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Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient

Thanks to a change of unknown we compare two elliptic quasilinear problems with Dirichlet data in a bounded domain of R N . The first one, of the form -∆ p u = β(u) |∇u| p + λf (x), where β is nonnegative, involves a gradient term with natural growth. The second one, of the form -∆ p v = λf (x)(1 + g(v)) p-1 where g is nondecreasing, presents a source term of order 0. The correlation gives new results of existence, nonexistence and multiplicity for the two problems.

Résumé

Corrélation entre deux problèmes quasilinéaires elliptiques avec terme de source relatif à la fonction ou à son gradient A l'aide d'un changement d'inconnue nous comparons deux problèmes elliptiques quasilinéaires avec conditions de Dirichlet dans un domaine borné Ω de R N . Le premier, de la forme -∆ p u = β(u) |∇u| p +λf (x), où β est positif, comporte un terme de gradient à croissance critique. Le second, de la forme -∆ p v = λf (x)(1 + g(v)) p-1 où g est croissante, contient un terme de source d'ordre 0. La comparaison donne des résultats nouveaux d'existence, nonexistence et multiplicité pour les deux problèmes.

Version française abrégée

Soit Ω un domaine borné régulier de R N (N ≧ 2) et 1 < p < N . Dans cette note nous comparons deux problèmes quasilinéaires. Le premier comporte un terme de source d'ordre 1:

-∆ p u = β(u) |∇u| p + λf (x) dans Ω, u = 0 sur ∂Ω, (1) 
où β ∈ C 0 ([0, L)), L ≦ ∞, à valeurs ≧ 0, λ > 0 et f ∈ L 1 (Ω), f ≧ 0 p.p. dans Ω. Le second problème comporte un terme de source d'ordre 0: .

-∆ p v = λf (x)(1 + g(v)) p-1 dans Ω, v = 0 sur ∂Ω, (2) 
Toutefois dans la transformation peuvent s'introduire des mesures. Notons M + b (Ω) l'espace des mesures de Radon positives bornées sur Ω, et M + s (Ω) le sous-ensemble des mesures concentrées sur un ensemble de p-capacité 0. Nous établissons une correspondance précise entre les deux problèmes: Théorème 1 Soit u une solution renormalisée du problème

-∆ p u = β(u) |∇u| p + λf (x) + α s dans Ω, u = 0 sur ∂Ω, (3) 
où α s ∈ M + s (Ω), et 0 ≦ u(x) < L p.p. dans Ω. Alors il existe µ s ∈ M + b (Ω), telle que v = Ψ(u) est solution atteignable du problème -∆ p v = λf (x)(1 + g(v)) p-1 + µ s dans Ω, v = 0 sur ∂Ω. (4) 
Réciproquement soit v une solution renormalisée de (4), telle

0 ≦ v(x) < Λ p.p. dans Ω, où µ s ∈ M + s (Ω). Alors il existe α s ∈ M + s (Ω) telle que u = H(v) est solution renormalisée de (3). De plus, si µ s = 0, alors α s = 0. Si L = ∞ et β ∈ L 1 ((0, ∞)), alors µ s = e γ(∞) α s . Si L < ∞, ou L = ∞ et β ∈ L 1 ((0, ∞)), et α s = 0 alors (3) n'a pas de solution. Si Λ < ∞ et µ s = 0, alors (4) n'a pas de solution.
Dans le cas β constant, les résultats suivants généralisent ceux de [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] relatifs au cas p = 2:

Théorème 2 On suppose que β(u) ≡ p -1, donc v = Ψ(u) = e u -1 et g(v) = v, et que λ 1 (f ) = inf ( Ω |∇w| p dx)/( Ω f |w| p dx) : w ∈ W 1,p 0 (Ω)\ {0} > 0 Si λ > λ 1 (f ), ou λ = λ 1 (f ) et f ∈ L N/p
(Ω), alors (1) et (2) n'ont pas de solution renormalisée. Si 0 < λ < λ 1 (f ) alors (2) a une solution unique v 0 ∈ W 1,p 0 (Ω), et (1) a une solution unique u 0 ∈ W 1,p 0 (Ω) telle que e u0 -1 ∈ W 1,p 0 (Ω). Si de plus f ∈ L r (Ω) avec r > N/p, alors u 0 et v 0 ∈ L ∞ (Ω); et pour toute mesure µ s ∈ M + s (Ω), (4) a une solution renormalisée v s , et donc (1) a une infinité de solutions u s = H(v s ) ∈ W 1,p 0 (Ω) moins régulières que u 0 .

