — v(;\) dr < C (diam(G))", (3.125)

1
where p = po |G| (diam(G))™", and vg = @/vdx.
G
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Notice that for any bounded domain G C R", diam(G) = diam(conv G). Then the
following consequence of Theorem 3.35 is valid.

Corollary 3.36 Let G be a bounded open domain in R"™ and v € Wol’l(G). Assume that
there exists K > 0 such that (3.124) holds. Then there exist two positive constants C' and
o, depending only on n, such that (3.125) holds with p = po |conv G| (diam(G))™" and

1
va replaced by Veony ¢ = 7/ vdx.
|conv G| Jo
Proof of Theorem 3.34. Step 1 Approximation. First we multiply A by the characteristic
function x, of Q, = {z € Q: p,g(z) > 1/n}, and we regularize x, A by convolution

with positive smooth functions with compact support and total mass 1. By the property
of convolution can replace Ay and A_ by A\, + and A, _ € C°(Q), and they satisty,

[An+ L) < A+ llow )
and
[An Nl 21y < A= llowe 0)-

Let u,, be the solution of
Luy, + g(x,up) = Ay in £,

(3.126)
u, =0  on 9.

Such a problem admits solutions (see Steps 1-3 of the proof of Theorem 3.7). The following
two estimates hold

sy + pon sty < © [ ot +Cr Whallisey < Cor - (3227
where —© < min{sign(r)g(z,r) : (z,r) € Q x R} is nonpositive, and

IVunllyrzy < CalO + [ Al 11(y) < C. (3.128)

Notice that (3.128), which replaces (3.25), follows from (3.10). As in the proof of Theo-
rem 3.7 there exist a subsequence {u,, } and a function u € Wol’q(Q), for any 1 < ¢ < 2,
such that u,, — u in L}(Q) and a.e. in .

Step 2 Convergence. Because (3.128) holds,
/ Vup| dz < C5|Q 1 By(a)|V2 < Csv/mr, ¥r>0, acQ, (3.129)
QNBy(a)

and Corollary 3.36 implies

/Q exp(jt |tn] /Csv/F)dz < Cs 92 exp(t [ttmeonw o] /Cs /) < Cr, (3.130)

since [[un | 11(q) is uniformly bounded. If we set

0,(s) :/ dx and (= ,
(269 un (@)|>5} Csv/m
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then
0<0n(s) < Cre P, V¥s>0. (3.131)

Let w be any Borel subset of 2. As in Theorem 3.7-Step 3, for any R > 0, we have
[ o wnlds < [ @) = gol=ual)) d,
< (1(R) = g2(=R)) |w| - /R (91(s) = g2(=5))dbn(s).

Therefore, as in the proof of Theorem 3.7,

[ 016 = i-9)0n(s) = @rlR) = =R (R + [ 0051l (5) — (=),
R R

(@1(R) = o= R)OLR) + Cr [~ el (5) = a(=s)).
< G
B Jr
Let € > 0 arbitrary. By (3.123) there exists R > 0 such that
ﬁ o0
B Jr

IN

(91(5) — Go(—s))e Pds.

(91(s) — Ga(—5))e Pds < ¢/2,

Now

o] < /204 01(R) - 3o~ B) = [ Igta )] do < e

We conclude by the Vitali Theorem that g(.,un, ) — g(.,u) in L' (2), and we end the proof
as for Theorem 3.7. O

If g(z,7) = e for some a > 0, the previous result does not apply for any bounded
measure A. However, if the constant Cs is small enough, which means that © and [|A[|gp g
are, accordingly, small, the uniform integrability may hold. The proof of the following
variant is parallel to the one of Theorem 3.34.

Theorem 3.37 Let Q C R? be a C? bounded domain and g € C(Q x R) with finite
exponential orders of growth at plus and minus infinity. Then there exists § > 0 such that
for any A € MP(Q), if [Mlgmp ) < 6, Problem (3.117) admits a solution.

The monotonicity and uniform integrability arguments imply also the following stabil-
ity result.

Corollary 3.38 Let Q C R? be a C? bounded domain and g € C(Q x R) satisfy the 2-
dimensional weak-singularity assumption. Assume also that r — g(z,7) is nondecreasing
for any x € Q. Then, for any X € My(N), the solution u of Problem (3.117) is unique
and the mapping X\ — wu is nondecreasing. Furthermore, if {\n,} is a sequence of bounded
measures in ) which converges in the sense of measures to A, the corresponding solutions
U to problem (3.117) converge to w in L'(2).
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3.6.2 Subcritical measures

For simplicity we shall consider only nondecreasing absorption nonlinearities g € C'(R) in

the problem
—Au+g(u) =X inQ,

(3.132)
u=0 on 0f,

where (2 is a smooth bounded domain of the plane, and A € IM°(Q2).

Definition 3.39 Let A be a bounded measure in {2, with Lebesgue decomposition \ =
A+ A + Zje 7 Cj0xz; where A* is the absolutely continuous part with respect to the 2-
dimensional Hausdorff measure, A, the singular non-atomic part and {(c;,z;)};es the set,
at most countable, of atoms. Let g be a continuous nondecreasing real valued function.
We say that A is subcritical with respect to g if

47 47

VjeJ (3.133)

The following result is due to Vazquez [94].

Theorem 3.40 Let A € IMMP(Q). Problem (3.132) admits a solution if and only if X is
subcritical with respect to g.

The local version of the necessary condition is the following.

Proposition 3.41 Assume g has positive and finite exponential order of growth at infin-
ity, ay(g). Let R >0 and v € M (BR(0)) with no atom. If ¢ > 4w /a(g) there exists no
function u € LY(Br(0)) such that g(u) € L*(Br(0)) and

/ (—uA¢ + g(u)() dx = ¢(0) + / Cdv, V(¢ € CX(Br(0)). (3.134)
Br(0) Br(0)

The next result is a particular case of a remarkable relaxation phenomenon which occurs
above the critical level 47 /a4 (g). We denote by Bpr the ball of center 0 and radius R and

Lemma 3.42 Let g be a continuous nondecreasing function with positive and finite expo-
nential order of growth at infinity as(g) and, for n € Ny, g,(r) = min{g(r),g(n)}. Let
R>0, ¢>ci(g9) =4m/ay(g) and b be three constants, and vy, the solution of

—Avy, + gn(vp) =cdg  in D'(Bg),

(3.135)
Up =b on OBR.

When n — oo, {v,} decreases and converges, locally uniformly in By, to the solution
Vei(g) of .
_Avc+(g) + g(vc+(g)) = C4 (9)60 m D/(BR)’

(3.136)
Uey(g) = b on 0BR.
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Proof. Since a4 (gn) = 0, we know by Theorem 3.34, that for any ¢ > 0, there exists a
unique solution vy, to (3.135), which is therefore a radially symmetric function. Because
gn is increasing, the sequence {v,,} is nonincreasing.

Step 1 Existence of a solution to problem (3.136) in the case ¢ < ¢4 (g). By comparing v,
with the solution ¥ = V¥, of

—AW¥ = c¢dy + |g(0)] in D'(Bg),

(3.137)
U = |b| on 0Bg,
there holds ¥ > max{0, v, }. But ¥ has the explicit form
U(z) = % In(1/ |z]) + K. (3.138)

for some constant K. The function v,, is bounded from below by the solution ® of
—A® +g(®) =0 in D'(Bpg),

(3.139)
®=b on JBg,

and @ is a bounded function. Therefore, for n large enough,
c
9(®) < ga(vn) < g(vn) < g(¥) = g (5= In(1/ |o]) + K.

But

[ a(gmoia+ k) o< [ o (mesien) do =25 [~ geras

for some k > 0, p > 0. This last integral is finite because 47/c > a4 (g). We conclude
with Lebesgue’s theorem that v, converges to the solution v, to (3.136).

Step 2 Existence of a solution to problem (3.136) in the case ¢ = cy(g). Let {c,} be a
positive increasing sequence converging to cy(g). Then the sequence {v.,} is increasing.
Since ® < v,, < W, (given by (3.129) and (3.130)), the limit v* of the v, is attained in
the L'(Bg)-norm, and

¢ <v <Y, .
The sequence {g(v., )} is increasing and converges pointwise to g(v*). Let 1, € C%(Bg)

be the solution of
—Anl =1 in BR,
(3.140)
m =0>b on JBg.

Hence m; > 0 and
/ (—ve, Ay + g(ve, )m) dx = c,n1(0) — 27bn| (R). (3.141)
Br

Letting n — oo and using the Beppo-Levi Theorem implies

Jim_[1(9(veq) = 90" mill 2 sy =0
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Thus v* is the solution of (3.136) with ¢ = c4.

Step 3 Nonexistence of a solution to problem (3.136) in the case ¢ > ¢4 (g). Suppose that
such a solution v, exists. Because of uniqueness, it is a radial function, and g(v.) € L'(Bg).
The function c
— —In(1
rio w(r) = o= In(1/r),

satisfies (rw'(r))" = rg(v.) on (0, R). Therefore r — rw'(r) admits a limit when r» — 0. If
the limit were not zero, say «, it would imply

w(r) =aln(l/r)(1+o(1)) asr—0,

and
Aw = rg(v.) — 2medy,

contradiction. Thus rw’(r) — 0 as r — 0, and by integration,
ve(r) = 21 In(1/r)(1 + o(1)). (3.142)
7T
Then, for any 0 < v < ¢, there exists R, € (0, R] such that
ve(r) > L n(1/r), in (0,R,].
2m
Thus g(ve) > g(v/(27) In(1/r)). Put a = 27 /7. Since g(v.) € L'(B), it implies
o
/ g(8)e 2% ds < 0o = 2a > a(g),
0

and finally ¢ < ¢y (g), a contradiction.

Step 4 The relaxation phenomena when ¢ > ¢4 (g). For any n and any € > 0, the solution
vy, of (3.135) is bounded from below by the solution V;, of

~AVy + gn(Va) = (c4(9) —€)do  in D'(Br),

(3.143)
V=0 on 0Bg.
Let © be the limit of the v,,. Then v is a solution of
—A0+g(v) =0 in B},
(©) i (3.144)

U=0b on 0Bg.

Because V;, converges to v, (g)_, there holds © > v, (y)—e. Letting e — 0 finally yields to
0 > v, (g). Taking the same test function 7, defined by (3.140), one obtains

| Conn - galonm) do = o (0) ~ 20t () (3.145)

Using the fact that v, < ¥ (see Step 1) and Fatou’s lemma,

/ g(0)ymdx < liminf/ gn(Up)mdz < .
Br n—oo JBr
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Thus g(0) € LY(Bg). Since © € L'(Bg), the distribution 7' = —A® + g(v) has the point
0 for support, therefore there exist real numbers ¢,, (p € N™) such that

T = Z Cpr(S().

Ip|<m

Let ¢ € C2°(B) such that
(=D)PDPC(0) = ¢, Fp €N, [p| < m,

and for € > 0, put ((z) = ((z/e). Then

2
c
/ (—0AC + g(D),) do = l—p (3.146)
B ep‘
lp|<m
But
C Re
/ DA dz| = — / OAl(z/e)dx| < —2/ In(1/s)sds < C"In(1/e). (3.147)
B € 1JB € Jo
Comparing (3.146) and (3.147) implies ¢, = 0 for any |p| > 1, from what is infered
—AD+ g(0) = cpdg in D'(B). (3.148)
By Step 3 and the inequality © > v, (g), one has ¢p = ¢4 (g), which ends the proof. O

Proof of Proposition 3.41. Assume such a u exists. By changing R, we can assume that
u € L'(OBR) and that u is therefore the unique integrable function with g(u) € L'(Bg)

which satisfies
—Au+g(u) = cdp+v in D'(Bg),

(3.149)
u fixed on dBg.
Put g,(r) = min{g(r),g(n)}, and let v,, be the solution of
—Avy, + gn(vy) = cdo in D'(Bg),
(vn) (Br) (3.150)
v, =0 on JBg,
and v the one of A /(Br)
—Av=v in D'(BRr),
i (3.151)

V= ug on 0BpR.

Since g(v, + v) > gn(vy +v) > gn(vy), the function U,, = v, + v is a super-solution for
Problem (3.149). Therefore u < v,, + v. Letting n — oo and using Lemma 3.42 yields to

u < Ve (g) 0. (3.152)

Writing again
c
u(r,6) = u(w) = = In(1/|]) + (@)
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then -
—Aw=v—gu) = —Aw(r) = (v — g(u))(r),

where the overlining indicates the angular average. Because the measure v has no atom
and g(u) € L'(Bp),

' (v —g(u))(s)ds — 0, asr— 0.
0

Thus c
u(r) = Py In(1/7)(1 4+ o(1)).
In the same way
w(r) = o(In(1/r)),

and, from Lemma 3.42-Step 2,

e 1) = ves ) = S (1)1 + (1)),

Since ¢ > ¢4 (g), this contradicts (3.152). O

Proof of Theorem 3.40. By replacing A by A — g(0), it is always possible to assume
g(0) = 0. The measure A admits the decomposition

)\ = Z cjéxj + v,
jeJ

where {x;};c is the set of atoms of A, and v is the sum of a measure absolutely continuous
with respect to the 2-dimensional Hausdorff measure and a singular measure without atom.

Step 1 We assume that A is positive with compact support in Q, and ¢; < ¢4 (g) for any
j€J. Let 6 > 0 as in Theorem 3.37, J; = {j € J : ¢; > §/2} (with #(J1) = K), and

jo=J\ J'. We denote
Ao =A= Y cibe,.

