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The p-Laplace heat equation with a source term : self-similar solutions revisited

We study the self-similar solutions of any sign of the equation

, where p, q > 1. We extend the results of Haraux-Weissler obtained for p = 2 to the case q > p -1 > 0. In particular we study the existence of slow or fast decaying solutions. For given t > 0, the fast solutions u(t, .) have a compact support in R N when p > 2, and |x| p/(2-p) u(t, x) is bounded at infinity when p < 2. We describe the behaviour for large |x| of all the solutions. According to the position of q with respect to the first critical exponent p -1 + p/N and the critical Sobolev exponent q * , we study the existence of positive solutions, or the number of the zeros of u(t, .). We prove that any solution u(t, .) is oscillatory when p < 2 and q is closed to 1.

Introduction and main results

In this paper we study the existence of self-similar solutions of degenerate parabolic equations with a source term, involving the p-Laplace operator in R N × (0, ∞) , N ≥ 1,

u t -div(|∇u| p-2 ∇u) = |u| q-1 u, (1.1) 
where p > 1, q > 1. The semilinear problem, relative to the case p = 2,

u t -∆u = |u| q-1 u, (1.2) 
has been treated by [START_REF] Haraux | Non-uniqueness for a semilinear initial value problem[END_REF], and [START_REF] Weissler | Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation[END_REF], [START_REF] Weissler | Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations[END_REF], [START_REF] Peletier | On the equation ∆u + 1 2 x.∇u + f (u) = 0[END_REF]. In particular, for any a > 0, there exists a self-similar solution of the form u = t -1/(q-1) ω(t -1/2 |x|) of (1.2), unique, such that ω ∈ C 2 ([0, ∞)), ω(0) = a and ω ′ (0) = 0. Any solution of this form satisfies lim |ξ|→∞ |ξ| 2/(q-1) ω(ξ) = L ∈ R. It is called slowly decaying if L = 0 and fast decaying if L = 0. Let us recall the main results:

• If (N + 2)/N < q, there exist positive solutions.

• If (N + 2)/N < q < (N + 2)/(N -2), there exist positive solutions of each type; in particular there exists a fast decaying one with an exponential decay:

lim |z|→∞ e |z| 2 /4 |z| N -2/(q-1) ω(z) = A ∈ R,
thus the solution u of (1.2) satisfies u(., t) ∈ L s (R N ) for any s ≥ 1, and lim t→0 u(., t) s = 0 whenever s < N (q -1)/2, and lim t→0 sup |x|≥ε |u(x, t)| = 0 for any ε > 0. Moreover for any integer m ≥ 1, there exists a fast decaying solution ω with precisely m zeros.

• If (N + 2)/(N -2) ≤ q all the solutions ω ≡ 0 have a constant sign and a slow decay.

• If q ≤ (N + 2)/N, then all the solutions ω ≡ 0 have a finite positive number of zeros, and there exists an infinity of solutions of each type.

The uniqueness of the positive fast decaying solution was proved later in [START_REF] Yanagida | Uniqueness of raopidly decreasing solutions to the Haraux-Weissler equation[END_REF] and [START_REF] Dohmen | Structure of the positive radial solutions to the Haraux-Weissler equation[END_REF], and more results about the solutions can be found in [START_REF] Hirose | Bifurcation of rapidly decreasing solutions for the Haraux-Weissler equation[END_REF], [START_REF] Hirose | Structure of the positive radial solutions to the Haraux-Weissler equation II[END_REF] and [START_REF] Hirose | Global structure of self-similar solutions in a semilinear parabolic equation[END_REF].

Next we assume p = 2. If u is a solution of (1.1), then for any α 0 , β 0 ∈ R, u λ (x, t) = λ α 0 u(λx, λ β 0 t) is a solution if and only if α 0 = p/(q + 1 -p), β 0 = (q -1)α 0 , This leads to search self-similar solutions of the form u(x, t) = (β 0 t) -1/(q-1) w(r), r = (β 0 t) -1/β 0 |x| , (1.3) the equation reduces to w ′ p-2 w ′ ′ + N -1 r w ′ p-2 w ′ + rw ′ + α 0 w + |w| q-1 w = 0 in (0, ∞) .

(1.4)

In the sequel, some critical exponents are involved:

p 1 = 2N N + 1 , p 2 = 2N N + 2 , q 1 = p -1 + p N , q * = N (p -1) + p N -p ;
with the convention q * = ∞ if N ≤ p. Observe that p -1 < q 1 < q * ; moreover p 1 < p ⇔ 1 < q 1 , and p 2 < p ⇔ 1 < q * . We also set

δ = p 2 -p . and η = N -p p -1 , (1.5) 
thus δ > 0 ⇐⇒ p < 2. Notice that

p 1 < p < 2 ⇐⇒ N < δ ⇐⇒ η < N, (1.6) 
p 2 < p < 2 ⇐⇒ N < 2δ. (1.7) 
Problem (1.1) was studied before in [START_REF] Qi | The global existence and nonuniqueness of a nonlinear degenerate equation[END_REF]. In the range q 1 < q < q ⋆ and p 1 < p, the existence of a nonnegative solution u was claimed, such that w has a compact support when p > 2, or w > 0 when p < 2, with w(z) = o( |z| (-p+ε)/(2-p) ) at infinity, for any small ε > 0. However some parts of the proofs are not clear. The equation was studied independently for p > 2 in [START_REF] Bettioui | On the radial solutions of a degenerate quasilinear elliptic equation in R N[END_REF], but the existence of a nonnegative solution with compact support was not established, and some proofs are incomplete. Here we clarify and improve the former assertions, treat the case p ≤ p 1 , and give new informations on the existence of changing sign solutions. In particular a new phenomenon appears, namely the possible existence of an infinity of zeros of w. Also all the solutions have a constant sign when p ≤ p 2 . Theorem 1.1 Let q > max(1, p -1). (i) For any a > 0, there exists a self-similar solution of the form u(t, x) = (β 0 t) -1/(q-1) w((β 0 t) -1/β 0 |x|) (1.8) of (1.4), unique, such that w ∈ C 2 ((0, ∞)) ∩ C 1 ([0, ∞)) , w(0) = a and w ′ (0) = 0. Any solution of this form satisfies lim |z|→∞ |z| α 0 w(z) = L ∈ R.

(ii) If q 1 < q, there exists positive solutions with L > 0, also called slow decaying.

(iii) If q 1 < q < q ⋆ , there exists a nonnegative solution w ≡ 0 such that L = 0, called fast decaying, and u(t) ∈ L s (R N ) for any s ≥ 1, lim t→0 u(t) s = 0 whenever s < N/α 0 , lim t→0 sup |x|≥ε |u(x, t)| = 0 for any ε > 0.

More precisely, when p > 2, w has a compact support in (0, ∞) ; when p < 2, w is positive and lim |z|→∞ |z| p/(2-p) w(z) = ℓ(N, p, q) > 0 if p 1 < p < 2, lim |z|→∞ |z| (N -p)/(p-1) w(z) = c > 0 if 1 < p < p 1 , lim r→∞ r N (ln r) (N +1)/2 w = ̺(N, p, q) > 0 if p = p 1 .

(1.9)

(iv) If q 1 < q < q ⋆ , for any integer m ≥ 1, there exists a fast decaying solution w ≡ 0 with at least m isolated zeros and a compact support when p > 2; there exists a fast decaying solution w precisely m zeros, and |w| has the behaviour (1.9) when p < 2.

(v) If p ≤ p 2 , or if p > p 2 and q ≥ q ⋆ , all the solutions w ≡ 0 have a constant sign and are slowly decaying.

(vi) If q ≤ q 1 , (hence p 1 < p), all the solutions w ≡ 0 assume both positive and negative values.

There exists an infinity of fast decaying solutions, such that w has a compact support when p > 2, and |z| p/(2-p) w(z) is bounded near ∞ when p < 2. Moreover if p < 2, and q is close to q 1 , and p close to 2, then all the solutions w ≡ 0 have a finite number of zeros. If p < 2 and q is close to 1, all of them are oscillatory.

In the sequel we study more generally the equation

w ′ p-2 w ′ ′ + N -1 r w ′ p-2 w ′ + rw ′ + αw + |w| q-1 w = 0 in (0, ∞) , (1.10) 
where α > 0 is a parameter, and we only assume q > 1. The problem without source u t -div(|∇u| p-2 ∇u) = 0 (1.11) was treated in [START_REF] Qi | The global existence and finite time extinction of a quasilinear parabolic equation[END_REF] when p < 2 for positive solutions. In [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF] we make a complete description of the solutions of any sign of (1.11) for p < 2, and study the equation

w ′ p-2 w ′ ′ + N -1 r w ′ p-2 w ′ + rw ′ + αw = 0 in (0, ∞) , (1.12) 
for arbitrary α ∈ R. A main point is that equation (1.10) appears as a perturbation of (1.12) when w is small enough. When α > 0 and (δ -N )(δ -α) > 0, observe that (1.12) has a particular solution of the form w(r) = ℓr -δ , where

ℓ = δ p-1 δ -N δ -α 1/(2-p)
.

(1.13)

A critical value of α appears in studying (1.12) when p 2 < p :

α * = δ + δ(N -δ) (p -1)(2δ -N ) , (1.14) 
In the case p > 2, eqution (1.12) is treated in [START_REF] Gil | Focussing solutions for the p-Laplacian evolution equation[END_REF] and [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the case p > 2[END_REF].

Our paper is organized as follows:

In Section 2, we give general properties about equation (1.10). Among the solutions defined on (0, ∞) , we show the existence and uniqueness of global solutions w = w(., a)

∈ C 2 ((0, ∞)) ∩ C 1 ([0, ∞)) of problem (1.10) such that for some a ∈ R w(0) = a, w ′ (0) = 0. (1.15)
By symmetry, we restrict to the case a ≥ 0. We give the first informations on the number of zeros of the solutions, and upper estimates near ∞ of any solution of any sign.

In Section 3, we study the case (2 -p)α < p. We first show that any solution w satisfies lim r→∞ r α w = L ∈ R. Moreover we prove that the function a -→ L(a) = lim r→∞ r α w(r, a) is continuous on R. When L = 0, then any solution w has a compact support if p > 2, and r δ w is bounded if p < 2 and we give a complete description of behaviour of w near infinity. Then we study the existence of fast decaying solutions of equation 1.10, positive or changing sign, according to the value of α, see theorems 3.9 and 3.6. We give sufficient conditions on p, q, α, in order that all the functions w(., a) are positive and slowly decaying, see Theorem 3.11; some of them are new, even in the case p = 2. Finally we prove that all the solutions w are oscillatory when p 1 < p < 2 and α is close to δ, see Theorem 3.15; this type of behaviour never occurs in the case p = 2.

In Section 4 we study the case p ≤ (2 -p)α, for which equation (1.10) has no more link with problem (1.1), but is interesting in itself. Here r δ w is bounded at ∞, except in the case p = (2 -p)α < p 1 where a logarithm appears. Moreover if p 1 < p, or p 1 = p < (2 -p)α, then all the solutions are oscillatory. As in section 3 we study the existence of positive solutions, see Theorems 4.9 and 4.11. At Theorem 4.6 we prove a difficult result of convergence in the range α < η where the solutions are nonoscillatory. Section 5 is devoted to the proof of Theorem 1.1, by taking α = α 0 and applying the results of Section 3, since (2 -p)α 0 < p.

General properties 2.1 Equivalent formulations, and energy functions

Equation (1.10) can be written under equivalent forms,

r N -1 w ′ p-2 w ′ ′ + r N -1 (rw ′ + αw + |w| q-1 w) = 0 in (0, ∞) , (2.1) 
r N (w + r -1 w ′ p-2 w ′ ) ′ + r N -1 (α -N )w + |w| q-1 w = 0 in (0, ∞) . (2.2) Defining J N (r) = r N w + r -1 w ′ p-2 w ′ , (2.3) then (2.2) is equivalent to J ′ N (r) = r N -1 (N -α -|w| q-1 )w. (2.4)
We also use the function

J α (r) = r α w + r -1 w ′ p-2 w ′ = r α-N J N (r), (2.5) 
which satisfies

J ′ α (r) = r α-1 (α -N )r -1 w ′ p-2 w ′ -|w| q-1 w . (2.6)
The simplest energy function,

E(r) = 1 p ′ w ′ p + α 2 w 2 + |w| q+1 q + 1 , (2.7) 
obtained by multiplying (1.10) by w ′ , is nonincreasing, since

E ′ (r) = -(N -1)r -1 w ′ p -rw ′2 , (2.8) 
More generally we introduce a Pohozaev-Pucci-Serrin type function with parameters λ > 0, σ, e ∈ R :

V λ,σ,e (r) = r λ |w ′ | p p ′ + |w| q+1 q + 1 + e w 2 2 + σr -1 w w ′ p-2 w ′ .
(2.9)

Such kind of functions have been used intensively in [START_REF] Pucci | Continuation and limit properties for solutions of strongly nonlinear second order differential equations[END_REF]. After computation we find

r 1-λ V ′ λ,σ,e (r) = -(N -1 -σ - λ p ′ ) w ′ p -σ - λ q + 1 |w| q+1 + σ(λ -N )r -1 w w ′ p-2 w ′ -rw ′ + σ -e + α 2 w 2 -(σα - eλ 2 - (σ + α -e) 2 4 )w 2 .
(2.10)

Notice that E = V 0,0,α .