Le théorème 1 et l'utilisation du problème (1) nous permettent de déduire un résultat important pour le problème (2), étendant un résultat classique de [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF] dans le cas p = 2 :

Théorème 3 On suppose que Λ = ∞, lim s→∞ g(s)/s = ∞, g est convexe à l'infini, et f ∈ L r (Ω) avec r > N/p. Alors il existe λ * > 0 tel que pour tout λ ∈ (0, λ * ) le problème (2) a une solution minimale bornée v λ , et pour tout λ > λ * il n'a aucune solution renormalisée.
Nous étudions aussi les propriétés de la fonction extrémale v * = sup λրλ * v λ étendant certains résultats de [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF], [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF], [START_REF] Sanchon | Boundedness of the extremal solutions of some p-Laplacian problems[END_REF]. Dans le cas où g est à croissance limitée par l'exposant de Sobolev, nous obtenons des résultats d'existence d'une seconde solution variationnelle, nouveaux même dans le cas p = 2, étendant ceux de [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] et de [START_REF] Ferrero | On the solutions of quasilinear elliptic equations with a polynomial-type reaction term[END_REF].

Introduction and main results

Let Ω be a smooth bounded domain in R N (N ≧ 2) and 1 < p < N . In this Note we compare two quasilinear problems. The first one presents a source gradient term with a natural growth:

-∆ p u = β(u) |∇u| p + λf (x) in Ω, u = 0 on ∂Ω, (1.1) 
where β ∈ C 0 ([0, L)), L ≦ ∞, and β is nonnegative, and λ > 0 is a given real, and f ∈ L 1 (Ω), f ≧ 0 a.e. in Ω. Here β can have an asymptote at point L, and is not supposed to be nondecreasing.

The second problem involves a source term of order 0, with the same λ and f :

-∆ p v = λf (x)(1 + g(v)) p-1 in Ω, v = 0 on ∂Ω, (1.2) 
where g ∈ C 1 ([0, Λ)), Λ ≦ ∞, g(0) = 0 and g is nondecreasing.

Problems of type (1.1) and (1.2) have been intensively studied the last twenty years. The main questions are existence, according to the regularity of f and the value of λ, regularity and multiplicity of the solutions, and existence with possible measure data.

It is well known that the change of unknown in (1.1)

v(x) = Ψ(u(x)) = u(x) 0 e γ(θ)/(p-1) dθ, where γ(t) = t 0 β(θ)dθ,
leads formally to problem (1.2), where Λ = Ψ(L) and g is given by g(v) = e γ(u)/(p-1) -1. This is a way for studying problem (1.1) from the knowledge of problem (1.2). It is apparently less used the reverse correlation, even in case p = 2: for any function g nondecreasing on [0, Λ), the substitution in (1.2)

u(x) = H(v(x)) = v(x) 0 ds 1 + g(s)
leads formally to problem (1.1), where β is defined on [0, L) with L = H(Λ); indeed H = Ψ -1 . And β is linked to g by relation β(u) = (p -1)g ′ (v). In particular β is nondecreasing if and only if g is convex; and L is finite if and only if 1/(1 + g) ∈ L 1 (0, Λ) . Some examples with p = 2.

1. β(u) = 1 and 1 + g(v) = 1 + v.

2. β(u) = q/(1 + (1 -q)u), q ∈ (0, 1) , and 1 + g

(v) = (1 + v) q . 3. β(u) = 1 + e u and 1 + g(v) = (1 + v)(1 + ln(1 + v)). 4. β(u) = q/(1 -(q -1)u), q > 1 and 1 + g(v) = (1 + v) q . 5. β(u) = 1/(1 -u) and 1 + g(v) = e v .
6. β(u) = q/(1 -(q + 1)u), q > 0 and 1 + g(v) = 1/(1 -v) q . It had been observed in [START_REF] Ferone | Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small[END_REF] that the correspondence between u and v is more complex, because some measures can appear, in particular in the equation in v. Our first main result is to make precise the link between the two problems. We denote by M b (Ω) the set of bounded Radon measures, and by M s (Ω) the subset of measures concentrated on a set of p-capacity 0. And M + b (Ω) and M + s (Ω) are the positive cones of M b (Ω), M s (Ω), and M 0 (Ω) is the subset of measures absolutely continuous with respect to the p-capacity.

