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The p-Laplace heat equation with a source term : self-similar
solutions revisited

Marie Francoise Bidaut-Véron*

Abstract

We study the self-similar solutions of any sign of the equation
up — div(|VulP > Vu) = [u]' " u,

in RV, where p,q > 1. We extend the results of Haraux-Weissler obtained for p = 2 to the case
g > p—1> 0. In particular we study the existence of slow or fast decaying solutions. For given
t > 0, the fast solutions u(t,.) have a compact support in RY when p > 2, and |x|p/(2_p) u(t, )
is bounded at infinity when p < 2. We describe the behaviour for large |z| of all the solutions.
According to the position of ¢ with respect to the first critical exponent p — 1 + p/N and the
critical Sobolev exponent ¢*, we study the existence of positive solutions, or the number of the
zeros of u(t,.). We prove that any solution u(t,.) is oscillatory when p < 2 and ¢ is closed to 1.
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1 Introduction and main results

In this paper we study the existence of self-similar solutions of degenerate parabolic equations with
a source term, involving the p-Laplace operator in RY x (0,00), N > 1,

ug — div(|VulP 2 Vu) = [ul? " u, (1.1)
where p > 1,q > 1. The semilinear problem, relative to the case p = 2,
w — Au = |u|i u, (1.2)

has been treated by [[[§], and 4], B7], R0]. In particular, for any a > 0, there exists a self-similar
solution of the form
w =t~V @Dy )

of (.J), unique, such that w € C%([0,00)), w(0) = a and w’'(0) = 0. Any solution of this form
satisfies lim¢| o0 \{\2/('1_1) w(§) =L € R. Tt is called slowly decaying if L # 0 and fast decaying if
L = 0. Let us recall the main results:

o If (N +2)/N < q, there exist positive solutions.
o If (N+2)/N < q< (N+2)/(N —2), there exist positive solutions of each type; in particular

there exists a fast decaying one with an exponential decay:

lim el*’/4 |2V () = A eR,

2| =00

thus the solution u of ({1.3) satisfies u(.,t) € L*(RN) for any s > 1, and limy_g |ju(.,t)||, = 0
whenever s < N(g—1)/2, and limy—osupj,>. |u(z,t)| = 0 for any € > 0. Moreover for any integer
m > 1, there exists a fast decaying solution w with precisely m zeros.

o If (N+2)/(N —2)<q all the solutions w % 0 have a constant sign and a slow decay.

o If ¢ < (N +2)/N, then all the solutions w # 0 have a finite positive number of zeros, and
there exists an infinity of solutions of each type.

The uniqueness of the positive fast decaying solution was proved later in [R§] and [[L1], and more
results about the solutions can be found in [[I6], [1§] and [L7].

Next we assume p # 2. If u is a solution of ([.]), then for any ag,Bp € R, up(z,t) =
A0y ( Az, Mt) is a solution if and only if

ag =p/(g+1-p), fo = (¢ — 1),
This leads to search self-similar solutions of the form

u(z,t) = (Bot) T Vw(r), v = (Bot) VP ], (1.3)



the equation reduces to
_ r N-—-1 _
<‘w’|p 2w'> +—— |u'? 2w'+rw’+aow+]wlq_1w:0 in (0,00). (1.4)
r

In the sequel, some critical exponents are involved:

N N
pl_N—{—l’ p2_N+27
p . Np-1+p
pr— —1 —_— - —
q1 p +N7 q N—p )

with the convention ¢* = oo if N < p. Observe that p — 1 < ¢1 < ¢*; moreover p; < p < 1 < q1,
and ps < p < 1 < ¢*. We also set

N —
§=-L and n= p’ (1.5)
2—p p—1
thus § > 0 <= p < 2. Notice that
P<p<2<<= N<I<<=n<N, (1.6)
P2 <p <2< N <20 (1.7)

Problem (1)) was studied before in [2Z]. In the range ¢ < ¢ < ¢* and p; < p, the existence of
a nonnegative solution u was claimed, such that w has a compact support when p > 2, or w > 0
when p < 2, with w(z) = o( |2|PT9/@=P)) at infinity, for any small ¢ > 0. However some parts
of the proofs are not clear. The equation was studied independently for p > 2 in , but the
existence of a nonnegative solution with compact support was not established, and some proofs are
incomplete. Here we clarify and improve the former assertions, treat the case p < p1, and give new
informations on the existence of changing sign solutions. In particular a new phenomenon appears,
namely the possible existence of an infinity of zeros of w. Also all the solutions have a constant
sign when p < po.

Theorem 1.1 Let ¢ > max(1,p — 1). (i) For any a > 0, there exists a self-similar solution of the
form

u(t, ) = (Bot) = D((Bot) "M |a]) (1.8)

of (L.4), unique, such that w € C?((0,00)) N C ([0,00)), w(0) = a and w'(0) = 0. Any solution of
this form satisfies lim|;_ |2|*° w(z) = L € R.

(ii) If g1 < q, there exists positive solutions with L > 0, also called slow decaying.

(iii) If (1 < q < q*, there exists a nonnegative solution w % 0 such that L = 0, called fast decaying,
and
u(t) € L*(RY)  for any s > 1, }/iH(l] |lu(t)]|, =0 whenever s < N/ayg,
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lim sup |u(z,t)| =0 for any e > 0.
t—0 |z|>e

More precisely, when p > 2, w has a compact support in (0,00); when p < 2, w is positive and

limy o0 |27/ 7P w(z) = £(N,p,q) >0 if pL<p<2,
limy ;oo |Z|(N PPN p(z) = ¢ > 0 if 1<p<p, (1.9)
limr_’oor (IHT)(N+1)/2’LU = Q(N7p7 Q) >0 lf pP=p1.

() If @ < q < q*, for any integer m > 1, there exists a fast decaying solution w % 0 with at least
m isolated zeros and a compact support when p > 2; there exists a fast decaying solution w precisely
m zeros, and |w| has the behaviour ([[.9) when p < 2.

(v) If p < pa, or if p > pa and q > q*, all the solutions w # 0 have a constant sign and are slowly
decaying.

(vi) If ¢ < q1, (hence p1 < p), all the solutions w # 0 assume both positive and negative values.
There exists an infinity of fast decaying solutions, such that w has a compact support when p > 2,
and ]z\p/(Q_p) w(z) is bounded near oo when p < 2. Moreover if p < 2, and q is close to q1, and p
close to 2, then all the solutions w #Z 0 have a finite number of zeros. If p < 2 and q is close to 1,
all of them are oscillatory.

In the sequel we study more generally the equation
<{w"p_2w')l—|— ? ‘w'{p_z w' +rw 4 aw + |w|" tw =0 in (0,00), (1.10)
where a > 0 is a parameter, and we only assume ¢ > 1. The problem without source
— div(|VulP "2 Vu) =0 (1.11)

was treated in [PJ] when p < 2 for positive solutions. In [f] we make a complete description of the
solutions of any sign of ([.1])) for p < 2, and study the equation

_ r N-—1 -
<|w'\p 2wl) b WP e ow =0  in (0,00), (1.12)
T

for arbitrary o € R. A main point is that equation ([.I0) appears as a perturbation of ([.1J) when
w is small enough. When o > 0 and (6§ — N)(6 — a) > 0, observe that ([L1J) has a particular
solution of the form w(r) = ¢r—°, where

§— N\ V@)
— [ P! 1.1
/ <5 = a) (113)



A critical value of a appears in studying ([[.19) when py < p:

S(N — 8)
(p—1)(26 — N)’

In the case p > 2, eqution ([L.12) is treated in [[L3] and [H].

af =6+ (1.14)

Our paper is organized as follows:

In Section ], we give general properties about equation ([LI(). Among the solutions defined
on (0,00), we show the existence and uniqueness of global solutions w = w(.,a) € C?((0,00)) N

C1 ([0,00)) of problem ([.10) such that for some a € R
w(0) = a, w'(0) = 0. (1.15)

By symmetry, we restrict to the case a > 0. We give the first informations on the number of zeros
of the solutions, and upper estimates near oo of any solution of any sign.

In Section P, we study the case (2 — p)a < p. We first show that any solution w satisfies
lim, o r%w = L € R. Moreover we prove that the function a —— L(a) = lim, o r%w(r,a) is
continuous on R. When L = 0, then any solution w has a compact support if p > 2, and rw is
bounded if p < 2 and we give a complete description of behaviour of w near infinity. Then we study
the existence of fast decaying solutions of equation [L.1(, positive or changing sign, according to the
value of a, see theorems B.9 and B.§. We give sufficient conditions on p, ¢, , in order that all the
functions w(., a) are positive and slowly decaying, see Theorem B.11; some of them are new, even
in the case p = 2. Finally we prove that all the solutions w are oscillatory when p; < p < 2 and «
is close to 4, see Theorem B.I7; this type of behaviour never occurs in the case p = 2.

In Section ] we study the case p < (2 — p)a, for which equation ([[.LI]) has no more link
with problem (1), but is interesting in itself. Here r%w is bounded at oo, except in the case
p = (2—p)a < p; where a logarithm appears. Moreover if p; < p, or p; = p < (2—p)a, then all the
solutions are oscillatory. As in section 3 we study the existence of positive solutions, see Theorems
B9 and 11 At Theorem [.6 we prove a difficult result of convergence in the range o < n where
the solutions are nonoscillatory.

Section [ is devoted to the proof of Theorem [I.1, by taking o = ag and applying the results of
Section [, since (2 — p)ag < p.
2 General properties

2.1 Equivalent formulations, and energy functions

Equation () can be written under equivalent forms,

/
<7“N71 ‘w'{p_z w') + VY + aw + w7 w) =0 in (0,00), (2.1)
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<7°N(w + 1 !w"pi2 u/))l + VL ((a — N)w + ]w\q_l w> =0 in (0,00). (2.2)

Defining
In(r) =7V <w 41 |w"p_2 w’) : (2.3)
then (R.9) is equivalent to
Jy(r) = V“N_l(N —a— ]w\q_l)w. (2.4)
We also use the function
Jo(r)=1¢ (w + 7t ‘w'{p_Q w') =2 N Jn(r), (2.5)
which satisfies
J(r) = ol ((a — N)r_1 ‘w'|p72 w' — ]w\q_l w> . (2.6)
The simplest energy function,
"L ‘w‘qﬂ
- - , 2.7

obtained by multiplying ([.LI0) by w’, is nonincreasing, since
E'(r) = —(N = 1)r u'|P — rw, (2.8)

More generally we introduce a Pohozaev-Pucci-Serrin type function with parameters A > 0,0,e €
R:

w'|P w q+1 w2 B L
Vaoe(r) = I <—| p’| + —|qL_ 1 + e +or tw ‘wlv) w' | . (2.9)
Such kind of functions have been used intensively in [R]]. After computation we find
1=Ay7 — (N—1— _i ne _ A q+1 AN— N np=2_
T Vage(r) = =( a p,)\lﬂ i [w|™™ + o )t [ [P w
2 2
_ A _

- (rw' + $w> — (ca— % - W)w? (2.10)

Notice that E = Vj 0.q-

In all the sequel we use a logarithmic substitution; for given d € R,
w(r) = r_dyd(T), T=Inr. (2.11)
We get the equation, at each point 7 such that w'(r) # 0,

yq + (n—2d)yy — d(n — d)yq



+

- 16((p—2)d+p)r \dyd _ y&{Q_p (y& —(d— )yg + e—da=1)7 |yd|q71 yd> =0. (2.12)

Setting
Ya(r) = —p@HDE=D |y |P72 (2.13)

we can write (R.19) as a system:

Yy = dya — [Yg| *P/ @V, (2.14)
Yd/ =(p-1)(d-n)Ys+ e(P+(P*2)d)T(ayd + e 0(g=1)7 ‘yd’q_l Ya — ’Yd‘(Q—p)/(P—l) Yy), :
In particular the case d = § plays a great role: setting
w(r) =r%y(r), Y(r)=—rOtHE-D {w"p*2 w', T=lnr, (2.15)

equation (R.13) takes the form
2— S(a—1)r 1 1a—
(b= 1)y + (N = dp)y + (6= N)ay + oy — /"™ (v = (6 = @)y + 77 [y~ y) = 0. (2.16)

and system (R.14) becomes

y = oy — ’Y’(Q*p)/(pfl) Yy (2.17)
Y' =@ -N)Y — ’Y’(Q—p)/(p—l) Y + ay + e D7 |yt y, :
As 7 — o0, this system appears as a perturbation of an autonomous system
y = oy — |y|(2fp)/(p71) Yy (2.18)
Y = —N)Y —|Y|@P/eDy 4 gy

corresponding to the problem ([[.1J). The existence of such a system is one of the key points
of the new results in [[{]. If 5(6 — N)(§ — «) < 0, it has only one stationnary point (0,0). If
5(0 — N)(6 — ) > 0, which implies p < 2, it has three stationary points:

(0,0), M, = (¢,(50)P"Y), and M, = —M,, (2.19)

where £ is defined at ([.13). The critical value a* of «, defined at ([[.14) corresponds to the case
where the eigenvalues of the linearized problem at M, are imaginary. Observe the relation

In(r) = N7 (y(r) - V(7). (2.20)



As in [{] and [f], we construct a new energy function, adapted to system (B.17), by using the
Anderson and Leighton formula for autonomous systems, see [[]. Let

25 — N)§P~1 v —6
W(y,Y) = (20 = N)o"™ ly[P + | p', — dyY + aTy2, (2.21)
1
W(r) =W(y(r),Y (7)) ﬁ—le“s(q‘m Jy(r)| 7+ (2.22)
Then 5 .
W) = Uly(r), ¥ () - et et (229
with
Uy, Y) = (dy = [V|E P00y 8y 20y — ¥) (20— N = H(y,Y)),  (224)
_ v |@2-p)/(p—-1) P25 : p—2
My Y) { <5y 2!_Y! Y) / (!511\ oy Y) | if !5y!)2 oy #Y, (2.25)
0y[=" /(p— 1) it |oy|)P~oy =Y.
If 20 < N, then U(y,Y) < 0 on R?, thus W is nonincreasing. If 26 > N, the set
L={(y,Y)eR*:H(y,Y)=25 — N}, (2.26)

is a closed curve surrounding (0,0), symmetric with respect to (0,0), and bounded, since for any
(y,Y) € R?,

My, Y) > S((60)* 7 + V@ P/, (227)
Introducing the domain S of R? with boundary £ and containing (0, 0),

S={(yY)eR?*: H(y,Y) <25 — N}, (2.28)
then W’(7) < 0 for any 7 such that whenever (y(7),Y (7)) € S, from (.23).

2.2 Existence of global solutions

The first question concerning problem ([[.1(]), ([[.15) is the local existence and uniqueness near 0.
It is not straightforward in the case p > 2, and the regularity of the solution differs according to
the value of p. It is shown in [[J] when p > 2 and a = ag, by following the arguments of [[4]. We
recall and extend the proof to the general case.

Theorem 2.1 For any a # 0, problem ([.10), (I.1]) admits a unique solution w = w(.,a) €
C'([0,00)), such that [w'[P~*w' € C" ([0,00)); and

liH(l) ‘w'|p72 w' /rw = —(a/N + a?™); (2.29)
r—

thus w € C?([0,00)) if p < 2. And |w(r)| < a on [0,00).



Proof. Step 1 : Local existence and uniqueness. We can suppose a > 0. Let p > 0.
From (B2), any w € C* ([0, p]), such that |w/["~?w’ € C' ([0, p]) solution of the problem satisfies
w = T(w), where

T(w)(r) =a - /0 [H (w)] P H(w)ds,

H(w(r)) =rw—r""NJy(r) = rw — rl_N/OrsN_lj(w(s))ds, (2.30)

and j(r) = (N r— |7“|q*1 r. Reciprocally, the mapping T is well defined from C? ([0, p]) into

—a)
itself. If w € C°([0,p]) and w = T(w), then w € C1((0,p]) and |w'[P"*w' = H(w), hence
|/ [P w' € C1((0, p]) and w satisfies ([LI0) in (0, p] . Moreover lim,_oj(w(r)) = a4 — (N — &)a,
hence |w'|P"2w'(r) = —r((a/N + a97Y) + o(1)); in particular lim,_qw'(r) = 0, and |/’ 2w’ €
C' ([0, p]), and w satisfies ([L.10) and ([.15), and (.29) holds. We consider the ball

B = {w e CO(0,01): lhw — allngo < M}

where M is a parameter such that 0 < M < a/2. Notice that j is locally Lipschitz continuous,
since ¢ > 1. In case p < 2, then the function r — |r|(27p)/(p71) r has the same property, hence T'
is a strict contraction from B, js into itself for p and M small enough. Now suppose p > 2. Let
K = K(a, M) be the best Lipschitz constant of j on [a — M,a + M]. For any w € Br y, and any
r € [0, p], from (2.30)

<a_M_](a)+MKM
N

hence, setting u(a) = a — j(a)/N = (a? + aa)/N > 0,
pla)r/2 < H(w(r)) < 2p(a)r
as soon as M < M (a) small enough. Then from (R.3(),
1T (w) = all oo,y < (21(@)) /=Y RP/P=D
hence T'(w) € B, u for p = p(a) small enough. Now for any wq,ws € B, ar, and any r € [0, p| ,

Twn)r) = Twa)0)] < [
and for any s € [0, 7], from [[14, p.185], and
|H (w)| @2/ ®=D F(wy) — |H(ws)| @2/ P~ g (w)

—ile) + MK MK) r (2.31)

)rSH(w(r))S <a+M—i—_ N

|H(w)|(2*p)/(p*1) H(w) — |H(w2)|(2*p)/(p*1) H(w)| (s)ds

(s)
< H(wz)(z—p)/(pﬂ) |H (wy) — H(ws)] ()

< (2u(a))(2_p)/(p_1) st/ (p=1) (,wl — wy —i—Ks_N/ N1y — wy da)
0

< C(a)s" ™ f|wy — w2l oo, r)) (2.32)
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with C(a) = (2u(a))?P/®~V (1 4+ K/N)

1
IT (w1) = T(ws)ll oo,y < Cl@)p” l[wr = wall oo,y < 5 lwr = w2llco(po,r)

if p(a) is small enough. Then 7' is a strict contraction from B, s into itself. Moreover if p(a) and
M (a) are small enough, then for any b € [a/2,3a/2],

()~ w(0) oy < b= al + 5 lw(a) — wl D)l cogo,n)

that means w(a,.) is Lipschitz dependent on a in [0, p(a)]. The same happens for w'(.,a), as in

(B:39), since

[/ (0) = w'( )| = [ H (o) O Hw(, ) = [H ()| O Hw(, )|

Step 2 : Global existence and uniqueness. The function w on [0, p(a)] can be extended on
[0,00) . Indeed on the definition set,

1
B(r) = = [ + 5w’ + 5 vl < B(O) = Sa?+arth, (2.33)

hence w and w’ stay bounded, and |w(r)| < a on [0,00). The extended function is unique. Indeed
existence and uniqueness hold near at any point r; > 0 such that w'(r1) # 0 or p < 2 from the
Cauchy-Lipschitz theorem; if w'(r1) = 0,w(r1) # 0 and p > 2, it follows from fixed point theorem
as above; finally if w(r1) = w'(r1) = 0, then w = 0 on [ry, 00) since E is nonincreasing. ]

Remark 2.2 For any r1 > 0, we have a local continuous dependence of w and w' in function of
c1 =w(ry) and ca = w'(r1). Indeed the only delicate case is ¢ = co = 0. Since E is nonincreasing,
then for any & > 0,, if |w(r1)| + |w'(r1)| < e, then supy,, ooy [w(r)| + [w'(r)] < C(e), where C
is continuous; thus the dependence holds on whole [ri,00). In particular, for any a € R, w(.,a)
and w'(.,a) depend continuously on a on any segment [0, R] . If for some ag, w(.,ap) has a compact
support, the dependance is continuous on R. As a consequence, w(.,.) and w'(.,.) € C° ([0,00) x R).

Remark 2.3 Any local solution w of problem (1.14) near a point r1 > 0 is defined on a maximal
interval (Ry,,00) with 0 < Ry, < r1.

2.3 First oscillatory properties

Let us begin by simple remarks on the behaviour of the solutions.
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Proposition 2.4 Let w be any solution of problem (1.10). Then

lim w(r) =0, lim w'(r) = 0. (2.34)

rT—00 r—00

If w > 0 for large r, then w' < 0 for large .

Proof. Let w be any solution on [rg, c0), 79 > 0. Since function E is nonincreasing, w and w’
are bounded, and E has a finite limit § > 0. Consider the function V' = V), 4. defined at (E) with
A=0,0=(N—-1)/2, e =a+ 0. It is bounded near co and satisfies

N-1 N —
—rV'(r) = —— (Jw'|” + lw]I ™ + aw? + Erflw |w'|” 2w+ T2wl2)
N-1 N-—-1

> TE(?") +o(1) > 5 £+ o(1).

If £ > 0, then V is not integrable, which is contradictory. Thus £ = 0 and (B.34) holds. Moreover
at each extremal point r such that w(r) > 0, from

(‘w'|p72 w) (r) = —(a+ w(r)q+1)w(7"), (2.35)

thus r is unique and it is a maximum. If w(r) > 0 for large r, then from (R.34) necessarily v’ < 0
for large r. [

Now we give some first results concerning the possible zeros of the solutions. If p < 2 then
any solution w # 0 of ([.1() has only isolated zeros, from the Cauchy-Lipschitz theorem. On the
contrary if p > 2, it can exist 71 > 0 such that w(r;) = w'(r1) = 0, and then from uniqueness w = 0
on [ry,00).

Proposition 2.5 (i) Assume o < N. Let a = (N — )@=V, Then for any a € (0,a], w(r,a) > 0
on [0,00) .

(ii) Assume p1 < p and N < a. Then for any a # 0, w(r,a) has at least one isolated zero.

(i4i) Assume p < 2. Then for any 0 < m < M < 0o, any solution w of ({{.14) has a finite number
of zeros in [m, M|, or w =0 in [m, M].

(iv) Assume p > 2 or a < max(N,n). Then for any m > 0, any solution w of problem ([.1Q) w
has a finite number of isolated zeros in [m,o0), or w =0 in [m,o0).

Proof. (i) Let a € (0,a]. Assume that there exists a first 71 > 0 such that w(r1,a) = 0, hence
w'(r1,a) < 0. Let us consider Jy defined by (P.3). Then Jj (r) > 0 on [0,71), since 0 < w(r) < a,
and Jy(0) = 0, and Jy(ry) = V"L jw!(r) P20/ (r1) < 0, thus Jy = 0 on [0,71], thus w = g,
which contradicts ([[.1().

(ii) Suppose that for some a > 0, w(r) = w(r,a) > 0 on [0,00) . Since N < «, there holds Jj (r) <0
on [0,00), and Jy(0) = 0, hence Jy(r) < 0. Then r — ' — w9 is nonincreasing.
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e If p > 2, it is impossible, thus w has a first zero r1, and Jy(r) < 0 on [0,r;), thus Jy(r;) <0,
then w'(r;) < 0 and 7 is isolated.

o If p < 2, there exists ¢ > 0 such that for large r, Jy (r) < —¢, hence w(r)+cr—N < |w/(r)[P~ /r.
Then there exists another ¢ > 0 such that w'+cr(t=N)/@-1) < . If N = 1 it contradicts Proposition
4. If 2 < N, then p < N, and w — cr~"/n decreases to 0, thus § < 5, which contradicts N < 4,
which means p; < p, from ([L.6).

(iii) Suppose that w has an infinity of isolated zeros in [m, M]. Then there exists a sequence of
zeros converging to some 7 € [m, M]. We can extract an increasing (or a decreasing) subsequence
of zeros (ry,) such that w > 0 on (rap, ren4+1) and w < 0 on (rep—1,72,) . There exists s, € (1, Tn41)
such that w'(s,) = 0; since w € C1[0,00), it implies w(7) = w'(¥) = 0. It is impossible because
p < 2.

(iv) Suppose that w # 0 in [m, 00). Let Z be the set of its isolated zeros in [m, c0). Notice that m
is not an accumulation point of Z, since (w(m),w’(m)) # (0,0). Let p1 < p2, be two consecutive
zeros, thus such that p; is isolated, and |w| > 0 on (p1, p2) . We make the substitution (P.11]), where
d > 0 will be choosen after. At each point 7 such that y/,(7) =0, and y4(7) # 0, we deduce

(= Dy = ya ((p = 1)d(n — d) + P57 Jay, PP (d — @ — =MD T yy) ) (2.36)
if 7 € (e, ef?) is an maximal point of |y4|, it follows that
(=DHD7 Jay ()PP (d = @ = M7 fyy(n)] ) < (p—1)d(d — ) (2.37)
Setting p = e” € (p1, p2), it means

P w7 (d=a [l (p) < (p = D~ d —n). (2.38)

If p > 2, we fix d > «. Since lim,_,o w(r) = 0, the coefficient of p” in the left-hand side tends to
oo as p — 0o, hence p is bounded, hence also p1, thus Z is bounded. If o < 7, we take d € («, 7).
Then the right hand side is negative, and the left hand side is nonnegative for large r, hence again
Z is bounded. If « < N, we use function Jy :

— — p2 _
In(p2) = In(pr) = 3~ u! [P (p2) = o2 ! [P ' (1) = / NN — o — [w]*™ w)ds
P1

(2.39)
and the integral has the sign of w for large p, hence a contradiction. In any case Z is bounded.
Suppose that Z is infinite; then p > 2 from step (iii), and there exists a sequence of zeros (ry,),
converging to some 7 € (m,00) such that w(7) = w'(¥) = 0. Then there exists a sequence (7;,) of
maximal points of |y4| converging to 7 = In7. Taking p = p,, = €™ in (R.3§) leads to a contradiction,
since the left-hand side tends to co. ]
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When w has a constant sign for large r, we can give some informations on the behaviour for
large 7 of the solutions (y,Y) of system (R.17), in particular the convergence to a stationary point
of the autonomous system (R.1§): We have also a majorization in one case when the solution is
changing sign.

Lemma 2.6 Let w be any solution of ([[.10), and (y,Y) be defined by (£.17).

(i) If y > 0 and y is not monotone for large T, then Y is not monotone for large T, and
either max(a, N) < ¢ and lim, oo y(7) = ¢, or 6 < min(a, N) and liminf, ,y(r) < £ <
limsup._, . y(7).

(ii) If y > 0 and y has a limit | at co, then eitherl = 0 and lim, .~ Y (1) =0, or (0—N)(d—a) >
0 and | = ¢ and lim, oo (y(7),Y (7)) = My, or 6 = a = N and lim, o, Y (1) = (61)P~L.

(iii) If y > 0 and y is nondecreasing for large 7 and im,_,o y(7) = 00, then lim, . Y (1) = 0.

(iv) If y is changing sign for large T (which implies p < 2) and o < 0, then N < § and
ly(T)| < £(1+0(1)) and |Y(1)| < (86)P~1(1 + o(1)) near co.

Proof. From Proposition P4, Y (7) > 0 for large 7 in cases (i) to (iii).

(i) Suppose that y is not monotone near co. Then there exists an increasing sequence (7,) such
that 7, — o0, ¥/ (1) = 0, ¥"(72n) = 0, ¥"(72n+1) < 0, y(72) < y(7) < y(T2n+1) o0 (Ton, T2nt1) ,
Y(12n) < y(7) < y(T2n-1) on (T2n—1,72n) , and y(72n) < y(T2n41)-From (2.14),

(p— 1)y (7) = 8* Py(r) (y(7)* 7 (5 — = €T VP ()17 1)) — (5= N)o™1) (240)
From Proposition B4, e 97y(7) = o(1) near oo and

y(TQn—i—l)z—p (Oé -0+ 6_5(‘1—1)T2n+1y(T2n+1)q_1))

> (N = 0)6"1 2 y(raa)* 7 (= 8+ €000y (7 )171) > (73027 (0= 5)

Then either o < § and N < ¢ and ¢ < y(125,) < y(T2n+1) < (1 + o(1)), hence lim, . y(7) = ¢. Or
d <aand d < N, and y(1o,) < £, and £ < y(712,+1)(1 +0(1)). If Y is monotone near oo, then from
(B17), 3" = 6y — Y P)/=1Y’ hence e%y’ is monotone, which contradicts the existence of a
sequence (7,,) as above. Thus Y is not monotone.

(ii) Let I = lim; oy > 0. If Y is monotone, either lim, ., ¥ = oo, which is impossible, since then
Yy — —oo; or Y has a finite limit A > 0. If Y is not monotone, at the extremal points 7 of Y, we
have

Y@y (r) = (0= N)Y(7) = al + o(1),

from (R.17), thus Y has a limit at these points, hence Y still has a limit . From (R.17), v’ has a limit,
necessarily 0, hence A = (6/)P~!.Then Y’ has a limit, necessarily 0, and (6 — N)(61)P~! = (§ — )l;
thus [ =0= X or (§—N)(§—a)>0and =/, A= (8)P"L, or § =a=N.
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(iii) Suppose that y is nondecreasing and lim, . y(7) = oo. Then either Y is not monotone,
and at minimum points it tends to oo from (R.I7), then lim, ., Y (7) = co. Or Y is monotone;
if it has a finite limit, then lim, ., Y’(7) = oo from (P.17), which is impossible. Then again
lim, o Y(7) = 0.

(iv) Assume that y does not keep a constant sign near oo; then also w, thus also w’, and in turn Y.
At any maximal point 6 of |y|, one finds

(0= 1)y"(8) = 3 y(0) (Jy(@)* 7 (5 — a — @D (o)1) = (5 = N)&" ) |
hence
W(B)27P (6 — a+o(1)) < (5 — N)&» L.
1

Since § —a > 0, it follows that 6 — N > 0 and |y(7)| < £(140(1)) near co. Similarly at any maximal
point ¥ of |Y|, one finds

Y"(9) = (a + e @07 ()| )y + 5(q — 1)e @D [y(9) |y
0=(0—N)Y@®) - [Y@)*PTVY@) + (a+ e 2@ y(@)]* ()
which implies
V()| E PV (5 — o+ 0(1) < (6 - N)d
thus |Y ()| < (60)P71(1 + o(1)) near oc. |

2.4 Further results by blow up techniques

Next we give two results obtained by rescaling and blow up techniques. The first one consists in a
scaling leading to the equation

/
PV (PR ol e =0, (2.41)

without term in rw’, extending the result of ([R6, Proposition 3.4]) to the case p # 2. It gives a
result in the subcritical case ¢ < ¢*, and does not depend on the value of a.

Proposition 2.7 Assume that 1 < q < g*(thus p > p2). Then for any m € N, there exists a,, such
that for any a > @, w(.,a) admits at least m + 1 isolated zeros. And for fired m, the m*™ zero of
w(.,a) tends to 0 as a tends to cc.

Proof. (i) First we show that there exists a, > 0, such that for any a > a., w(.,a) cannot stay
positive on [0,00). Suppose that there exists (a,) tending to oo, such that wy(r) = w(r,a,) > 0 on
[0,00), and let

vp(r) = a;lwn(a_l/o‘or). (2.42)

n
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Then v,(0) = 1, v/,(0) = 0 and v, satisfies the equation

n

/!
(TN(a,lfqvn 4+t ‘UMP_Q vé)) + V1 ((a — N)al 9, + |v, |7 vn) =0. (2.43)
From (R.33) applied to wy,
@ 4 1 .
vp(r) <1, |U,I1(7“)|p <y <§a,11 74+ ﬁ) in [0,00),

thus v, and v], are uniformly bounded in [0,00). If p < 2, then v/ is uniformly bounded on

any compact K of (0,00), from ([l.1(]), and up to a diagonal sequence, v,, converges uniformly in

CL, (0,00) to a function v. If p > 2, then, from (B43), the derivatives of 7V (as “v, + v/, [P > /,) are
q

. 1— . . .

uniformly bounded on any K, and a, “v,, converges unifomly to 0 in [0,00), and up to a diagonal
-2 . . .

sequence, |v)|P~"v!, converges uniformly on any K, hence also v],, thus v, converges uniformly in

Cl . (0,00) to a nonnegative function v € C* (0,00) . For any r > 0,

T
!v,@!pd vl (r) = —al v, (r) + TIN/ P (a%fq(N — ), — ]vn\qfl vn) ds,
0

hence §
|v"p72 V'(r) = —rlN/ sV uds i (0,00). (2.44)
0

In particular v'(r) — 0 as 7 — 0, hence v can be extended in a function in C*(]0,0)), such that
v(0) = 1, and v/(r) < 0. Using the form ([[.I0) for the equation in v, v}, converges uniformly on
any KC, hence v € C%(0,00) N C*([0,00)) and is solution of the equation (R.41)) such that v(0) = 1
and v'0) = 0. But this equation has no nonnegative solution except 0 since ¢ < ¢*. Moreover the
zeros of function v are all isolated, and form a sequence (r,,) tending to oo, see [[], [§] and [4].
Then we reach a contradiction.

(ii) Now let m > 0. As in 2§, Proposition 3.4], assume that there exists a sequence (a,) tending to
00, such that w,(r) = w(r,a,) has at most m isolated zeros, hence also v,. Up to a subsequence
we can suppose that all the v, (r) have the same number of isolated zeros T : 70 5, 71 5, .., T Let
M > 0 such that ro,r,..,7m € (0, M). Then for n large enough, 79,71 1,..."mn € (0, M +1).
Either v, (r) has no zero on [M + 1,00), or there is a unique zero 7,41 such that v,(r) has a
compact support [0,rm7n+1]. Up to a subsequence, all the v, are nonnegative or nonpositive on
[M + 1,00) ; then the same holds for v, and we get a contradiction. Thus for a large enough, w(., a)
has at least m + 1 zeros. Moreover, as in 2], the m first zeros stay in a compact set, and from
(B-49) the m!" zero of w(.,a) tends to 0 as a — oo. |

Now we make a scaling leading to the problem without source
/
PN <TN71 W‘P*? v’) + v 4+ av = 0. (2.45)

It gives informations when the regular solutions of (R.43) are changing sign, in particular p, < p < 2,
and § < . It does not depend on the value of q.
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Proposition 2.8 Assume that po < p < 2, § < a. Then there exists an a. € (n,a*) such that if
a > o, then for any m € N, there exists @, such that for any 0 < a < @y, w(.,a) admits at least
m + 1 isolated zeros. And for fized m, the m** zero of w(.,a) tends to 0 as a tends to oc.

Proof. Suppose that there exists (a,) tending to 0, such that w,(r) = w(r,a,) > 0 on [0, 00),
and let

vp(r) = a;lwn(agl/‘sr).

Then v,(0) = 1, v/,(0) = 0 and v,, satisfies equation

n
/
<7“N(vn +rt ‘v;‘p_Q v%)) + N1 ((a — N)v, + a‘};l |vn|q_1 vn) =0,

and estimates
q—1

() <1, fu ()" < ¥ <9+“ ) in [0, 00).

2 qg+1

As above we construct a solution v € C? (0,00) N C1([0,00)) of the equation (£-45). But from [f],
there exists a. € (9, a*) such that the regular solutions of (R.45) are oscillating for o > «.., hence
we conclude as above. ]

Remark 2.9 This scaling does not give any result when the regular solutions of (B43) have a
constant sign: it is the case for example when o = N : they are the Barenblatt solutions, they have
a compact support when p > 2 and a behaviour in r—° near co when p < 2. Nevertheless if p > p1,

all the solutions w(.,a) of (.1Q) have at least one zero, from Proposition [2.3.

2.5 Upper estimates of the solutions

Here we get the behaviour at infinity for solutions of any sign. We extend the results of [[[§] obtained
for p = 2, giving upper estimates with continous dependence, which also improve the results of [23]:

Proposition 2.10 Let d > 0.
(i) Assume that the solution w of problem ({[.10), (L.13) satisfies

lw(r)| < Ca(1+7)"7% (2.46)

on [0,00), for some Cq > 0, then there exists another C!, > 0, depending continuously on Cq, such
that

‘w'(r)‘ <1 4r)74L (2.47)
(ii) For any solution of ([[.10) such that w(r) = O(r=%) near oo, then w'(r) = O(r~4=1) near cc.
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Proof. (i) We can assume that w # 0. Let » > R > 0; we set

Fa(r) = exp <L /R sl d5> . (2.48)

p—1

The function is well defined when p < 2 from (R.29), and fr € C'([R,o0)). When p > 2, from
Proposition R.5, (iv), the function w has a finite number of isolated zeros and either there exists a
first 7 > 0 such that w(7) = w'(F) = 0, or w has no zero for large r, and we set 7 = co. In the last
case case, from Proposition R.4, the set of zeros of w’ is bounded. If w'(7) = 0 for some 7 € (0,7),
then, from (10), (Jw'[’~ 2 w')’ has a nonzero limit A at 7, hence 7 is an isolated zero of w and

[ ()77 = INEPED (s - ) TV OTD 4 o(1)

near 7. Then s|w/|*? € L} . (R,00), thus fg is absolutely continuous on [R,7) if ¥ = oco. Let
k = k(N,p,d) > 0 be a parameter, such that K =k — (N —-1)/(p—1) > 0, and &k > 1 + d. By
computation, for almost any r € (R, 7),

!
<rkfR(w' — Kr*1w> =—K(k - 1)7“1“*2wa — rk‘*lf}zw(oz + K+ ]w]q_l)

hence for any r € [R,T),

r* fruw' = RFY(Rw'(R) — Kw(R)) + Kr*~ ! frw

T

- K(k— 1)/sk2wads - /sklfl’gw(a + K + |w|T)ds. (2.49)
R R

Assume (R.46) and take R = 0, and divide by fy. From our choice of k, and since f’ > 0, we obtain
rk [w'(r)| < Cyrk—1-d

on [0,7) and then on [0,00), where Cy = C4(K + K(k —1)/(k—1—d) + a + K) + Cg_l, and
K = K(N,p,d); this holds in particular on [1,00); on [0, 1], from (2.33),

‘w'(r){ <p'(aCy/2 + Cg_l),

and (R.47) holds.

(ii) Let R > 1 such that w is defined on [R,00) and w(r) < Cgr~% on [R, o). Defining 7 as above
and dividing (2-49) by fr and observing that fr(r) > 1, and RF < RF-174 < pk=17d we deduce

rk |w'(r)‘ < RF ‘w'(R)| + CyKRF1=4 f Cph—1-d < (‘w'(R)‘ + CO4K + C’d)rk_l_d

on [R,7) and then on [R,00), and we conclude again. |
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Proposition 2.11 (i) For anyy > 0 ifp > 2, any v € [0,0) if p < 2, any solution of ([.1() satifies
near oo

w(r) =0(""7)+0(r ™). (2.50)
(ii) The solution w = w(.,a) of problem (1.10), satisfies
w(r,a)] < Cy(a)((1+7r)77 + (1 +7)7%), (2.51)

where C(a) is continuous with respect to a on R.
Proof. (i) Here we simplify the proofs of [I§] and [RZ]: using equation ([[.I(), the function F'
defined by
1 _
F(r)= 5w2 +r ! |w'[” 2 w'w, (2.52)
satisfies the relation
(r*eF) = r2a*1(|w'|p + (20 = N)r~1 !w'!pi2 w'w — |w|)

< rzo‘_l({w'{p + (20 = N)r~1 {w'{p_z w'w).

Assume that for some d > 0 and R > 0, |w(r)] < Cr~® on [R,o0). Then from Proposition
there exists other constants C' > 0 such that (TQO‘F)I < Or2e-1=(d+hp on [R,00). Then
F(r) < C(r~@+Dp 4 p=20) on [R, 00) if (d + 1)p # 20; and v~ |[w/ P~ |w| < Cr=(@+DP_ thus

w(r)] < O @n/2 4 e

on [R,0). We know that w is bounded on [R,00) from Proposition .4. Consider the sequence
(dy,) defined by dy = 0, dp+1 = (dn + 1)p/2. Tt is increasing and tends to oo if p > 2 and to 0 if
p < 2. After a finite number of steps, we get (R.5() by changing slightly the sequence if it takes the
value 2a/p — 1.

(ii) We have |w(.,a)| < a, from Theorem R.1. Assuming that for some d > 0, |w(r,a)| < Cy(a)(1 +
r)~% on [0,00), and Cj is continuous, then

w(r,a)| < Cala)((1+7)" P2 4 (147)79)
from Proposition P.10, where Cy is also continuous. We deduce (B.51) as above, and C, is con-
tinuous, since we use is a finite number of steps. Notice in particular that lim, .o C,(a) = 0.

]
As a consequence we can extend a property of zeros given in [26, Proposition 3.1] in case p = 2,
which improves Proposition P.3:

Proposition 2.12 Assume that o < N, or p > 2, or a <. Given A > 0, there exists M(A) > 0
such that if 0 < |a| < A, then the solution w(.,a) of ([.1Q), ([L.13) has at most one isolated zero
outside [0, M(A)].
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Proof. From Proposition R.5, w(., a) has a finite number of isolated zeros. Let p1 < p2 be its two
last zeros, where by convention py = 7 if p > 2 and the function has a compact support [0, 7] . From
Proposition P11, for any p > 0, there exists R = R(A, ) > 0 such that max|q|<a,r>g [w(r,a)| <
pt/@=1 Also max|q|< >0 |w(r,a)] < A, from Theorem R.1]. As in Proposition R.§, we make the
substitution (R-I1)) for some d > 0. If p > 2, we choose d > «, and fix y = (d — a)/2. Suppose
that p; > R. Then from (R.3§), denoting ' = d?~!((p — 1)d — N + p), there exists p € (p1, p2) such

thatg? |w(p)” 7 (d = a = |w|" " (p)) < (p— "L (d — ).

pp” < ! lw(p) P72 < AP

Taking M(A) = max(R(A, u), (' =t AP=2)1/P) we find p; < M(A). If p < 2 and a < 5, taking
d € (a,n) and the same p, and M(A) = R(A, p), then p; < M(A), from R.3§). If p < 2and a < N,
we choose = (N —a)/2 and M(A) = R(A, u) and get p; < M(A) from (2.39) by contradiction. m

3 The case (2—p)a<p

In this paragraph, we suppose that (2 — p)a < p, or equivalently,

p>2 or (p<2anda<)i). (3.1)

3.1 Behaviour near infinity

Proposition 3.1 Assume (B.4) and ¢ > 1. For any solution w of problem (I.1{), there exists
L € R such that lim, o 7%w = L.

Proof. From Propositions and P10, w(r) = O (r=®) and w'(r) = O(r=®~1) near oc.
Indeed it follows from (R.51) by choosing any v > « if p > 2 and v € («, §) if p < 2. Consider the
function J, defined in (P-). Then from (R.§), J, is integrable at infinity: indeed r®—2 lw/ [Pt =
O(r@=re=p=1y and B]) holds, and r* 1 |w|" ' w = O@~1=*=D). Then J, has a limit L as
r — o0o. And

rw = Ju(r) — ro! |w"p72 w' = Jo(r) + O(r3Pep)y,
thus lim, . 7*w(r) = L, and

L= Jy(r)+ /OOJa(s)ds. (3.2)

]
Next we look for precise estimates of fast decaying solutions. It is easy to obtain an approximate
oo

estimate. Since lim,_,o Jo () = 0, we find J,(r) = —/ J! (s)ds; thus

T

lw(r)| < rl {w'(r)‘pil + r_o‘/ooso‘_1 (\w\q + (N + a)s_l {w"pil) ds (3.3)
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Consider any d > a, with (2 — p)d < p, such that w(r) = O(r~9), hence also w'(r) = O(r—%1)
from Proposition B.10. Then w(r) = O(r~4P=D=P) + O(r—) from (BJ). Setting dy = a and
dp4+1 = min(d,(p — 1) + p, qd,,), the sequence (d,) is nondecreasing. it tends to oo if p > 2, and to
0 if p < 2. Thus

w(r) = o(r~%), foranyd>0ifp>2, foranyd<difp<?2. (3.4)

Next we give better estimates, for any solution of the problem, even changing sign or not everywhere

defined.

Proposition 3.2 Assume (3.1). Let w be any solution of ([[.10) such that lim,_, r®w(r) = 0.
(i)If p > 2, then w has a compact support.

(ii) If p < 2, then w(r) = O(r~—%) near cc.

Proof. (i) Case p > 2. Assume that w has no compact support. We can suppose that w > 0
for large r, from Proposition R.J. We make the substitution (R.11)) for some d > a. Since w(r) =
o(r~®),w'(r) = o(r~%!) near oo we get y4(r) = o(1), y;(7) = o(1) near co. And 1 = dyq — y; =
—rdt1y is positive for large 7 from Proposition 4. From (R.17),

1 ~ . D)7 11—
i+ (7 = 2d)ys = d(n = d)ya + —— DT (4 - (d = @)y + T T yy) =0,

p p—
As in Proposition P.5 the maximal points 7 of y4 remain in a bounded set, hence y4 is monotone
for large 7, hence y/5(7) < 0, and lim, o, e{(P=2HP)792=P — lim, 2 |u/|*"? = 00. Then

(p = D)y = lP™DHPTG2P (Jyh] (14 o(1) + (d — a)ya(l + (1)) .
Since d — o > 0, there exists C' > 0 such that y/] > Cel(P=2)d+P)T 3P for large 7, then
— =y +d |y > CelP2PITyS P,

thus P2 4 Cel(P=2)d+P)7 /(g + |§]) is nonincreasing, which is impossible.

(ii) Case p < 2. Let us prove that y is bounded near co. If holds if y is changing sign, from Lemma
P.g. Next assume that for example y > 0 for large 7, thus also Y. If 4 is not monotone, then N < &
and lim, . y(7) = ¢, from Lemma P.§. If y is monotone, and unbounded, then is nondecreasing
and tending to co. Then Y < (y)P~! from system (P-17), which implies Y = o(y); then y — Y > 0
for large 7, thus for any € > 0, for large 7,

-Y)=0E-a)y+ [N -8y —e @D |yaty
=0 —a)y—Y)+ (N —a)Y —e @D |yi7ty > G —a—e)(y-Y)

and y >y —Y > Cel®=2=4)7 for some C' > 0, which contradicts (B-4). [
Next we complete the estimates of Proposition B.2 when p < 2.
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Proposition 3.3 Under the assumptions of Proposition [3.4 with p < 2, if w has a finite number
of zeros, then

(i) if p1 < p, lim 7w = £; (3.5)
(ii) if p < p1, lim r"w = ¢ ceR, c#0; (3.6)
T—00

1 (z\f(zv_l))“””/2 57

N . N (N+1)/2, _ (M=
(i) if p = p1, Tlggor (Inr) w = %o, 0=y 2(N — )

Proof. We can assume that w > 0 for large r.. Then y,Y are positive for large 7, from
Proposition R4, and y,y’ are bounded from Propositions B.4 and R.10. If y is not monotone for
large 7, then N < § from Lemma P.§, that means p; < p from ([.f), and lim,_, . y(7) = ¢, which
proves (B.H). So we can assume that y is monotone for large 7. Since it is bounded, then, from
Lemma P.§, either N < § and lim, o y(7) = £ or 0, or § < N and lim, ., y(7) = 0. Suppose that
lim; o y(7) = 0. Then y'(7) <0 for large 7.

(i) Case p; < p (N < ). Then N < 6p, and from (R.16),
(p—1)y" + (Op = N) [/ + (6 = N)ay = o|y/|* ") + o(y* ). (3.8)
Thus y is concave for large 7, which is a contradiction; and (B.5) holds.
(ii) Case p < p; (0 < N). We observe that
—(p =1y "+ @p— Ny + (N - 8)dy <0 (3.9)

for 7 > 11 large enough, since o < 0; and we can suppose y(7) < 1 for 7 > 7y. For any ¢ > 0, the
function 7 — & + e #(7=™) ig a solution of the corresponding equation on [11,00), where

u=n—06=(N-0)/(p—1)>0. (3.10)
Then y(7) < € + e "= from the maximum principle. Then y(7) < e #"=™) on [y, 00). That
means that w(r) = O(r®=N)/®=1) near co, hence w'(r) = O(r(1=N)/®P=1) from Proposition B.10.

Next we make the substitution (R.11]), with d = . Then functions Y, and y;? are bounded, and from
(B19)

—2—p))r 2 Cn(a—1)r _
(p— () —myp) = e®= 2T |y — )| p(—y;+(n—a)yn—6 =T [y, | 1yn>; (3.11)

hence (e™"y,) = O(eP=B=PM7) Since lim,_,o0 ey, (t) = 0, and § < 7 from ([L.4), we find
p<(2—p)n < (3—p)n, then e "y, (1) = O(eP=B=PM7) " thus Yp(T) = O(eP=(2=P)7T) Then y,
has a limit ¢ > 0 as 7 — oo, thus

lim r"w = c.
r— 00

22



Suppose that ¢ = 0. Then y4(7) = O(e™7°7), with v = (2 — p)d — p > 0. Assuming that yu(7) =
O(e=7) for some v, > 0, then y/(7) = O(e”7) from Proposition P.10, hence (e~97y))) =
O(elP=B=P)d=B=r)1m)7) "and in turn yg(r) = O(e™+17) with v,41 = (3 —p)yn + (2 —p)d — p. And
lim,, o0 Yn = 00, thus w(r) = o(r~7) for any v > 0. Let use make again the substitution (R.11)), with
now d > 7. The new function yg satisfies lim; .o y4(7) = lim; . y,(7) = 0. It is nondecreasing
near oo, since a # d : indeed at each point 7 large enough where y/,(7) = 0, y//(7) has a constant
sign from (R.19). Otherwise lim,_, eP=@2=P))T — () gince § < d. Then

(p = Dy + (2d =0+ (1)) [yg| + d(d — 1+ o(1))ya = 0;
thus /] is concave for large 7, which is a contradiction. Thus ¢ > 0 and (B.6) holds.
(iii) Case p = p; (§ = N). Then also 6§ = . From (2.17),
y — Ny =-—yVr-1, Y/ 4 YV e =y 4 a7 ya (3.12)

hence Y/ +Y1/(?=1) > 0, thus by integration, Y(r)> Cy 7~ =1/2=P) for some C; > 0 and for large
7. From (B.19), there exists K7 > 0 such that

(—NeN7y) > Kre Ve /D) > _% (efNTTfl/(Q,p))/

for large 7, which implies a lower bound
y > (K1 /2N)r~ /=),
Also Y/ + YVP=1 < (/N + 0(1))YY®=1 since 3/ < 0. Then for any ¢ > 0,

N —«

Y 4 ( —e)YV= < (3.13)

for large 7. Taking € small enough, we deduce

N —«
N

Y(r) < 01767-*(1771)/(2717)7 with Cfgp)/(pfl) Y 1(

=55 —2¢)7! (3.14)

for large 7. Then
/
(~-Ne NTy) < NO{P Ve N1/ < /) <6_NTT_1/(2_p)> .

Thus we get an upper bound
I 1/p-1) —1/(2—
y(T) < _NCL/E(p )T 1/(2=p),
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Moreover from (BI12) and B13), |Y'(r)] < YY®=U(r) for large 7, hence from (BI4), y" —

Ny = -yl 1)Y' = O(T G-p)/(2- p)) Then (e*NTy'), = O(eN77r=B=p)/C=P)) thus 3y =
O(r=B=P)/2=P)) hence i = o(y) from the lower estimate of y.Then for any & > 0,
N -«

Y+ ( —e)y/=b > g

for large 7; then

Y (1) > Cy 7 @=D/2-p) Wit 0526—1))/(17—1) _
for large 7. Thus

o —(p-1)/(2-p) _ =1 N Sonje-p) _ o —1/2-p) p1
lim 7 Y =G v—o lim (7 Ny(m))P~,

so that lim, . (77/@Py(r)) = ¢ and (B.7) holds. n

We can get an asymptotic expansion of the slow decaying solutions, which in fact covers the
case p = 2, where we find again the results of [2f, Theorem 1].

Proposition 3.4 Assume (3.1). Let w be any solution of (I.10), such that L = lim, oo 7%w > 0.
Then

TILI(IDLO rothy' = —al, (3.15)
and
r (L + (K +o(1))r7F), f(g+1—p)a>p,
w(r) =% r @ (L (K+M+o(1))r a(qfl)) , if (q+1—p)a=np, (3.16)
r= (L + (M +o(1)) rm@=D) f (¢+1—p)a<p,
where
_ _(a(p—1) = (N = p)) (aL)/®"V _ L
k=p—(2-pa, K= ’ , M—m.

Moreover differentiating term to term gives an expansion of w'.

Proof. We make the substitution (R.11) with d = «, thus w(r) = r~%y,(7). For large r,
w'(r) = r~ @t (ay, (1) — ¥, (7)) < 0, thus ay, — ¢, > 0 for large 7. And (B.14) becomes:

Yo = e — Ya! 7Y (317
Y. = (p—1)(a )Y + e (ayq — Yo/ 4 emola-Dry),

The function y, converges to L, and y,, is bounded near oo, since w’ = O(r_(a+1)) near oo, thus
Y, is bounded. Either Y, is monotone for large 7, then it has a finite limit \; then y/, converges to
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oL — AY/®=1); thus A = (aL)l/(pfl) . Or for large 7, the extremal points of Y, form an increasing
sequence (7,,) tending to oo. Then

Y, (Tn)l/(p_l) = Yo (Tn) + eia(qil)Tnygx(Tn) + (- 1)(a— W)eianYa(Tn)

thus im Y, (7,) = (aL)Y®Y  In any case lim,_s Yo (1) = (aL)Y®Y  which is equivalent to
(B.19), and implies lim, v, () = 0. Now consider Y. Either it is monotone for large 7, thus
lim; . Y. (7) = 0; or for large 7, the extremal points of Y. form an increasing sequence (s)
tending to co. Then Y (7,,) = 0, then by computation, at point 7 = sy,

<ﬁY(§2_p)/“’_” —(p—1)(a - 77)6"”) Y, = (p +alp-1)+ qe‘“(q‘”Tyii_l) Yh
+ Ok afg — 1) Dy
thus lim Y/ (s,) = 0. In any case, lim,_. Y, (7) = 0. From (B.17), we deduce
Yo = — "Iy — T ((p = 1)(a = n)Ya = Ya) = —(L7 +0o(1)e™ VT — k(K + o(1))e ™"

thus ¢, = —k(K + 0(1))e ™ ™ if a(q — 1) > k, or equivalently (¢ +1 —p)a > p; and ¢/, = —(kK +
LI+ 0(1))e * if a(q — 1) = k; and ¢/, = —(LI + 0(1))e~ D7 if a(q — 1) < k. The estimates
(B-16) follow by integration.This gives also an expansion of the derivatives, by computing w' =
D g, — )

—p—(atl) (aL + (a+ k) (K +o(1)) r‘k) , if (+1—p)a>np,
w'(r) =4 —r(et) (oL + (a+ k) (K + M +o(1))r*), if (+1—p)a=np,
—r~@*H) (oL + ag(M + o(l))r‘o‘(q_l)) , if (g+1—p)a<p;
which corresponds to a derivation term to term. [

3.2 Continuous dependence and sign properties

Next we extend an important property of continuity with respect to the initial data, given in [L§]
in the case p = 2. The proof is different; it follows from the estimates of Proposition (R.1(]) and
from the expression of L(a) in terms of function J,.

Theorem 3.5 Assume (3.1). For any solution w = w(.,a) of problem (1.14), (1.13), setting

L = L(a), the function a — L(a) is continuous on whole R. Moreover the family of functions
(a— (14 7)%w(r,a)),sq is equicontinuous on R.

Proof. Let ayp € R. From Propositions and (.11)), there exists a neighborhood V of ag
and a constant C' = C(V) > 0 such that for any a € V,

lw(r,a) <CAL+7)7,  |w/(r,a)] < C@1+r)" @+, (3.18)
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From (B.9), we have for any r > 1,

L(a) = Ja(r,q) +/°OJ;(s,a)ds = /OOOJa(s,a)ds (3.19)

where Jy(r,a) = r® <w(r, a) + =t w' [P W (r, a)) , since J,(0,a) = 0. Then with a new constant
C=C(V), for any a €'V,

o.0]
/
hence for any € > 0, there exists . > 1 such that

[o.¢]
sup /
aceV Jre

From Remark 2.3, w(.,a) depends continuously on @ on any compact set, thus also .J,(.,a). Then
there exists a neighborhood V. of ay contained in V' such that

Te
sup /
aceVe JO

and consequently |L(a) — L(ag)| < 3e. This proves that L is continuous at ag. Moreover

(s, a)‘ ds < € (ro) 4 p=@moCD)

J(;(s,a)‘ ds < e.

J;(Te,a) - J;(TE,GJO)‘ < £,

sup sup |Jo(r,a) — Jo(r,a0)| < 2e,
a€Ve rel0,00)

thus the family of functions (a —— Ju(r,a)),~ is equicontinuous at ag. Next for any » > 1 and any
a€cV,
rw(r,a) — Ja(r.a)] = 1 [uf (r,a) [T < CrEPa,

thus for any € > 0, there exists 7. > r. such that

sup |rYw(r,a) — Juo(r,a)| <e.
a€V,r>re
It implies

sup  |(1+7m)%(w(r,a) —w(r,ap))| < (2% + 2)e.
GEVEJ’ZFE

And there exists a neighborhood V. of ay contained in V¢, such that
sup  [(1+7)%(w(r,a) —w(r,a))| <e.
GGVE,TSFE

Then

sup (1 +7)*(w(r,a) —w(r,ap))| < (2% + 2)e,
aEVE,rE[O,oo)

which shows that the family of functions a — (1 + r)*w(r,a) (r > 0) is equicontinuous at ag. =

As a consequence we obtain some results concerning the number of zeros of the solutions
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Theorem 3.6 Assume ([5.1).

(1) Suppose that for some ag > 0, w(.,ap) has a finite number of isolated zeros, denoted by N (ag).
If L(ap) # 0, then N(a) = N(ag) for any a close to ay.

(ii) Suppose q < q*. Then {a > 0: L(a) = 0} is unbounded from above. Moreover there exists a
increasing sequence (a,) tending to oo, such that w(.,a,) has at least m + 1 isolated zeros and
L(an,) =0.

(iii) Suppose ¢ < ¢*, p < 2 and o < N. Then for any m € N,

am =1inf{a >0: N(a) >m+ 1} € (0,00),
and if m > 1, then w(., a,,) has precisely m zeros and L(a,) = 0.

Proof. (i) Let r1 < 1y < .. < 7Tp(q) be the isolated zeros of w(.,ap). Since L(ag) # 0, there
are no other zeros, and there exists € > 0 such that inf,>, 417 |w(r, ag)| = . From Theorem
B.3, there exists a neighborhood V. of ag such that infy >y 0 +1 7% (w(r a)| = €/2 for any a € V..
From Remark P-3, there exists a neighborhood V. C V. such that w(r,a) has exactly N(ag) zeros
on [O,TN(QO) + 1], hence N(a) = N(ao).

(ii) Assume that for some a* > 0, L(a) # 0 for any a € (a*,c0). From Proposition R.5, (iii) and
(iv), w(.,a) has a finite number of isolated zeros N(a). The set

{a € (a",;0): N(a) = N(a*)+ 1}

is closed in (a*, 00) since N is locally constant, and open; then N(a) is constant on (a*,c0), which
contradicts Proposition P.]. Moreover there exists a increasing sequence (a%,) tending to oo such
that w(.,a},) has at least m + 1 isolated zeros; as above it cannot happen that L(a) # 0 for any
a € (af,,00), hence there exists a,, > a’,, such that w(.,a,,) has at least m + 1 isolated zeros and
L(an,) =0.

(iii) Here w(.,a) has only isolated zeros. Following the proof of [R6, Propositions 3.5 and 3.7], for
any m € N, the set B,, = {a > 0: N(a) > m + 1} is open and z,,,(a) = m™ zero of w(., a) depends
continuously on a. Using Proposition R.12, one can show that, for any ag > 0, N(a) = N(ag) or
N(ap) + 1 for any a in some neighborhood of ag. Then necessarily a,, ¢ B,,, and N(a,,) = m, and
L(ay,) = 0 by contradiction in (i). ]

Remark 3.7 When q < ¢* and p > 2, for any ag > 0, we have N(a) > N(ag) for any a in
some neighborhood of ag, but we cannot prove that N(a) < N(ag) + 2, thus we have no specific
information of the number of zeros of the compact support solutions.
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3.3 Existence of nonnegative solutions

Here we study the existence of nonegative solutions of equation ([.10)). If such solutions exist, then
either p; < p and @ < N, from From Proposition R.§, or p < p1, thus @ < § < N; in any case
a < N. Reciprocally, when o« < N, we first prove the existence of slow decaying solutions for |al
small enough.

Proposition 3.8 Assume (B.1), and o < N. Let a > 0 be defined at Proposition [2.§. Then for
any a € (0,a], w(r,a) >0 on [0,00), and L(a) > 0.

Proof. Let a € (0,a]. By construction of a, w = w(r,a) > 0, from Proposition R.§, and
function Jy is nondecreasing and Jy(0) = 0; and Jy(r) < r™w near oo, from Proposition 4.
Assume that L(a) = 0. Then p < 2 from Proposition B.d. From Proposition B.3, either N < 4,
and rNw = O(rV%); or 6 < N and N < 5 from ([.§), and r™w = O(rN="); or § = N and
rNw = O(lnr)*(N“)/z. In any case, limsup,_, o, Jy(r) = 0; then Jy = 0, thus Jj = 0, which is
impossible. ]

Next we consider the subcritical case 1 < ¢ < ¢* and prove the existence of fast decaying
solutions. Notice that in that range p > po; if moreover 1 < ¢ < g1, then p > p;.

Theorem 3.9 Assume ([B-1) and a < N, and 1 < q < ¢*. Then there exists a > 0 such that w(.,a)
is nonnegative and such that L(a) = 0. If p > 2, it has a compact support. If p < 2, it is positive

and satisfies ([B-3), ([5-4) or [B-1)

Proof. Let
A={a>0:w(,a)>0on (0,00) and L(a) > 0}, (3.20)

B={a>0:w(.,a) has at least an isolated zero} . (3.21)

From Proposition B.§ and P.7, A and B are nonempty: A D (0,a] and B D [a@,00) . From the local
continuous dependence of the solutions on the initial value, B is open. For any ag € A,there exists
e > 0 such that min,>o(1 + 7)*w(r,ap) > €. From Theorem B.§, there exists a neighborhood V.
of ap such that min,>o(1 4+ 7)%w(r,a) > ¢/2 for any a € V., hence V. C A, thus A is open. Let
inf = inf B > a and agyp = sup A < @. Taking a = ainf or agyp, then w(., a) is nonnegative, positive
if p < 2, and L(a) = 0, and the conclusion follows from Proposition B.3. We cannot assert that
Qinf = Gsup- u

Remark 3.10 As it was noticed in [B4] for p = 2, there exists an infinity of pairs ay,as such that
0 < ay <ag < apg, thus w(.,a;) >0, w(.,az) > 0, and L(ay) = L(az). Indeed from the continuity
of L proved at Theorem [3.4, L attains at least twice any value in (O,max[07ainf] L) .

In the supercritical case ¢ > ¢* we give sufficient conditions assuring that all the solutions are
positive, and then slowly decaying. Recall that ¢* < 1 whenever p < ps.
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Theorem 3.11 Assume (B-1) and one of the following conditions:

(i) p2 < p and o < N/2 and q > q*;

(i) p < py and 1 < q.

(iii) po < p and N/2 < a < (N —1)p'/2 and q > g, where ¢}, > q* is given by
1 N -1 1

= —. 3.22
q,+1 2a P’ ( )

Then for any a > 0, w(r,a) >0 on [0,00), and L(a) > 0.

Proof. We use the function V = V) ;. defined at (B-9) , where A > 0,0, e will be chosen after.
It is continuous at 0 and V) ,.(0) = 0, from (R.29). Suppose that w(rg) = 0 for some first real
7o > 0. Then V) ,.(ro) = ) [w'(ro)|? /o’ > 0. Suppose that for some A, o, e, the five terms giving
V' are nonpositive. Then V =V’ = 0 on [0,70], hence rw’ + (¢ — e + a)w/2 = 0, r(0=¢+)/2y is
constant, hence w =0if o —e+a # 0, or w = a if 0 —e+a = 0. It is impossible since w(0) # w(ry).

Case (i). We take A\=N and 0 = (N —p)/p and e = 0 + o — N, thus

Vr) = rV <

|w/|p |w|q+1

_ 2 N - _
p q+1+( pp—i-a—N)w?—i-Tpr*lw!w/‘p |, (3.23)

N-p N N+2 N \?
1-Nr +1 2 !
V'ir) = — - T T(p— N -2 — — 3.24
' ) < p q+1>m‘ 4p(p P2)( 0w Gw_%2w> (3:24)

and all the terms are nonpositive from our assumptions, thus w > 0 on [0,00). Moreover sup-
pose that L(a) = 0. Then p < 2, and from Proposition B.2, V(r) = O(rVN=2°) as r — oo, thus
lim, 0 V(r) = 0, since N < 26 from ([.7). Then V' =0 on [0, c0) which is a contradiction.

Case (ii). We take A = N =20 and e = a — N/2, thus

1-N _ P +1
V() = — 2% (p2 —p) ‘w" BT |w|TT — (rw' + Nw) ) (3.25)
and all the terms are nonpositive, and again w > 0 on [0,00). If L(a) = 0, we find V(r) =

O(rN=") near oo, from Proposition B.2, since p < py < p1. Then lim, o V(r) = 0, hence again a
contradiction.

Case (iii). We take A = 2aand 0 = N — 1 —2a/p’ and e = 0 — «, thus

rlMVWﬂ:—<a—

Here the first term is nonpositive from (B.29), and also the second term, since o > 0, N/2 < v and
w’ < 0 on (0,79), from Proposition P.4, hence again w > 0 on [0,00). If L(a) = 0, then p < 2.

—q2f1> ]w]q+1 + o020 — N)rflw !w'!piQ w — (rw’ + aw)2 )
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From Proposition B.2, either p; < p and V(r) = O(r*@=9)) near oo, where a < §; or p < p; and
V(r) = O@r2@m) and a < 6§ < 7 from (LG); or p = p; and V(r) = O(Inr~N+1/2) In any case
lim, . V(r) = 0, hence again a contradiction. ]

Remark 3.12 With no hypothesis on p, if w(rg) = 0 for some real ro, then from ([3.23), ([3.24),

N — N 7o N +2)p—2N 7o
( b _ —> / N w| T dr + W +2)p=2N (N —2a) / rN=Lwdr
p q+1/ Jo 4p 0

ro N 2
+/ V-1 (rw' + 511}) dr =0
0

As in [24] such a relation can be extended to the nonradial case and then applied to nonradial
solutions w.

Remark 3.13 Property (ii) was proved for equation ([1.13) in [23]. It is new in the general case.
It can be also obtained by using the energy function W defined at instead of V.

The result (iii) is new. Is also true when p = 2 : if N/2 < a« < N — 1 and q > ¢}, where
¢ =0Ba—-N+1)/(N—-1—a) > q", we prove that all the solutions are ground states, with a slow
decay.In the case p = 2, ¢ = ¢* it had been shown by variational methods in ] that there exist
ground states with a fast decay, whenever N/2 < ae < N when N >4, or if 2 < o < 3 when N = 3;
moreover from [B], they do not exist when 1 < a < 2. Apparently nothing was known beyond the
critical case.

Remark 3.14 If1 < p < py, then the condition o < (N —1)p'/2 is always satisfied, since a < § <
N < (N —=1)p'/2. If p1 < p, our conditions imply o < N, which was a necessary condition in order
to get positive solutions, from Proposition [2.3.

3.4 Oscillation or nonoscillation criteria

Our next result concerns the case p < 2, and N < o, thus N < a < 4 from (@), where there exists
no positive solutions: all the solutions are changing sign. It is new, and uses the ideas of [f] for the
problem without source ([.L1J). It involves the coefficient o defined at ([.14), which here satisfies
a* < 6, and the energy function W defined at (B.23); we use the notations W,U, H, L, S of Section

.

Theorem 3.15 Assume ([3.1), p <2, and N < a.

(i) If o < o, then any solution w(.,a) (a # 0) has a finite number of zeros.

(i1) There ezists @ € (max(N,a*),0) such that for any o € (@, 9), any solution w(.,a) has a infinity
of zeros.
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Proof. (i) Suppose N < a < o (which implies p > 3/2). In the phase plane (y,Y") of system
(B-17), the stationary point My is in the domain S of boundary £. Indeed denote P, = (u, (6p)P~1)
for any g > 0. Setting A = 6-1((26 — N)(p — 1))/3=P)| the point Py is on the curve £. Then
(0N, (06A)P~1) € S for any 6 € [0,1), and o < o* & £ < A, thus P, = My € S, and there
exists ¢ € (0,1] such that Py, € S. Now for any pu > 0 such that P, € S, the square K, =
{(y,Y) eR?: |y| < p,|Y| < (6p)P~1} is contained in S. Indeed H(u, (5p)P~) = (6p)* P /(p — 1),
and for any &,¢ € [—1,1]

2_p§ _ K’(Q—p)/(p—l)

H(Ep, COp)P~") = (dp) < H(p, (5p)P™ ),

‘51(2—17)/(12—1) —¢

since the quotient is majorized by 1/(p — 1) if £&¢ > 0, and by 1 if £ < 0, because p > 3/2. From
Lemma R.G,iv, (y(7),Y (7)) € Kyye for 7 > 7(e) large enough, thus (y(7),Y (7)) € S. Thus
Uy (1),Y (1)) > 0. Consider the function

T U(r) =W (1) - 75&_ 11) / e 05 |y (5) |9 ds. (3.26)
We find 5 )
W (r) = W (r) + 20D st oy o Z gy ), v (7)), (3.27)

qg+1
Then ¥ is nondecreasing and bounded near co, thus it has a limit x, and W has the same limit.
And H(y,Y) < H({ +¢,(6(6 +¢))P~1) =20 — N — m, for some m = m(e) > 0, thus

(1) =Uly (1), Y (7)) = m (8y = Y|y ) (gl 2ay - ).
Now there exists a constant ¢ = ¢(p) such that for any (a,b) € R%\ {(0,0)},
(a =) (JafP2a = [bPb) > e(lal + b} ~2(a — b)2,

thus from ([.17), ;
U (1) > me (20(€ + 1))P~2y" (7).

Then y’2 is integrable and bounded; then lim,_ . ¢’ (1) = 0. Suppose that y admits an increasing
sequence of zeros (7). Then W(r,) = |[Y ()P /0" = ¢/ (7)[F /p/, thus lim, e W (7) = 0, thus
lim, oo W(y(7),Y (7)) = 0. Moreover |Y|ZP/C=Dy — 5y — o/ — 5y + o(1), thus

0—a 4

_ p—1
O NP = 2220y 4 o),

Wy(r).¥ (1) = = ;
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which implies limy (7) = 0 or £/, and necssarily lim; .oy (7) = 0. And lim, o ¥ (7) = 0, thus
U(7) < 0 near oo, thus

§— N)or—1 5 — 50 —1 o0
% (I = ——y* <W(y(n), Y (7)) < (qu1) / e 013 |y ()| 7 ds.
Then y(1) = O(e~*7), with ky = 6(q — 1)/p. Assuming that y(7) = O(e™*»7), then we find
y(r) = O(e™™+17) with kps1 = kn(g +1)/p + (¢ = 1)/(2 — p). Since ¢ > 1 > p — 1, it follows
that y(7) = O(e™*7) for any k > 0. Consider the substitution (R.11])for some d > 0. Then y4(7) =
O(e"”) for any £ > 0. At any maximal point of |y4| we find from (R.19)

(p—1)d(n—d) < e((p—2)d+p)T \dyd\Z_p <(a —d) + e~ Ua—1)7 ‘yd‘q—l)

Choosing for example d = /2 we get a contradiction since the right-hand sign tends to 0.

(ii) Suppose N < av and o < «. Assume that there exists a solution w with a finite number of zeros.
We can assume that w(r) > 0 near co. From Propositions B.1 and B.3, either lim, o, 7w = L > 0
or lim, o 79w = £. Now the point M, is exterior to S, thus ¢(M;) < 0, and by computation

ke := WM, =

(6 — N)oP~2¢p = > 0. (3.28)

N | —

(6-a)

where M = M(N,p) = (6 — N)°Tt gp=2+-1d /9,

e First case: lim, o 7w = £. Then lim, . (y(7), Y (7)) = M,. Thus for large 7, U(y (1), Y (1)) <
0, so that W’(7) < 0. Then W is decreasing, and lim, .. W(7) = lim,_,_oc W(y(7),Y (7)) = k.
Moreover near —oo, we find lim, o W(7) = lim,,_o W(y(7),Y (7)) = 0; indeed near —oo,
y(r) = 0(e"7) and Y (1) = O(e’7) from (P29) and (B17), hence e @7 |y ()71 = O(e27).
Then W has at least a maximum point 7 such that W (ry) > k. At such a point, W/(7y) = 0, then
U(y(70),Y (10)) > 0, thus (y(70), Y (10)) € S. Let C = max, yc5(|y| + [Y]), thus C'= C(N, p) and
from (R.26) and (R.27), and max, yye3 W(y,Y) < K = K(N,p), since  — § < 0.Then

a1
qg+1

ke < W(m) < K+
From (B.2§), it implies that 6 — a is not close to 0. More precisely, there exists @ = @(N,p) >
max (N, a*) such that o < @.

e Second case: lim, o0 7%w = L > 0. It follows that lim, o e(® 97y = L. and lim,_, e(®= 97y =
(aL)l/(pfl) , from (B:15). Then Y (7) = O(y?~(7)) near oo, thus

0P ) = 0P ()

W(y(7),Y (1)) +
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W(r) + S50 = 0P () + 00 Iyt (1) = O (r) + Oy~ (7))
thus lim, 0o W(y(7),Y (7)) = lim, o W(7) = —o0; and again lim,_,_ W(y(7),Y (7)) = 0. From
B, Lemma 4.3] we know the shape of the level curves Cx, = {W(y,Y) = k} : either k > ky and Cj,
has two unbounded connected components, or 0 < k < ky and Cj, has three connected components
and one of them is bounded, or k = k; and Cy, is connected with a double point at My, or k = 0
and one of the three connected components of Cy is {(0,0)}, or £ < 0 and Cj has two unbounded
connected components. As a consequence there exists 71 such that W(y(m1),Y (11)) = k¢; then again
W (1) > kg. Thus W has at least a maximum point 7y such that W (ry) > k¢, and the conclusion
follows as above. ]

4 The case p < (2 —p)a

In this section we assume that p < (2 — p)c, that means p < 2 and ¢ < a.

4.1 Behaviour near infinity

From Proposition P.11, we deduce approximate estimates near oo
w(r) =o(r~7), for any v < 4. (4.1)

However it is not straightforward to obtain exact estimates, and they can be false, see Proposition
4 below. Here again the key point is the use of enegy function W defined at (P.29).

Proposition 4.1 Assumeq > 1,p <2, andé < «, or N < a = 9. Then any solution w of problem

(1.10) satisfies

w(r) = O(r~°), w'(r) = 0@ near oo. (4.2)

Proof. (i) Case ¢ < a.
e First assume that 26 < N, that means p < ps. Then from (.23), W’(7) < 0 for any 7; hence
W is bounded from above near oo, and in turn y and Y are bounded, because § < a and p < 2.

Thus ({.2) holds.

e Then assume N < 26. Let 79 be arbitrary. Since § is bounded, there exists k > 0 large enough
such that W(r) < k for any 7 > 79 such that (y(7),Y (7)) € S, and we can choose k > W (7y); and
W'(7) <0 for any 7 > 79 such that (y(7),Y (7)) € S. Then W(7) < k for any T > 79, hence again
y and Y are bounded for 7 > 7.

(ii) Case N < a = 4. Since N < 26, as above W is bounded from above for large 7. We can write
W under the form

(6 — N)op—1 1

. ly(D" + @(y(r), Y (1)) + |

W(r) = e DT Jy ()|,

33



where

Y|P Sy
O(y,Y) = Q —dyY + ﬂ >0, V(y,Y) € R2.
p p

Thus y is bounded, then also Y from Hélder inequality. [

Remark 4.2 Under the assumptions of Proposition [[.1, we can improve the estimate ([.3) for the
global solutions: there exists a constant C = C'(N,p) independent on a, such that all the solutions

w(.a) of [L10), [L13) satisfy
lw(r,a)] < Cr~?, for any r > 0. (4.3)

Indeed let w be any solution. Then lim, . y(7) = lim,,_ Y (7) = 0, thus lim,_,_. W(7) = 0.
If26 < N, then W (7) < 0 for any T, which gives an upper bound for y independent on a. The same
happens in case 26 > N : S is interior to some curve W(y,Y) = k, with k independent on a, and
W(r) <k, for any 7. Thus (f.3) holds. As a consequence, Then |w(r,a)| < max(C,a)2°(1 +r)~°
for any r > 0, from Theorem [2].

The case o = § < N is not covered by Proposition [L.1]. In fact (@) is not satisfied, because a
logarithm appears:

Proposition 4.3 Assumeq > 1,p <2, and o = § < N. Then any solution w of ([.1()satisfies
w = O(r~(Inr)/ 2P near oo. (4.4)

Proof. From (R.50), we have w(r) = O(r~°*¢) for any € > 0, hence y(7) = O(¢*"); and w has
a finite number of zeros, from Proposition P.,(iv), since & < N. We can assume that y is positive

for large 7. From (R.17),
(y=Y) = (N =)y — la-Drye.

From Lemma P.6,(i), y is monotone for large 7. If y is bounded, then ([.4)) is trivial. We can assume
that lim, . y = co. Then also lim;_,,, Y = oo, from Lemma P.g,(iii), and ¢’ > 0 for large 7, hence
YV ®P=1) < §y; then Y = o(y) near oo, since p < 2; for any ¢ > 0, y < (1 +¢)(y —Y) for large T,
thus

(y—Y) < (N =)@y " < (N =8)8" (L +e) !y —Y)PD.

Hence with a new ¢, for large 7, (y — Y)27P(7) < (N — §)6P?~1(2 — p)(1 + &), which gives the upper
bound

y?>P(1) < (N =8P 12 —p)(1 +e)T. (4.5)

In particular ([£4) holds, and the estimate is more precise:
lim sup 7°(Inr) =@ Py < ((2 — p)d?~H(N — 5))/ @), (4.6)
|

Next we precise the behaviour of the solutions according to the values of «.
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Proposition 4.4 . Assume q > 1,p < 2. Let w be any solution w of problem ([[.1]) such that w
has a finite number of zeros.
(i) If § < min(a, N), then either

lim 70w = +¢, (4.7)
or
lim 7w =c#0 (4.8)
or rOw(r) is bounded near oo and r’w has no limit, and
lim infr®w < ¢ < lim sup r°w; (4.9)
in the last case py < p.
(ii) If a« = § < N, then either
lim O (Inr)~YC Py = 4+, n=((2-p) (N —d)Y/EP), (4.10)
or (4.8) holds.
(iii) If « = 6§ = N, then
lim »Nw =k #0. (4.11)

Proof. (i) Case § < min(a, N).

e First assume that y is positive and monotone for large 7. Since it is bounded, from Lemma
R.g,(ii) and (iv), either lim, . (y,Y) = M, and ([.7) holds; or lim, ...(y,Y) = (0,0), thus y is
nonincreasing to 0, and lim,_.~ 3/(7) = 0. Comparing to the proof of Proposition B.3, we observe
that (B.9) is no more true because § — o < 0. Nevertheless, for any small x and for 7 > 7, large
enough,

—(p—1)y"+ (p—N)y + (N -5 —k)dy <0. (4.12)

Let us fix K < N — 0; since lim; o y(7) = 0, we can suppose that y(7) < 1 for 7 > 7,. Then
there exists p,, < p, where p defined at (B.10), with u, = p + O(K), such that, for any € > 0,
the function 7 — € + e #<(T=7) is a solution of the corresponding equation on [T, 00).It follows
that y(7) < & + e #(7=™) from the maximum principle. Thus y(7) < e #<(7=7) on [7,,00).
We can choose x small enough such that p,.(3 —p) > u® := u(4 — p)/2 > p. As a consequence,
—pO(r=7)/(3~p) "(1) = —u7/(3-p) iti q
y(t) <e , hence y/(7) = O(e ), from Proposition R.10. From (R.16) there
exists C' > 0 such that for 7 > 7¢ large enough, y(7) < 1 and

—(p— 1)y + (6p — N)y + (N = 8)dy < Ce ™.

There exists A > 0 such that —Ae #’T is a particular solution of the corresponding equation; then
e+ (1+ A)e T=70) — Ae=+*(T=7C) is also a solution on [7,,00). Then y(7) < e 4 (14 A)e#T—7c)
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on [r,,00) from the maximum principle, then y(7) < (1+A)e #7=7¢) Thus y(7) = 0(e *7), which
means w(r) = O(r®P~N)/(P=1)) near co. As in the proof of Proposition B.3, 7w has a limit ¢ at oo,
and that ¢ # 0.

e Next assume that y is positive, but not monotone for large 7; then there exists an increasing
sequence (7,) of extremal points of y, such that 7, — oo, and ([.9) follows from LemmaP.g. Assume
p < po, or equivalently 26 < N; the function W is nonincreasing hence it has a limit A > —oo.
Computing at point 7, where Y (7,) = (6y (7,))P~!, we find

2 2— D
y (T 7Py (1 S T
W(Tn):(a—é)( (2) B p( ) )+q+1e oy ’y(Tn)’qH

Y (Tn)2 (1+0(1) _ Py (73)"
2 P

= (= 9)( );

thus y(7,) has a finite limit, necessarily equal to £. Then lim,_,o y(7) = £.

(ii) Case o = § < N. From Proposition .J and Lemma P.G,(i),(ii), w has a finite number of zeros,
and lim, .,y = 0 or o0, and ([.6) holds. If lim, ..,y = 0o, we write

—_vY 4 S a1, _ /(p—Dy—(2-p)/(p-1) — _ _ Yy~ (2-p)/(-1)
(y=Y) +e "y = (N =0)Y Y (N =6)(6y —¢)Y
and YV/®=1) < §y. hence for large T,
(y—Y) 4+ (N =8y -Cp/e=Dy/ > yp=1((N — §)gp~1 — 2 Plla-Drya1
Since 3’ > 0, and lim, .o Y = oo, for any € > 0 and for large 7,
(y—Y) +ey >y (N = 6)orH — Pl Dryatior),

and y(1) = O(r*/?=P)) from ([L§).Thus for any € > 0 and for large 7,

(L+e)y—Y) = (N =)o (1 —e)y".
Setting £ = (1 +¢)y — Y, we deduce that

¢ > (N — )07 (1 - 20)¢r!
for large 7, which leads to the lower bound
Yy P(r) > (N = 6P 12— p)(1 - 3e)T, (4.13)

and ([.10) follows from (f.6) and (E.13). If lim, oy = 0, (E.§) follows as in case (i).

(iii) Case @ = ¢ = N. From Proposition [L.], y and Y are bounded. Moreover ¥ — y has
a finite limit K, and Y —y = K 4+ O(e~(@~U7). And y has a finite limit limit ! from Lemma
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R.g,(i),(ii). Assume that [ = 0. Then lim, .y = — |K|?P/®=) K hence K = 0. Thus there
exists C' > 0 such that ¢/ = Ny — YV~ > Ny/2 — Ce~(@=17/(=1) for large 7. This implies y =
O(e™ ) with yp = e~ (@ D7/(P=1) | Agsuming that y = O(e~"?), then (Y — )" = O(e~ (@~ D7y9) =
O(e~@=1+9m)7) hence Y = y + O(e~(@~1+99m)7) Then there exists another C' > 0 such that 3/
> Ny/2 — Ce~(@=14a7)7/(P=1) for large 7, then y = O(e~M+1%), with Y41 = (¢ — 1+ q7,)/(p — 1).
Observe that lim~,, = oo, thus y = O(e™")), thus w = O(r~7), for any v > 0. We get a contradic-
tion as in Proposition (B.3) by using the substitution (R.11) with d > N. ]

4.2 Oscillation or nonoscillation criteria

As a consequence of Proposition 1.1, we get a first result of existence of oscillating solutions.

Proposition 4.5 Assume ¢ > 1,p <2, and N <d <« or N < § = a. Then for any m > 0, any
solution w # 0 of problem ([[.10) has a infinite number of zeros in [m,o0).

Proof. Suppose that is is not the case. Let w # 0, with for example w > 0 and w’ < 0 near
00, hence y > 0 and Y > 0 for large 7. If N < 0 = a, or N < § = «, then y is bounded from
Proposition f. 1. From Lemma P.6, y is monotone, and lim, .o (y(7),Y (7)) = (0,0). As in (B.§), if
N < 4, then y is concave for large 7, and we reach a contradiction. If § = N < «, we find

(y—Y) = (N —a)y—e @D y7=ty <0,

then y — Y is non increasing to 0, hence y > Y, Y’ > NY — y1/(-1) > NY/2 for large 7, which is
impossible since lim, o Y (7) = 0. |

Next we study the case where ¢ < min(«, N); recall that 6 < N < p < p;. This case is difficult
because the solutions could be oscillatory, and even if they are not, they have three possible types
of behaviour near oo : (7)), (), or (). Here we extend to equation ([.I0) a difficult result
obtained in ([f]) for equation ([.12). Recall that for system (R.1), if o < 7, there exist no solution
satisfying ([.g), and for some a € (1, *) there do exist positive solutions satisfying ([.9).

Theorem 4.6 Assume ps < p < p1 and 6 < a. If o < m, (in particular if « < N), then any
solution w(.,a) (a # 0) has a finite number of zeros and satisfies ({[.1) or ({.§).

Proof. Assume a < 7. From Proposition R.5, (iv), any solution w # 0 has a finite number of
zeros. We can assume that w(.,a) and w'(.,a) < 0 for large r, from Proposition P.4. Consider the
corresponding trajectory 7, of the nonautonomous system () in the phase plane (y,Y’). From
Proposition (JL.1)) it is bounded near oo. Let T' be the limit set of 7,, at co; then y > 0 and Y >0
for any (y,Y) € T'. From [[9], I’ is nonempty, compact and connected, and for any point Py € T,
the positive trajectory 7, of the autonomous system (R.1§) issued from Py at time 0 is contained
in I'. From [, Theorem 5.4] we have a complete description of the solutions of system (2.1§) when

a < n. Since 6 < N, the point (0,0) is a saddle point; since a@ < o* the point My is a sink. The
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only possible trajectories of (R.1§) ending up in the set y > 0,Y > 0 are either the points 0, My, or
a trajectory 7, s starting from oo and ending up at 0, or trajectories 7, ending up at M,. And 7, ,
does not meet the curve

M={\ BN A >0}

Then either I' = {0}, or I' = {M,}, or I' contains some point P of 7, s, or 7, thus also the part
of T, s or 7, issued from FPy. If I' = {M,} or {0}, the trajectory converges to this point. If it is not
the case, then y is not monotonous, then there exists a sequence of extremal points of y, such that
(y,Y) € M. Let Py be one of these points; then Py ¢ 7, ¢, thus the autonomous trajectory going
through Py converges to My. Then I' contains also My, thus there exists a sequence (7,,) tending
to oo such that (y(7,),Y (7)) converges to My. Next we consider again the energy function W
defined at (R-21)), and still use the notations W,U,H, L, S of Section P.1. Since o < o*, the point
My is exterior to the set S. Thus

Hm W (7,) = W (M) = k; < 0,

from (B.2§), since here § < N; and k;, = min(, y)crz W (y,Y); and for large n, (y (1.),Y (75)) is
exterior to S, thus U (y (7,) , Y (7)) < 0, thus W’ (7,,) < 0. Either W is monotone for large 7, then
lim; oo W (1) = k¢, thus lim,;_,oc W (7) = kg, which implies lim, .o (y (7),Y (7)) = My, and the
trajectory converges to M. Or there exists another sequence (s,,) of minimal points of W, such that
Sp > Ty and W (s,) < W (7). Then ky < liminf W (s,,) < limsup W (s,,) = limsup W (sy,) < ky.
Thus also lim; o (y (sn),Y (sp)) = My. But

0= W/(Sn) <U(y(sn),Y (sn))
thus (y (s,),Y (sn)) € S, which is contradictory. Thus I' = {M;} or {0}, thus w satisfies ([.q) or
(E§) from Proposition ([.4). [

Remark 4.7 If a > o*, the reqular solutions of system (2.1§) are oscillatory, see [, Theorem
5.8]. We cannot prove the same result for equation ([[-1Q), since it is a global problem, and system
(B-1%) is only a perturbation of ([2.1§) near infinity; and the use of the energy function W does not
allow to conclude.

4.3 Existence of positive solutions

From Theorem [.6, we first prove the existence of positive solutions, and their decay can be quali-
fieed as slow among the possible behaviours given at Proposition [.4:

Proposition 4.8 Assume § < o < N. Let a > 0 be defined at Proposition [2.4. Then for any
a € (0,a], and w(r,a) >0 on [0,00), and satisfies ({. 1) if 6 < o, or ({.14) if a = 6.
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Proof. We still have w(r,a) > 0 from Proposition .5, and Jy is nondecreasing and Jy(0) = 0.

If the conclusions were not true, then w(r) = O(r~"), from Theorem (.6, then rNw = O(rN="),

and N < 7 from ([[.)). Then limsup,_,, Jn(r) < 0, and we reach a contradiction as at Proposition

|

Next we show the existence of positive solutions with a (faster) decay in =" in the subcritical
case:

Theorem 4.9 Assume p < 2, d < a < N, and 1 < q < g*. Then there exists a > 0 such that
w(.,a) is positive and satisfies lim, o, r'w = ¢ # 0.

Proof. Let
A= {a>0:w(.,a) >0on (0,00) and lim r‘swzf},

rT—00

B ={a>0:w(.,a) hasat least an isolated zero} .

Then A and B are nonempty Propositions i.§ and P.], and 4 D (0,a] and B D [a,0), and B is
open. Now we show that A is open. Let ag € A. Then Jx (., ap) is increasing for large r and tends to
00, thus Jx (ro, ap) > 0 and Jy (ro, ap) > 0 for ro large enough; and then there exists a neighborhood
V of ag such that w(r,a) > 0 on [0,79] and Jy(r9,a) > 0 and Jj(rg,a) > 0 for any a € V. Then
Jy(ro,a) > 0 for any r > 1o, since w(.,a) is decreasing. Then for any a € V, from Propositions

B4 and P10, either lim, o r"w = ¢ > 0, and lim, o 7w’ = —en, from (R.14) and (R.13) with

d = n; then lim, o Jy(.,a) = —cP~!, which is impossible. Or necessarily lim, o, row(.,a) = ¢,
thus a € A. Let aipr = inf B > a and ag,p = sup A < @. Taking a = ajnr Or agup, then w(.,a) is
positive and lim,_,,, r"w = c. [ |

Remark 4.10 Under the assumptions of theorem [[.9, any solution w(.,a) (a # 0) has a finite
number of zeros, and lim, o row(.,a) = A(a), with A(a) = £ or 0. Here the function A is not
continuous on (0,00) . Indeed it would imply that the set {a > 0: A(a) = £} is closed and open in
(0,00) , and non empty, which contradicts the above results.

At last in the supercritical case, we show the existence of grounds states for any a > 0, and
they have a (slow) decay:

Theorem 4.11 Assume § < a. Let w(r,a) be the solution of problem (I.14), (I.1]).

(i) If p < pa, then for any a > 0, w(r,a) >0 on [0,00) and {.1) or [{-14) holds.

(i) If po <p <p1 and a < (N —1)p'/2, and q > q}, > q*, where ¢}, is given by ([.1}), then again
w(r,a) >0 on [0,00) and ([f.1) or [{.14) holds.

Proof. We consider again the function V = V) ;. defined at (2.9).

(i) Suppose p < pa. As in Theorem (il) we take A\ = N =20 and e = @ — N/2. Then V' <0
from (B.25) and in the same way w(r) > 0 on [0,00). From Proposition (f4), if (£.7) does not
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hold, then w = O(r~), w' = O(r~*Y) near co. Then by computation, V(r) = O(r~"), thus
lim, oo V(r) = 0. Then V' = 0 on [0, 00) which is contradictory.

(ii) Suppose p2 < p < p1, and o < (N — 1)p'/2. As in Theorem (ii) we take A\ = 2« and
0 =N—-1-2a/p' and e = 0 —a.Observe that o < ), thus from Theorem [, if ({.7) does not hold,
then again w = O(r~"), w' = O(r~("*1) near co. Then by computation, V (r) = O(r2e~(N=1p")
near oo, hence lim,_,, V(r) = 0 and we reach again a contradiction. ]

5 Back to problem ([[1)

Here we apply to equation ([.4) the results of Section 3 with a = a9 = p/(¢+ 1 — p), and show our
main result.

Proof of Theorem [[.1]. One has ap > 0 since ¢ > p — 1, and (B.1)) holds since ¢ > 1.
(i) The existence and behaviour of w follows from Theorem R.1] and Proposition B.1.

(ii) Condition ¢ < ¢ is equivalent to ap < NN, and Proposition B.§ applies.

iii) If ¢ < ¢ < ¢*, then Theorem B.9 shows the existence of fast nonnegative decaying solutions
w. For any s > 1, there exists C' > 0 such that for any ¢ > 0,

lu(t)]], = CtN/seo=D/@=) ||| . (5.1)

If p > 2, then w has a compact support thus u(t) € L¥(RY). If p < 2, then u is positive, and
from Proposition (B.d), w satisfies [.g, with ¢(N,p,¢) and p(N,p,q) given by (B.§) and (B.7q) with
a = Qg :

5 N\MCP) 1 (NN —1)\N 72
o p—1 = = | =7V ;
U(N,p,q) = (5 75_0[()) PNpa) = (2(N—ao)> ’

hence again u(t) € L*(RY). Indeed either p; < p, thus N < 6, and w = O(r~°) at oo, thus
o

o
rN=1795dr < 003 or p < py, thus w = O(r~") and N < 5, thus / pN=1=WN=p)s/(=1) gy < o0;
1 1

o0
or p = pp, and w = O(r N(nr)~V+D/2) " and pN=1=Ns (I ) =(N4D/2g < 00, Moreover
1
limy—o [lu(t)||, = 0 whenever s > N/ag, from (B.d)). For fixed € > 0, from Proposition B.2, ei-
ther p > 2 and sup, > [u(z,?)| = 0 for t < t(¢) small enough, or p < 2 and supjy>. |u(z,t)| <
C(e)t®/@0=D/(a=1) for t < t(e) small enough, and ay < d, hence in any case lim,_q SUp|y>c [u(z, t)| =
0.
(iv) The assertions follow from Theorem B.q (ii) and (iii), and from Proposition B.3.

(v) Here we applyTheorem (i) and (ii). Indeed if p > po, and g > ¢*, then ag < (N —p)/p <
N/2.
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(vi) If 1 < ¢ < q1, then N < § and N < ¢ thus all the solutions w are changing sign, from
Proposition .5, (ii); and there exists an infinity of fast decaying solutions w, from Theorem .4
(ii); the estimates follow from Proposition B.3 Moreover in the case p < 2, from Theorem B.1§, w
has a finite number of zeros if aq is not too large, in particular if ay < o*,where o* is defined at
(L.14) (o* < §), which means 1 < p — 1+ p/a* < g < ¢1.This requires N < o*, which means that
p is sufficiently close from 2 , more precisely (2p — 3)p > N(2 — p)(p — 1), in particular p > 3/2).
On the contrary, there exists @ € (max(N, a*), ) such that w is oscillatory if oy > @, which means
l<g<p-1+p/a. [ |

Remark 5.1 If g = ¢1, then ag = N, thus for each of these functions w, there exists C € R such
that the corresponding function u satisfies / u(t)dr = C/ wdz, and ||u(t)|l, = |C|||w]||; for any
RN

N
t > 0; then there exists a sequence (t,) — 0 [iuch that u(t,) converges weakly to a bounded measure
win RY; we still have limy_q SUD|g>c [u(z,t)| = 0, hence p has its support at the origin; we cannot
assert that v is a Dirac mass as in the case p = 2, see /@], since we have no uniqueness result for
equation IE, imasmuch as u has not a constant sign.
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