Jjeh1
First, there exists a finite covering {€; }icr of Q (with #(I) = N) such that Q; N Qy =0
if 1 # 4/, and
/ \s < 6. (3.153)
Q;
This covering can be chosen such that any ; contains at most one xj for j € Ji, and

actually z; € €;, we shall write ¢ = i(j) and this correspondence is one to one from J;
into I. For such a x;, there exists o; > 0 such that By, (z;) C €y

j), and
lim d(\ = ¢jdg;) = 0. (3.154)
o—0 Ba(ll?j)
Let R > 0 be such that @ C Bg(z;), Vj € Ji. For 0 < o < infjcy, 0j and i = i(j) for
some j € Jp, we set
Q

i) = Bo(;) U Q5
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By Lemma 3.42-Step 1, each of the following equations admits a solution u;,

1
—Auj—l—ﬁg(uj) = ¢jdy; in D'(Bg(zy)), (3.155)
uj = 0 on 0Bg(z;),

for j € Ji. Let Qi = {& € Q; : dist(2,Qf) > o}. Ifi e I\ {i(j) : j € J1}, we set
Nig = Xo,, _As, and if ¢ = i(y) for some j € Jy, we put \;j, = XQ/ As. By Theorem 3.37

there exist functlons v, solutions of

1
—Avj o+ — N 9(Vis) = Nip InD'(),
Vig =0 on 0f2,

)

(3.156)

for 7 € I. Furthermore the u; and v;, are respectively the limit of the u;, and v;qp

solutions of )

ﬁg(uj,n) = ¢j0z; ¥ pn in D'(Br(zy)), (3157
Ujp =0 on 0Bg(xj),

—Aujp +

and

1 .
—AVj g + ﬁg(vi@n) =Nio*pn in D(Q),
(3.158)
Viom =0 on 09,

where p,, is a positive radial and smooth convolution kernel with shrinking compact sup-
port. Hence, for n large enough and o small enough, the support of the ¢;d,; * p, and
Aio % pp are all disjoint and included in B, 5 () or in €; , /9 (if i ¢ i(J1)), or in Q;(J) 02"
Finally, g(ujn) — ¢(uj) in L'(Bgr(x;)) (easy to check from Lemma 3.42-Step 1) and
9(Vion) — 9(viy) in L1(Q), as n — oo (by the proof of Theorem 3.34). Put

Unz Zujm, U= Zuj,

je1 jeN

both quantities defined in 2, and

Vn = E Vi, oy Vo = E Vio-
i€l iel

With the same convolution kernel p,, we denote by wu, , the solution to

—Augp + g(Uopn) = Ao * pp in D'(),

(3.159)
n=20 on 012,

where

>\a = Z ijsm] + Z XQ >‘5 + Z XQ/ 5-

JjeN i€I\i(J1) i€i(J1)
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As in the proof of Theorem 3.34, Uy, — Uy in L'(Q) and a.e. in Q, 9(tg,n) is bounded in
LY(Q), and g(uypn) — g(us) ae. in Q. Because

_A(Un + Va,n) + g(Un + Va,n) = - Z Auj,n - Z Avi,a,n + g(Un + Va,n)
JeEJ iel

1
> Z <_Auj7n + WQ(“J’J@)) (3.160)
JjeN
N

1
+ Z <_Avi,o,n + ﬁg(vi,a,n)>

1=1
= Ao *pp in D'(Q),

and Uy, + V5, > 0 on 01, one obtains
0< Ugn <U,+ Va,n-

The estimate of the uniform integrability of {g(U, + V5)} derives from the following
argument : Let w be a Borel subset of Q and w; = Q; Nw, i € I. If i ¢ i(J;) we can write

Un + Va,n = Ui,omn + K(x)a Vo € Wi,

and, for o fixed small enough, the function x — K(z) is bounded uniformly with respect
to n and x € w;, since the distance of the supports of the Ay, * p,, (i’ # i), and the
Cjbz; * pn (j € J1) to wj is larger or equal to o/2. As in the proof of Theorem 3.34, we set

Oni(s) = / dzx,
{z€w;:|(Un+Vn,o)(x)|>s}

and

On,i(s) < / dx.
{r€w; i o n+K(x))>s}

The proof of Theorem 3.34 applies : for € > 0 fixed, there exists § > 0, such that

lwi| <0 = / g(Up, + Vi o)dz < €/2N. (3.161)

7

!/

i().0 and w! C By(xj). On w; we write

If i = i(j) we put w; = wj Uw/, where v} C

U, + Vn,a = Vi(4),0,n + K/(x),

and K'(x) is bounded independently of n, thus (3.161) holds with w] instead of w;. On w
there holds
Un + Vn,a = Ui(5),n + K”(x)7

with K”(x) bounded independently of n. Thus

g(Un + Vn,a) < g(ui(j),n + K”(x))
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Because g(u;(j)n) — 9(uiy) in L (Br(ziy)) as n — 00, gluign + k) — gluiggy + k)

for any & > 0. Thus {g(u;3),, + k)} is uniformly integrable. The same holds with

{9(uiym + K7 ()X, (x,(_))}, if we take k > K”. Finally (3.161) holds with w/' instead of
LACE

w;. Consequently,
Yw C Q, w Borel , |w| < § = / 9(uno)dr < / g(Uy + Vi o)dx < e (3.162)

We conclude by Vitali’s theorem that g(u, ) — g(uy) in L'(£2), thus u, is the solution of

—Auy + g(ug) = Ay in D'(),

(3.163)
uy =0 on ON.

In particular there holds

[ a4 gtusymas = [ max,
Q Q
if we take

—An; = 1 in §Q,
m = 0 on 00.

Letting 0 — 0, u, increases to v and

/(u—i—g(u)mdm = / nidA. (3.164)
Q Q

From this integrability property it follows that w is the solution of (3.132).

Step 2 The case of a general positive bounded measure. We perform a double truncation,
replacing A by A, (n € N,), by putting

An = Z (e+(g) — nil)‘sﬂfj * Xa, Z Caj0z;V |

j€dey jeINIe,

where J. {j € J : ¢;j = c(g)}, v is the non-atomic part of A, and Q, = {z € Q :
dist (z,09) > 1/n}. If u, is the solution corresponding to (3.132), with A replaced by A,
the sequence {uy} is increasing and converges to some integrable function u. As in Step 1,
we conclude, by Beppo-Levi’s theorem and using Equality (3.164) with A, and wu,, instead
of A and u, that g(u,) converges to g(u) a.e. and in L'(£2;p,,) and (3.164) still holds at
the limit. Furthermore g(u) € L*(2) by Proposition 3.2.

Step 8 The case of a general bounded measure. If A = Ay — A is a bounded measure,
subcritical with respect to g, we have

)\+ = Z cj5$j +V+7
JjeJ4
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—)\_ = Z C;(SJC; —V_,
jed_
where {(c;,;)je, } (vesp. {(cj,})jes_}) is the set of positive atoms ¢; > 0 (resp. ¢ < 0).
We trunctate the measures Ay and A_ as in Step 2, introduce the coverings {Q;} and {Q;}

and the separation parameter o and construct the sets of solutions u}, vi_, u; and U,

Jjr T T
such that

1 )

—Auf + og(uf) = ¢bs, i D'(Ba(z)),
+ 1 + . /
_AUJQJ + ﬁg(vj«f) = Atig in D(Q),

U;‘,_a = 0 on 0%,

_ 1 - ]
CAG () = by i D(Balad)).

u; = 0 on OBg(z}),
and
1 _ ) ,
—Avy, Wg( o) Aio in D(Q),
v, = 0 on Of),
and their approximations u;fn, v;ta’n, u; o, and Vi oo We also construct u,, solution of

(3.159). As in Step 1, we obtain

U_n+ Vfa,n < Ugn <Uin+ V+U,n,

+
j7n’

where Uy, Vigpn, U_p, V_5, are defined as U, and V;, as in Step 1, from the u

+ T

VU and v, _ . Because
]70—7n, j?n ]70—7n

gU-pn + V- a,n) < g(un) < g(Usn + V+a,n)7

and the sets of functions {g(U_ ,,+V_,,)} and {g(Uy ,+ Vi o)} are uniformly integrable
from Step 1, the same property is shared by the set {g(u,)}. We conclude by the Vitali
Theorem as in Step 1, letting n — oo and ¢ — 0. The other convergences, as in Step 2,
follow by the same uniform integrability arguments and the monotonity. O

The general approximation-relaxation result of [94] is the following.

Theorem 3.43 Let g be a continuous nondecreasing function with finite exponential or-
ders of growth at plus and minus infinity, and X € M (Q) with decomposition

A=+ A, +ch5xj,
JjeJ
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N, As being respectively the absolute continuous part and the singular non-atomic part of
A. Let

Jr={jeJ:ci>ci(g)}, and J-={jeJ:¢;<c(9)},

pn be a reqularizing kernel and u, the solution of

—Auy, + g(uy) =X p, in D'(Q),

(3.165)
U, =0 on O0f.
Then u, — u in LY(Q) where u is the solution of
—Au+g(u) =X\ in D'(Q),
(u) @) (3.166)

u=0 on 09,

and

N =X+ A+ Z iy, + Z c+(9)0z; + Z c—(9)0z;-

jeN{JtuJ—} jeJ+ JjeJ~

The proof of this results follows by a combination of the arguments in Proposition 3.41
and Theorem 3.40.

4 Semilinear equations with source term

4.1 The basic approach

The equation under consideration is written under the form

Lu=g(z,u)+ X in Q,

4.1
u=20 on Of). (4.1)

where €2 is a domain in R™, L an elliptic operator defined in €2, g a continuous function
defined in R x Q2 and A a Radon measure in ). The following general result plays an impor-

tant role in proving existence of solutions in presence of supersolutions and subsolutions
(see e.g. [82], [87)).

Theorem 4.1 Let Q C R™ be any domain, L a second order elliptic operator defined by
the expression (2.1) with locally Lipschitz continuous coefficients. We assume that for any
compact subset K C ) there exists ag > 0 such that

n

Y aii(2)&8 > ax Y &, Vo e K, V&= (&,...,6) €R™. (4.2)
=1

ij=1

Let h*, hT € C(Q x R) be such that v — h*(x,r) is nondecreasing for every x € €2, and
(z,7) — hi(x,r) is locally Lipschitz continuous with respect to the r wariable, uniformly
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when the © variable stays in a compact subset of Q, and put h = h* + hi. If there exist
two C'(2) N I/Vli’c?(Q)—functions Uy and u* satisfying

(1) Lus+ h(z,u) >0 inQ,
(i7) Lu* + h(z,u*) <0 in Q, (4.3)
(191)  uy <u* in €,

where the equations are understood in the weak sense, then there is a C1(Q)-function u
which satisfies

(1) Lu+h(z,u) =0 inQ, (4.4)
(17) ux <u<u* in Q. .

The following construction is at the origin of most of the methods for solving semilinear
equations with reaction source term : if Q is a bounded domain in R™ with a C? boundary
and L the elliptic operator defined by (2.1) satisfying condition (H), if u is an integrable
function solution of (4.1) with A € 9(£; p,,) such that g(.,u) € L' (Q; p,,dz), there holds

u(x) :/G%(x,y)g(y,u(y)dy—{—/ G%(x,y)d)\(y), a.e. in €. (4.5)
Q Q

Theorem 4.2 Assume g(x,0) = 0, r — g(x,r) is nondecreasing for any x € Q and
A€ M(Q;p,,) satisfies GH(N) > 0. If there ewists some v € L), v > 0 such that
g(.,v) € LY(Q; p,odx) and

v > GP(g(,v) + GE(N), (4.6)
there exists a positive solution u to Problem (4.1).
Proof. The sequence {uy, }nen defined by ug = 0 and
Uny1 = GH(g(,un) + GE(N), VneN, (4.7)

is nondecreasing, as soon as G$(g(.,u,) exists, but the wu, are well defined because it is
easy to prove by induction that there holds

0=up<u <uy <

o <u, <. (4.8)

Therefore there exists u = lim,, o, u, which satisfies 0 < u < v, u € LY(Q), g(.,u) €
LY(Q; p,,dx) and

u=G%(g(-,u) + GL(N), (4.9)
This means that u is a solution of (4.1). O

4.2 The convexity method

The convexity method due to Baras and Pierre [10] applies to a large variety of problems
which contains Problem (4.1).
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4.2.1 The general construction

Let (U,u) be a positive measured space with a o-finite measure p. We assume that
{K, }nen is an increasing sequence of measurable subsets of U such that

p(Ky) <o, YneN, |JK,=U. (4.10)
n>0

We denote by L4 (U) (resp. Ly(UxU)) the space of u-measurable (resp. pu® u-measurable)
functions with value in [0,00]. We consider a kernel N € L, (U x U) and a fuction
j:U xR~ [0,00], p ® de-measurable such that

(7) r — j(x,r) is nondecreasing, convex and l.s.c., for almost all z € U,

(4.11)
(1) j(x,0) =0, a.e. in U.
The conjugate function 5%, defined by
j*(m,r) = sup(ra —j(.%',r)) (412)
a€cR
satisfies (4.11). If u € L (U),
| j@,u(@) if ule) < o,
jlu)(@) = { lim j(z,r) if u(z) = co. (4.13)

If he Ly (U) we set
N(h)(z) = /U Nz, y)h(y)duy),

and

N (h)(y) = /U N, y)h(e)du(z).