In all the sequel we use a logarithmic substitution; for given d ∈ R,

w(r) = r -d y d (τ ), τ = ln r. (2.11)
We get the equation, at each point τ such that w ′ (r) = 0,

y ′′ d + (η -2d)y ′ d -d(η -d)y d + 1 p -1 e ((p-2)d+p)τ dy d -y ′ d 2-p y ′ d -(d -α)y d + e -d(q-1)τ |y d | q-1 y d = 0. (2.12) Setting Y d (τ ) = -r (d+1)(p-1) w ′ p-2 w ′ , (2.13) 
we can write (2.12) as a system:

y ′ d = dy d -|Y d | (2-p)/(p-1) Y d , Y ′ d = (p -1)(d -η)Y d + e (p+(p-2)d)τ (αy d + e -δ(q-1)τ |y d | q-1 y d -|Y d | (2-p)/(p-1) Y d ), (2.14) 
In particular the case d = δ plays a great role: setting

w(r) = r -δ y(τ ), Y (τ ) = -r (δ+1)(p-1) w ′ p-2 w ′ , τ = ln r, (2.15) 
equation (2.12) takes the form

(p -1)y ′′ + (N -δp)y ′ + (δ -N )δy + δy -y ′ 2-p y ′ -(δ -α)y + e -δ(q-1)τ |y| q-1 y = 0. (2.16)
and system (2.14) becomes 1) Y + αy + e -δ(q-1)τ |y| q-1 y.

y ′ = δy -|Y | (2-p)/(p-1) Y Y ′ = (δ -N )Y -|Y | (2-p)/(p-
(2.17)

As τ → ∞, this system appears as a perturbation of an autonomous system

y ′ = δy -|Y | (2-p)/(p-1) Y Y ′ = (δ -N )Y -|Y | (2-p)/(p-1) Y + αy (2.18)
corresponding to the problem (1.12). The existence of such a system is one of the key points of the new results in [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF]. If δ(δ -N )(δ -α) ≤ 0, it has only one stationnary point (0, 0). If δ(δ -N )(δ -α) > 0, which implies p < 2, it has three stationary points:

(0, 0), M ℓ = (ℓ, (δℓ) p-1 ), and

M ′ ℓ = -M ℓ , (2.19) 
where ℓ is defined at (1.13). The critical value α * of α, defined at (1.14) corresponds to the case where the eigenvalues of the linearized problem at M ℓ are imaginary. Observe the relation

J N (r) = e (N -δ)τ (y(τ ) -Y (τ )). (2.20)
As in [START_REF] Bidaut-Véron | Local and global behaviour of solutions of quasilinear equations of Emden-Fowler type[END_REF] and [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF], we construct a new energy function, adapted to system (2.17), by using the Anderson and Leighton formula for autonomous systems, see [START_REF] Anderson | Liapounov functions for autonomous systems of second order[END_REF]. Let

W(y, Y ) = (2δ -N )δ p-1 p |y| p + |Y | p ′ p ′ -δyY + α -δ 2 y 2 , (2.21) 
W (τ ) = W(y(τ ), Y (τ )) + 1 q + 1 e -δ(q-1)τ |y(τ )| q+1 (2.22) Then W ′ (τ ) = U(y(τ ), Y (τ )) - δ(q -1) q + 1 e -δ(q-1)τ |y(τ )| q+1 , (2.23) with U(y, Y ) = δy -|Y | (2-p)/(p-1) Y |δy|) p-2 δy -Y (2δ -N -H(y, Y )), (2.24) 
H(y, Y ) = δy -|Y | (2-p)/(p-1) Y / |δy| p-2 δy -Y if |δy|) p-2 δy = Y, |δy| 2-p /(p -1) if |δy|) p-2 δy = Y. (2.25) If 2δ ≤ N, then U(y, Y ) ≤ 0 on R 2 , thus W is nonincreasing. If 2δ ≥ N, the set L = (y, Y ) ∈ R 2 : H(y, Y ) = 2δ -N , (2.26) 
is a closed curve surrounding (0, 0), symmetric with respect to (0, 0), and bounded, since for any (y,

Y ) ∈ R 2 , H(y, Y ) ≥ 1 2 ((δy) 2-p + |Y | (2-p)/(p-1)
).

(2.27)

Introducing the domain S of R 2 with boundary L and containing (0, 0),

S = (y, Y ) ∈ R 2 : H(y, Y ) < 2δ -N , (2.28) 
then W ′ (τ ) ≤ 0 for any τ such that whenever (y(τ ), Y (τ )) ∈ S, from (2.23).

Existence of global solutions

The first question concerning problem (1.10), (1.15) is the local existence and uniqueness near 0. It is not straightforward in the case p > 2, and the regularity of the solution differs according to the value of p. It is shown in [START_REF] Bettioui | On the radial solutions of a degenerate quasilinear elliptic equation in R N[END_REF] when p > 2 and α = α 0 , by following the arguments of [START_REF] Guedda | Local and global properties of solutions of quasilinear elliptic equations[END_REF]. We recall and extend the proof to the general case.

Theorem 2.1 For any a = 0, problem (1.10), (1.15) admits a unique solution w = w(., a) ∈

C 1 ([0, ∞)) , such that |w ′ | p-2 w ′ ∈ C 1 ([0, ∞)) ; and lim r→0 w ′ p-2 w ′ /rw = -(α/N + a q+1 ); (2.29) thus w ∈ C 2 ([0, ∞)) if p < 2. And |w(r)| ≤ a on [0, ∞) .
Proof.

Step 1 : Local existence and uniqueness. We can suppose a > 0. Let ρ > 0. From (2.2), any w ∈ C 1 ([0, ρ]) , such that |w ′ | p-2 w ′ ∈ C 1 ([0, ρ]) solution of the problem satisfies w = T (w), where

T (w)(r) = a - r 0 |H(w)| (2-p)/(p-1) H(w)ds, H(w(r)) = rw -r 1-N J N (r) = rw -r 1-N r 0 s N -1 j(w(s))ds, (2.30) 
and j(r) = (N -α)r -|r| q-1 r. Reciprocally, the mapping T is well defined from

C 0 ([0, ρ]) into itself. If w ∈ C 0 ([0, ρ]) and w = T (w), then w ∈ C 1 ((0, ρ]) and |w ′ | p-2 w ′ = H(w), hence |w ′ | p-2 w ′ ∈ C 1 ((0, ρ]
) and w satisfies (1.10) in (0, ρ] . Moreover lim r→0 j(w(r)) = a q -(N -α)a, hence |w ′ | p-2 w ′ (r) = -r((α/N + a q-1 ) + o(1)); in particular lim r→0 w ′ (r) = 0, and

|w ′ | p-2 w ′ ∈ C 1 ([0, ρ]
) , and w satisfies (1.10) and (1.15), and (2.29) holds. We consider the ball

B R,M = w ∈ C 0 ([0, ρ]) : w -a C 0 ([0,R]) ≤ M ,
where M is a parameter such that 0 < M < a/2. Notice that j is locally Lipschitz continuous, since q > 1. In case p < 2, then the function r → |r| (2-p)/(p-1) r has the same property, hence T is a strict contraction from B ρ,M into itself for ρ and M small enough. Now suppose p > 2. Let K = K(a, M ) be the best Lipschitz constant of j on [a -M, a + M ] . For any w ∈ B R,M , and any r ∈ [0, ρ] , from (2.30)

a -M - j(a) + M K M N r ≤ H(w(r)) ≤ a + M + -j(a) + M K N r (2.31) 
hence, setting µ(a) = a -j(a)/N = (a q + αa)/N > 0, µ(a)r/2 < H(w(r)) < 2µ(a)r as soon as M ≤ M (a) small enough. Then from (2.30),

T (w) -a C 0 ([0,R]) ≤ (2µ(a)) 1/(p-1) R p/(p-1)
hence T (w) ∈ B ρ,M for ρ = ρ(a) small enough. Now for any w 1 , w 2 ∈ B ρ,M , and any r ∈ [0, ρ] , Step 2 : Global existence and uniqueness. The function w on [0, ρ(a)] can be extended on [0, ∞) . Indeed on the definition set,

|T (w 1 )(r) -T (w 2 )(r)| ≤ r 0 |H(w)| (2-p)/(p-1) H(w 1 ) -|H(w 2 )| (2-p)/(p-
|H(w)| (2-p)/(p-1) H(w 1 ) -|H(w 2 )| (2-p)/(p-1) H(w) (s) ≤ H(w 2 ) (2-p)/(p-1) |H(w 1 ) -H(w 2 )| (s) ≤ (2µ(a)) (2-p)/(p-1) s 1/(p-1) |w 1 -w 2 | + Ks -N s 0 σ N -1 |w 1 -w 2 | dσ ≤ C(a)s 1/(p-1) w 1 -w 2 C 0 ([0,R]) (2.32) with C(a) = (2µ(a)) (2-p)/(p-1) (1 + K/N ) T (w 1 ) -T (w 2 ) C 0 ([0,R]) ≤ C(a)ρ p ′ w 1 -w 2 C 0 ([0,R]) ≤ 1 2 w 1 -w 2 C 0 ([0,R]) if ρ(a)
E(r) = 1 p ′ w ′ p + α 2 w 2 + 1 q + 1 |w| q+1 ≤ E(0) = α 2 a 2 + a q+1 , (2.33) 
hence w and w ′ stay bounded, and |w(r)| ≤ a on [0, ∞). The extended function is unique. Indeed existence and uniqueness hold near at any point r 1 > 0 such that w ′ (r 1 ) = 0 or p ≤ 2 from the Cauchy-Lipschitz theorem; if w ′ (r 1 ) = 0, w(r 1 ) = 0 and p > 2, it follows from fixed point theorem as above; finally if w(r 1 ) = w ′ (r 1 ) = 0, then w ≡ 0 on [r 1 , ∞) since E is nonincreasing.

Remark 2.2 For any r 1 ≥ 0, we have a local continuous dependence of w and w ′ in function of c 1 = w(r 1 ) and c 2 = w ′ (r 1 ). Indeed the only delicate case is

c 1 = c 2 = 0. Since E is nonincreasing, then for any ε > 0,, if |w(r 1 )| + |w ′ (r 1 )| ≤ ε, then sup [r 1 ,∞) |w(r)| + |w ′ (r)| ≤ C(ε)
, where C is continuous; thus the dependence holds on whole [r 1 , ∞). In particular, for any a ∈ R, w(., a) and w ′ (., a) depend continuously on a on any segment [0, R] . If for some a 0 , w(., a 0 ) has a compact support, the dependance is continuous on R. As a consequence, w(., .) and w ′ (., .)

∈ C 0 ([0, ∞) × R) . Remark 2.3 Any local solution w of problem (1.10) near a point r 1 > 0 is defined on a maximal interval (R w , ∞) with 0 ≤ R w < r 1 .

First oscillatory properties

Let us begin by simple remarks on the behaviour of the solutions. If w > 0 for large r, then w ′ < 0 for large r.

Proof. Let w be any solution on [r 0 , ∞), r 0 > 0. Since function E is nonincreasing, w and w ′ are bounded, and E has a finite limit ξ ≥ 0. Consider the function V = V λ,d,e defined at (2.9) with λ = 0, σ = (N -1)/2, e = α + σ. It is bounded near ∞ and satisfies

-rV ′ (r) = N -1 2 ( w ′ p + |w| q+1 + αw 2 + N 2 r -1 w w ′ p-2 w ′ + r 2 w ′ 2 ) ≥ N -1 2 E(r) + o(1) ≥ N -1 2 ξ + o(1).
If ξ > 0, then V is not integrable, which is contradictory. Thus ξ = 0 and (2.34) holds. Moreover at each extremal point r such that w(r) > 0, from

( w ′ p-2 w ′ ) ′ (r) = -(α + w(r) q+1 )w(r), (2.35) 
thus r is unique and it is a maximum. If w(r) > 0 for large r, then from (2.34) necessarily w ′ < 0 for large r.

Now we give some first results concerning the possible zeros of the solutions. If p < 2 then any solution w ≡ 0 of (1.10) has only isolated zeros, from the Cauchy-Lipschitz theorem. On the contrary if p > 2, it can exist r 1 > 0 such that w(r 1 ) = w ′ (r 1 ) = 0, and then from uniqueness w ≡ 0 on [r 1 , ∞) . Proposition 2.5 (i) Assume α < N. Let a = (N -α) 1/(q-1) . Then for any a ∈ (0, a], w(r, a) > 0 on [0, ∞) . (ii) Assume p 1 < p and N ≤ α. Then for any a = 0, w(r, a) has at least one isolated zero. (iii) Assume p < 2. Then for any 0 < m < M < ∞, any solution w of (1.10) has a finite number of zeros in

[m, M ] , or w ≡ 0 in [m, M ] . (iv) Assume p > 2 or α < max(N, η). Then for any m > 0, any solution w of problem (1.10) w has a finite number of isolated zeros in [m, ∞) , or w ≡ 0 in [m, ∞). Proof. (i) Let a ∈ (0, a] . Assume that there exists a first r 1 > 0 such that w(r 1 , a) = 0, hence w ′ (r 1 , a) ≤ 0. Let us consider J N defined by (2.3). Then J ′ N (r) ≥ 0 on [0, r 1 )
, since 0 ≤ w(r) ≤ a, and J N (0) = 0, and

J N (r 1 ) = r N -1 1 |w ′ (r 1 )| p-2 w ′ (r 1 ) ≤ 0, thus J ′ N ≡ 0 on [0, r 1 ]
, thus w ≡ a, which contradicts (1.10).

(ii) Suppose that for some a > 0, w(r) = w(r, a) > 0 on [0, ∞) . Since N ≤ α, there holds J ′ N (r) < 0 on [0, ∞) , and J N (0) = 0, hence J N (r) ≤ 0. Then r -→ r p ′ -δw -δ is nonincreasing.

• If p > 2, it is impossible, thus w has a first zero r 1 , and J ′ N (r) < 0 on [0, r 1 ) , thus J N (r 1 ) < 0, then w ′ (r 1 ) < 0 and r 1 is isolated.

• If p < 2, there exists c > 0 such that for large r, J N (r) ≤ -c, hence w(r)+cr -N ≤ |w ′ (r)| p-1 /r. Then there exists another c > 0 such that w ′ +cr (1-N )/(p-1) ≤ 0. If N = 1 it contradicts Proposition 2.4. If 2 ≤ N, then p < N, and w -cr -η /η decreases to 0, thus δ ≤ η, which contradicts N < δ, which means p 1 < p, from (1.6).

(iii) Suppose that w has an infinity of isolated zeros in [m, M ] . Then there exists a sequence of zeros converging to some r ∈ [m, M ] . We can extract an increasing (or a decreasing) subsequence of zeros (r n ) such that w > 0 on (r 2n , r 2n+1 ) and w < 0 on (r 2n-1 , r 2n ) . There exists

s n ∈ (r n , r n+1 ) such that w ′ (s n ) = 0; since w ∈ C 1 [0, ∞) , it implies w(r) = w ′ (r) = 0. It is impossible because p < 2.
(iv) Suppose that w ≡ 0 in [m, ∞). Let Z be the set of its isolated zeros in [m, ∞). Notice that m is not an accumulation point of Z, since (w(m), w ′ (m)) = (0, 0). Let ρ 1 < ρ 2 , be two consecutive zeros, thus such that ρ 1 is isolated, and |w| > 0 on (ρ 1 , ρ 2 ) . We make the substitution (2.11), where d > 0 will be choosen after. At each point τ such that y ′ d (τ ) = 0, and y d (τ ) = 0, we deduce

(p -1)y ′′ d = y d (p -1)d(η -d) + e ((p-2)d+p)τ |dy d | 2-p d -α -e -d(q-1)τ |y d | q-1 y d ; (2.36) if τ ∈ (e ρ 1 , e ρ 2 ) is an maximal point of |y d |, it follows that e ((p-2)d+p)τ |dy d (τ )| 2-p d -α -e -d(q-1)τ |y d (τ )| q-1 ≤ (p -1)d(d -η) (2.37) Setting ρ = e τ ∈ (ρ 1 , ρ 2 ) , it means ρ p |w(ρ)| 2-p d -α -|w| q-1 (ρ) ≤ (p -1)d p-1 (d -η). (2.38) If p > 2, we fix d > α. Since lim r→∞ w(r) = 0, the coefficient of ρ p in the left-hand side tends to ∞ as ρ → ∞, hence ρ is bounded, hence also ρ 1 , thus Z is bounded. If α < η, we take d ∈ (α, η) .
Then the right hand side is negative, and the left hand side is nonnegative for large r, hence again Z is bounded. If α < N, we use function J N :

J N (ρ 2 ) -J N (ρ 1 ) = ρ N -1 2 w ′ p-2 w ′ (ρ 2 ) -ρ N -1 1 w ′ p-2 w ′ (ρ 1 ) = ρ 2 ρ 1 s N -1 w(N -α -|w| q-1 w)ds
(2.39) and the integral has the sign of w for large ρ, hence a contradiction. In any case Z is bounded. Suppose that Z is infinite; then p > 2 from step (iii), and there exists a sequence of zeros (r n ), converging to some r ∈ (m, ∞) such that w(r) = w ′ (r) = 0. Then there exists a sequence (τ n ) of maximal points of |y d | converging to τ = ln r. Taking ρ = ρ n = e τn in (2.38) leads to a contradiction, since the left-hand side tends to ∞.

When w has a constant sign for large r, we can give some informations on the behaviour for large τ of the solutions (y, Y ) of system (2.17), in particular the convergence to a stationary point of the autonomous system (2.18): We have also a majorization in one case when the solution is changing sign. Lemma 2.6 Let w be any solution of (1.10), and (y, Y ) be defined by (2.15).

(i) If y > 0 and y is not monotone for large τ , then Y is not monotone for large τ, and either max(α, N ) < δ and lim τ →∞ y(τ ) = ℓ, or δ < min(α, N ) and lim inf τ →∞ y(τ ) ≤ ℓ ≤ lim sup τ →∞ y(τ ).

(ii) If y > 0 and y has a limit l at ∞, then either l = 0 and

lim τ →∞ Y (τ ) = 0, or (δ-N )(δ-α) > 0 and l = ℓ and lim τ →∞ (y(τ ), Y (τ )) = M ℓ , or δ = α = N and lim τ →∞ Y (τ ) = (δl) p-1 .
(iii) If y > 0 and y is nondecreasing for large τ and lim τ →∞ y(τ

) = ∞, then lim τ →∞ Y (τ ) = ∞.
(iv) If y is changing sign for large τ (which implies p < 2) and α < δ, then N < δ and |y(τ

)| ≤ ℓ (1 + o(1)) and |Y (τ )| ≤ (δℓ) p-1 (1 + o(1)) near ∞.
Proof. From Proposition 2.4, Y (τ ) > 0 for large τ in cases (i) to (iii).

(i) Suppose that y is not monotone near ∞. Then there exists an increasing sequence

(τ n ) such that τ n → ∞, y ′ (τ n ) = 0, y ′′ (τ 2n ) ≥ 0, y ′′ (τ 2n+1 ) ≤ 0, y(τ 2n ) ≤ y(τ ) ≤ y(τ 2n+1 ) on (τ 2n , τ 2n+1 ) , y(τ 2n ) ≤ y(τ ) ≤ y(τ 2n-1 ) on (τ 2n-1 , τ 2n ) , and y(τ 2n ) < y(τ 2n+1 ).From (2.16), (p -1)y ′′ (τ n ) = δ 2-p y(τ n ) y(τ n ) 2-p δ -α -e -δ(q-1)τn y(τ n ) q-1 ) -(δ -N )δ p-1 (2.40)
From Proposition 2.4, e -δτ y(τ ) = o(1) near ∞ and y(τ 2n+1 ) 2-p α -δ + e -δ(q-1)τ 2n+1 y(τ 2n+1 ) q-1 )

> (N -δ)δ p-1 ≥ y(τ 2n ) 2-p α -δ + e -δ(q-1)τ 2n y(τ 2n ) q-1 > y(τ 2n ) 2-p (α -δ) .
Then either α < δ and N < δ and ℓ ≤ y(τ 2n ) ≤ y(τ 2n+1 ) ≤ ℓ(1 + o(1)), hence lim τ →∞ y(τ ) = ℓ. Or δ < α and δ < N, and y(τ 2n ) < ℓ, and

ℓ ≤ y(τ 2n+1 )(1 + o(1)). If Y is monotone near ∞, then from (2.17), y ′′ = δy ′ -Y (2-p)/(p-1) Y ′
, hence e -δt y ′ is monotone, which contradicts the existence of a sequence (τ n ) as above. Thus Y is not monotone.

(ii

) Let l = lim τ →∞ y ≥ 0. If Y is monotone, either lim τ →∞ Y = ∞, which is impossible, since then y ′ → -∞; or Y has a finite limit λ ≥ 0. If Y is not monotone, at the extremal points τ of Y, we have |Y (τ )| (2-p)/(p-1) Y (τ ) -(δ -N )Y (τ ) = αl + o(1),
from (2.17), thus Y has a limit at these points, hence Y still has a limit λ. From (2.17), y ′ has a limit, necessarily 0, hence λ = (δl) p-1 .Then Y ′ has a limit, necessarily 0, and (δ -N )(δl

) p-1 = (δ -α)l; thus l = 0 = λ, or (δ -N )(δ -α) > 0 and l = ℓ, λ = (δℓ) p-1 , or δ = α = N.
(iii) Suppose that y is nondecreasing and lim τ →∞ y(τ ) = ∞. Then either Y is not monotone, and at minimum points it tends to ∞ from (2.17), then lim τ →∞ Y (τ ) = ∞. 0r Y is monotone; if it has a finite limit, then lim τ →∞ Y ′ (τ ) = ∞ from (2.17), which is impossible. Then again lim τ →∞ Y (τ ) = ∞.

(iv) Assume that y does not keep a constant sign near ∞; then also w, thus also w ′ , and in turn Y.

At any maximal point θ of |y|, one finds

(p -1)y ′′ (θ) = δ 2-p y(θ) |y(θ)| 2-p δ -α -e -δ(q-1)θ |y(θ)| q-1 -(δ -N )δ p-1 , hence |y(θ)| 2-p (δ -α + o(1)) ≤ (δ -N )δ p-1 .
Since δ -α > 0, it follows that δ -N > 0 and |y(τ

)| ≤ ℓ(1+ o(1)) near ∞. Similarly at any maximal point ϑ of |Y | , one finds Y ′′ (ϑ) = (α + e -δ(q-1)ϑ |y(ϑ)| q-1 )y ′ + δ(q -1)e -δ(q-1)ϑ |y(ϑ)| q-1 y 0 = (δ -N )Y (ϑ) -|Y (ϑ)| (2-p)/(p-1) Y (ϑ) + (α + e -δ(q-1)ϑ |y(ϑ)| q-1 )y(ϑ) which implies |Y (ϑ)| (2-p)/(p-1) (δ -α + o(1)) ≤ (δ -N )δ thus |Y (τ )| ≤ (δℓ) p-1 (1 + o(1)) near ∞.

Further results by blow up techniques

Next we give two results obtained by rescaling and blow up techniques. The first one consists in a scaling leading to the equation

r 1-N r N -1 v ′ p-2 v ′ ′ + |v| q-1 v = 0. (2.41)
without term in rw ′ , extending the result of ([26, Proposition 3.4]) to the case p = 2. It gives a result in the subcritical case q < q * , and does not depend on the value of α.

Proposition 2.7 Assume that 1 < q < q * (thus p > p 2 ). Then for any m ∈ N, there exists a m such that for any a > a m , w(., a) admits at least m + 1 isolated zeros. And for fixed m, the m th zero of w(., a) tends to 0 as a tends to ∞.

Proof. (i) First we show that there exists a * > 0, such that for any a > a * , w(., a) cannot stay positive on [0, ∞). Suppose that there exists (a n ) tending to ∞, such that w n (r) = w(r, a n ) ≥ 0 on [0, ∞), and let

v n (r) = a -1 n w n (a -1/α 0 n r). (2.42) Then v n (0) = 1, v ′ n (0) = 0 and v n satisfies the equation r N (a 1-q n v n + r -1 v ′ n p-2 v ′ n ) ′ + r N -1 (α -N )a 1-q n v n + |v n | q-1 v n = 0. (2.43) From (2.33) applied to w n v n (r) ≤ 1, v ′ n (r) p ≤ p ′ α 2 a 1-q n + 1 q + 1 in [0, ∞) , thus v n and v ′ n are uniformly bounded in [0, ∞) . If p ≤ 2, then v ′′
n is uniformly bounded on any compact K of (0, ∞) , from (1.10), and up to a diagonal sequence, v n converges uniformly in

C 1 loc (0, ∞) to a function v. If p > 2, then, from (2.43), the derivatives of r N (a 1-q n v n +|v ′ n | p-2 v ′ n
) are uniformly bounded on any K, and a 1-q n v n converges unifomly to 0 in [0, ∞) , and up to a diagonal sequence,

|v ′ n | p-2 v ′ n converges uniformly on any K, hence also v ′ n , thus v n converges uniformly in C 1 loc (0, ∞) to a nonnegative function v ∈ C 1 (0, ∞) . For any r > 0, v ′ n p-2 v ′ n (r) = -a 1-q n rv n (r) + r 1-N r 0 s N -1 a 1-q n (N -α)v n -|v n | q-1 v n ds, hence v ′ p-2 v ′ (r) = -r 1-N r 0 s N -1 |v| q-1 vds in (0, ∞) . (2.44) 
In particular v ′ (r) → 0 as r → 0, hence v can be extended in a function in

C 1 ([0, ∞)), such that v(0) = 1, and v ′ (r) < 0. Using the form (1.10) for the equation in v n , v ′′ n converges uniformly on any K, hence v ∈ C 2 (0, ∞) ∩ C 1 ([0, ∞))
and is solution of the equation (2.41) such that v(0) = 1 and v ′ 0) = 0. But this equation has no nonnegative solution except 0 since q < q * . Moreover the zeros of function v are all isolated, and form a sequence (r n ) tending to ∞, see [START_REF] Bidaut-Véron | Local and global behaviour of solutions of quasilinear equations of Emden-Fowler type[END_REF], [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF] and [START_REF] Serrin | Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[END_REF]. Then we reach a contradiction.

(ii) Now let m ≥ 0. As in [START_REF] Weissler | Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation[END_REF]Proposition 3.4], assume that there exists a sequence (a n ) tending to ∞, such that w n (r) = w(r, a n ) has at most m isolated zeros, hence also v n . Up to a subsequence we can suppose that all the v n (r) have the same number of isolated zeros m : r 0,n , r 1,n , .., r m,n . Let M > 0 such that r 0 , r 1 , .., r m ∈ (0, M ) . Then for n large enough, r 0,n , r 1,n , .., r m,n ∈ (0, M + 1) . Either v n (r) has no zero on [M + 1, ∞) , or there is a unique zero r m,n+1 such that v n (r) has a compact support [0, r m,n+1 ] . Up to a subsequence, all the v n are nonnegative or nonpositive on [M + 1, ∞) ; then the same holds for v, and we get a contradiction. Thus for a large enough, w(., a) has at least m + 1 zeros. Moreover, as in [START_REF] Weissler | Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation[END_REF], the m first zeros stay in a compact set, and from (2.42) the m th zero of w(., a) tends to 0 as a → ∞. Now we make a scaling leading to the problem without source

r 1-N r N -1 v ′ p-2 v ′ ′ + rv ′ + αv = 0. (2.45)
It gives informations when the regular solutions of (2.45) are changing sign, in particular p 2 < p < 2, and δ < α. It does not depend on the value of q.

Proposition 2.8 Assume that p 2 < p < 2, δ < α. Then there exists an α c ∈ (η, α * ) such that if α > α c , then for any m ∈ N, there exists a m such that for any 0 < a < a m , w(., a) admits at least m + 1 isolated zeros. And for fixed m, the m th zero of w(., a) tends to 0 as a tends to ∞.

Proof. Suppose that there exists (a n ) tending to 0, such that w n (r) = w(r, a n ) ≥ 0 on [0, ∞), and let

v n (r) = a -1 n w n (a -1/δ n r). Then v n (0) = 1, v ′ n (0) = 0 and v n satisfies equation r N (v n + r -1 v ′ n p-2 v ′ n ) ′ + r N -1 (α -N )v n + a q-1 n |v n | q-1 v n = 0,
and estimates

v n (r) ≤ 1, v ′ n (r) p ≤ p ′ α 2 + a q-1 n q + 1 in [0, ∞) .
As above we construct a solution v ∈ C 2 (0, ∞) ∩ C 1 ([0, ∞)) of the equation (2.45). But from [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF], there exists α c ∈ (η, α * ) such that the regular solutions of (2.45) are oscillating for α > α c , hence we conclude as above.

Remark 2.9 This scaling does not give any result when the regular solutions of (2.45) have a constant sign: it is the case for example when α = N : they are the Barenblatt solutions, they have a compact support when p > 2 and a behaviour in r -δ near ∞ when p < 2. Nevertheless if p > p 1 , all the solutions w(., a) of (1.10) have at least one zero, from Proposition 2.5.

Upper estimates of the solutions

Here we get the behaviour at infinity for solutions of any sign. We extend the results of [START_REF] Haraux | Non-uniqueness for a semilinear initial value problem[END_REF] obtained for p = 2, giving upper estimates with continous dependence, which also improve the results of [START_REF] Qi | The global existence and nonuniqueness of a nonlinear degenerate equation[END_REF]:

Proposition 2.10 Let d ≥ 0. (i) Assume that the solution w of problem (1.10), (1.15) satisfies |w(r)| ≤ C d (1 + r) -d , (2.46) on [0, ∞) , for some C d > 0, then there exists another C ′ d > 0, depending continuously on C d , such that w ′ (r) ≤ C ′ d (1 + r) -d-1 . (2.47) (ii) For any solution of (1.10) such that w(r) = O(r -d ) near ∞, then w ′ (r) = O(r -d-1 ) near ∞.
Proof. (i) We can assume that w ≡ 0. Let r ≥ R ≥ 0; we set

f R (r) = exp 1 p -1 r R s w ′ 2-p ds .
(2.48)

The function is well defined when p < 2 from (2.29), and f R ∈ C 1 ([R, ∞)). When p > 2, from Proposition 2.5, (iv), the function w has a finite number of isolated zeros and either there exists a first r > 0 such that w(r) = w ′ (r) = 0, or w has no zero for large r, and we set r = ∞. In the last case case, from Proposition 2.4, the set of zeros of w ′ is bounded. If w ′ (r) = 0 for some r ∈ (0, r) , then, from (1.10), (|w ′ | p-2 w ′ ) ′ has a nonzero limit λ at r, hence r is an isolated zero of w and

w ′ (s) 2-p = |λ| (2-p)/(p-1) (s -r) -1+1/(p-1) (1 + o(1)) near r. Then s |w ′ | 2-p ∈ L 1 loc (R, ∞), thus f R is absolutely continuous on [R, r) if r = ∞. Let k = k(N, p, d) > 0 be a parameter, such that K = k -(N -1)/(p -1) > 0, and k > 1 + d. By computation, for almost any r ∈ (R, r) , r k f R (w ′ -Kr -1 w ′ = -K(k -1)r k-2 f R w -r k-1 f ′ R w(α + K + |w| q-1 ) hence for any r ∈ [R, r) , r k f R w ′ = R k-1 (Rw ′ (R) -Kw(R)) + Kr k-1 f R w -K(k -1) r R s k-2 f R wds - r R s k-1 f ′ R w(α + K + |w| q-1 )ds.
(2.49) Assume (2.46) and take R = 0, and divide by f 0 . From our choice of k, and since f ′ ≥ 0, we obtain

r k w ′ (r) ≤ Cd r k-1-d on [0, r) and then on [0, ∞) , where Cd = C d (K + K(k -1)/(k -1 -d) + α + K) + C q-1 d , and K = K(N, p, d); this holds in particular on [1, ∞) ; on [0, 1] , from (2.33), w ′ (r) ≤ p ′ (αC d /2 + C q-1 d ),
and (2.47) holds.

(ii

) Let R ≥ 1 such that w is defined on [R, ∞) and w(r) ≤ C d r -d on [R, ∞)
. Defining r as above and dividing (2.49) by f R and observing that f R (r) ≥ 1, and

R k ≤ R k-1-d ≤ r k-1-d , we deduce r k w ′ (r) ≤ R k w ′ (R) + C d KR k-1-d + Cd r k-1-d ≤ ( w ′ (R) + C d K + Cd )r k-1-d
on [R, r) and then on [R, ∞) , and we conclude again. where C γ (a) is continuous with respect to a on R.

Proof. (i) Here we simplify the proofs of [START_REF] Haraux | Non-uniqueness for a semilinear initial value problem[END_REF] and [START_REF] Qi | The global existence and nonuniqueness of a nonlinear degenerate equation[END_REF]: using equation (1.10), the function F defined by

F (r) = 1 2 w 2 + r -1 w ′ p-2 w ′ w, (2.52) 
satisfies the relation

(r 2α F ) ′ = r 2α-1 ( w ′ p + (2α -N )r -1 w ′ p-2 w ′ w -|w| q+1 ) ≤ r 2α-1 ( w ′ p + (2α -N )r -1 w ′ p-2 w ′ w).
Assume that for some d ≥ 0 and R > 0, |w(r)| ≤ Cr -d on [R, ∞) . Then from Proposition 2.10 there exists other constants from Proposition 2.10, where Cd is also continuous. We deduce (2.51) as above, and C γ is continuous, since we use is a finite number of steps. Notice in particular that lim a→0 C γ (a) = 0.

C > 0 such that r 2α F ′ ≤ Cr 2α-1-(d+1)p on [R, ∞). Then F (r) ≤ C(r -(d+1)p + r -2α ) on [R, ∞) if (d + 1)p = 2α; and r -1 |w ′ | p-1 |w| ≤ Cr -(d+1)p , thus |w(r)| ≤ C(r -(d+1)p/2 + r -α ) on [R, ∞) . We know that w is bounded on [R, ∞)
As a consequence we can extend a property of zeros given in [26, Proposition 3.1] in case p = 2, which improves Proposition 2.5: Proposition 2.12 Assume that α < N, or p > 2, or α < η. Given A > 0, there exists M (A) > 0 such that if 0 < |a| ≤ A, then the solution w(., a) of (1.10), (1.15) has at most one isolated zero outside [0, M (A)] .

Proof. From Proposition 2.5, w(., a) has a finite number of isolated zeros. Let ρ 1 < ρ 2 be its two last zeros, where by convention ρ 2 = r if p > 2 and the function has a compact support [0, r] . From Proposition 2.11, for any µ > 0, there exists R = R(A, µ) > 0 such that max |a|≤A,r≥R |w(r, a)| ≤ µ 1/(q-1) . Also max |a|≤A,r≥0 |w(r, a)| ≤ A, from Theorem 2.1. As in Proposition 2.5, we make the substitution (2.11) for some d > 0. If p > 2, we choose d > α, and fix µ = (d -α)/2. Suppose that ρ 1 > R. Then from (2.38), denoting

µ ′ = d p-1 ((p -1)d -N + p), there exists ρ ∈ (ρ 1 , ρ 2 ) such thatρ p |w(ρ)| 2-p d -α -|w| q-1 (ρ) ≤ (p -1)d p-1 (d -η). µρ p ≤ µ ′ |w(ρ)| p-2 ≤ µ ′ A p-2
Taking M (A) = max(R(A, µ), (µ ′ µ -1 A p-2 ) 1/p ), we find ρ 1 ≤ M (A). If p < 2 and α < η, taking d ∈ (α, η) and the same µ, and M (A) = R(A, µ), then ρ 1 ≤ M (A), from (2.38). If p < 2 and α < N, we choose µ = (N -α)/2 and M (A) = R(A, µ) and get ρ 1 ≤ M (A) from (2.39) by contradiction.

The case (2p)α < p

In this paragraph, we suppose that (2 -p)α < p, or equivalently, p > 2 or (p < 2 and α < δ).

(3.1)

Behaviour near infinity

Proposition 3.1 Assume (3.1) and q > 1. For any solution w of problem (1.10), there exists L ∈ R such that lim r→∞ r α w = L.

Proof. From Propositions 2.10 and 2.11, w(r) = O (r -α ) and w ′ (r) = O(r -α-1 ) near ∞. Indeed it follows from (2.51) by choosing any γ > α if p > 2 and γ ∈ (α, δ) if p < 2. Consider the function J α defined in (2.5). Then from (2.6), J ′ α is integrable at infinity: indeed r α-2 |w ′ | p-1 = O(r (2-p)α-p-1 ) and (3.1) holds, and r α-1 |w| q-1 w = O(r -1-α(q-1) ). Then J α has a limit L as r → ∞. And

r α w = J α (r) -r α-1 w ′ p-2 w ′ = J α (r) + O(r (2-p)α-p ),
thus lim r→∞ r α w(r) = L, and

L = J α (r) + ∞ r J ′ α (s)ds. (3.2)
Next we look for precise estimates of fast decaying solutions. It is easy to obtain an approximate estimate. Since lim r→∞ J α (r) = 0, we find Proof. (i) Case p > 2. Assume that w has no compact support. We can suppose that w > 0 for large r, from Proposition 2.5. We make the substitution (2.11) for some d > α. Since w

J α (r) = - ∞ r J ′ α (s)ds; thus |w(r)| ≤ r -1 w ′ (r) p-1 + r -α ∞ r s α-1 |w| q + (N + α)s -1 w ′ p-1 ds (3.
(r) = o(r -d ), w ′ (r) = o(r -d-1 ) near ∞ we get y d (τ ) = o(1), y ′ d (τ ) = o(1) near ∞.
And ψ = dy d -y ′ d = -r d+1 w ′ is positive for large τ from Proposition 2.4. From (2.12),

y ′′ d + (η -2d)y ′ d -d(η -d)y d + 1 p -1 e ((p-2)d+p)τ ψ 2-p y ′ d -(d -α)y d + e -d(q-1)τ |y d | q-1 y d = 0.
As in Proposition 2.5 the maximal points τ of y d remain in a bounded set, hence y d is monotone for large τ, hence y ′ d (τ ) ≤ 0, and lim τ →∞ e ((p-2)d+p)τ ψ 2-p = lim r→∞ r 2 |w ′ | 2-p = ∞. Then Since d -α > 0, there exists C > 0 such that y ′′ d ≥ Ce ((p-2)d+p)τ ψ 3-p for large τ, then

-ψ ′ = y ′′ d + d y ′ d ≥ Ce ((p-2)d+p)τ ψ 3-p ,
thus ψ p-2 + Ce ((p-2)d+p)τ /(d + |δ|) is nonincreasing, which is impossible.

(ii) Case p < 2. Let us prove that y is bounded near ∞. If holds if y is changing sign, from Lemma 2.6. Next assume that for example y > 0 for large τ, thus also Y. If y is not monotone, then N < δ and lim τ →∞ y(τ ) = ℓ, from Lemma 2.6. If y is monotone, and unbounded, then is nondecreasing and tending to ∞. Then Y ≤ (δy) p-1 from system (2.17), which implies Y = o(y); then y -Y > 0 for large τ, thus for any ε > 0, for large τ,

(y -Y ) ′ = (δ -α)y + (N -δ)Y -e -δ(q-1)τ |y| q-1 y = (δ -α)(y -Y ) + (N -α)Y -e -δ(q-1)τ |y| q-1 y ≥ (δ -α -ε)(y -Y )
and y ≥ y -Y ≥ Ce (δ-α-ε)τ , for some C > 0, which contradicts (3.4).

Next we complete the estimates of Proposition 3.2 when p < 2.

(i) if p 1 < p, lim r→∞ r δ w = ±ℓ; (3.5) (ii) if p < p 1 , lim r→∞ r η w = c c ∈ R, c = 0; (3.6) (iii) if p = p 1 , lim r→∞ r N (ln r) (N +1)/2 w = ±̺, ̺ = 1 N N (N -1) 2(N -α) (N +1)/2 . (3.7)
Proof. We can assume that w > 0 for large r.. Then y, Y are positive for large τ, from Proposition 2.4, and y, y ′ are bounded from Propositions 3.2 and 2.10. If y is not monotone for large τ, then N < δ from Lemma 2.6, that means p 1 < p from (1.6), and lim τ →∞ y(τ ) = ℓ, which proves (3.5). So we can assume that y is monotone for large τ. Since it is bounded, then, from Lemma 2.6, either N < δ and lim τ →∞ y(τ ) = ℓ or 0, or δ ≤ N and lim τ →∞ y(τ ) = 0. Suppose that lim τ →∞ y(τ ) = 0. Then y ′ (τ ) ≤ 0 for large τ.

(i) Case p 1 < p (N < δ). Then N < δp, and from (2.16),

(p -1)y ′′ + (δp -N ) y ′ + (δ -N )δy = o( y ′ 3-p ) + o(y 3-p ). (3.8) 
Thus y is concave for large τ, which is a contradiction; and (3.5) holds.

(ii) Case p < p 1 (δ < N ). We observe that -(p -1)y ′′ + (δp -N )y ′ + (N -δ)δy ≤ 0 (3.9)

for τ ≥ τ 1 large enough, since α < δ; and we can suppose y(τ ) ≤ 1 for τ ≥ τ 1 . For any ε > 0, the function τ -→ ε + e -µ(τ -τ 1 ) is a solution of the corresponding equation on [τ 1 , ∞), where

µ = η -δ = (N -δ)/(p -1) > 0. ( 3.10) 
Then y(τ ) ≤ ε + e -µ(τ -τ 1 ) from the maximum principle. Then y(τ ) ≤ e -µ(τ -τ 1 ) on [τ 1 , ∞). That means that w(r) = O(r (p-N )/(p-1) ) near ∞, hence w ′ (r) = O(r (1-N )/(p-1) ) from Proposition 2.10.

Next we make the substitution (2.11), with d = η. Then functions y η and y ′ η are bounded, and from (2.12) Then also δ = η. From (2.17),

(p -1)(y ′′ η -ηy ′ η ) = e (p-(2-p)η)τ ηy η -y ′ η 2-p -y ′ η + (η -α)y η -e -η(q-1)τ |y η | q-1 y η ; (3.11) hence (e -ητ y ′ η ) ′ = O(e (p-(3-p)η)τ ). Since lim τ →∞ e -ητ y ′ η (τ ) = 0,
y ′ -N y = -Y 1/(p-1) , Y ′ + Y 1/(p-1)
= αy + e δ(q-1)τ y q (3.12)

hence Y ′ + Y 1/(p-1) ≥ 0, thus by integration, Y (τ ) ≥ C 1 τ -(p-1)/(2-p) for some C 1 > 0 and for large τ. From (3.12), there exists

K 1 > 0 such that -N e -N τ y ′ ≥ K 1 e -N τ τ -1/(2-p) ≥ - K 1 2 e -N τ τ -1/(2-p) ′
for large τ, which implies a lower bound 1) , since y ′ < 0. Then for any ε > 0,

y ≥ (K 1 /2N )τ -1/(2-p) . Also Y ′ + Y 1/(p-1) ≤ (α/N + o(1))Y 1/(p-
Y ′ + ( N -α N -ε)Y 1/(p-1) ≤ 0 (3.13)
for large τ. Taking ε small enough, we deduce

Y (τ ) ≤ C 1,ε τ -(p-1)/(2-p) , with C (2-p)/(p-1) 1,ε = p -1 2 -p ( N -α N -2ε) -1 (3.14)
for large τ. Then

-N e -N τ y ′ ≤ N C 1/(p-1) 1,ε e -N τ τ -1/(2-p) ≤ -C 1/(p-1) 1,ε e -N τ τ -1/(2-p) ′ .
Thus we get an upper bound

y(τ ) ≤ 1 N C 1/(p-1) 1,ε τ -1/(2-p) .
Moreover from (3.12) and (3.13), |Y ′ (τ )| ≤ Y 1/(p-1) (τ ) for large τ , hence from (3.14), y ′′ - 2-p) . Then e -N τ y ′ ′ = O(e -N τ τ -(3-p)/(2-p) ), thus y ′ = O(τ -(3-p)/(2-p) ), hence y ′ = o(y) from the lower estimate of y.Then for any ε > 0,

N y ′ = -Y 1/(p-1) Y ′ = O τ -(3-p)/(
Y ′ + ( N -α N -ε)Y 1/(p-1) ≥ 0 for large τ ; then Y (τ ) ≥ C 2,ε τ -(p-1)/(2-p) , with C (2-p)/(p-1) 2,ε = p -1 2 -p ( N -α N + 2ε) -1
for large τ. Thus

lim τ →∞ τ -(p-1)/(2-p) Y (τ ) = ( p -1 2 -p N N -α ) (p-1)/(2-p) = lim τ →∞ (τ -1/(2-p) N y(τ )) p-1 ,
so that lim τ →∞ (τ -1/(2-p) y(τ )) = ̺ and (3.7) holds.

We can get an asymptotic expansion of the slow decaying solutions, which in fact covers the case p = 2, where we find again the results of [START_REF] Weissler | Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation[END_REF]Theorem 1]. Proposition 3.4 Assume (3.1). Let w be any solution of (1.10), such that L = lim r→∞ r α w > 0.

Then

lim r→∞ r α+1 w ′ = -αL, (3.15) 
and

w(r) =    r -α L + (K + o(1)) r -k , if (q + 1 -p) α > p, r -α L + (K + M + o(1)) r -α(q-1) , if (q + 1 -p) α = p, r -α L + (M + o(1)) r -α(q-1) , if (q + 1 -p) α < p, (3.16) 
where

k = p -(2 -p)α, K = (α(p -1) -(N -p)) (αL) 1/(p-1) k , M = L q α(q -1)
.

Moreover differentiating term to term gives an expansion of w ′ .

Proof. We make the substitution (2.11) with d = α, thus w(r) = r -α y α (τ ). For large r, w ′ (r) = r -(α+1) (αy α (τ ) -y ′ α (τ )) < 0, thus αy α -y ′ α > 0 for large τ. And (2.14) becomes:

y ′ α = αy α -Y 1/(p-1) α Y ′ α = (p -1)(α -η)Y α + e kτ (αy α -Y 1/(p-1) α
+ e -α(q-1)τ y q α ).

(3.17)

The function y α converges to L, and y ′ α is bounded near ∞, since w ′ = O(r -(α+1) ) near ∞, thus Y α is bounded. Either Y α is monotone for large τ , then it has a finite limit λ; then y ′ α converges to αL -λ 1/(p-1) ; thus λ = (αL) 1/(p-1) . Or for large τ, the extremal points of Y α form an increasing sequence (τ n ) tending to ∞. Then 1) . In any case lim τ →∞ Y α (τ ) = (αL) 1/(p-1) , which is equivalent to (3.15), and implies lim τ →∞ y ′ α (τ ) = 0. Now consider Y ′ α . Either it is monotone for large τ, thus lim τ →∞ Y ′ α (τ ) = 0; or for large τ, the extremal points of Y ′ α form an increasing sequence (s n ) tending to ∞. Then Y ′′ α (τ n ) = 0, then by computation, at point

Y α (τ n ) 1/(p-1) = αy α (τ n ) + e -α(q-1)τn y q α (τ n ) + (p -1)(α -η)e -kτn Y α (τ n ) thus lim Y α (τ n ) = (αL) 1/(p-
τ = s n , 1 p -1 Y (2-p)/(p-1) α -(p -1)(α -η)e -kτ Y ′ α = p + α(p -1) + qe -α(q-1)τ y q-1 α y ′ α + (k -α(q -1
))e -α(q-1)τ y q α thus lim Y ′ α (s n ) = 0. In any case, lim τ →∞ Y ′ α (τ ) = 0. From (3.17), we deduce 1))e -α(q-1)τ -k(K + o( 1))e -kτ thus y ′ α = -k(K + o( 1))e -kτ if α(q -1) > k, or equivalently (q + 1 -p) α > p; and y ′ α = -(kK + L q + o( 1))e -kτ if α(q -1) = k; and y ′ α = -(L q + o( 1))e -α(q-1)τ if α(q -1) < k. The estimates (3.16) follow by integration.This gives also an expansion of the derivatives, by computing w ′ = -r -(α+1) (αy α -y ′ α ) :

y ′ α = -e -α(q-1)τ y q α -e -kτ ((p -1)(α -η)Y α -Y ′ α ) = -(L q + o(
w ′ (r) =    -r -(α+1) αL + (α + k) (K + o(1)) r -k , if (q + 1 -p) α > p, -r -(α+1) αL + (α + k) (K + M + o(1)) r -k , if (q + 1 -p) α = p, -r -(α+1) αL + αq(M + o(1))r -α(q-1) , if (q + 1 -p) α < p;
which corresponds to a derivation term to term.

Continuous dependence and sign properties

Next we extend an important property of continuity with respect to the initial data, given in [START_REF] Haraux | Non-uniqueness for a semilinear initial value problem[END_REF] in the case p = 2. The proof is different; it follows from the estimates of Proposition (2.10) and from the expression of L(a) in terms of function J α . Proof. Let a 0 ∈ R. From Propositions 2.10 and (2.11), there exists a neighborhood V of a 0 and a constant C = C(V ) > 0 such that for any a ∈ V,

|w(r, a)| ≤ C(1 + r) -α , w ′ (r, a) ≤ C(1 + r) -(α+1) , (3.18) 
From (3.2), we have for any r ≥ 1,

L(a) = J α (r, a) + ∞ r J ′ α (s, a)ds = ∞ 0 J ′ α (s, a)ds (3.19)
where J α (r, a) = r α w(r, a) + r -1 |w ′ | p-2 w ′ (r, a) , since J α (0, a) = 0. Then with a new constant

C = C(V ), for any a ∈ V, ∞ r J ′ α (s, a) ds ≤ C r -α(q-1) + r -(p-α(2-p) ;
hence for any ε > 0, there exists

r ε ≥ 1 such that sup a∈V ∞ rε J ′ α (s, a) ds ≤ ε.
From Remark 2.2, w(., a) depends continuously on a on any compact set, thus also J ′ α (., a). Then there exists a neighborhood V ε of a 0 contained in V such that sup 

a∈V ε rε 0 J ′ α (r ε , a) -J ′ α (r ε , a 0 ) ≤ ε, and consequently |L(a) -L(a 0 )| ≤ 3ε. This proves that L is continuous at a 0 . Moreover sup a∈V ε sup r∈[0,∞) |J α (r, a) -J α (r, a 0 )| ≤ 2ε,

It implies sup

a∈Vε,r≥rε

|(1 + r) α (w(r, a) -w(r, a 0 ))| ≤ (2 α + 2)ε.
And there exists a neighborhood Ṽε of a 0 contained in V ε , such that sup a∈ Ṽε,r≤rε

|(1 + r) α (w(r, a) -w(r, a 0 ))| ≤ ε. Then sup a∈ Ṽε,r∈[0,∞) |(1 + r) α (w(r, a) -w(r, a 0 ))| ≤ (2 α + 2)ε,
which shows that the family of functions a -→ (1 + r) α w(r, a) (r ≥ 0) is equicontinuous at a 0 .

As a consequence we obtain some results concerning the number of zeros of the solutions Theorem 3.6 Assume (3.1). (i) Suppose that for some a 0 > 0, w(., a 0 ) has a finite number of isolated zeros, denoted by N (a 0 ).

If L(a 0 ) = 0, then N (a) = N (a 0 ) for any a close to a 0 .

(ii) Suppose q < q * . Then {a > 0 : L(a) = 0} is unbounded from above. Moreover there exists a increasing sequence (a m ) tending to ∞, such that w(., a m ) has at least m + 1 isolated zeros and L(a m ) = 0.

(iii) Suppose q < q * , p < 2 and α < N . Then for any m ∈ N,

ām = inf {a > 0 : N (a) ≥ m + 1} ∈ (0, ∞) ,
and if m ≥ 1, then w(., ām ) has precisely m zeros and L(ā m ) = 0.

Proof. (i) Let r 1 < r 2 < .. < r N (a 0 ) be the isolated zeros of w(., a 0 ). Since L(a 0 ) = 0, there are no other zeros, and there exists ε > 0 such that inf r≥r N(a 0 ) +1 r α |w(r, a 0 )| ≥ ε. From Theorem 3.5, there exists a neighborhood V ε of a 0 such that inf r≥r N(a 0 ) +1 r α |w(r, a)| ≥ ε/2 for any a ∈ V ε . From Remark 2.2, there exists a neighborhood Ṽε ⊂ V ε such that w(r, a) has exactly N (a 0 ) zeros on 0, r N (a 0 ) + 1 , hence N (a) = N (a 0 ).

(ii) Assume that for some a * > 0, L(a) = 0 for any a ∈ (a * , ∞) . From Proposition 2.5, (iii) and (iv), w(., a) has a finite number of isolated zeros N (a). The set

{a ∈ (a * , ∞) : N (a) = N (a * ) + 1}
is closed in (a * , ∞) since N is locally constant, and open; then N (a) is constant on (a * , ∞) , which contradicts Proposition 2.7. Moreover there exists a increasing sequence (a ⋆ m ) tending to ∞ such that w(., a ⋆ m ) has at least m + 1 isolated zeros; as above it cannot happen that L(a) = 0 for any a ∈ (a * m , ∞) , hence there exists a m ≥ a * m , such that w(., a m ) has at least m + 1 isolated zeros and L(a m ) = 0.

(iii) Here w(., a) has only isolated zeros. Following the proof of [26, Propositions 3.5 and 3.7], for any m ∈ N, the set B m = {a > 0 : N (a) ≥ m + 1} is open and z m (a) = m th zero of w(., a) depends continuously on a. Using Proposition 2.12, one can show that, for any a 0 > 0, N (a) = N (a 0 ) or N (a 0 ) + 1 for any a in some neighborhood of a 0 . Then necessarily ām ∈ B m , and N (ā m ) = m, and L(ā m ) = 0 by contradiction in (i).

Remark 3.7 When q < q * and p > 2, for any a 0 > 0, we have N (a) ≥ N (a 0 ) for any a in some neighborhood of a 0 , but we cannot prove that N (a) ≤ N (a 0 ) + 2, thus we have no specific information of the number of zeros of the compact support solutions.

Existence of nonnegative solutions

Here we study the existence of nonegative solutions of equation (1.10). If such solutions exist, then either p 1 < p and α < N, from From Proposition 2.5, or p < p 1 , thus α < δ ≤ N ; in any case α < N. Reciprocally, when α < N, we first prove the existence of slow decaying solutions for |a| small enough. Proposition 3.8 Assume (3.1), and α < N. Let a > 0 be defined at Proposition 2.5. Then for any a ∈ (0, a], w(r, a) > 0 on [0, ∞) , and L(a) > 0.

Proof. Let a ∈ (0, a] . By construction of a, w = w(r, a) > 0, from Proposition 2.5, and function J N is nondecreasing and J N (0) = 0; and J N (r) ≤ r N w near ∞, from Proposition 2.4. Assume that L(a) = 0. Then p < 2 from Proposition 3.2. From Proposition 3.3, either N < δ, and r N w = O(r N -δ ); or δ < N and N < η from (1.6), and r N w = O(r N -η ); or δ = N and r N w = O(ln r) -(N +1)/2 . In any case, lim sup r→∞ J N (r) = 0; then J N ≡ 0, thus J ′ N ≡ 0, which is impossible.

Next we consider the subcritical case 1 < q < q * and prove the existence of fast decaying solutions. Notice that in that range p > p 2 ; if moreover 1 < q < q 1 , then p > p 1 . Theorem 3.9 Assume (3.1) and α < N, and 1 < q < q * . Then there exists a > 0 such that w(., a) is nonnegative and such that L(a) = 0. If p > 2, it has a compact support. If p < 2, it is positive and satisfies (3.5), (3.6) or (3.7).

Proof. Let

A = {a > 0 : w(., a) > 0 on (0, ∞) and L(a) > 0} ,

B = {a > 0 : w(., a) has at least an isolated zero} .

From Proposition 3.8 and 2.7, A and B are nonempty: A ⊃ (0, a] and B ⊃ [a, ∞) . From the local continuous dependence of the solutions on the initial value, B is open. For any a 0 ∈ A,there exists ε > 0 such that min r≥0 (1 + r) α w(r, a 0 ) ≥ ε. From Theorem 3.5, there exists a neighborhood V ε of a 0 such that min r≥0 (1 + r) α w(r, a) ≥ ε/2 for any a ∈ V ε , hence V ε ⊂ A, thus A is open. Let a inf = inf B > a and a sup = sup A < a. Taking a = a inf or a sup , then w(., a) is nonnegative, positive if p < 2, and L(a) = 0, and the conclusion follows from Proposition 3.3. We cannot assert that a inf = a sup .

Remark 3.10 As it was noticed in [START_REF] Souplet | Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state[END_REF] for p = 2, there exists an infinity of pairs a 1 , a 2 such that 0 < a 1 < a 2 < a inf , thus w(., a 1 ) > 0, w(., a 2 ) > 0, and L(a 1 ) = L(a 2 ). Indeed from the continuity of L proved at Theorem 3.5, L attains at least twice any value in 0, max [0,a inf ] L .

In the supercritical case q ≥ q * we give sufficient conditions assuring that all the solutions are positive, and then slowly decaying. Recall that q * ≤ 1 whenever p ≤ p 2 . Theorem 3.11 Assume (3.1) and one of the following conditions: (i) p 2 < p and α ≤ N/2 and q ≥ q * ; (ii) p ≤ p 2 and 1 < q. (iii) p 2 < p and N/2 < α < (N -1)p ′ /2 and q ≥ q * α , where q * α > q * is given by

1 q * α + 1 = N -1 2α - 1 p ′ . (3.22) 
Then for any a > 0, w(r, a) > 0 on [0, ∞), and L(a) > 0.

Proof. We use the function V = V λ,σ,e defined at (2.9) , where λ > 0, σ, e will be chosen after. It is continuous at 0 and V λ,σ,e (0) = 0, from (2.29). Suppose that w(r 0 ) = 0 for some first real r 0 > 0. Then V λ,σ,e (r 0 ) = r N 0 |w ′ (r 0 )| p /p ′ ≥ 0. Suppose that for some λ, σ, e, the five terms giving

V ′ are nonpositive. Then V ≡ V ′ ≡ 0 on [0, r 0 ] , hence rw ′ + (σ -e + α)w/2 ≡ 0, r (σ-e+α)/2 w is constant, hence w ≡ 0 if σ -e+ α = 0, or w ≡ a if σ -e+ α = 0. It is impossible since w(0) = w(r 0 ).

Case (i).

We take λ = N and σ = (N -p)/p and e = σ + α -N, thus

V (r) = r N |w ′ | p p ′ + |w| q+1 q + 1 + ( N -p p + α -N ) w 2 2 + N -p p r -1 w w ′ p-2 w ′ , (3.23) 
r 1-N V ′ (r) = - N -p p - N q + 1 |w| q+1 - N + 2 4p (p -p 2 ) (N -2α) w 2 -rw ′ + N 2 w 2 (3.24) 
and all the terms are nonpositive from our assumptions, thus w > 0 on [0, ∞) . Moreover suppose that L(a) = 0. Then p < 2, and from Proposition 3.2, V (r) = O(r N -2δ ) as r → ∞, thus lim r→∞ V (r) = 0, since N < 2δ from (1.7). Then V ≡ 0 on [0, ∞) which is a contradiction.

Case (ii). We take λ = N = 2σ and e = α -N/2, thus

r 1-N V ′ (r) = - N + 2 2p (p 2 -p) w ′ p - N (q -1) 2q + 1 |w| q+1 -rw ′ + N w 2 , (3.25) 
and all the terms are nonpositive, and again w > 0 on [0, ∞) . If L(a) = 0, we find V (r) = O(r N -η ) near ∞, from Proposition 3.2, since p ≤ p 2 < p 1, . Then lim r→∞ V (r) = 0, hence again a contradiction.

Case (iii). We take λ = 2α and σ = N -1 -2α/p ′ and e = σ -α, thus

r 1-2α V ′ (r) = -σ - 2α q + 1 |w| q+1 + σ(2α -N )r -1 w w ′ p-2 w ′ -rw ′ + αw 2 .
Here the first term is nonpositive from (3.22), and also the second term, since σ > 0, N/2 ≤ α and w ′ < 0 on (0, r 0 ) , from Proposition 2.4, hence again w > 0 on [0, ∞) . If L(a) = 0, then p < 2.

Proof. (i) Suppose N ≤ α < α * (which implies p > 3/2). In the phase plane (y, Y ) of system (2.17), the stationary point M ℓ is in the domain S of boundary L. Indeed denote P µ = (µ, (δµ) p-1 ) for any µ > 0. Setting λ = δ -1 ((2δ -N )(p -1)) 1/(2-p) , the point P λ is on the curve L. Then (θλ, (θδλ) p-1 ) ∈ S for any θ ∈ [0, 1), and α < α * ⇔ ℓ < λ, thus P ℓ = M ℓ ∈ S, and there exists ε ∈ (0, 1] such that P ℓ+ε ∈ S. Now for any µ > 0 such that P µ ∈ S, the square 

K µ = (y, Y ) ∈ R 2 : |y| ≤ µ, |Y | ≤ (δµ) p-1 is contained in S.
H(ξµ, ζ(δµ) p-1 ) = (δµ) 2-p ξ -|ζ| (2-p)/(p-1)
|ξ| (2-p)/(p-1) -ζ ≤ H(µ, (δµ) p-1 ), since the quotient is majorized by 1/(p -1) if ξζ > 0, and by 1 if ξζ < 0, because p > 3/2. From Lemma 2.6,iv, (y (τ ) , Y (τ )) ∈ K ℓ+ε for τ ≥ τ (ε) large enough, thus (y (τ ) , Y (τ )) ∈ S. Thus U(y (τ ) , Y (τ )) ≥ 0. Consider the function

τ → Ψ(τ ) = W (τ ) - δ(q -1) q + 1 ∞ τ e -δ(q-1)s |y(s)| q+1 ds. (3.26) 
We find

Ψ ′ (τ ) = W ′ (τ ) + δ(q -1) q + 1 e -δ(q-1)τ |y(τ )| q+1 = U(y(τ ), Y (τ )). (3.27) 
Then Ψ is nondecreasing and bounded near ∞, thus it has a limit κ, and W has the same limit. thus from (2.17), Ψ ′ (τ ) ≥ mc (2δ(ℓ + 1)) p-2 y ′ 2 (τ ).

Then y ′ 2 is integrable and bounded; then lim τ →∞ y ′ (τ ) = 0. Suppose that y admits an increasing sequence of zeros (τ n ). Then

W (τ n ) = |Y (τ n )| p ′ /p ′ = |y ′ (τ n )| p /p ′ , thus lim τ →∞ W (τ ) = 0, thus lim τ →∞ W(y(τ ), Y (τ )) = 0. Moreover |Y | (2-p)/(p-1) Y = δy -y ′ = δy + o(1), thus W(y(τ ), Y (τ )) = (δ -N )δ p-1 p |y(τ )| p - δ -α 2 y 2 (τ ) + o(1),
which implies lim y (τ ) = 0 or ±ℓ, and necssarily lim τ →∞ y (τ ) = 0. And lim τ →∞ Ψ (τ ) = 0, thus Ψ(τ ) ≤ 0 near ∞, thus

(δ -N )δ p-1 p |y(τ )| p - δ -α 2 y 2 ≤ W(y(τ ), Y (τ )) ≤ δ(q -1) q + 1
∞ τ e -δ(q-1)s |y(s)| q+1 ds.

Then y(τ ) = O(e -k 0 τ ), with k 0 = δ(q -1)/p. Assuming that y(τ ) = O(e -knτ ), then we find y(τ ) = O(e -k n+1 τ ) with k n+1 = k n (q + 1)/p + (q -1)/(2 -p). Since q > 1 > p -1, it follows that y(τ ) = O(e -kτ ) for any k > 0. Consider the substitution (2.11)for some d > 0. Then y d (τ ) = O(e -kτ ) for any k > 0. At any maximal point of |y d | we find from (2.12)

(p -1)d(η -d) ≤ e ((p-2)d+p)τ |dy d | 2-p (α -d) + e -d(q-1)τ |y d | q-1
Choosing for example d = η/2 we get a contradiction since the right-hand sign tends to 0.

(ii) Suppose N ≤ α and α * < α. Assume that there exists a solution w with a finite number of zeros. We can assume that w(r) > 0 near ∞. From Propositions 3.1 and 3.3, either lim r→∞ r α w = L > 0 or lim r→∞ r δ w = ℓ. Now the point M ℓ is exterior to S, thus U(M ℓ ) < 0, and by computation

k ℓ := WM ℓ = 1 2 (δ -N ) δ p-2 ℓ p = M (δ -α) δ > 0. (3.28) 
where M = M (N, p) = (δ -N ) δ+1 δ p-2+(p-1)δ /2.

• First case: lim r→∞ r δ w = ℓ. Then lim τ →∞ (y(τ ), Y (τ )) = M ℓ . Thus for large τ, U(y(τ ), Y (τ )) < 0, so that W ′ (τ ) < 0. Then W is decreasing, and lim τ →∞ W (τ ) = lim τ →-∞ W(y(τ ), Y (τ )) = k ℓ . Moreover near -∞, we find lim τ →-∞ W (τ ) = lim τ →-∞ W(y(τ ), Y (τ )) = 0; indeed near -∞, y(τ ) = O(e δτ ) and Y (τ ) = O(e δτ ) from (2.29) and (2.15), hence e -δ(q-1)τ |y(τ )| q+1 = O(e 2δτ ). Then W has at least a maximum point τ 0 such that W (τ 0 ) > k ℓ . At such a point, W ′ (τ 0 ) = 0, then U(y(τ 0 ), Y (τ 0 )) > 0, thus (y(τ 0 ), Y (τ 0 )) ∈ S. Let C = max (y,Y )∈S (|y| + |Y |), thus C = C(N, p) and from (2.26) and (2.27), and max (y,Y )∈S W(y, Y ) ≤ K = K(N, p), since α -δ < 0.Then

k ℓ < W (τ 0 ) ≤ K + C q+1 q + 1
From (3.28), it implies that δ -α is not close to 0. More precisely, there exists α = α(N, p) > max(N, α * ) such that α ≤ α.

• Second case: lim r→∞ r α w = L > 0. It follows that lim τ →∞ e (α-δ)τ y = L, and lim τ →∞ e (α-δ)τ Y = (αL) 1/(p-1) , from (3.15). Then Y (τ ) = O(y p-1 (τ )) near ∞, thus

W(y(τ ), Y (τ )) + δ -α 2 y 2 (τ ) = O(y p (τ )), W (τ ) + δ -α 2 y 2 (τ ) = O(y p (τ )) +
O(e -δ(q-1)τ y q+1 (τ )) = O(y p (τ )) + O(y 2-α(q-1)/(δ-α) (τ )); 4

The case p ≤ (2p)α

In this section we assume that p ≤ (2 -p)α, that means p < 2 and δ ≤ α.

Behaviour near infinity

From Proposition 2.11, we deduce approximate estimates near ∞ w(r) = o(r -γ ), for any γ < δ. Proof. (i) Case δ < α.

• First assume that 2δ ≤ N, that means p ≤ p 2 . Then from (2.23), W ′ (τ ) ≤ 0 for any τ ; hence W is bounded from above near ∞, and in turn y and Y are bounded, because δ < α and p < 2. Thus (4.2) holds.

• Then assume N < 2δ. Let τ 0 be arbitrary. Since S is bounded, there exists k > 0 large enough such that W (τ ) ≤ k for any τ ≥ τ 0 such that (y(τ ), Y (τ )) ∈ S, and we can choose k > W (τ 0 ); and W ′ (τ ) ≤ 0 for any τ ≥ τ 0 such that (y(τ ), Y (τ )) ∈ S. Then W (τ ) ≤ k for any τ ≥ τ 0 , hence again y and Y are bounded for τ ≥ τ 0 .

(ii) Case N ≤ α = δ. Since N < 2δ, as above W is bounded from above for large τ. We can write W under the form

W (τ ) = (δ -N )δ p-1 p |y(τ )| p + Φ(y(τ ), Y (τ )) + 1 q + 1 e -δ(q-1)τ |y(τ )| q+1 , where Φ(y, Y ) = |Y | p ′ p ′ -δyY + |δy| p p ≥ 0, ∀(y, Y ) ∈ R 2 .
Thus y is bounded, then also Y from Hölder inequality. The case α = δ < N is not covered by Proposition 4.1. In fact (4.2) is not satisfied, because a logarithm appears: Proposition 4.3 Assumeq > 1, p < 2, and α = δ < N. Then any solution w of (1.10)satisfies

w = O(r -δ (ln r) 1/(2-p) ) near ∞. (4.4) 
Proof. From (2.50), we have w(r) = O(r -δ+ε ) for any ε > 0, hence y(τ ) = O(e ετ ); and w has a finite number of zeros, from Proposition 2.5,(iv), since α < N. We can assume that y is positive for large τ. From (2.17), (y -Y ) ′ = (N -δ)Y -e δ(q-1)τ y q .

From Lemma 2.6,(i), y is monotone for large τ. If y is bounded, then (4.4) is trivial. We can assume that lim τ →∞ y = ∞. Then also lim τ →∞ Y = ∞, from Lemma 2.6,(iii), and y ′ ≥ 0 for large τ, hence Y 1/(p-1) < δy; then Y = o(y) near ∞, since p < 2; for any ε > 0, y ≤

(1 + ε)(y -Y ) for large τ, thus (y -Y ) ′ ≤ (N -δ)(δy) p-1 ≤ (N -δ)δ p-1 (1 + ε) p-1 (y -Y ) (p-1)
.

Hence with a new ε, for large τ, (y -Y )

2-p (τ ) ≤ (N -δ)δ p-1 (2 -p)(1 + ε)τ, which gives the upper bound y 2-p (τ ) ≤ (N -δ)δ p-1 (2 -p)(1 + ε)τ. (4.5) 
In particular (4.4) holds, and the estimate is more precise: Proof. (i) Case δ < min(α, N ).

lim sup r→∞ r δ (ln r) -1/(2-p) w ≤ ((2 -p)δ p-1 (N -δ)) 1/(2-p) . ( 4 
• First assume that y is positive and monotone for large τ . Since it is bounded, from Lemma 2.6,(ii) and (iv), either lim τ →∞ (y, Y ) = M ℓ and (4.7) holds; or lim τ →∞ (y, Y ) = (0, 0), thus y is nonincreasing to 0, and lim τ →∞ y ′ (τ ) = 0. Comparing to the proof of Proposition 3.3, we observe that (3.9) is no more true because δ -α < 0. Nevertheless, for any small κ and for τ ≥ τ κ large enough, -(p -1)y ′′ + (δp -N )y ′ + (N -δ -κ)δy ≤ 0. (4.12)

Let us fix κ < N -δ; since lim τ →∞ y(τ ) = 0, we can suppose that y(τ ) ≤ 1 for τ ≥ τ κ . Then there exists µ κ < µ, where µ defined at (3.10), with µ κ = µ + O(K), such that, for any ε > 0, the function τ -→ ε + e -µκ(τ -τκ) is a solution of the corresponding equation on [τ κ , ∞).It follows that y(τ ) ≤ ε + e -µκ(τ -τκ) , from the maximum principle. Thus y(τ ) ≤ e -µκ(τ -τκ) on [τ κ , ∞).

We can choose κ small enough such that µ κ (3 -p) ≥ µ 0 := µ(4 -p)/2 > µ. As a consequence, y(τ ) ≤ e -µ 0 (τ -τκ)/(3-p) , hence y ′ (τ ) = O(e -µ 0 τ /(3-p) ), from Proposition 2.10. From (2.16) there exists C > 0 such that for τ ≥ τ C large enough, y(τ ) ≤ 1 and

-(p -1)y ′′ + (δp -N )y ′ + (N -δ)δy ≤ Ce -µ 0 τ .
There exists A > 0 such that -Ae -µ 0 τ is a particular solution of the corresponding equation; then

ε + (1 + A)e -µ(τ -τ C ) -Ae -µ 0 (τ -τ C ) is also a solution on [τ κ , ∞). Then y(τ ) ≤ ε + (1 + A)e -µ(τ -τ C )
on [τ κ , ∞) from the maximum principle, then y(τ ) ≤ (1 + A)e -µ(τ -τ C ) . Thus y(τ ) = 0(e -µτ ), which means w(r) = O(r (p-N )/(p-1) ) near ∞. As in the proof of Proposition 3.3, r η w has a limit c at ∞, and that c = 0.

• Next assume that y is positive, but not monotone for large τ ; then there exists an increasing sequence (τ n ) of extremal points of y, such that τ n → ∞, and (4.9) follows from Lemma 2.6. Assume p ≤ p 2 , or equivalently 2δ ≤ N ; the function W is nonincreasing hence it has a limit Λ ≥ -∞. Computing at point τ n , where Y (τ n ) = (δy (τ n )) p-1 , we find

W (τ n ) = (α -δ)( y (τ n ) 2 2 - ℓ 2-p y (τ n ) p p ) + 1 q + 1 e -δ(q-1)τn |y(τ n )| q+1 = (α -δ)( y (τ n ) 2 (1 + o(1) 2 - ℓ 2-p y (τ n ) p p ),
thus y(τ n ) has a finite limit, necessarily equal to ℓ. Then lim τ →∞ y(τ ) = ℓ.

(ii) Case α = δ < N. From Proposition 2.5 and Lemma 2.6,(i),(ii), w has a finite number of zeros, and lim τ →∞ y = 0 or ±∞, and (4.6) holds. If lim τ →∞ y = ∞, we write

(y -Y ) ′ + e δ(q-1)τ |y| q-1 y = (N -δ)Y 1/(p-1) Y -(2-p)/(p-1) = (N -δ)(δy -y ′ )Y -(2-p)/(p-1)
and Y 1/(p-1) < δy, hence for large τ,

(y -Y ) ′ + (N -δ)Y -(2-p)/(p-1) y ′ ≥ y p-1 ((N -δ)δ p-1 -y 2
-p e δ(q-1)τ y q-1 ..

Since y ′ ≥ 0, and lim τ →∞ Y = ∞, for any ε > 0 and for large τ, (y -Y ) ′ + εy ′ ≥ y p-1 ((N -δ)δ p-1 -e δ(q-1)τ y q+1-p ).

and y(τ ) = O(τ 1/(2-p) ) from (4.5).Thus for any ε > 0 and for large τ,

((1 + ε)y -Y ) ′ ≥ (N -δ)δ p-1 (1 -ε)y p-1 . Setting ξ = (1 + ε)y -Y, we deduce that ξ ′ ≥ (N -δ)δ p-1 (1 -2ε)ξ p-1
for large τ, which leads to the lower bound

y 2-p (τ ) ≥ (N -δ)δ p-1 (2 -p)(1 -3ε)τ, (4.13) 
and (4.10) follows from (4.6) and (4.13). If lim τ →∞ y = 0, (4.8) follows as in case (i).

(iii) Case α = δ = N. From Proposition 4.1, y and Y are bounded. Moreover Y -y has a finite limit K, and Y -y = K + O(e -(q-1)τ ). And y has a finite limit limit l from Lemma 2.6,(i),(ii). Assume that l = 0. Then lim τ →∞ y ′ = -|K| (2-p)/(p-1) K, hence K = 0. Thus there exists C > 0 such that y ′ = N y -Y 1/(p-1) ≥ N y/2 -Ce -(q-1)τ /(p-1) for large τ. This implies y = O(e -γ 0 t ) with γ 0 = e -(q-1)τ /(p-1) . Assuming that y = O(e -γnt ), then (Y -y) ′ = O(e -(q-1)τ y q ) = O(e -(q-1+qγn)τ ), hence Y = y + O(e -(q-1+qγn)τ ). Then there exists another C > 0 such that y ′ ≥ N y/2 -Ce -(q-1+qγn)τ /(p-1) for large τ, then y = O(e -γ n+1 t ), with γ n+1 = (q -1 + qγ n )/(p -1).

Observe that lim γ n = ∞, thus y = O(e -γt )), thus w = O(r -γ ), for any γ > 0. We get a contradiction as in Proposition (3.3) by using the substitution (2.11) with d > N.

Oscillation or nonoscillation criteria

As a consequence of Proposition 4.1, we get a first result of existence of oscillating solutions. Proof. Suppose that is is not the case. Let w ≡ 0, with for example w > 0 and w ′ < 0 near ∞, hence y > 0 and Y > 0 for large τ. If N < δ = α, or N < δ = α, then y is bounded from Proposition 4.1. From Lemma 2.6, y is monotone, and lim τ →∞ (y(τ ), Y (τ )) = (0, 0). As in (3.8), if N < δ, then y is concave for large τ, and we reach a contradiction. If δ = N < α, we find (y -Y ) ′ = (N -α)y -e -δ(q-1)τ |y| q-1 y ≤ 0; then y -Y is non increasing to 0, hence y ≥ Y, Y ′ ≥ N Y -Y 1/(p-1) ≥ N Y /2 for large τ, which is impossible since lim τ →∞ Y (τ ) = 0.

Next we study the case where δ < min(α, N ); recall that δ < N ⇔ p < p 1 . This case is difficult because the solutions could be oscillatory, and even if they are not, they have three possible types of behaviour near ∞ : (4.7), (4.8), or (4.9). Here we extend to equation (1.10) a difficult result obtained in ( [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF]) for equation (1.12). Recall that for system (2.18), if α < η, there exist no solution satisfying (4.9), and for some α ∈ (η, α * ) there do exist positive solutions satisfying (4.9). Theorem 4.6 Assume p 2 < p < p 1 and δ < α. If α < η, (in particular if α ≤ N ), then any solution w(., a) (a = 0) has a finite number of zeros and satisfies (4.7) or (4.8).

Proof. Assume α < η. From Proposition 2.5, (iv), any solution w ≡ 0 has a finite number of zeros. We can assume that w(., a) and w ′ (., a) < 0 for large r, from Proposition 2.4. Consider the corresponding trajectory T n of the nonautonomous system (2.17) in the phase plane (y, Y ). From Proposition (4.1) it is bounded near ∞. Let Γ be the limit set of T n at ∞; then y ≥ 0 and Y ≥ 0 for any (y, Y ) ∈ Γ. From [START_REF] Logemann | Nonautonomous systems: asymptotic behaviour and weak invariance principles[END_REF], Γ is nonempty, compact and connected, and for any point P 0 ∈ Γ, the positive trajectory T a of the autonomous system (2.18) issued from P 0 at time 0 is contained in Γ. From [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF]Theorem 5.4] we have a complete description of the solutions of system (2.18) when α < η. Since δ < N, the point (0, 0) is a saddle point; since α < α * the point M ℓ is a sink. The only possible trajectories of (2.18) ending up in the set y ≥ 0,Y ≥ 0 are either the points 0, M ℓ , or a trajectory T a,s starting from ∞ and ending up at 0, or trajectories T a ending up at M ℓ . And T a,s does not meet the curve M = (λ, (δλ) p-1 ) : λ > 0 .

Then either Γ = {0} , or Γ = {M ℓ } , or Γ contains some point P 0 of T a,s , or T a , thus also the part of T a,s or T a issued from P 0 . If Γ = {M ℓ } or {0} , the trajectory converges to this point. If it is not the case, then y is not monotonous, then there exists a sequence of extremal points of y, such that (y, Y ) ∈ M. Let P 0 be one of these points; then P 0 ∈ T a,s , thus the autonomous trajectory going through P 0 converges to M ℓ . Then Γ contains also M ℓ , thus there exists a sequence ( Remark 4.7 If α > α * , the regular solutions of system (2.18) are oscillatory, see [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF]Theorem 5.8]. We cannot prove the same result for equation (1.10), since it is a global problem, and system (2.17) is only a perturbation of (2.18) near infinity; and the use of the energy function W does not allow to conclude.

Existence of positive solutions

From Theorem 4.6, we first prove the existence of positive solutions, and their decay can be qualifieed as slow among the possible behaviours given at Proposition 4.4:

Proposition 4.8 Assume δ ≤ α < N . Let a > 0 be defined at Proposition 2.5. Then for any a ∈ (0, a], and w(r, a) > 0 on [0, ∞) , and satisfies (4.7) if δ < α, or (4.10) if α = δ.

(vi) If 1 < q ≤ q 1 , then N < δ and N ≤ α 0 thus all the solutions w are changing sign, from Proposition 2.5, (ii); and there exists an infinity of fast decaying solutions w, from Theorem 3.6 (ii); the estimates follow from Proposition 3.2. Moreover in the case p < 2, from Theorem 3.15, w has a finite number of zeros if α 0 is not too large, in particular if α 0 < α * ,where α * is defined at (1.14) (α * < δ), which means 1 < p -1 + p/α * < q ≤ q 1 .This requires N < α * , which means that p is sufficiently close from 2 , more precisely (2p -3)p > N (2 -p)(p -1), in particular p > 3/2). On the contrary, there exists ᾱ ∈ (max(N, α * ), δ) such that w is oscillatory if α 0 > ᾱ, which means 1 < q < p -1 + p/ᾱ.

Remark 5.1 If q = q 1 , then α 0 = N, thus for each of these functions w, there exists C ∈ R such that the corresponding function u satisfies

R N u(t)dx = C R N
wdx, and u(t) 1 = |C| w 1 for any t > 0; then there exists a sequence (t n ) → 0 such that u(t n ) converges weakly to a bounded measure µ in R N ; we still have lim t→0 sup |x|≥ε |u(x, t)| = 0, hence µ has its support at the origin; we cannot assert that µ is a Dirac mass as in the case p = 2, see [START_REF] Weissler | Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation[END_REF], since we have no uniqueness result for equation 1.1, inasmuch as u has not a constant sign.
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 1 

  is small enough. Then T is a strict contraction from B ρ,M into itself. Moreover if ρ(a) and M (a) are small enough, then for any b ∈ [a/2, 3a/2] , w(., b) -w(., a) C 0 ([0,ρ]) ≤ |b -a| + 1 2 w(., a) -w(., b) C 0 ([0,R]) that means w(a, .) is Lipschitz dependent on a in [0, ρ(a)] . The same happens for w ′ (., a), as in (2.32), since w ′ (., b) -w ′ (., a) = |H(w(., b))| (2-p)/(p-1) H(w(., b)) -|H(w(., a))| (2-p)/(p-1) H(w(., a)) .

Proposition 2 . 4

 24 Let w be any solution of problem(1.10)

Proposition 2 .

 2 11 (i) For any γ ≥ 0 if p > 2, any γ ∈ [0, δ) if p < 2, any solution of (1.10) satifies near ∞ w(r) = O(r -γ ) + O(r -α ). (2.50) (ii) The solution w = w(., a) of problem (1.10), (1.15) satisfies |w(r, a)| ≤ C γ (a)((1 + r) -γ + (1 + r) -α ), (2.51)

from Proposition 2 . 4 .

 24 Consider the sequence (d n ) defined by d 0 = 0, d n+1 = (d n + 1)p/2. It is increasing and tends to ∞ if p ≥ 2 and to δ if p < 2. After a finite number of steps, we get (2.50) by changing slightly the sequence if it takes the value 2α/p -1. (ii) We have |w(., a)| ≤ a, from Theorem 2.1. Assuming that for some d ≥ 0, |w(r, a)| ≤ C d (a)(1 + r) -d on [0, ∞) , and C d is continuous, then |w(r, a)| ≤ Cd (a)((1 + r) -(d+1)p/2 + (1 + r) -α )

3 )Proposition 3 . 2

 332 Consider any d ≥ α, with (2 -p)d < p, such that w(r) = O(r -d ), hence also w ′ (r) = O(r -d-1 ) from Proposition 2.10. Then w(r) = O(r -d(p-1)-p ) + O(r -qd ) from (3.3). Setting d 0 = α and d n+1 = min(d n (p -1) + p, qd n ), the sequence (d n ) is nondecreasing. it tends to ∞ if p > 2, and to δ if p < 2. Thus w(r) = o(r -d ), for any d ≥ 0 if p > 2, for any d < δ if p < 2.(3.4)Next we give better estimates, for any solution of the problem, even changing sign or not everywhere defined. Assume (3.1). Let w be any solution of (1.10) such that lim r→∞ r α w(r) = 0.(i)If p > 2, then w has a compact support.(ii) If p < 2, then w(r) = O(r -δ ) near ∞.

(p - 1

 1 )y ′′ d = e ((p-2)d+p)τ ψ 2-p y ′ d (1 + o(1) + (d -α)y d (1 + o(1) .

  and δ < η from (1.6), we find p < (2 -p)η < (3 -p)η, then e -ητ y ′ η (τ ) = O(e (p-(3-p)η)τ ), thus y ′ η (τ ) = O(e (p-(2-p)η)τ ). Then y η has a limit c ≥ 0 as τ → ∞, thus lim r→∞ r η w = c. Suppose that c = 0. Then y d (τ ) = O(e -γ 0 τ ), with γ 0 = (2 -p)d -p > 0. Assuming that y d (τ ) = O(e -γnτ ) for some γ n > 0, then y ′ d (τ ) = O(e -γnτ ) from Proposition 2.10, hence (e -dτ y ′ d ) ′ = O(e (p-(3-p)d-(3-p)γn )τ ), and in turn y d (τ ) = O(e -γ n+1 τ ) with γ n+1 = (3 -p)γ n + (2 -p)d -p. And lim n→∞ γ n = ∞, thus w(r) = o(r -γ ) for any γ > 0. Let use make again the substitution (2.11), with now d > η. The new function y d satisfies lim τ →∞ y d (τ ) = lim τ →∞ y ′ d (τ ) = 0. It is nondecreasing near ∞, since α = d : indeed at each point τ large enough where y ′ d (τ ) = 0, y ′′ d (τ ) has a constant sign from (2.12). Otherwise lim τ →∞ e (p-(2-p)d)τ = 0, since δ < d. Then (p -1)y ′′ d + (2d -η + o(1)) y ′ d + d(d -η + o(1))y d = 0; thus y ′′ d is concave for large τ, which is a contradiction. Thus c > 0 and (3.6) holds. (iii) Case p = p 1 (δ = N ).

Theorem 3 . 5

 35 Assume (3.1). For any solution w = w(., a) of problem (1.10), (1.15), setting L = L(a), the function a -→ L(a) is continuous on whole R. Moreover the family of functions (a -→ (1 + r) α w(r, a)) r≥0 is equicontinuous on R.

  thus the family of functions (a -→ J α (r, a)) r≥0 is equicontinuous at a 0 . Next for any r ≥ 1 and any a ∈ V, |r α w(r, a) -J α (r, a)| = r α-1 w ′ (r, a) p-1 ≤ Cr (2-p)α-p , thus for any ε > 0, there exists rε ≥ r ε such that sup a∈V,r≥rε |r α w(r, a) -J α (r, a)| ≤ ε.

  Indeed H(µ, (δµ) p-1 ) = (δµ) 2-p /(p -1), and for any ξ, ζ ∈ [-1, 1]

  And H(y, Y ) ≤ H(ℓ + ε, (δ(ℓ + ε)) p-1 ) = 2δ -N -m, for some m = m(ε) > 0, thus Ψ ′ (τ ) = U(y (τ ) , Y (τ )) ≥ m δy -|Y | (2-p)/(p-1) Y |δy|) p-2 δy -Y . Now there exists a constant c = c(p) such that for any (a, b) ∈ R 2 \ {(0, 0)} , (a -b) |a| p-2 a -|b| p-2 b ≥ c(|a| + |b|) p-2 (a -b) 2 ,

  thus lim τ →∞ W(y(τ ), Y (τ )) = lim τ →∞ W (τ ) = -∞; and again lim τ →-∞ W(y(τ ), Y (τ )) = 0. From[START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF] Lemma 4.3] we know the shape of the level curves C k = {W(y, Y ) = k} : either k > k ℓ and C k has two unbounded connected components, or 0 < k < k ℓ and C k has three connected components and one of them is bounded, or k = k ℓ and C k ℓ is connected with a double point at M ℓ , or k = 0 and one of the three connected components of C 0 is {(0, 0)} , or k < 0 and C k has two unbounded connected components. As a consequence there exists τ 1 such that W(y(τ 1 ), Y (τ 1 )) = k ℓ ; then again W (τ 1 ) > k ℓ . Thus W has at least a maximum point τ 0 such that W (τ 0 ) > k ℓ , and the conclusion follows as above.

(4. 1 )Proposition 4 . 1

 141 However it is not straightforward to obtain exact estimates, and they can be false, see Proposition 4.4 below. Here again the key point is the use of enegy function W defined at(2.22). Assume q > 1, p < 2, and δ < α, or N ≤ α = δ. Then any solution w of problem (1.10) satisfies w(r) = O(r -δ ), w ′ (r) = O(r -δ-1 ) near ∞. (4.2)

Remark 4 . 2 . 3 )

 423 Under the assumptions of Proposition 4.1, we can improve the estimate (4.2) for the global solutions: there exists a constant C = C(N, p) independent on a, such that all the solutions w(.a) of (1.10), (1.15) satisfy |w(r, a)| ≤ Cr -δ , for any r > 0. (4Indeed let w be any solution. Then lim τ →-∞ y(τ ) = lim τ →-∞ Y (τ ) = 0, thus lim τ →-∞ W (τ ) = 0. If 2δ ≤ N, then W (τ ) ≤ 0 for any τ, which gives an upper bound for y independent on a. The same happens in case 2δ > N : S is interior to some curve W(y, Y ) = k, with k independent on a, and W (τ ) ≤ k, for any τ . Thus (4.3) holds. As a consequence, Then |w(r, a)| ≤ max(C, a)2 δ (1 + r) -δ for any r > 0, from Theorem 2.1.

. 6 )Proposition 4 . 4 . 8 )

 6448 Next we precise the behaviour of the solutions according to the values of α. Assume q > 1, p < 2. Let w be any solution w of problem (1.10) such that w has a finite number of zeros. (i) If δ < min(α, N ), then either lim r→∞ r δ w = ±ℓ, or r δ w(r) is bounded near ∞ and r δ w has no limit, and lim r→∞ inf r δ w ≤ ℓ ≤ lim sup r→∞ r δ w; (4.9) in the last case p 2 < p. (ii) If α = δ < N , then either lim r→∞ r δ (ln r) -1/(2-p) w = ±η, η = ((2 -p)δ p-1 (N -δ)) 1/(2-p) , (4.10) or (4.8) holds. (iii) If α = δ = N , then lim r→∞ r N w = k = 0. (4.11)

Proposition 4 . 5

 45 Assume q > 1, p < 2, and N ≤ δ < α or N < δ = α. Then for any m > 0, any solution w ≡ 0 of problem (1.10) has a infinite number of zeros in [m, ∞) .

  τ n ) tending to ∞ such that (y (τ n ) , Y (τ n )) converges to M ℓ . Next we consider again the energy function W defined at (2.21), and still use the notations W, U, H, L, S of Section 2.1. Since α < α * , the point M ℓ is exterior to the set S.Thus lim W (τ n ) = W (M ℓ ) = k ℓ < 0, from (3.28), since here δ < N ; and k ℓ = min (y,Y )∈R 2 W (y, Y ) ; and for large n, (y (τ n ) , Y (τ n )) is exterior to S, thus U (y (τ n ) , Y (τ n )) < 0, thus W ′ (τ n ) < 0. Either W is monotone for large τ, then lim τ →∞ W (τ ) = k ℓ , thus lim τ →∞ W (τ ) = k ℓ , which implies lim τ →∞ (y (τ ) , Y (τ )) = M ℓ ,and the trajectory converges to M ℓ . Or there exists another sequence (s n ) of minimal points of W, such thats n > τ n and W (s n ) < W (τ n ) . Then k ℓ ≤ lim inf W (s n ) ≤ lim sup W (s n ) = lim sup W (s n ) ≤ k ℓ . Thus also lim τ →∞ (y (s n ) , Y (s n )) = M ℓ . But 0 = W ′ (s n ) < U (y (s n ) , Y (s n ))thus (y (s n ) , Y (s n )) ∈ S, which is contradictory. Thus Γ = {M ℓ } or {0} , thus w satisfies (4.7) or (4.8) from Proposition (4.4).

From Proposition 3.2, either p 1 < p and V (r) = O(r 2(α-δ) ) near ∞, where α < δ; or p < p 1 and V (r) = O(r 2(α-η) ), and α < δ < η from (1.6); or p = p 1 and V (r) = O(ln r -(N +1)/2 ). In any case lim r→∞ V (r) = 0, hence again a contradiction. Remark 3.12 With no hypothesis on p, if w(r 0 ) = 0 for some real r 0 , then from (3.23), (3.24),

As in [START_REF] Peletier | On the equation ∆u + 1 2 x.∇u + f (u) = 0[END_REF] such a relation can be extended to the nonradial case and then applied to nonradial solutions w.

Remark 3.13 Property (ii) was proved for equation (1.12) in [START_REF] Qi | The global existence and finite time extinction of a quasilinear parabolic equation[END_REF]. It is new in the general case.

It can be also obtained by using the energy function W defined at (2.22) instead of V.

The result (iii) is new. Is also true when p = 2 : if N/2 < α < N -1 and q ≥ q * α , where q * α = (3α -N + 1)/(N -1 -α) > q * , we prove that all the solutions are ground states, with a slow decay.In the case p = 2, q = q * it had been shown by variational methods in [START_REF] Escobedo | Variational problems related to self-similar solutions of the heat equation[END_REF] that there exist ground states with a fast decay, whenever N/2 < α < N when N ≥ 4, or if 2 < α < 3 when N = 3; moreover from [START_REF] Atkinson | On the radial solutions of equation ∆u + 1 2 x.∇u + 1 2 u + |u| p-1 u = 0[END_REF], they do not exist when 1 < α ≤ 2. Apparently nothing was known beyond the critical case. Remark 3.14 If 1 < p ≤ p 1 , then the condition α < (N -1)p ′ /2 is always satisfied, since α < δ ≤ N ≤ (N -1)p ′ /2. If p 1 < p, our conditions imply α < N, which was a necessary condition in order to get positive solutions, from Proposition 2.5.

Oscillation or nonoscillation criteria

Our next result concerns the case p < 2, and N ≤ α, thus N ≤ α < δ from (3.1), where there exists no positive solutions: all the solutions are changing sign. It is new, and uses the ideas of [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF] for the problem without source (1.12). It involves the coefficient α * defined at (1.14), which here satisfies α * < δ, and the energy function W defined at (2.23); we use the notations W, U, H, L, S of Section 2.1. (ii) There exists α ∈ (max(N, α * ), δ) such that for any α ∈ (α, δ), any solution w(., a) has a infinity of zeros.

Proof. We still have w(r, a) > 0 from Proposition 2.5, and J N is nondecreasing and J N (0) = 0. If the conclusions were not true, then w(r) = O(r -η ), from Theorem 4.6, then r N w = O(r N -η ), and N < η from (1.6). Then lim sup r→∞ J N (r) ≤ 0, and we reach a contradiction as at Proposition 3.8.

Next we show the existence of positive solutions with a (faster) decay in r -η in the subcritical case: Theorem 4.9 Assume p < 2, δ < α < N, and 1 < q < q * . Then there exists a > 0 such that w(., a) is positive and satisfies lim r→∞ r η w = c = 0. Then J N (., a 0 ) is increasing for large r and tends to ∞, thus J N (r 0 , a 0 ) > 0 and J ′ N (r 0 , a 0 ) > 0 for r 0 large enough; and then there exists a neighborhood V of a 0 such that w(r, a) > 0 on [0, r 0 ] and J N (r 0 , a) > 0 and J ′ N (r 0 , a) > 0 for any a ∈ V. Then J ′ N (r 0 , a) > 0 for any r ≥ r 0 , since w(., a) is decreasing. Then for any a ∈ V, from Propositions 4.4 and 2.10, either lim r→∞ r η w = c > 0, and lim r→∞ r η+1 w ′ = -cη, from (2.14) and (2.13) with d = η; then lim r→∞ J N (., a) = -c p-1 , which is impossible. Or necessarily lim r→∞ r δ w(., a) = ℓ, thus a ∈ A. Let a inf = inf B > a and a sup = sup A < a. Taking a = a inf or a sup , then w(., a) is positive and lim r→∞ r η w = c. Remark 4.10 Under the assumptions of theorem 4.9, any solution w(., a) (a = 0) has a finite number of zeros, and lim r→∞ r δ w(., a) = Λ(a), with Λ(a) = ±ℓ or 0. Here the function Λ is not continuous on (0, ∞) . Indeed it would imply that the set {a > 0 : Λ(a) = ℓ} is closed and open in (0, ∞) , and non empty, which contradicts the above results.

At last in the supercritical case, we show the existence of grounds states for any a > 0, and they have a (slow) decay: (ii) If p 2 < p < p 1 and α < (N -1)p ′ /2, and q ≥ q * α > q * , where q * α is given by (1.14), then again w(r, a) > 0 on [0, ∞) and (4.7) or (4.10) holds.

Proof. We consider again the function V = V λ,σ,e defined at (2.9).

(i) Suppose p ≤ p 2 . As in Theorem 3.11 (ii) we take λ = N = 2σ and e = α -N/2. Then V ′ ≤ 0 from (3.25) and in the same way w(r) > 0 on [0, ∞) . From Proposition (4.4), if (4.7) does not hold, then w = O(r -η ), w ′ = O(r -(η+1) ) near ∞. Then by computation, V (r) = O(r -η ), thus lim r→∞ V (r) = 0. Then V ≡ 0 on [0, ∞) which is contradictory.

(ii) Suppose p 2 < p < p 1 , and α < (N -1)p ′ /2. As in Theorem 3.11 (ii) we take λ = 2α and σ = N -1 -2α/p ′ and e = σ -α.Observe that α < η, thus from Theorem 4.6, if (4.7) does not hold, then again w = O(r -η ), w ′ = O(r -(η+1) ) near ∞. Then by computation, V (r) = O(r 2α-(N -1)p ′ ) near ∞, hence lim r→∞ V (r) = 0 and we reach again a contradiction.

Back to problem (1.1)

Here we apply to equation (1.4) the results of Section 3 with α = α 0 = p/(q + 1 -p), and show our main result.

Proof of Theorem 1.1. 0ne has α 0 > 0 since q > p -1, and (3.1) holds since q > 1. (i) The existence and behaviour of w follows from Theorem 2.1 and Proposition 3.1.

(ii) Condition q 1 < q is equivalent to α 0 < N, and Proposition 3.8 applies.

(iii) If q 1 < q < q ⋆ , then Theorem 3.9 shows the existence of fast nonnegative decaying solutions w. For any s ≥ 1, there exists C > 0 such that for any t > 0, u(t) s = Ct (N/sα 0 -1)/(q-1) w s .

(

If p > 2, then w has a compact support thus u(t) ∈ L s (R N ). If p < 2, then u is positive, and from Proposition (3.3), w satisfies 1.9, with ℓ(N, p, q) and ρ(N, p, q) given by (3.5) and (3.7) with α = α 0 :

; hence again u(t) ∈ L s (R N ). Indeed either p 1 < p, thus N < δ, and w

or p = p 1 , and w = O(r -N (ln r) -(N +1)/2 ), and ∞ 1 r N -1-N s (ln r) -(N +1)/2 dr < ∞. Moreover lim t→0 u(t) s = 0 whenever s > N/α 0 , from (5.1). For fixed ε > 0, from Proposition 3.2, either p > 2 and sup |x|≥ε |u(x, t)| = 0 for t ≤ t(ε) small enough, or p < 2 and sup |x|≥ε |u(x, t)| ≤ C(ε)t (δ/α 0 -1)/(q-1) for t ≤ t(ε) small enough, and α 0 < δ, hence in any case lim t→0 sup |x|≥ε |u(x, t)| = 0.

(iv) The assertions follow from Theorem 3.6 (ii) and (iii), and from Proposition 3.3.

(v) Here we applyTheorem 3.11 (i) and (ii). Indeed if p > p 2 , and q ≥ q ⋆ , then α 0 ≤ (N -p)/p < N/2.