Recall that M b (Ω) = M 0 (Ω) + M s (Ω).
We recall one definition of renormalized solutions among four of them given in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]. Let U is measurable and finite a.e. in Ω, such that T k (U ) belongs to W 1,p 0 (Ω) for any k > 0. One still denotes by u the cap p -quasi-continuous representative. Let

µ = µ 0 + µ + s -µ - s ∈ M b (Ω). Then U is a renormalized solution of problem -∆ p U = µ in Ω, U = 0 on ∂Ω, (1.3) 
if |∇U | p-1 ∈L τ (Ω), for any τ ∈ [1, N/(N -1)) , and for any k > 0, there exist α k , β k ∈ M 0 (Ω)∩M + b (Ω), concentrated on the sets {U = k} and {U = -k} respectively, converging in the narrow topology to µ + s , µ - s such that for any

ψ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω), Ω |∇T k (U )| p-2 ∇T k (U ).∇ψdx = {|U|<k} ψdµ 0 + Ω ψdα k - Ω ψdβ k .
Theorem 1.1 Let u be any renormalized solution of problem

-∆ p u = β(u) |∇u| p + λf (x) + α s in Ω, u = 0 on ∂Ω, (1.4) 
where α s ∈ M + s (Ω) and such that 0 ≦ u(x) < L a.e. in Ω. Then there exists

µ s ∈ M + b (Ω), such that v = Ψ(u) is a reachable solution of problem -∆ p v = λf (x)(1 + g(v)) p-1 + µ s in Ω, v = 0 on ∂Ω. (1.5)
Conversely let v be any renormalized solution of (1.5), where µ s ∈ M + s (Ω) and such that 0 ≦ v(x) < Λ a.e. in Ω. Then there exists

α s ∈ M + s (Ω) such that u = H(v) is a renormalized solution of (1.4). Moreover if µ s = 0, then α s = 0. If L = ∞ and β ∈ L 1 ((0, ∞)), then µ s = e γ(∞) α s . If L < ∞ or if L = ∞ and β ∈ L 1 ((0, ∞)
), and α s = 0, then (1.4) has no solution. If Λ < ∞, and µ s = 0, then (1.5) has no solution.

This theorem extends in particular the results of [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] where p = 2 and L = ∞. The nonexistence result when β ∈ L 1 ((0, ∞)), and α s = 0, answers to an open question of [START_REF] Porretta | Nonlinear equations with natural growth terms and measure data[END_REF].

First we apply to the case β constant, which means g linear.

Theorem 1.2 Assume that β(u) ≡ p -1, thus v = Ψ(u) = e u -1 and g(v) = v. Suppose that λ 1 (f ) = inf ( Ω |∇w| p dx)/( Ω f |w| p dx) : w ∈ W 1,p 0 (Ω)\ {0} > 0 (1.6)
If λ > λ 1 (f ), or λ = λ 1 (f ) and f ∈ L N/p (Ω), then (1.1) and (1.2) admit no renormalized solution. If 0 < λ < λ 1 (f ) there exists a unique solution v 0 ∈ W 1,p 0 (Ω) to (1.2), thus a unique solution u 0 ∈ W 1,p 0 (Ω) to (1.1) such that e u0 -1 ∈ W 1,p 0 (Ω). If f ∈ L r (Ω) with r > N/p, then u 0 and v 0 ∈ L ∞ (Ω), and moreover for any measure µ s ∈ M + s (Ω), there exists a renormalized solution v s of (1.5); then there exists an infinity of less regular solutions u s = H(v s ) ∈ W 1,p 0 (Ω) of (1.1).

Remark 1.3 Under the assumption (1.6), most of these existence results extend to general g such that Λ = ∞ and lim sup τ -→∞ g(τ )/τ < ∞. They extend to the case

lim sup τ -→∞ g(τ )/τ q < ∞ for some q ∈ (1, N/(N -p)) (1.7) if moreover f ∈ L r (Ω) with qr ′ < N/(N -p).
Next consider problem (1.2) with general g, and f ∈ L r (Ω) with r > N/p. It is easy to prove that for small λ > 0 there exists a minimal solution v λ ∈ W 1,p 0 (Ω) such that v λ L ∞ (Ω) < Λ. Our main result is an extension of a well known result of [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF] for p = 2, and [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF] for p > 1. It is noteworthy that the proof uses problem (1.1):

Proof of Theorem 1.1 For p = 2, we cannot use approximations of the equations because of the nonuniqueness of the solutions of -∆ p U = µ with µ ∈ M + b (Ω). The main idea is to use the equations satisfied in the sense of distributions by the truncated functions T K (u) = min(K, u) and T k (v) = min(k, v) with k = Ψ(K), using definition (ii) of renormalized solution given above:

-∆ p T K (u) = β(T K (u)) |∇ T K (u)| p + λf χ {u≦K} + α K , in D ′ (Ω) , -∆ p T k (v) = λf (1 + g(v)) p-1 χ {v≦k} + µ k , in D ′ (Ω) ,
where µ k and α K are two measures concentrated on the same set: {u = K} = {v = k} , and explicitely related by µ k = (1 + g(k)) p-1 α K , and respectively converging weakly * to µ s and α s . The nonexistence results are consequences of some properties of renormalized solutions, also called Inverse Maximum Principle.