Notice that these two quantities are positive or infinite. All the LP(U)-spaces (1 < p < 00)
are relative to the measure u. We denote by Lﬁ(U ) their positive cones,

LXU)={he L*U): IneN st. h(z) =0, ae. inU\ K,}, (4.14)

and L° (U) = LE(U)N L4 (U). Being given f € L1 (U), the general problem lies in finding
u € L4 (U) such that
u=N(i(uw)) + . (4.15)

Multiplying (4.15) by h and integrating over U implies

[ = [ = Glophdn = [ (=R 0)de

(
U

IN
T
<

*
Y
Z
—| =
=
N—"
Z

*
=
=
F
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provided uh € L'(U). Therefore a necessary condition for existence of a solution to
Equation (4.15) is

. h * o0
/Ufhd,u < /U] <N*(h)> N*(h)dp, Vh e L (U) such that uh € LYU). (4.17)

Under a very mild additional assumption, this condition is also sufficient. Being given
C>1and h e L (U), we denote

(b N h
/Uj <N*(h)> N*(h)du if N() < oo ae.
Fo(h) = and j* Nfé h)> N*(h) € L\(U), (4.18)

400 if not.

with the convention h(x)/N*(h)(x) = 0 if h(z) = N*(h)(z) =0. If C =1, F; = F. We
put
X={heLXU): F(h) < oo},

and )
X={heLX{U):3C >1s.t. Fo(h) < co}.

In the sequel we adopt the convention wh(z) = 0 if h(x) = 0 and u(z) = co. The main
existence result is as follows.

Theorem 4.3 Let f € L (U). The following problem

(1) weLy(U), wu(z)=N(Gu)(z)+ f(x) p-ae inl,

. (4.19)
(ii) wh € LY(U), Vhe X,
admits a solution if and only if
/ fhdp < F(h), VYheX. (4.20)
U

Scheme of the proof. For v € (0,1) we introduce the sequence {u, } defined by ug = ~f
and

Unt+1 =7 (NG (up))+ f), VYneN. (4.21)

Step 1 We claim that

/ Ungrhdp < ——F(h), Vhe X. (4.22)
U -y

For 1 < C < 1/, and h € X such that Fo(h) < oo, we suppose that there exists some
¥ € L (U) such that

(o) = max { &5/ () @ (0)(0). (o)} (129
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It follows from (4.21),

/unﬂwdu ='y/ j(un)N*(w)dqu'y/ fdp. (4.24)
U U U

By assumption (4.20)

(A ()N (), Ch}
[rvansrew < [ (SEEC e g,
Ch

< [moc{i @) (5 ) ¥ i

Since 1 > h, one has N*(¢)) > N*(h). By convexity j*(ar) < aj*(r), Vr > 0, Va € [0, 1],

therefore
i (57 ) ) <5 (e ) 100

By definition j*(j'(un)) = unj'(un) — j(uy,). Thus, returning to (4.24) implies

/ by < / ()N () ds + / (ttn (t1n) — 3(tn)) N*(@0)dps + ~Fo (h).
U U

U

By combining this inequality with the definition of 1, one derives

[ e < [ wndu+ yFo(h)
U U

Because un4+1 > uy and ¥ > h, we obtain

v
Upr1hdp < / Upp10dp < Fo(h).
/U +1 | Unt s (h)

Letting C — 1, (4.22) follows.

Step 2 Convergence. Letting n — oo, u, increases and converges to some u, which
satisfies

() uy€Li(U), wy=v(NG(u,)+f) iU,

) (4.25)
(ii) u,h € LYU), VheX,
This implies in particular
/ uyhdp = 7/ j(uW)N*(h)d,u—i—v/ fhdp, Vhe X.
U U U
Let C' > 1 such that Fo(h) < oo, then
h ‘ .
'y/ (qu*—h - J(%)) N*(h)dp = (vC — 1)/ uyhdp +7/ fhdp,
U N*(h) U U
and consequently
v
hdp < Fe(h). 4.2
[ ot < TRt (4.26)
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Since the correspondence v +— wu, is increasing and, for almost all x € U, r — j(z,r)
is continuous on the left, we can let v — 1 in (4.26) and (4.25)-(i) and deduce that the
function u = lim,_,; u, is a solution to problem (4.19).

Step 8 Justification. The difficulties in the above proof are of two kinds :

(1) It is not clear that w, < oo on a set of positive measure. It is even not known if
ug = vf satisfies j(up) < oo a.e. in U. To go arround this difficulty we approximate

j(uy), formally equal to un,j'(u,) — j*('(un)), by unfn — 7*(8n) where the {3,} is an
increasing sequence of regular enough fonctions converging to j'(uy,).

(2) The existence of ¥ € X has to be proven.

The full construction, which is extremely technical, is performed in [10]. O

In the presence of a subsolution v to Problem (4.19) it is possible to relax the assump-
tion on the sign of f and to produce a signed solution u. More precisely, we assume that
there exists a measurable function v such that

(i) wveLYK,) and N(.,.)j(v)(.) € LYK, xU), V¥né€EN,
(i) v(z) <N((v)(2) + f(x) p-ae inU,

If j: U xR+ (—00,00] is a measurable function which satisfies (4.11), we introduce j;
and X, :

(4.27)

Jo(@,r) = sup (ra—j(z,a),
a>v(x)

and o {h € LoWU):3C > 1st. J: (Ni%) N°(h) € Ll(U)} _

Corollary 4.4 There exists a measurable function u : U — (—o0, 00| satisfying

() w>v, u(z)=NG@))+ f(&) peac inl,

. (4.28)
(ii) wh € LY(U), Vhe€ X,,
if and only if
/ fhdp < / < Ch N*(h)dp, Vhe X (4.29)
o S AN . - '

Proof. Put w = u — v and define j by
jlxz,r) =0, Y(zr,7r) e QxR_,
J(@,r) = jla,r + o)) — j(@,v(@) if j(z,0(@)) < oo and r >0,

Jj(x,r) =00 if j(z,v(x)) = oo and r > 0.

Thus j takes nonnegative values and satisfies (4.11). Moreover (4.28) is equivalent to

(i) weLy(U), w=N(Gw)+f+N@G@w)—v pae inU,

(i) whe LNU), Yhe X,. (4.30)
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Since
7 (@,r) = jo(z,r) + j(v(x)) —ro(z) if jz,o(@)) < oo,
7 (x,r) =0 if j(v) = oo,

for any h € L°(U), there holds

Tk Ch * % Ch * i(v * _ v
7 (s ) 700 =32 (g ) 00+ 0N = Cho (a3)

p-a.e. on {x € U : j(v)(x) < oo}. Therefore

~ Ch Ch

* N*(h) € LU * N*(h) € LY(U). 4.32

i (g ) N0 e L) =1 (s ) wm e, 4
The proof of Corollary 4.4 follows from Theorem 4.3 applied to Problem (4.30). O

4.2.2 Application to elliptic semilinear equations

Let © be a bounded domain in R™ with a C? boundary, L an elliptic operator defined
by (2.1) satisfying (H) and j : 2 x R +— [0, 00] a measurable function (for the (n + 1)-
dimensional Hausdorff measure) such that j(x,r) = 0, for almost all z € Q and every
r < 0. The function r — j(z,r) is also assumed to be convex, nondecreasing and ls.c.,
thus it fulfills assumption (4.11). If A € M, (Q;p,,), f = GE(\) € L}(Q). We denote by

Y(L) = {£ € Cot (@)} : L€ € LF(2) N L4 (), (4.33)

the space Cl-functions ¢ vanishing on 9 such that L*¢ has compact support and is
essentially bounded. Notice that the elements of Y (L) are nonnegative by the maximum
principle.

Theorem 4.5 Assume there exist some C > 1 and & € Y (L), £ # 0, such that

J* ( %) € LY(Q). (4.34)
If X € My (2 p,,), there exists at least one u € L, () such that G$¥(j(u)) € L}, (Q) and
u=GP(j(u) + G\ € LY(Q), a.e. inQ, (4.35)

if and only if
/diA < /Qj* (L?) , VeEeY(L). (4.36)

Moreover, if u > 0, there exists at least one positive solution.

Proof. We put p = dx, the n-dimensional Hausdorff measure, and

N(z,y) = GHx,y), Y(z,y) €QxQ a#y.
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Let v be defined by
0 if f(z)>0,
v(x) =
f(x) it f(x) <0.
Thus v € LY(Q), N*(j(v)) = 0 and (4.27) holds. Furthermore j* = j* on [0, 00), X, =
X # {0}, because of (4.34). If it exists, any solution u of (4.35) satisfies u > v, thus this
problem is equivalent to

u>v, u=N(j(u)+ f,
we Il (@)
If £ € Y(L), we put h = L*¢, which means equivalently

¢ = GL.(h) = N*(h).

By Corollary 4.4 there exists a measurable function u which satisfies v = N(j(u)) + f,
u > v and uh € L'(Q), for every h € X. By (4.34), uL*¢y € L'(Q), then u(x) is finite
at least for one xg € Q, thus N(zo,.)j(u)(.) € L'(2), by the equation. For any compact
K C Q and any compact neighborhood Ky of K U {zg}, there exists a constant C' such
that

G%*(.%',y) < CG%*(%’y)a V(m,y) € K x (Q \ KO)

Therefore
/ N(z,y)j(y, u(y))dydr < C \K!/ N (zo,y)j(y, u(y))dy < oo,
K JO\Ko Q

from which it is infered that N(j(u)) € L} (), since K is arbitrary. Furthermore u €

loc
L} (), from the equation. O

When j(z,r) =%, for some ¢ > 1, the result is as follows.

Corollary 4.6 Let ¢ > 1, A € M(Q;p,,) and o > 0. Then there exists a function
u € Li, () such that G (ul) € L} () satisfying

loc
Lu:u3_+a)\ in €,
(4.37)
u=0 on 09,

if and only if

-1 [ (L9
a/ﬂfd)\g et /Q e YY), (4.38)

where ¢' = q/(q — 1). Furthermore u is nonnegative if G$(\) is so.

Condition (4.38) has two meanings : the first one is that the positive part of A should
not be too large, whatever is ¢ > 1, the second is that if ¢ is above some critical value,
measure A should not be too concentrated. This concentration is expressed in terms
of Bessel capacities as for equations with absorption. If we assume for example that
A = Ay — A_ is a LP-function, there holds,
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Corollary 4.7 Let g > 1, A= Ay — A_ € LP(Q) Then there exists a function u € L}, ()
solution of Problem (4.37) for o > 0, small enough, if

(i)n=1,2 andl<gq, orn>3 and 1<qg<n/(n-—2),

or

(i) n>3, g>n/(n—2) and Ay € LP(Q) with p>n(q—1)/2q,
or

(ii))n >3, g=n/(n—2) and Ay € LP(Q) with p > 1.

Proof. Only condition (4.36) is to be checked. If £ € Y(L), we define w by

L*¢ = w'/7¢l/a, (4.39)
1 1
If — + — <1, there holds
p
[ eir< [ eine < Clrlu el (4.40)
If we assume 1 1 9 1 9
—<—+—=, or—-<—, ify=o0, (4'41)
s T n s n

it follows, by (4.39) and the Gagliardo and Sobolev inequalities,

1/s
HmméﬂmeSﬂMmp§C<AwW$@M>-

for any 1 < s < co. Furthermore, if

s=d, (4.42)
one gets
l/q/ / / (qlis)/q/s
el < ( [wae) ([ =)
Q Q

If

v =sq'/ald — s), (4.43)
we derive

€l < [ wa.

By combining this inequality with (4.40), it is infered

/5dA<c/wdx.

In order to get (4.41), (4.42), (4.43), we choose v = 00, s < n/2ifn=1,2 0or n > 3.
We take v < oo and s such that equality holds in (4.41), if n > 3, ¢ > n/(n — 2), and

p>n(qg—1)/2q. O

The next result expresses the condition of concentration which allows a measure to be
admissible in Problem (4.37).
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Proposition 4.8 Let A\, = oA be a positive measure with compact support satisfying
(4.38). Then there exists k = k(q,n, \s) such that

Ao (K) < kCo g (K), VKcompact , K C . (4.44)

Proof. We first notice that (4.38) implies

—1 [ |L*|
/vdAU <1 / L0 e v e 02(@), v >0, (4.45)
Q q? Jo vi!

Indeed, if v > 0 belongs to C2°(£2), we apply (4.38) to & = G%.(|L*v|) which is larger than
v by the maximum principle. We replace v by v*¢ in (4.45). Since

L2 = 2q/ 2¢' -1 Z aimj <a” oz, > Z Bx, Z 896@ (biv)

ij=1
ov Ov /8b
—2¢'(2¢' — 1)v%7 2 2¢ — 1 d
¢ ]Z “ ij Bacz <( 1 ) ox; + )
Then .
|L*0% |4 ¢ o
[ Bt < Ol e+ 1900,
and finally
[ 30 < Clelif ol (446

by the Gagliardo-Nirenberg inequality. If K C Q is compact, there exists a sequence
{v} C C(Q) such that 0 < v < 1, v = 1 in a neighborhood of K and |jv
Cy,¢(K) when k — oo. Therefore (4.46) implies (4.44).

’
Hk;?/VQ,q/ -

Remark. In the particular case where K = B,(x¢) (for 0 < r < p,,(z0), the measure A\,

satisfies
!

n—2q

)\U(BT(CC())) SC{ 7(“ ifQ>n/(n—2)7 (4.47)

m(1+1/m)"7 if g=n/(n—2).

Estimate (4.44) can be understood in saying that the measure A\, is Lipschitz continuous
with respect to the capacity Cy ,, although it must be noticed that a capacity is only an
outer measure, not a regular one.

Later on, Adams and Pierre [2] proved a series of remarquable equivalent properties
linking estimates of type (4.44) and Bessel capacities.

Theorem 4.9 Letn > 2, p > 1 and X\ be a nonnegative measure with compact support in
Q. Then the following conditions are equivalent :

(i) There exists k1 > 0 such that for all compact subset K C €2,

A(K) < k1Cap(K). (4.48)
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(ii) There exists ko > 0 such that

/ PN < ky / |AEPdz,  VEEY(=A). (4.49)
Q Q

(7ii) There exists k3 > 0 such that

/Q Ed\ < k3 /Q |AEPETPdr,  VE €Y (—A). (4.50)
(iv) There exists ky > 0 such that

/di)\ < m/g |L*EPEYPde, VE €Y (LY. (4.51)

Their proof is performed with an elliptic operator with C! coefficients, but it can be
adapted to an operator satisfying condition (H). It heavily relies on fine properties of
real valued functions in connection with the Hardy-Littlewood maximal function and the
Muckenhoupt weights.

Usually a positive measure A € W~24(Q) does not satisfies (4.48), but only
MG) < [ ly—20(0) Cold(G),  ¥G € Q, G compact. (4.52)

However, the capacitary measure A\x of a compact subset of K C €2 does verify it. This
measure is the unique extremal for the dual definition of the capacity of K given by (3.54).
It is concentrated on K and has the property that

Ak (K) = Cy g (K), (4.53)
(see [1, Th 2.2.7]). Moreover
G1 % Ag € LY(R™) and Gy * (Gy * A\g)? ! € L®(R™). (4.54)

where G denotes the Bessel kernel of order 1 defined by (3.50). The following result is
proven in [84].

Proposition 4.10 Let K C ) be compact subset with Co o (K) > 0 and Ai the capacitary
measure of K. Then there exists k = k(n,q) such that

/ £ < k||Gyx (Gr * AK)“HLOO(R,L)/ IAE)T ¢ 9de, VEEY(-A).  (4.55)
Q Q
Hence, by Corollary 4.6, Problem 4.35 is solvable for any capacitary measure A = A\g, for

0 < 0 < 0¢ for some oy > 0. Furthermore, since it is proven in [54, Th. 3.1] that there
exists a constant k, ; > 0 such that

HG1 * (G * )\K)q_lHLm(Rn) <kn, VK CQ, K compact,

it follows that o9 = o¢(n, q).
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4.3 Semilinear equations with power source terms

In this section we develop a direct methods for constructing explicit super solutions in
order to apply Theorem 4.2. We assume that  is a bounded open subset with a C?
boundary and that L defined by (2.1) satisfies (H).

Theorem 4.11 Let ¢ >0, A € M (2 p,,,). If there exists some Cy > 0 such that
GY ((G%(A))q> < OGN,  ae. inQ, (4.56)

then problem
Lu=|ul" u+oX in Q,
(4.57)
u =0 on 011,

admits a positive solution u € L*(Q) N LY(; p,,dx),
(i) if 0 < o < 00 = 00(q, Co), when g > 1,
(ii) for any o > 0 when 0 < ¢ < 1.

Proof. Put w = HG%(O‘)\), for some parameters 6, ¢ > 0 > 0. Then, under condition
(4.56),
G (w? + o)) < (Coflo? + 0)GE(N).

Therefore
w > GHw?) + GE(aN), (4.58)

as soon as
Cofloi™t +1<0. (4.59)

If ¢ > 1 this is equivalent to

0—1 1/(Q*1) 1
< - -
7= ( Cofl ) ¢(Coq) /@1

and we get (i) by Theorem 4.2. If 0 < ¢ < 1, for any ¢ > 0 one can find § > 0 such that
(4.59) holds. O

The next result due to [52] ([20] if L = —A) points out how close to a necessary
condition estimate (4.56) is.

Theorem 4.12 Let ¢ > 1, A € M (Q;p,,,), 0 > 0. If there is a positive solution u €
LY(Q) to Problem (4.57), there exists a constant C; > 0 such that

GY ((G%(M))") < OGN,  a.e. in . (4.60)

IfL=—-A,Cy=1/(qg—1).
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Lemma 4.13 Let h € L*(Q;p,,dx), h > 0, and u, n € M (Q;p,,), 1 # 0, such that
p—n>h. If p € C?([0,00)) is a concave nondecreasing function such that ¢(1) > 0, there
holds

Q
he!' (gﬂii’; ;) e LY Q2 p,, dz), (4.61)
and
GSEA(,U) / GQA(/‘)
- <¢ <GQA<n>> Ggﬂ(’”) = ho (G%@)) | (462

Proof. Put z = GQA(/L) and w = G?A(n). We write n = h + 4+ o where o is a positive
Radon measure. Let hy,, pup, and oy, be elements of C°(€2) such that h,, — hin Ll(Q; Pood,
and p, — p and o, — o, in the weak sense of M, (Q;p,,). Put z, = GQA(un) and
wy, = G5 (hy + pin + 04), then z, — z and w,, — w in L}(Q) as n — oo, and a.e. (after
extraction of a subsequence). Thus z, > 0 in Q, for n large enough. Because of the
concavity, ¢(1) > 0 and ¢’ > 0, there holds

s (on(2) 202 w2 (2o

om0 (2) < (o 012

for some C' > 0. Therefore z,¢ (w,/z,) converges in L'(Q) as n — oo. Since for any
geCt 1( ), € > 0, there holds

/ zn¢< )Agdx > / ¢ (%) hnéde, (4.63)
Zn Q n

we derive (4.62) by passing to the limit with Lebesgue and Fatou’s theorems. ([l

Also
> < Czp + wy),

n

Proof of Theorem 4.12. First, we prove the result when L = —A. Since o > 0, we can
assume ¢ = 1 and apply Lemma 4.13 with w = u, the solution of (4.57), z = G, ()\) and

_ gl- — i
¢(S):{ (1—s79/(¢—-1), Tf 5> 1,
s—1, if s <1.
Because u > G, ()),
Q u / u _ (A q
8 (GA(W’ <G‘2A(A)>> =0 <G9A(A)> w = () o0
holds weakly. By the maximum principle,
1
q_—lGQ (A) = -1 GETAN)T = G2 ((GQA(A))(I) ; (4.65)
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which is the expected inequality in the case L = —A. We turn now to the general case.
By Theorem 2.11, the Green functions of L and —A are equivalent in the sense that

C_lGS—)A('Iay) < G%(x,y) < CGS—)A(xay)? V(m,y) €O xQ \ DQa

for some C' > 0. Thus (4.61) follows. O

Remark. In [52], inequality (4.61) is proven for a very general class of positive kernels, not
only for a Green kernel.

The next result, proven in [15], exhibits a large class of measures for which Problem
(4.57) will be solvable by applying Theorem 4.11.

Theorem 4.14 Let ¢ > 0, a € [0,1] and X\ € M (Q; pf ) with H)‘H%(Q;pgﬂ) =1.If

n—+a«a

1 (4.66)

q<

then G$}(\) € LY (€ p2, dx), and there exists a positive constant C = C(n,q,a, X, Q) such
that

GY ((G%(A))q) < CGH)N) ae. in Q. (4.67)

Proof. As in the proof of Theorem 4.12, it is sufficient to consider the case L = —A and
then use the equivalence of Green kernels.

Step 1 The case A = §, for y € Q, n > 3. Since G, (z,y) < C(n) |z —y[*™ we put
d =diam(2) and

|z — y\z_("_Q)q if ¢q>2/(n—2),
he) =19 d—|z—y ™2 if g<2/(n-2), (4.68)
In(d/ |z —yl) if ¢=2/(n-2).

Hence

—AR() =Cy].—y|% ™7 in D),

and consequently
62 ((6%a(9))") (@) < Cah(a) < Cs o — o,
with C; = Ci(n,q,d) > 0. Let 7 > 0 be such that B,(y) C Q. Clearly
674 ((G240-1)") (@) < Cppyale) < CJG2a (2, ),

on B,(y) \ {y}. On Q\ B,(y) the function G, ((G%A(.,9))?) is C1. We get a similar
inequality by Hopf boundary lemma. Finally there exists C)y > 0 such that

6% ((G%(9)") @) < G2 (xy). Vo e Q\ {y}. (4.69)
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As we shall see it in next step, Cy is bounded independently of y.

Step 2 The general case. By Theorem 3.5, G, (\) € L(Q; pS dx) since (4.66) holds.
First assume ¢ > 1, then

/G (z,y)d\(y) = /QGp ((x)y) P (W)AA(y).

By Jensen’s inequality,

Q z, q
(GQA(A)(HC))QS/Q (G;(fi((y)y)> P2 (W)dA(y),

6% ((62)") (@) < [ 624 (6 0) (@)eif! Ay

Now

G2 2 q—1
G2 (G2alsy) (@) / CNCRICINER) (#) dz.

Because
G2A(y,2) < Cmin{ly — 2* ", p () ly — 2" "}, (4.70)

it follows
G2A(y,2) < Cp2 (y) ly — 2"

At that point of the proof we recall the following relation called the 3-G inequality (see
[30] for example),

Q Q
G—A(xéz)G—A(y? Z) S C (‘x o 2‘2_
GfA(x’y)

where C' = C(€2). It implies
GQA (GQA(ay)) (m.)pa((zl 9 (y) < GQA(.%',y)I(l',y),

for some C' = C(q,Q, ), and

Iag) = [ lo= =100 (o= ey = 277 e

"y -2, (4.71)

Since
I(x,y) < C/Q (‘.%' _ Z‘2fn+(27nfa)(q71) + ‘y_ Z‘2fn+(27nfa)(q71)) dz,

this last quantity is clearly bounded independently of x and y by some constant depending
on the various parameters and data. Notice that we have used

¢<(n+a)/(nta-2)<n/(n-2).
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Thus

6% ((6%0)") ) < C [ G2 y)iNy) = CC% (). (4.72)

Obviously, C' = C(2) when ¢ = 1.
Next we assume 0 < g < 1. Then

62 ((62a0)") <624 (1) + G2, ((G2A()) -

By Hopf boundary lemma G* , (1)(z) < Cp,, (7). Let K be a compact subset contained
in the support of_ A and denote by N the restriction of A to K. By the regularity results,
GS_)A()\‘K) € CY(Q\ K). Then G, ()\) > GS_)A()\‘K) > Cp,, in @\ K. In turn it implies
G2, (\) > Cp,,, for another constant C' > 0 and (4.67) follows. O

Condition (4.66) on g is called a-subcriticality. However, as we have seen it in previous
sections, there exists measures for which (4.57) is solvable even if ¢ is not a-subcritical.

Definition 4.15 A measure A € 9 (£2;p% ) is called g-admissible if there exists some
oo > 0 such that Problem (4.57) admits a solution u € L*(Q) N LY(; p,,dx) whenever
0<o<op.

The following theorem summarizes the results of Baras and Pierre [10], Adams and
Pierre [2] and Kalton and Verbitsky [52] in the super-critical range of exponents.

Theorem 4.16 Let ¢ > 1, a € [0,1] and A € M (;p%). Then the following conditions
are equivalent :

(i) X is g-admissible.
(ii) There exists some Cy > 0 such that

62 ((620)") < CoGRM), (4.73)

(i13) (G%()\))q is q-admissible.
(iv) There exists C > 0 such that

q/
/ G\ dx < c/ ﬁdm, Vg € L(Q), g > 0. (4.74)
Q 2 (G¥(9))
(iv) There exists ¢ > 0 such that

/ d\ < cCoq.4(A), VACQ, A Borel, (4.75)
A

where Cy o o 15 the weighted capacity defined by

Oy a(A) = inf { / n?dz:ne L7 (Q), 1 >0, GL(\) > p% on A} . (4.76)
Q
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4.4 Isolated singularities

If one looks for radial positive solutions of
—Au = |u|" u, (4.77)
with ¢ > 1, in R” \ {0} under the form z — a|z|’, one immediately finds

u(x) = us(x) = Yq,n ‘x’_Q/(q_l) ) (4'78)

(@G

However such a solution exists if and only if ¢ > n/(n — 2). Moreover, if ¢ > n/(n — 2),
it follows by Theorem 3.23 that, if © is an open subset of R™ containing 0, Q* = Q\ {0},
and if u € L] (£*) is nonnegative and satisfies

where

—Au=u? in D'(Q"), (4.80)
then v € L] (), and that Equation (4.80) holds in D’'(2). In this way, the singularity
of u at 0 exists, but is not visible in the sense of distributions. In the subcritical range,
1 < g <n/(n—2) it is proven by Brezis and Lions [21] that any positive solution of (4.80)
satisfies actually

—Au=u?+ Cyydy in D(Q), (4.81)

for some v > 0 (see Step 4 in the proof of Theorem 3.40). Furthermore u admits an
expansion near 0;
w(x) =y|z> " (1 +0(1)+C, as z— 0, (4.82)

if n > 3, with the usual modification if n = 2. Finally, although this was noticed before by
Lions [66], Theorem 4.14 implies that the Dirac mass &y is g-admissible. The classification
of isolated singularities of positive solutions of (4.77) has been performed by Lions [66] in
the case 1 < ¢ < n/(n — 2), Aviles [6] in the case ¢ = n/(n — 2), Gidas and Spruck [46]
when n/(n —2) < ¢ < (n+2)/(n — 2) and Caffarelli, Gidas and Spruck [24] in the case
g=(n+2)/(n—2). The case ¢ > (n+ 2)/(n — 2) remains essentially open, except if the
solutions are supposed to be radial.

Theorem 4.17 Let Q be an open subset of R™ containing 0, Q* = Q\ {0}, ¢ > 0 and
u € C?(2%) be a positive solution of (4.77) in 2*.

(i) If g < n/(n—2) : either u € C*°(), or there exists v > 0 such that (4.82) and (4.81)
hold.

(i1) If g = n/(n — 2) : either u € C*°(Q), or

_ n—2
lmy o2 i1/ J) o) = (22) (43)
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(i) If n/(n —2) < g < (n+2)/(n—2) : either u € C>®(Q), or
lim [/ V() = 7. (4.84)
(iv) If g = (n+2)/(n — 2) : either u € C>®(Q), or
lim [~ (u(z) — v(|a]) =0, (4.85)

where r +— v(r) is a radial solution of (4.77).

Notice that in the so-called conformal case ¢ = (n+2)/(n — 2), all the radial solutions
v of (4.77) are classified by their reduced energy : if v(r) = r="/2(t) and t = In(1/r),
then w verifies )
-2
w” — %w + |/ =D gy = 0. (4.86)

Therefore the reduced energy-function

£(w) = '+ n+2 ] 22/ (2) (n — 2)2w2
n 4
is constant. The proofs of these different results relies on regularity estimates and boot-
strap arguments in case (i), the Lyapounov analysis as for Theorem 3.28 in cases (ii)
and (iii), and the asymptotic symmetry method in the case (iv). However, there are two
difficulties in case (iii) ((ii) being much simpler) : the first one is to prove the a priori

estimate
u(z) < C |z Y near 0. (4.87)

The second one is to identify the limit set at the end of the Lyapounov analysis, in which
situation, it is to be proven that the only positive solutions to
A, w+ ’yg;lw —wl=0 (4.88)

on S™~! are the constant solutions 0 and Yg,n-

Remark. Part of the results can be extended to equation
Lu = uf, (4.89)

where L is a general elliptic operator, satisfying condition (H). This extension is easy for
(i), a little more complicated in case (iii) (and (ii) in the same way), in particular to get
(4.87). It is still completely open in case (iv).
5 Boundary singularities and boundary trace
In this chapter we shall study generalized boundary value problems for equation

Lu+g(x,u) =0 in Q, (5.1)

where (2 is an open domain in R", n > 2, with a C? boundary, L is an elliptic operator
defined in © by (2.1) and g a continuous function of absorption type.
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5.1 Measures boundary data
5.1.1 General solvability

Let 1 be a Radon measure on 92 and g € C(2 x R. The semilinear Dirichlet problem
with measure data is written under the form

Lu+g(x,u) =0 in Q,
(e, u) (5.2)
u=pu on 0.

Definition 5.1 Let u € 9M(0N). A function u is a solution of (5.2), if u € L'(),
g(.,u) € LY(Q; p,ndx), and if for any ¢ € Ccl’L(ﬁ), there holds

/Q(uL*C + g(z,u)() de = — % du. (5.3)

Definition 5.2 A real valued function g € C(£2 x R) holds the boundary-weak-singularity
assumption, if there exists r¢g > 0 such that

rg(z,r) >0, V(z,r)€ QX (—o00,—1] U [rg, c0), (5.4)

and a nondecreasing function g € C([0,00)) such that g > 0,

/1 G(rt=™)rdr < oo, (5.5)
0
and

lg(z, )| < g(|r]), V(z,r)e QxR (5.6)

The following result was proven first, but under a weaker form, by Gmira and Véron [48].

Theorem 5.3 Let Q be a C? bounded domain in R™, n > 2, L the elliptic operator defined
by (2.1) and g € C(Q x R) a real valued function. If L satisfies assumptions (H) and g
the boundary-weak-singularity assumption, for any u € IM(ON) there exists a solution u to
Problem (5.2).

Proof. The general idea follows the proof of Theorem 3.7, with some significant changes.

Step 1 Approximate solutions. Let p, be a sequence of C?(£2) functions converging to p
in the weak sense of measures and m,, = P%(un). The function g™ defined by

g (x,r) = g(xz,r —my(x)), V(z,r) €Q xR,

is continuous in  x R and satisfies (5.4) with r replaced by 79+ ||my,||;«. By Theorem 3.7
there exists a solution to

Lv, + ¢"(z,v,) =0 in Q,

5.7
v, =0 on O09. (5.7)
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Thus the function w,, = v,, +m,, is a solution of

Lu, + g(z,u,) =0 in €,
( ) (5.8)
Up = by, on OS).

From the proof of Theorem 3.7, Steps 2-3, u,, is bounded in € and (5.3) holds with uy,
and m,,. By Theorem 2.4, for any ¢ € Co*(Q), ¢ > 0,

R 9¢
/ (|un| L*¢ + sign(un)g(x, uy )C) dx < —/ 3 |pen | dz, (5.9)
Q O onpx
which implies
HunHLl(Q) + Hpagg(-7un)”L1(Q) < @/Qpafzdm +C HpaQ:U'nHLl(BQ) : (5'10)

Consequently, using also (3.11) in Theorem 3.5,

il agtrser sy ) < C2 0 = 96wl ) < C5 (€ + s sinllyaony ) (5-11)

for « =0, 1.
Step 2 Convergence. By Corollary 2.8 and (5.11), there exists a subsequence of {u,}, still
denoted by {u,} for simplicity, which converges to some u in L!(2) and a.e. in Q. In order

to prove that g(.,u,) converges in LY (% Poodx), we use Vitali’s theorem and we procede
as in the proof of Theorem 3.7- Step 3 with o = 1. O

The following stability result follows from the uniform integrability argument.
Corollary 5.4 Let g satisfy the boundary-weak-singularity assumption and r — g(z,r) is
nondecreasing, for any x € Q. Then the solution u is unique. If we assume that {uy}

is a sequence of measures in M() which converges weakly to p, then the corresponding
solutions uy, of problem

(5.12)

converge in L1 () to the solution u of (5.2), when k — co.

Remark. If g(z,r) = |7“|q71 r, the boundary-weak-singularity assumption is satisfied if and
only if
n+1

0 . 5.13
<a<-— (5.13)
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5.1.2 Admissible boundary measures and the Aj-condition

Definition 5.5 Let ¢ be a continuous real valued nondecreasing function defined in R,
g > 0. A Radon measure p in 99 is called (g, k)-boundary-admissible if

Aa@mw+m%m<m, (5.14)

where Pf(|u|) is the Poisson potential of y and k > 0.

The proof of the following theorem is similar to the one of Theorem 3.10.

Theorem 5.6 Let 2 be a C? bounded domain in R™, n > 2, L an elliptic operator defined
by (2.1) verifying condition (H), and g € C(2 x R) satisfying (5.4) for some rq > 0 and
(5.6) for some function g as in Definition 3.9. Then for any (g, ro)-boundary-admissible
Radon measure p € M(ONY), Problem (5.2) admits a solution.

The proof of the next result, is a boundary adaptation of the one of Theorem 3.12.

Theorem 5.7 Let Q and L be as in Theorem 5.6. Assume g € C(2 x R) satisfies the
Ag-condition (3.37), r — g(x,r) is nondecreasing for any x € Q@ and (5.6) holds for some
nonnegative, nondecreasing function g. For any Radon measure X € IM(ON), with \ =
A+ X, where A € LY(09) and \* is (§,0)-boundary-admissible and singular with respect
to the (n — 1)-dimensional Hausdorff measure, problem (5.2) admits a unique solution.

5.1.3 Sharp solvability

The existence of a solution, necessarily unique, to

Lu+|utu=0 in €, (515)
u=yu on OS2, .

where 1 is a boundary measure follows unconditionaly from Theorem 5.3 in the subcritical
range 0 < ¢ < (n+1)/(n — 1). The super-critical case ¢ > (n + 1)/(n — 1) is treated
separately according the value of ¢ with respect to 2 by Le Gall [63], Dynkin and Kuznestov
[38], [39] and Marcus and Véron [71]. The synthetic presentation in all the super-critical
cases is found in [72].

Theorem 5.8 Let Q be a bounded domain in R™ with a C? boundary, L the elliptic
operator defined by (2.1) satisfying condition (H), ¢ > (n+1)/(n — 1) and p € M(ON).
Then Problem (5.15) admits a solution u = u, if and only if u does not charge boundary
sets with Cy), o-capacity zero. Moreover, the mapping p— uy, is increasing.

Following Definition 5.5, a Radon measure p on 02 is called boundary-q-admissible for
the operator L if

| B30 ppude < . (5,16
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However, under assumption (H), under which the Green and Poison kernels are con-
structed, this property is independent of L, since all the kernels are equivalent (see Theo-
rem 2.11). The proof is based upon a deep result concerning representation of boundary
Bessel classes in terms of integrability properties of Poisson potentials.

Proposition 5.9 Let the assumtions of Theorem 5.8, on ) and the operator L, be satis-
fied, g > (n+1)/(n—1) and p € M(ON). Then :
(i) If  is boundary-q-admissible, then p € W—2/29(9Q).
(i) If p € M, (OQ) W —2/99(9Q), then p is boundary-q-admissible. Moreover there exists
a constant C = C(q,$, L) such that,

CilHMHWﬂ/q,q(aQ) < HP%(M)HL‘I(Q;pBQdm) < CHMHW—Q/WI@Q)' (5.17)

Proof. The proof we present here is settled upon the interpolation theory between a Ba-
nach space and the domain of an analytic semigroup of operators.

Step 1 The case where €2 is the unit ball B. We shall assume n > 3, the 2-dimensional
case requiring some easy technical modifications. Let (r,0) be the spherical coordinates
inR" ¢t =—Inr. If p € W2/99(S" 1) we set u = P2 (), and (¢, o) = u(r, o). Then
relation (5.17) turns into

o1 Hul!w_g/q,q(sn_l)g/o /5 ja|? (1 — e e ™dodt < C|lplly-2/aa(5n-1y-  (5.18)

By density it can be assumed that u is a regular function, and let f be the solution of

n—2)? C ane
u:%f—Asn_lf in S"L

By elliptic equations regularity theory, there exists ¢ > 0 such that
¢ Hlpllw-2/aa(sn-1y < I fllwe-2/aa(sn-1y < € lltllw-2/aaisn-1y - (5.19)
Let v = P, (f) in B and §(¢,0) = v(r, o). Then
Lo=0y— (N=2)B+A_,_, =0 inRyxs"! (5.20)
Oly—o = f on S L
This implies

L(A_, _,s0)=0 in Ry x "1 and Asnfﬂj‘t:O =A_, ,f on snt (5.21)

sn—1
This problem has a unique solution which is bounded near ¢ = oo, therefore

PEA(A,, L f)=A,, D (5.22)

sn—1"7
and equivalently
. n — 2)? n—2)% _ -
i =P () = P2y <(T)f - Asn1f> = %v A, 0. (5.23)
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Put v* := e tWV=2/25 then

* . -1
g 0T =0 In Ry x 5", (5.24)

v*(0,-) = f on S" L

vy — Tv* +A

One way to represent v* is to introduce semigroups of linear operators and to express the
above relations in terms of interpolation spaces between Banach spaces. Put

92 1/2
v* = e (f) where A= — <(nT2)I - Asnl) :

It is wellknown that the square root of a densily defined closed operator A defines an
analytic semi-group in LI(S™!) (see [103] for example). The domain of A? is precisely
W24(S"=1). Therefore (see [93, p. 96]),

o q dt
112 srmagsnsy & 1l /O (/420 o)) 5
! . adt

~ ”f”Lq Sn— 1 /0 (t2/q HA2fU HLq(Sn71)> ? (525)

! adt
T /0 (loev-212 | 2], o) L,

where the symbol ~ denotes equivalence of norms. Notice that for ¢ > 1 the exponent

2 — 2/q is an integer only if ¢ = 2, in which case the Besov and Sobolev spaces coincide.
Thus, by (5.19),

_ qdt
HfH;I/V272/q,q(Sn—l) Z C Hf”%q(sn 1 + C/ t2/q6 t n 2)/2 HuHLq(Sn 1)) 7
(5.26)
> Ol gnny +C / 1 o ry et
Since u is an harmonic function,
T 7"1”/ |ul?dS
0B
is nonincreasing on (0, 1]. Equivalently
¢ a(t,.)|%do
Sn—1
is nonincreasing on [0, c0). Furthermore
oo
/ HﬂH%q(Sn—l)(l _e—t)e—ntdt < C/ HUHL‘I(S" n(1—e )e_ntdt
0 (5.27)

IN

¢ / LI
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This inequality implies that
[ w-nde<et) [ qupa-na,
lz|<1 y<|z|<1

for every v € (0,1). Because of (5.19),

H/’LH(‘I/V—Q/q,q Sn—1 ~ Hf”?/[/Q—Q/q,q Sn—1)° (528)
( ) ( )

Therefore, the right-hand side inequality in (5.17) follows from (5.18), (5.26) and (5.27).

Next assume that u is a distribution on S"~! and P(u) € LY(B; (1 — r)dx). In order
to prove that u € W~2/¢9(S"~1) and that the left-hand side inequality in (5.17) holds,
we can assume that g € M(S™1). By (5.19), if f € LI(S™ 1) then u € W—/e(§71),
Therefore, if it is proven

11l acsn-1y < Cllullpags—r) dr) (5.29)

the left-hand side inequality in (5.17) follows. Equation (5.23) implies that

1o, Moagsns) < C 1l Mgagsnry r € (0,1) (5.30)
for some C'= C(n) > 0. Hence

HUHLII(B;(lfr) dz) + HASnflfl)HLq(B;u,T) dz) < C HuHLlI(B;(lfr) dzx) * (531)

We write (5.20) under the form

sn—1

oy — (N —2)oy =h:=—A_ 9 inRy xS !
Ut ( )Ut v 1Ry X s (532)
@‘tzo = f, in S7~ L.

Since u € LI(B; (1—7) dz), (5.30) implies that h € LI(B; (1—r) dz) (where h(z) = h(t,0)).
Let o be a fixed but arbitrary point on S"~!. Since Equation (5.32) is a first order o.d.e.

in 9;(-, 0) with a forcing term h(., o), we fix some initial time ¢y € (0, 00) and compute the
value of the solution in (0,%). Integrating twice one derives

t s B
o(t, o) = / e(N_Q)S/ e~ N=27h(r, o) dr ds
to to (533)

+ N 2(e(N—2)(1t—1to) — D)og(to, o) + 0(to, o).
Therefore
10(0,0) = (o) < C / | drds + [iulto, )| +[i(to,0)]
_ / | ds + [#1(to, )| + [6(to, )] ) (5.34)
<c / (1= 1) [h(r,0)| PN 4 [0, 0)] + [0(t0,0)] )
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where C' is a constant independent of g, for £y < In2. Taking the g-power and integrating
over S"1 yields to

[orarse([ @ - e ds
n—1 ro<|z|<1
t [ el ode s [ ol o,0)do).
n—1 Snfl

where C is independent of rg, for 79 > 1/2. We multiply the inequality by rév ~1 and

integrate with respect to ro in (5/8,6/8). It follows that

q q —
[ raeso(f e -

(5.35)
+ |v.|? dx —|—/ lv|? dw).
5/8<|x|<6/8 5/8<|x|<6/8

By interior elliptic estimates,

/ lv.]? dx < / |v]? dx. (5.36)
5/8<|x|<6/8 1/2<|z|<7/8

Finally, by (5.35), (5.36) and (5.31) we obtain (5.29).

Step 2 The case of a general operator L in B. Because of the equivalence property of
Theorem 2.11 already mentioned, if 1 > 0, there exists a constant C' such that, for every
measure p € M, (SN,

CT'P A (1) < PE(p) < CPEA(p). (5.37)

Therefore, if (5.17) holds with respect to P A, it holds for IP)%, for every measure p €
W—2/ee(S= 1) N9, (S*~1). If p is a boundary-g-admissible measure for L, not necessarily
positive, then p4 and p_ are boundary-g-admissible. Therefore piy., p_ € W—2/¢4(SN-1),
and the same holds with p. Furthermore

Ot —2/0.000) < IPE (1)l a(@;ppqdn) < Cllitllw-2/000)- (5.38)

Step 8 The case of a general operator L in a general bounded C? domain €. There exists
a finite set of bounded open subdomains U; (1 < ¢ < k) of R™ such that

k
o c | Jui,

i=1

and for each i there exists a C? diffeomorphism ®; from U; of into some open subset V; such
that ®;(U;NQ) = B, and ®;(U;N9N) =T'; C OB ~ S"~!. This diffeomorphism induces an
isomorphism, say ®7, between M(U; N0N2) and M(T;), W—2/99(U; N Q) and W—2/29(T;),
and it preserves positivity. Moreover, by the change of variables x € U; — y = ®;(z) € V;,
the operator L is transformed into an elliptic operator L} on B, which still satisfies the
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maximum principle, not necessarily the condition (2.5), but this is not crucial for the
equivalence property in small domains. If g € 9%(9€Q) has its support in U; N 082, the
function u = PL (1) satisfies

Lu = 0 in U; N Q,
= u on U; N 0N, (5.39)
= U on U, NN,

where u., the restriction of u to OU; N, is C'. Thus the function v; = u o CIDZ._l satisfies

L;k?}i =0 in B,
v, = Df(p) on I, (5.40)

(2

v; = ucoq);1 on OB\T;.

Therefore, if u is nonnegative and P (u) € LY(; p,,dx), v; € LI(B; (1 — |y|)dy), which
leads to ®F(p) € W—2/949(T;) and pu € W~2/99(5Q). Moreover

‘|N||w—2/q,q(ag) ~ H‘I)ZF(N)HW%/q,q(snfl) <C ‘|viHL¢Z(B;(1—\m|)dm) (5.41)
~ HUHLQ(QﬁUi;pa(QmUi)dx) :

Since Poonuy < Pag in U; N Q, the integral term on the right in (5.41) is dominated by
the norm of IP’%(,u) in LY(Q; p,,dx). By using a partition of unity, any measure y on 92
can be decomposed in the sum of measures p; with compact support in I';. Hence the
following estimate holds when PZ(u) € LY(Q; p,,dx)

Q
HIUJHW—Q/II,Q(BQ) <C HPL (M)HL‘I(Q;pan;B) . (5,42)
Conversely, if we assume that u € M, (9Q) N W—2/99(9Q) with support in some fixed

compact K; C QN U;, then ®F(u) € M (S"~1) N W —2/29(S71) with support in T; and
equivalence of norms. Then PB,(®f (1)) € LY(B; (1 — |z|)dx), with

HPB* ((I);‘k(l‘))HLq(B;(1,|dex) <C H(I);‘k(ﬂ)HW—?/q,q(Snfl) ~ Hﬂuw—?/q,q(ag) . (5.43)
But the left-hand side term in (5.43) is comparable to HIP’%QQ( )‘ , and
Lq(QﬁUi;pa(QmUi)dx)
B —1 ~ U;NSQ2
[P (we 0 @7 0|, -~ [P we) e (5.44)
Because u is an harmonic function,
||u0||Loo(8UmQ) <c HMHW‘W‘LQ(@Q) . (5.45)
Finally
P () + P () in Q\ T,
u=P() = (5.46)

]P’%mUi (uc) in QN U;.
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Moreover

@ [P

LaUinQ) <C ”MHW—2/q,q(aQ) )

() HPQ\“‘ (ue)

L) <C HMHWﬂ/q,q(aQ) .

Combining these inequalities with (5.43), (5.44) yields to

0
HPL(M)HL‘Z(Q;panx) = HUHLQ(Q;panm) <C ”ﬂ”wﬁ/q,q(ag) ) (5.47)

and we finish the proof with the help of a partition of unity. The proof of (5.17) is the
same as in Step 2. O

Remark. By using sharp estimates on the Green kernel of a general elliptic operator in
a general smooth domain it can be checked directely that (5.17) is valid for any signed
boundary ¢ admissible measure. However, it is not known if the implication

€ M(ON) N W~2/99(9Q0)) = i is boundary ¢-admissible, (5.48)

holds.

It is proven in [75] that Proposition 5.9 admits an extension in the framework of Besov
spaces B~ (see e.g. [93]). When s is not an integer or ¢ = 2, the Besov space B~%1
coincides with the Sobolev space W ™54,

Proposition 5.10 Let s >0, ¢ > 1 and p be a distribution on S™~'. Then
p€ B™59(S" ) = P8, (n) € LY(B; (1 — |z])* 'da).

Moreover there exists a constant C > 0 such that for any pu € B=59(S"71),
1 B q 1 Ha
C™ pll p-sa(sn-1y < (/B [PEAG)[* (1 = |a])* dx) < Cllpllg-sa(gn-1y- (5.49)

The dual form of Proposition 5.9 is the following,

Proposition 5.11 Let g > (n+1)/(n — 1) and the assumptions on L and Q be satisfied
as in Proposition 5.9. Then

0

1] *

¢ € LY (Q;p;7/1dx) <= 5 G (p) € W4 (0Q).

Moreover there exists a constant C > 0 such that, for any ¢ € LY (; pggl/q)da@),

0
-1 , < Q*
O Mol gy i < || o84

< (C , o . 5.50
wrerom = Ml iy 650
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Proof. Let pu € 9M(dQ). By duality between L4(Q; p,,dx) and L (; p,,dz), we write

¢
o onp-

B8 00p0ds = [ BL7 Gl = - an, (5.51)
Q Q

where ¢ = G, (¥p,,)- Then the adjoint operator [IP’%]* of IP’SLZ is defined by

0
anL*

PE]" () = G (¥p,q)- (5.52)

Consequently, Proposition 5.9 implies that there exists a constant C' > 0 such that

- ]
CH YN o (@, a) < Han_ﬁgﬂ*(pmw)H < CIll oy iy - (5:53)

W2/q,q’(Sn—l)

But
(GBS Lq/(QE Podx) <= Py € LI (8 P%ﬁq/)dﬂﬂ)-

Putting ¢ = p,, v, implies (5.50). O

Proof of Theorem 5.8. (i) Assume that u is a solution of (5.15). Then u € LY(Q; p,,dx),
and for any ¢ € C+*(Q), there holds

¢ / -1
dp| = uLl*¢C+C|u|? u) dx|,
o, Py u‘ ‘Q< ¢+ ul )
< Wellsniipt VGl g + [ el Gl (.50
¢ ,
< HUHL‘Z(Q;panm) oni. W?/q,q/(ag)+/52|U| I¢| dx,

since G (L*¢) = ¢. Let n € W2/499Q, and, for § > 0, put ¢ = 6 2p,, (5 — p,o)2PE(n),

\Lym4smmm%ﬁmwmmwmﬁw2L%amwmﬁw&mwmm.w%>

Let K C 02 be a compact subset such that Cy/, (K) = 0. Then there exists a sequence
{n,} € W24 (9Q) with the property that 0 < 1, < 1, 7, = 1 in a neighorhood of K and
Ny — 0 in W2/94(9Q) as n — co. We take n = 7, in (5.55). Since u € LI(Q; p,,dz) and
K has measure zero, the two terms in the right-hand side of (5.55) converge to 0 when
n — oco. Thus u does not charge Borel subsets with C'%/ q’q/—capacity zero. It follows that
w is the sum of an integrable function and a mesure in W2/ 29(9€2), by Corollary 3.18.

(ii) Conversely, let u be a boundary measure which does not charge Borel subsets with
Cy/q,q-capacity zero. Assuming first that u is positive, by Proposition 3.17 there exists
an increasing sequence {u;} of elements of W~2/%4(9Q) N9, (0N2) which converges to .
By Proposition 5.9, the u; are boundary-g-admissible and the sequence {u;} of solutions
of
Bl =0 in 2 (5.56)
uj = p; on 0f,
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is increasing. Moreover u; > 0. If v = lim;_,, u;, then u > 0. Since

a¢
LR+ ulC) do = — dp; 5.57
/Q <uj C + u]C Xr 50 8nL* /’6]7 ( )
for any ¢ € o L(ﬁ) Taking ¢ = ny, the solution of
L'nyy, = 1 inQ,
m = 0 on 09,

we deduce u € L(2) N L4(; p,,dx) by the monotone convergence Theorem. Therefore
(5.57) implies that u is the solution of

Lu+u)Pu=0 in Q, (5.58)
5.58
uw=yp on O

If © is a signed measure, we procede as in the proof of Theorem 3.20, by truncating
the nonlinearity and inroducing the solutions of (5.15) associated to gy and —u_ on the
boundary. O

5.2 Boundary singularities
5.2.1 Isolated singularities

The study of boundary singularities of solutions of semilinear elliptic equations started with
the work of Gmira and Véron [48]. As in the case of equations with internal singularities,
the starting idea is to study the model case where Q2 = R}, 002 = OR"} ~ R"! and the
singularity is located at z = 0. In spherical coordinates = (r, o) where r > 0, 0 € S~ 1,
the existence of a solution u to

—Au+ |u]T u=0, (5.59)

in R? (¢ > 1) which vanishes on OR"} \ {0} is enlighted if we look for it under the separable
form u(r,o) = r“w(c). Then o = —2/(¢ — 1) and w is a solution of

—A o w— (qi—l> <% - n) wA|wi™w=0 on Sl =8""1nRY,  (5.60)
which vanishes on the equator 351_1 ~ 8" 2. Since the first nonzero eigenvalue of
the Laplace-Beltrami operator in VVO1 ’Q(Si_l) is n — 1, it is clear, by multiplying (5.60)
by w and integrating over Sffl, that no nontrivial solution of (5.60) exists whenever
(2/(¢ —1))(2¢/(¢ — 1) —n) < n —1. Equivalently ¢ > (n 4+ 1)/(n — 1). Conversely, if
(2/(q —1))(2¢/(¢ — 1) — n) < n — 1 solutions to (5.60) exist. The stable solutions are
obtained by minimizing the functional

1 2 1 2q 2 1 q+1
pu— —_ _— —_— —_— _— . 1
n— J(n) /Si‘l (2 Va1 (q_1> <q_1 n)n o )| do, (5.61)
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over the space WO1 ’Z(Sﬁ_l), where V_ , denotes the covariant derivative identified with
the tangential gradient thanks to the isometrical imbedding of S”~! into R™. Put

2 2q -1
A, = S ik S —
o <<Q—1> (q—l n)) fan

and let S} be the set of solutions of (5.60) in S ' which vanishes on 0S"~!. As we
have already seen it, if ¢ > (n 4+ 1)/(n — 1) this set is reduced to {0}. Conversely, if
l1<g< (n+1)/(n—-1) <= Ayp > n — 1, there exist minimizing solutions to (5.60).
Besides this fact, the positive solutions are unique. Moreover, if A, , < 2n, which is the
second eigenvalue of A_ , in VVO1 ’Q(Si_l), all the solutions of (5.60) vanishing on the
equator have constant sign. Finally, if A, , > 2n there exist changing sign solutions.

Let © be an open subset of R™ with a boundary of class C2? for some 6 € (0,1), and
0 € 09). It can be performed an orthogonal change of coordinates in R™ in order the axis
{r: 2; =0, Vj =1,..,n — 1} be the normal direction to 052, e, be the unit outward
normal vector at 0 and OR"} ~ R"™~! the tangent plane to 92 at 0. Let u be any solution
to (5.59) in 2 which is continuous in Q \ {0} and coincides on 9§\ {0} with a function
g € C(09). For R > 0 small enough and m,; = max{g(x) : x € 902 N By}, the function

i(z) (u(z) —my)y if x € QN Bg,
x—u(r) = _
0 if.%'GBR\Q,

is a subsolution of (5.59) in Br \ {0}. But the Keller-Osserman estimate implies
w(z) <my +Clz| ™97 vz € QN Bg\ {0},

for some C = C(n,q,R) > 0. In the same way, u is bounded from below in the same

]_2/‘1_1, where m_ = min{g(x) : = € 90 N Br}. Hence the function

set by m_ — C|x
T |x|2/q*1 u(z) is uniformly bounded in QNBx\{0}. We perform a change of coordinates
y = ¢(x) which transforms 2N Bg into R’} N Br and 92N Bp, into R 1N Br. We define

v by

v o(y) = o(r0) = |67 ) ué ), (ro) € (0,R) x ST,

and put w(t,o) = v(r,o) with t = Inr. Then w satisfies an equation of the type

gn-1% (5.62)

0= (14 ex(t))wn + <n _ottly eg(t)> wy + (Mg + €3(8) w + A
w.ep).c6(t)) + |w|t w

q
q—1
+(V w.eq(t)) + +(V we.€5(t)) +(V (V

sn—1 sn—1 sn—1 sn—1

in (—oo,In R] x Sff__l, where the €;(t) depend on the change of coordinates and verify
lej(t,0)| < Cjel, ¥(t,o) € (—oo,InR] x ST, j=1,..,6. (5.63)

Since |w(t, )] < Ce?¥/(4=1) we can use the elliptic equations regularity theory and a
Lyapounov style analysis at —oo. The following result is due to Gmira and Véron [48].
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Theorem 5.12 Suppose 1 < g < (n+ 1)/(n — 1). Then, with the previous notations,
there exists a compact connected subset E; of the set of the solutions of (5.60) in 5_7_71
which vanish on 351_1, such that

where distcg(si—l) denotes the distance associated with the C2(S"'™1)-norm. Moreover, the
set E4 is reduced to a singleton in the following cases :
(i) u is nonnegative,
(ii) (n+2)/2n<qg< (n+1)/(n—1),
(iii) n = 2.
When &, = {0} it is possible to make more precise the way the function w(¢,.) con-

verges to 0 as t — —oo. By adapting the method developed in [27], it is proven in [4§]
that the following result holds,

Theorem 5.13 Suppose 1 < ¢ < (n+1)/(n — 1) and let w be the solution of (5.62)
associated to u, solution of (5.59). Assume

tllr—noo Jw(t, ')HCQ(Sifl) =0.

Then, if one of the following conditions holds :
(a) u is nonnegative,

(b) n =2 and 09 is locally a straight line near 0,
(c) 2/(q — 1) is not an integer,

(i) either u can be extended to 2 as continuous function solution of the Dirichlet problem

—Au+ulT u=0 inQ,

(5.65)
u=g on 0L,
(ii) or there exists an integer k € [n —1,2/(q — 1)) and a nonzero solution v of
A, +kn+k—2)p=0 inST ", (5.66)
n—1 ’
=0 ondSY ",
such that
lim e®=2/ (@Dt (g, ) =), (5.67)

t——o0

in the C? (Sﬁfl )-topology.
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The meaning of this result is the following : either u has a strong boundary singularity
which is described thanks to the set S; of solutions of (5.60) vanishing on the equator,
either there exists a spherical harmonic of degree k such that

lim  |z/*u(z) = ¢(0), uniformly for o € snt (5.68)
z — 0
z/|z| — o
or u is regular function.

When —A is replaced by an elliptic operator L with variable Lipschitz continuous
coefficients, most of the above results extend in the same way as for the isolated internal
singularities (see the section on isolated singularities).

5.2.2 Removable singularities
The first result on removability (see [48]) is the following.

Theorem 5.14 Let Q be a C? domain in R™, xy a boundary point, and g a continuous
real valued function defined on  x R, such that

lim inf g(x,7)

m > 0 and llm sup g(l’,?")
r—o0 T n n—

s ] (D0 T) <0, VzeQ, (5.69)

uniformly with respect to x € Q. If u € C2(Q)NC(Q\ {z0}) is a solution of
—Au+g(x,u) =0 in Q, (5.70)

which coincides on O\ {zo} with some ¢ € C(0), then u can be extended as a C(£2)
function, which verifies
—Au+g(xz,u) =0 in €,

u=¢ on ON.

Actually, their proof could have been adapted, without any deep modification, to Equation
(5.1). A much more general result will be given later on.

(5.71)

Definition 5.15 Let Q be a C? domain in R” and ¢ > (n +1)/(n — 1).

(i) A Borel subset K of 92 is said g-removable if any nonnegative function u € C?(2) N
C(Q\ K) solution of (5.59) which vanishes on 9 is identically zero.

(ii) A Borel subset K of 0f is said conditionally g-removable if any nonnegative function
u € C?(Q) N C(Q\ K) solution of (5.59) belongs to L (Q;p,,dz).

loc

The condition ¢ > (n+1)/(n — 1) is necessary, since, below this value, only the empty
set is removable by Theorem 5.6. The main removability result is the folllowing,

Theorem 5.16 Let Q be a C? bounded domain in R™, ¢ > (n+1)/(n—1) and K C Q be
compact. Then the following assertions are equivalent.
(i) K is qg-removable.

(ii) K is conditionally q-removable.

(iii) Cjq.q () = 0.
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This result was first proven by Le Gall [63] in the case ¢ = 2, by probabilistic methods,
then by Dynkin and Kuznetsov [36] in the case ¢ < 2, by a combination of analytic and
probabilistic methods and by Marcus and Véron [71] when ¢ > 2 with purely analytic
tools. All the proof are based upon the construction of suitable lifting operators which
transform functions defined on the boundary into functions defined in €. In [72] the first
unified proof, valid in all the cases ¢ > (n+1)/(n — 1) is given. We shall present a sketch
of it below.

Definition 5.17 A linear map R : C?(Q) — C2%(Q) is called a positive lifting if
R(noo =n and n>0= R(n) = 0. (5.72)

Lemma 5.18 Let ¢ be the first eigenfunction of —A in Wol’z(Q) and g > (n+1)/(n—1).
There exists a positive lifting operator R :nw— R(n) = R, with the additional property

1 Rall ey < 1l ooy -

and

(|67 AR, | +2 ‘¢‘1/Q(VR,7.V¢>‘HL(1/(Q) < Clnllyzraw oy ¥ € W94 (9Q0). (5.73)

Furthermore

||6¥4 RyARy | + 2]~ VRV R, V)| + 617 VR, |

Le' () (5.74)
<C(+ H77HW2/q,q’(aQ))7 VneT",

where T* = {n € W47 (5Q) : 0 < n < 1}.
Proof. In Section 2.4 we have already introduced the foliation of 92 by the X3

Ygi={r e Q:p,(x) =0} 0<5< P,

for By depending on the curvature of 02, with ¥y =X = 0Q, Qg = {z € Q: p,,(x) > [}
and Gg = ) \ﬁg. For every 0 < 8 < ffp and x € G there exists a unique o(x) € ¥ such
that |z — o(x)| = p,,(x), and the correspondence x «— (p,,(z),0(x)) defines a smooth
change of coordinates near the boundary called the flow coordinates. In terms of flow
ccordinates, the Laplacian has the following form

0? 0

+ bO_ +AZ7

A= 2
Op? p

where p stands for p,,, by depends on x and Ay is a second order elliptic operator on X
with coefficients depending also on x. Moreover

Ay, — Ay and by — Kk as p,,(z) — 0,
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where Ay is the Laplace-Beltrami operator on 3, and x the mean curvature of ¥ (see
[13]). If n € C(X), let H = H,, be the solution of the initial value problem

H
OH _AcH wmR, x3,
or

H(0,)=mn() inX.

(5.75)

We can express H in terms of the two coordinates (7,0). Let h € C*°(R,) be a truncation
function with value in [0,1], h =1, on [0, 5y /2] and h = 0, on [y, 00). The lifting R = R,
of n is defined by

2 xX),0\x x X
ey = { S DR @), Ve € G -
0, VxEng.

Clearly the positivity and contraction principle in uniform norms hold. The proof of
(5.73) and (5.74) is much more elaborated and settled upon analytic semigroups theory
and delicate interpolation results (see [72] for a detailled proof). O

Proof of Theorem 5.16. (iii)=> (ii) Let
T = {n € C?N):0<7n<1,1=0 in an open relative neighborhood of K}.

Put ¢, := gbR%q/. Then 0 < ¢ < ¢, and (y(z) = O <(,0aQ (m))1+2q,> in a neighborhood V;,
of K. Since in the case of Equation (5.59), the Keller-Osserman a priori bound implies
[u(@)] < C(N, g) (pye ()2 @D, vz e, (5.77)
and u(x) = O (p,q, (x)) if p,,(x) — 0, outside V;,, we derive
@)y () = O (po(@))  in Q. (5.78)
Moreover, if A\; is the eigenvalue corresponding to ¢,
AG = —MoR + 9ARY +2(V. VR )
= — MGy + 20 0R2 T AR, + 2¢/(2¢) — )R 2| VR, |2 + 2¢/R2 TN (VG.VR,).

(5.79)
Therefore
u|AG| < ClnyuRy >,
Because ) € T, uA(, remains bounded in €2. For 0 < 3 < [,
0 0
/ GAudr = / uAG, dx + / <g},—u - uﬁ) ds, (5.80)
0\Gj 0\Gj s; V On On
and combining (5.77) with Schauder estimates,
ou

Suk, = O (@HD/aD),
n
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hence

(67— 5)

Letting 8 — 0 in (5.80) implies

w; = O0(B).

/Q ( — UG, + qu}]>dm —0. (5.81)

By Holder’s inequality,

1/ / , 1/q'

/u\ACn\ dr < (/qundx> ! (/gn‘q /9AC, | dm) !

Q Q oo | L (5.82)
s<:(/guagydx) (/£<o7+-ﬂfunq>dx) ,

where

Since by Lemma 5.18,

M) @) < Cr1+ Dl o)
it follows from (5.81) and (5.82),

!

[ 6o < Colt + il o) (5.83)

If we put n* = 1 — 1, then HnH?/VQ/q’q,(BQ) <O+ Hn*H%/Q/M,(aﬂ).

zero, there exists a sequence {n*} C C%(99) such that 0 < n* < 1, n¥ =1 in a relatively
open neighborhood of K and

If K has Cy, o/-capacity

Hn;HWWq,q’(aQ) — 0 as n— oo.

Since a boundary set with Cy, ,-capacity zero has zero (n—1) -Hausdorff measure, n;, — 0
as n — o0o. Thus (x — ¢. If we let n — oo in (5.83) we finally obtain

/ ulpdr < Cy, (5.84)
Q

with Cy = Co(K). Thus K is conditionally g-removable.
(ii) = (i) Since u? € LY(Q;p,,dx), u > 0 and

—Au = —uf,

the function v = u + G, (u?) is positive and harmonic in ©, thus it admits a boundary
trace 1 € M (09). Since the boundary trace of G, (u?) is the zero measure, it is infered
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that u admits the same boundary trace u, the support of which is included into the set
K. Moreover
0<u=P25(1) = GZx(u?) <PLA(p).

Therefore v = u,, solution of Problem (5.15) with L = —A. Consequently p does not
charge boundary sets with Cy/, ,-capacity zero and the same property is shared by kpu,
for any k € N,. Put uy, = ug,. If p is not zero, the sequence of solutions {uy} is increasing
and converges to some us, when k — co. Because uy vanishes on 90\ K, it follows from
the Keller-Osserman construction that w., inherits the same property. Furthermore

/Q (—ukAGye + Gruf) do = — /8

where n € 7, n* =1 —mn and (p = ¢R,27€,. Because p is not zero, the right-hand side of
(5.85) tends to infinity with k. Since K is conditionally q-removable us € L*(Q; p,,dz).
Moreover, as we have seen it before,

1/q
'/ upAGydz| < C </ uggbd:g) <1+ ||n*||w2/q’4’(am)-
0 Q

Hence, the right-hand side of (5.85) is bounded independently of k, which is a contradic-
tion.

9,
T (5.85)

(i) = (iii). If we assume Cy/, o (K) > 0, there exists a measure pgx € M (9Q) N
W—2/99(90Q), satisfying pg(9Q \ K) = 0 and C2/q,q¢(K) = px (K). This measure is an
extremal for the dual definition of the capacity of K (already introduced in (3.54 with
Bessel potentials) :

q
p(K)
R AT ’
w2 \'’K) = 0 —A LA(Qipyg dz)

see [1, Th. 2.2.7]. Hence Problem (5.15) with L = —A is solvable with p = pg, thus K is
not conditionally g-removable. O

5.3 The boundary trace problem

One of the most striking aspects in the study on positive solutions of (5.15) in a domain 2
relies on the possibility of defining a boundary trace which is no longer a Radon measure,
but a generalized Borel measure, that is a measure which can take infinite values on
compact boundary subsets. The second important task of the theory of boundary trace
is to analyse the connection between the set of all the boundary traces and the set of
solutions. These notions were first studied by Le Gall [61], [62] in the case L = —A,
g =n = 2, and then extended by Marcus and Véron [68], [69], [70]. For simplicity we shall
consider first the model case

—Au+[u/T'u=0 in Q. (5.86)

We adopt the notations of Section 2.4
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Theorem 5.19 Let Q C R™ be a smooth domain and ¢ > 1. Let u be a positive solution
of (5.86). Then for any a € 02 the following dichotomy holds :
(i) either for every relatively open subset O C § containing a,

lim [ u(x)dS; = oo, (5.87)
t—0 Oy

(ii) or there exist a relatively open subset O C ) containing a and a positive linear func-
tional £ on C°(O) such that for every 8 € C°(0),

lim [ w(z)0(x)dS = £(6). (5.88)
t—0 O,

Proof. The proof of this result is settled upon the following alternative which holds for
every boundary point a :

(I) either there exists an open ball B, (a) such that

/ ulp,,dr < oo, (5.89)
By (a)NQ

(II) or for any r > 0,
/ uwlp,,dr = oo. (5.90)
B (a)NQ2

If (I) holds, let € > 0 and U, be a smooth open subdomain of QN By,(a) containing
B,_¢(a)Q and such that

Br_(a)NOQ CU NN C Br(a) N

The function @ = u},, is a nonnegative solution of (5.86) in U, with 4% € L'(Ue; p,,, dx).
Thus it admits a boundary trace on Ol which belongs to M, (0U,). Therefore, for any
0 € C°(0U,), there holds

lim u(z)0(x)dS = L.(0). (5.91)
t—0 M. ¢

Since € is arbitrary and /. is uniquely determined on OU,, assertion (ii) follows.

If (IT) holds, let n € C2°(9Q2 N By.(a)) such that 0 <7 <1, n =1 on IQN B, j5(a). For
t € (0, 80/2) small enough, we define (,; in the set Q; \ Qg, by

Cn,t(x) = Cnvt(pag (x) - t?‘f(x)) - ((bR?;ql)(pzm (x) - t?‘f(x))'

Then
2 0Gy ¢
(—ulpp +uwilye)de = | ™7 udS — — (B0 —t,0)dS. (5.92)
2\, o 5, OM
As we have already seen it
1/q
| sl < Cllllyarn ([ atgyedn)
2\, 1\,
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Because the surface integral term in (5.92) on g, is bounded independently of ¢, it follows

1/q
[otuds = [ty = Gl ( / uqcn,tdm> —G (5.99)
o 1\, 2\,

Moreover, as 7 = 1 on 92N B,.j3(a), there exists 6 > 0 such that ¢R,27q/ > 0 on QN B, jp(a).
Hence, by (5.90) and the Beppo-Levi Theorem,

lim ulG, idx = oo,
t—0 Qt\Qﬁo
which implies
lim [ 7?7 udS = oo, (5.94)
t—0 Zt
and assertion (i) follows. O

We write 092 = S(u) UR(u) where S(u) is the closed subset of boundary points where
(i) occurs, and R(u) = 92\ S(u). By using a partition of unity, there exists a unique
positive Radon measure p on R(u) such that

i [ vl 060115 = /R G (5.95)

for every ¢ € C.(R(u)). Thus we define the boundary trace by the following identification

Troa(u) = (S(u), 1). (5.96)

The set S(u) is called the singular part of the boundary trace of u, while y € 9 (R(u))
is the regular part. The couple (S(u), 1) defines in a unique way an outer regular positive
Borel measure v (an element of B"7(9%)), with singular part S(u) and regular part p.

In the subcritical case, an important pointwise characterization of the singular part is
the following minoration,

Proposition 5.20 Let Q be a bounded domain in R™ with a C? boundary 09, 1 < q¢ <
(n+1)/(n—1) and u be a positive solution of (5.86) in Q with boundary trace (S(u), p).
If a € S(u), then

u(r) > Usoa(x), VI eQ, (5.97)

where Uooq = limy_,o0 Ugs,, and ugs, is the solution of

-1 .
—Augs, + |ugs, |7 ugs, =0 in €,

(5.98)
Ugs, = kdg on O0S2.

Proof. Since for any r > 0, there holds

lim u(x)dS; = oo,
t=0 /B, (a)nx:
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for any k > 0 and ¢ = t;, = 1/k, there exists ry; > 0 such that

/ u(z)dS; > k.
B’”k,t (a)ﬂZt

Let my. be such that
/ min{my, u(z)}dS; = k,
Brk’t(a)ﬂEt

and denote by vy the solution of

—Avy, + ’Uk’q_l v =0 in €,

(5.99)

v on Y.

k= XBTk’t(a)ﬁEt
By the maximum principle, vy < w in €; and by the stability result of Corollary 5.4, v
converges to ugs, locally uniformly in €2 (actually the proof is given for a fixed domain €2,
but the adaptation to a sequence of expanding smooth domains is straightforward). Thus
ugs, < win €. Since k is arbitrary, (5.97) follows. O

Remark. Notice that the boundary behaviour of s is given by Theorem 5.12 : with an
apropriate rotation in the space, it is

lim |z — a|2/(q71) Usoa(Z) = w(0o), uniformly on Si_l, (5.100)
@—a)/lz—al - o

where w is the unique solution of (5.60) on S" ! which vanishes on the equator 9.

The most general boundary value problem concerning positive solutions of (5.86) is to
solve the Dirichlet boundary value problem with a given outer regular Borel measure as
boundary trace. If v € B“(99Q), we put

S§=S8,={0€9: v(U) = oo for every relatively open neighborhood U of ¢}.

Clearly S, is closed and the restriction p of v to R, = 92\ S, is a Radon measure. This
establishes a one to one correspondence between %fg (092) and the set of couples (S, u),
where S is a closed subset of 9 and p a positive Radon measure on R = 9Q \ S. The
following result is proven in [70].

Theorem 5.21 Let Q C R™ be a smooth domain and 1 < ¢ < (n+1)/(n —1). Then
for any v € B(9Q) with v ~ (S, ), where S is a closed subset of OQ and p a positive
Radon measure on O\ S, there exists a unique solution of

—Au+utu=0 inQ,
(5.101)
Trao(u) = v.
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Proof. The proof is long and technical, and we shall just indicate the main steps :

(1) By approximation, a minimal solution us,, and a maximal solution us , of Problem
(5.101) are constructed, so any other solution u satisfies

us, <u<Usy (5.102)

(2) Using convexity and the approximations of the minimal and the maximal solutions, it
is proven that

US,pu — Us ; < US,0 — Us o- (5.103)

(3) Using (5.77), (5.97), (5.100) and Hopf boundary lemma, there exists K = K(q,Q) > 1
such that

Uso < Kug . (5.104)

(4) Assuming that ugy # Us,, (and the strict inequality follows by the strong maximum
principle), a convexity argument implies that the function

r
W=1usop— ﬁ(uS,O — Us ),

is a supersolution of (5.101) with v ~ (8,0). Since for 0 < a < 1/(2K) aug, is a
subsolution of the same problem with the same boundary trace, and

aus o < w,
it follows by (Theorem 4.1) that there exists a solution u of (5.86) in © and
augo <u<w<ugy. (5.105)

Because both aug, and w have the same boundary trace (S,0) in the sense of Theo-
rem 5.19, u is a solution of Problem (5.101) with v ~ (S,0). This fact contradicts the
minimality of Us o thus uso = us o5 which, in turn, implies us , = Us - ]

When ¢ > (n+ 1)/(n — 1) neither any positive Radon measure on 99 is eligible for
being the regular part of the boundary trace of a positive solution of (5.86), nor any closed

boundary subset for being the singular part : these facts follow from Theorem 5.8 and
Theorem 5.16.

Definition 5.22 (i) Let A be a relatively open subset of 02 and p € My (A). Then the
singular boundary of A relative to p is defined by

oA ={oceA: p(UNA)=oc, for every neighborhood U of c}. (5.106)

(ii) Let A be a Borel subset of 9. A boundary point o is g-accumulation point of A if, for
every relatively open neighborhood U of o, Cy /qu/(Aﬂ U) > 0. The set of g-accumulation
points of A will be denoted by Aj7.
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The following result, announced (under a slighly different form) in [69], is proven in
[71] (see also [38], [39]).

Theorem 5.23 Let Q C R"™ be a smooth domain, ¢ > (n+1)/(n —1) and v = (S, ) an
element of B'(0Q). Then Problem (5.101) admits a solution if and only if the following
condition is fulfilled :

(i) For every Borel subset A C R = 00\ S, Cy/q4(A) =0 = pu(A) =0,

(5.107)
(i1) S = S; U, (R).

One of the most striking aspect of the super-critical case is the loss of uniqueness. It
has been proven by Le Gall [64] in the case ¢ = 2 and extended by Marcus and Véron
[71] that there exist infinitely many solutions of Problem (5.101) whenever the singular
set S has a non-empty relative interior. Actually there exists a maximal solution, but no
minimal solution. This fact has led Dynkin and Kuznetsov in [40] to introduce a thiner
notion of boundary trace called the fine trace. However their definition is only working
when ¢ < 2. When ¢ = 2 and with a fundamental use of probability techniques (the
Brownian snake), Mselati proved in [80] the one to one correpondence between positive
solutions of (5.86) and the fine trace. The extension of this result in the general case
remains open.

5.4 General nonlinearities
5.4.1 The exponential

There are many extensions of the nonlinear boundary value problems when the nonlinearity
in no longer of a power type. In [49] the boundary trace of the prescribed Gaussian
curvature equation is studied

—Au = K(z)e*, (5.108)

in a 2-dimensional bounded domain 2. In this equation, K is a given function ; the
question is to find out a new metric conformal to the standard metric of a subdomain on
the hyperbolic plane H? so that K is the Gaussian curvature of this metric (see [87] for
example). The existence of boundary trace in the set of outer regular Borel measures on
0L is proven. In the case of a Radon measure the following existence result is obtained :

Theorem 5.24 Suppose 8 < K(z) < o < 0 is a continuous function in a smooth bounded
domain Q of the plane and p € IM(ON) with Lebesgue decomposition

p = prdHy + ps,
where pp € LY(0Q) and ps L pg. If there exists some p € (1,00] such that

(i) exp (2P (1s)) € L7 (Q; p,qda),

(5.109)
(i1) exp(2pr) € LP~1(09),
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then there exists a unique u € L*(Q) with e2* € LY(Q; p,,dx) solution of

—Au—K(z)e* =0 in Q,

(5.110)
u = p.
As for the power case, sufficient conditions for solving
—Au— K(z)e** =0 in Q,
(5.111)

Troo(u) =v.
where v € B,(09) are given. They are expressed in terms of a boundary logarithmic
capacity.
5.4.2 The case of a general nonlinearity

For general semilinear equations of the form
—Au+g(z,u) =0 in Q, (5.112)

where () is a smooth domain in R", not necessarily bounded, and g a continuous function
defined on ) x R, a new approach of the boundary trace problem is provided by Marcus
and Véron in [73]. As it has already been observed in the implication [(i) = (ii)] in the
proof of Theorem 5.16, if u is a positive solution of (5.112) with g(z,u) > 0, and if for
some a € 0 there exists r > 0 such that

/ g(z,u)p,,dr < oo, (5.113)
B (a)NQ2

then u € LY (B,/(a) N Q) for any 0 < r’ < r and there exists a positive linear functional ¢
on C°(X N By(a)) such that, for any # in this space,

lim u(z)0(x)dS, = £(0). (5.114)
t=0JB,(a)N%;

This result leads to the notion of regular and singular points if it is assumed for example
that ¢ satisfies
g(x,r) >0, V(z,r)eQxR;. (5.115)

Definition 5.25 Let u be a continuous nonnegative solution of (5.112). A point a € 092
is called a regular point of u if there exists an open neighborhood U of a such that (5.113)
holds. The set of regular points is denoted by R(u). It is a relatively open subset of 0€2.
Its complement, S(u) = 00 \ R(u) is the singular set of u.

Using a partition of unity, it exists a positive Radon measure p on R(u) such that

lim u(o, t)C (o, t)dS; :/ C(o)du, (5.116)
t0 JR(w), R(uw)

for every ¢ € C.(R(u)).
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Definition 5.26 A function g is a coercive nonlinearity in 2 if, for every compact subset
K C Q, the set of positive solutions of (5.112) is uniformly bounded on K.

An example of coercive nonlinearity is the following :
g(x,r) > h(x)g(r), V(z,r)eQ xRy, (5.117)

where h € C() is continuous and positive, and f € C(Ry) is nondecreasing and satisfies
the Keller-Osserman assumption :

—-1/2

/900 (/Otf(é’)ds> dt < oo, V0> 0. (5.118)

The verification of this property is based upon the maximum principle and the construction
of local super solutions by the Keller-Osserman method.

Definition 5.27 A function g possesses the strong barrier property at a € 0) if there

exists 79 > 0 such that, for any 0 < r < rg, there exists a positive super solution v = v,
of (5.112) in B,(a) N such that v € C(B,(a) N Q) and

lim v(y) =00, VzeQxIdB,(a). (5.119)

Yy —x
yEQ

If g(x,r) = f(r) where f satisfies the Keller-Osserman assumption, then it possesses
the strong barrier property at any boundary point. If

g(x,r) = (pag(x))a Tq’ V(m,r) € x IRJr

for some o > —2 and ¢ > 1, it possesses also the strong barrier property, but the proof,
due to Du and Guo [33], is difficult in the case & > 0 (the nonlinearity is degenerate at
the boundary).

Proposition 5.28 Let u € C(Q) be a positive solution of (5.112) and suppose that a €
S(u). Suppose that at least one of the following sets of conditions holds :

(i) There exists an open neighborhood U’ of a such that u € L*(U' N Q).
(ii) (a) g(z,-) is non-decreasing in R, for every x € Q;
0, an open neighborhood of a, such that g is coercive in Ug N §2;
b) U, ighborhood h that g i we in Uy N Q
(c) g possesses the strong barrier property at a.

Then, for every open neighborhood U of a,

lim u(z) dS; = 0. (5.120)
=0 Juns,

This result, jointly with (5.114), yields to the following trace theorem.

Theorem 5.29 Let g be a coercive nonlinearity which has the strong barrier property at
any boundary point. Assume also that r — g(x,r) is nondecreasing on Ry for every x € ).
Then any continuous nonnegative solution w of (5.112) possesses a boundary trace v in
B9 (00N) with

v="Treo(u) = (S(u),n), where p € M4 (R(u)). (5.121)

101



This result applies in the particular case where g(x,r) = p,,(x)*r?. Moreover a
complete extension of Theorem 5.21 in the subcritical range

n+1+a«a
l<g< ——m—, a>-2,
n—1

is valid. The super critical case is still completely open.
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