Proof of Theorem 1.2. The nonexistence is first proved for (1.1), and then for (1.2) by Theorem 1.1. The existence is obtained by iteration and approximation, using [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]. Uniqueness follows from Picone's identity, adapted to renormalized solutions.

Proof of Theorem 1.4. Formally, if v is a solution of (1.2) for some λ, and u = H(v), then ū = (1 -ε)u is a supersolution of (1.1) relative to λ = (1 -ε) p-1 λ, and v = Ψ(ū) is a supersolution of (1.2) relative to λ; then there exists a solution v 1 ≦ v. Using Theorem 1.1 we show that it is not formal, since actually no measure appears. In the (best) case H (∞) < ∞, v is bounded, then also v 1 is bounded. Otherwise a bootstrapp using Lemma 2.1is needed for constructing a bounded solution.

Proof of Theorem 1.5. The Euler function J λ is well defined, and for small λ it has the geometry of Mountain Path near 0, but the Palais-Smale sequences may be unbounded. From [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem[END_REF], (1.2) has a second solution for almost any small λ, and then for a sequence λ n → λ, and we are lead to prove that the solutions v λn relative to λ n converge to a solution to (1.2) relative to λ. The usual estimates for the case p = 2, using an eigenfunction as test function, cannot be extended. We get an estimate of -∆ p v λn in L 1 (Ω) in another way, using the convexity of g. The estimate of v λn in W 1,p 0 (Ω) is obtained by contradiction. For larger λ, if p = 2, J λ has still the geometry of mountain path near v λ ; the question is open when p = 2. Under Ambrosetti-Rabinowitz condition we apply some results of [START_REF] Ghoussoub | A general mountain path principle for locating and classifying critical points[END_REF].

Proof of Theorem 1.6. The estimates come from Lemma 2.1 and well known regularity results for quasilinear equations, and from an extension of techniques of [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF].

où g ∈ C 1 (

 1 [0, Λ)), Λ ≦ ∞, g(0) = 0 et g est croissante. Le changement d'inconnue v(x) = Ψ(u(x)) = u(x) 0 e γ(θ)/(p-1) dθ, où γ(t) = t 0 β(θ)dθ,conduit formellement du problème (1) au problème (2), et β et g sont liés par la relation β(u) = (p -1)g ′ (v). En particulier β est croissant si et seulement si g est convexe. Le changement d'inconnue inverse formel, apparemment moins utilisé, est donné explicitement par u(x) = H(v(x)) =

 Theorem 1.4Assume that Λ = ∞, and lim s-→∞ g(s)/s = ∞, and g is convex near infinity, and f ∈ L r (Ω) with r > N/p. There exists a real λ * > 0 such that:

(i) for λ ∈ (0, λ * ) problem (1.2) has a minimal bounded solution v λ , (ii) for λ > λ * there exists no renormalized solution.

When g is subcritical with respect to the Sobolev exponent p * = N p/(N -p), we obtain new multiplicity results for problem (1.2), even in the case p = 2, extending [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] and [START_REF] Ferrero | On the solutions of quasilinear elliptic equations with a polynomial-type reaction term[END_REF] : Theorem 1.5 Under the assumptions of Theorem 1.4, assume that

and f ∈ L r (Ω) with (Q + 1)r ′ < p * . Then there exists λ 0 > 0 such that for any λ < λ 0 , there exists at least two

2). Moreover if p = 2, g is convex, or g satisfies the Ambrosetti-Rabinowitz growth condition and f ∈ L ∞ (Ω), the same result holds with λ 0 = λ * .

Concerning the extremal solution, we get the following, extending some results of [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF], [START_REF] Sanchon | Boundedness of the extremal solutions of some p-Laplacian problems[END_REF]: relative to v. Then for small λ the problem in u has an infinity of solutions u ∈ W 1,p 0 (Ω), two of them being bounded.

Remark 1.8 A part of our results is based on a growth assumption on g. Returning to problem (1.1), this condition is not always easy to verify. When L = ∞, all the "usual" functions β, even with a strong growth, satisfy lim sup τ -→∞ g(τ )/τ q < ∞ for any q > 0, see [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF]. However using the converse correlation between g and β, we prove that the conjecture that this condition always holds is wrong: let F ∈ C 0 ([0, ∞)) be any strictly convex function, with lim s-→∞ F (s) = ∞. Then there exists an increasing function β such that lim t-→∞ β(t) = ∞ and the corresponding g satisfies lim sup τ -→∞ g(τ )/F (τ ) = ∞.

Sketch of the main proofs

In some proofs we use a regularity Lemma: