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Model Selection for CART Regression Trees
Servane Gey , Elodie Nedelec

Abstract—
The performance of the Classification And Regression Trees
(CART) pruning algorithm and the final discrete selection
by test-sample as a functional estimation procedure are con-
sidered. The validation of the pruning procedure applied to
Gaussian and bounded regression is of primary interest. On
the one hand, the paper shows that the complexity penalty
used in the pruning algorithm is valid in both cases and, on
the other hand, that, conditionally to the construction of the
maximal tree, the final selection does not alter dramatically
the estimation accuracy of the regression function. In both
cases the risk bounds that are proved, obtained by using
the penalized model selection, validate the CART algorithm
which is used in many applications such as Meteorology, Bi-
ology, Medicine, Pollution or Image Coding.

Keywords— Gaussian Regression, Bounded Regression,
CART, Pruning, Model Selection.

AMS 2000 subject classifications : primary 62G08, 62J02
and secondary 62-07.

I. Introduction

THE aim of Classification And Regression Trees
(CART) proposed by Breiman, Friedman, Olshen and

Stone [1] in 1984 is to construct an efficient algorithm which
gives a piecewise constant estimator of a classifier or a re-
gression function from a training sample of observations.
This algorithm is based on binary tree-structured parti-
tions and on a penalized criterion that permits to select
some “good” tree-structured estimators among a huge col-
lection of trees. In practice, it yields some easy-to-interpret
and easy-to-compute estimators which are widely used in
many applications such as Medicine, Meteorology, Biology,
Pollution or Image Coding (see [2], [3] for example). From
a more general point of view on regression methods, this
kind of algorithm is often performed when the space of ex-
planatory variables is high-dimensional. Indeed, due to its
local splitting, CART needs fewer operations than other
usual methods to provide estimators.
More precisely, given a training sample of observations, the
CART algorithm consists in constructing a large tree from
the observations by minimizing at each step some impurity
function, and then, in pruning the thus constructed tree to
obtain a finite sequence of nested trees thanks to a penal-
ized criterion, whose penalty term is proportional to the
number of leaves.
This raises the question of “why” this penalty is well-
chosen. This paper aims at validating the choice of the
penalty in the Gaussian and bounded regression frame-
works. In the classification case, it is not that clear for
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a good penalty to be proportional to the number of leaves.
The interested reader will find some discussions and results
about this topic in the paper by Nobel [4].

Let L = {(X1, Y1); . . . ; (XN , YN )} be a set of independent
random variables, where each (Xi, Yi) ∈ X × R follows
a regression model with a common regression function s.
Let s̃ be the piecewise constant estimator of s provided
by CART. We measure the performance of s̃ by the risk
defined as follows :

R(s̃, s) = E

[
(s̃(X) − s(X))2

]
, (1)

where E denotes the expectation with respect to the current
distribution of (X,Y ).

In this paper, we leave aside the analysis of the growing
procedure to focus on the pruning procedure. We show
that this method, used to reduce the complexity of the
problem, is well-chosen in the sense that it guarantees a
good performance of the selected estimator s̃ in terms of
its risk R(s̃, s). All our upper bounds for the risk are con-
sidered conditionally to the growing procedure. For results
about the growing procedure see the papers by Nobel and
Olshen [5] and Nobel [6] about Recursive Partitioning.

Furthermore, Breiman et. al. [1] propose two algorithms
in their book, one using a test sample and another using
cross-validation. We focus on two methods that use a test
sample and give about the same results : let us split L in
three independent subsamples L1, L2 and L3, containing
respectively n1, n2 and n3 observations, with n1+n2+n3 =
N . L1, L2 and L3 are randomly taken in L, except if the
design is fixed. In that case one takes, for example, one
observation out of three to obtain each subsample. Given
these three subsamples, suppose that either a large tree is
constructed using L1 and then pruned using L2 (as done
in Gelfand et al. [7]), or a large tree is constructed and
pruned using the same subsample L1 (as done in Breiman
et al. [1]). Then the final step used in both cases is to
choose a subtree among the sequence obtained after the
pruning procedure. The method we will study in the rest of
the paper is to make L3 go down each tree of the sequence
and to select the tree which has the minimum empirical
quadratic contrast, i.e., given for any k = 1, 2, 3 and any
u ∈ L

2(X ) the empirical quadratic contrast

γnk
(u) =

1

nk

∑

(Xi,Yi)∈Lk

(Yi − u(Xi))
2 , (2)

to take the final estimator of s as follows :

s̃ = argmin
{ŝTi

;16i6K}

[γn3
(ŝTi

)] , (3)



where ŝTi
is the piecewise constant estimator of s defined

on the leaves of the tree Ti and K is the number of trees
appearing in the sequence.

In this paper we analyze the risk of s̃ and we prove that
the penalty used in the pruning algorithm for the two above
mentioned cases is well-chosen, using some of Birgé, Mas-
sart’s [8] and Massart’s [9] results on model selection via
dimensional penalization. Engel [10] and Donoho [11] ob-
tain some results of consistency in the regression case for
estimators by histograms constructed via binary partition-
ing on a dyadic deterministic grid of points (xi)16i6N (in
dimension one for Engel and dimension two for Donoho).
This framework differs from ours in the sense that the grid
(Xi)16i6N we consider can be random. Moreover the re-
sults we obtain are nonasymptotic upper bounds for the
risk of the resulting histogram estimator. For more details
about asymptotic results, see also Nobel [12].

The paper is organized as follows. In Section II we recall
some facts about the CART algorithm and give some nota-
tion used in the rest of the paper. In Section III we study
the Gaussian regression framework, in which we validate
the pruning algorithm taking either L1 independent of L2

or L1 = L2 and give an upper bound concerning the final
selection using L3 as test-sample. In Section IV, we per-
form the same program for the bounded regression frame-
work. Section V is devoted to some open questions and the
proofs of the results obtained in the previous sections are
given in the last sections.

II. Preliminaries and Notation

A. The CART Algorithm

Let us give a short account of the CART algorithm in the
regression case and recall the results associated with it,
which are fully explained in [1].
CART is based on recursive partitioning using a training
sample L̃ of the random variable (X,Y ) ∈ X ×R (we shall

take as L̃ = L1 or L̃ = L1 ∪ L2), and a class S of subsets
of X which tells us how to split at each step. Usually S
is taken as some class of half-spaces of X , for example the
half-spaces of X with frontiers parallel to the axes (see for
example [1], [11]). In our framework, we consider a class
S with finite Vapnik-Chervonenkis dimension, henceforth
refered to as VC-dimension (for a complete overview of the
VC-dimension see [13]).
The algorithm is computed in two steps, that we call grow-

ing procedure and pruning procedure. The growing proce-
dure permits to construct, from the data, a maximal binary
tree Tmax by recursive partitioning, and then the pruning
procedure permits to select, among all the subtrees of Tmax,
a sequence which contains the entire statistical information.

A.1 Growing Procedure

The aim of the growing procedure is to construct by re-
cursive partitioning a maximal binary tree Tmax based on
the data composing L1 and on the class S of subsets of X .
This algorithm yields a sharp partition of X , providing a

large collection of estimators.
The first step is computed as follows : the whole space X
is assimilated to the root of the tree, denoted by t1, so that
every observation Xi (1 6 i 6 n1) belongs to t1. The next
step starts by computing the first split as

ŝp = argmin
sp∈S

{γn1
(ŝ|sp) + γn1

(ŝ|spc)}.

Here, for any subset sp of X , ŝ|sp is the minimum least-
squares estimator of s on the set of constant functions on
sp, that is

ŝ|sp = argmin{a1lsp ; a∈R}γn1
(a1lsp)

= Y sp1lsp

where, for all x ∈ X , 1lsp(x) = 1 if x ∈ sp and 1lsp(x) = 0
otherwise, and

Y sp =
1

|Xi ∈ sp|
∑

Xi∈sp

Yi.

Hence, noticing that γn1
(ŝ|sp + ŝ|spc) = γn1

(ŝ|sp) +
γn1

(ŝ|spc), the data of L1 are split in such a way that the
interclass variance between {Yi ; Xi ∈ ŝp} and {Yi ; Xi ∈
ŝpc} is maximal. In the tree terminology, one adds to the
root t1 a left node tL (assimilated to ŝp) and a right node tR
(assimilated to ŝpc). In what follows, we always assimilate
a tree node with its corresponding subset in S.

Then the same elementary step is applied recursively to
the two generated subsamples {(Xi, Yi) ; Xi ∈ ŝp} and
{(Xi, Yi) ; Xi ∈ ŝpc} until some convenient stopping con-
dition is satisfied. This provides the maximal tree Tmax

and one calls terminal nodes or leaves the final nodes of
Tmax.

A.2 Pruning Procedure

First let us recall that a pruned subtree of Tmax is defined
as any binary subtree of Tmax having the same root t1 as
Tmax.
Then, let us introduce the following notation :

(i) Take two trees T1 and T2. Then, if T1 is a pruned
subtree of T2, write T1 � T2.

(ii) For a tree T , T̃ denotes the set of its leaves and |T |
the cardinality of T̃ .

To prune Tmax, one proceeds as follows. First simply de-
note by n the number of data used. Notice that, given a
tree T and ST a set of piecewise functions in L

2(X ) defined
on the partition given by the leaves of T , one has

ŝT = argminz∈ST
γn(z)

=
∑

t∈ eT

Y t1lt.

Then, given T � Tmax and α > 0, one defines

critα(T ) = γn(ŝT ) + α
|T |
n

(4)

the penalized criterion for the so called temperature α, and
Tα the subtree of Tmax satisfying :



(i) Tα = argminT�Tmax
critα(T ),

(ii) if critα(T ) = critα(Tα), then Tα � T .
Thus Tα is the smallest minimizing subtree for the temper-
ature α. The existence and the unicity of Tα are given in
[1, pp 284-290].

The aim of the pruning procedure is to make the tempera-
ture α increase and to take at each time the corresponding
Tα. The algorithm is an iterative one consisting in mini-
mizing at each step a function of the nodes, which leads to
a finite decreasing sequence of subtrees pruned from Tmax

Tmax � T1 ≻ . . . ≻ TK−1 ≻ TK = {t1}

corresponding to a finite increasing sequence of tempera-
tures

0 = α1 < α2 < . . . < αK−1 < αK .

Remark 1. T1 is the smallest subtree for the temperature

0, so it is not necessarily equal to Tmax.

Breiman, Friedman, Olshen and Stone’s Theorem [1] justi-
fies this algorithm :

Theorem II-A.1 (Breiman, Friedman, Olshen, Stone)
The sequence (αk)16k6K is nondecreasing, the sequence
(Tk)16k6K is nonincreasing and, given k ∈ {1, . . . ,K}, if
β ∈ [αk, αk+1[, then Tβ = Tαk

= Tk.

By this theorem, it is easy to check that, for any α > 0, Tα

belongs to the sequence (Tk)16k6K .
It is easily seen that this algorithm reduces the complex-
ity of the choice of a subtree pruned from Tmax efficiently,
since by Theorem II-A.1 the sequence of pruned subtrees
contains the whole statistical information according to the
choice of the penalty function used in (4). Consequently it
is useless to look at all the subtrees. Hence, to validate this
algorithm completely, it remains to show that this choice
of penalty is convenient.

The final step is to choose a suitable temperature α. In-
stead of minimizing over α, this issue is dealt with by using
a test-sample to provide the final estimator s̃, as mentioned
in the Introduction, via equality (3). The results given in
Sections III and IV deal, on the one hand, with the perfor-
mance of the piecewise constant estimators given by Tα for
α fixed and, on the other hand, with the performance of s̃.

B. Notation

Assume we observe a set of independent random variables
L = {(X1, Y1), · · · , (XN , YN )} such that :

Yi = s(Xi) + εi,

where (Xi, Yi) lies in X × R, εi is a noise centered condi-
tionally to Xi and s is the regression function to be esti-
mated. Let us define by µ the common distribution of the
(Xi)16i6N and by ‖.‖ the L

2(X , µ)-norm. Then the risk
(1) of the final estimator s̃ becomes

R(s̃, s) = E [‖s̃− s‖2].

Next, for a given tree T , ST will denote the set of some
piecewise constant functions defined on the partition given
by the leaves of T . Thus ŝT will be the minimum quadratic
contrast estimator of s on ST . Then a tree-structured es-
timator ŝ of s is said to satisfy an oracle inequality if there
exists some nonnegative constant C, such that

E
[
‖s− ŝ‖2 | L1

]
6 C inf

T�Tmax

RL1
(ŝT , s),

where, for each subtree T pruned from Tmax, RL1
(ŝT , s) =

E
[
‖s− ŝT ‖2 | L1

]
.

To estimate s using the CART algorithm and to compare
the performance of s̃ with those of each ŝT , two different
methods can be applied :

M1: L is split in three independent parts L1, L2 and
L3 containing respectively n1, n2 and n3 observa-
tions. Hence Tmax is constructed using L1, then
pruned using L2 and finally a best subtree T̂ is
selected among the sequence of pruned subtrees
thanks to L3, and we define s̃ = ŝbT .

M2: L is split in two independent parts L1 and L3

containing respectively n1 and n3 observations.
Hence Tmax is constructed and pruned using L1

and finally a best subtree T̂ is selected among the
sequence of pruned subtrees thanks to L3, and we
define s̃ = ŝbT .

Note that a penalty is needed in both methods in order
to reduce the number of candidate tree-structured mod-
els contained in Tmax. Indeed, if one does not penalize,
the number of models to be considered grows exponentially
with N , so results such as the ones of Wegkamp [14] cannot
be applied. Then, making a selection by using a test sam-
ple without penalizing requires to visit all the models. As
we will see in Sections III-B and IV-B, since in that case
the number of models considered occurs via its logarithm
in the upper bound of the risk, the resulting estimator will
have a significantly large upper bound for its risk. Hence
penalizing permits to reduce significantly the number of
trees taken into account and then to get a convenient risk
for s̃. Both methods M1 and M2 are considered for the
following reasons :
• Since all the risks are considered conditionnally to the
growing procedure the M1 method permits to make a de-
terministic penalized model selection and then to obtain
sharper upper bounds than the M2 method.
• A contrario, the M2 method permits to keep the whole
information given by L1, since, in that case, the sequence
of pruned subtrees is not obtained via some plug-in method
using a first split of the sample to provide the collection of
tree-structured models. This method is the one proposed
by Breiman et. al. and it is more commonly applied in
practice than the M1 one. We focus on this method to
ensure that it provides estimators that have good perfor-
mance in terms of risk.

Let us recall that the aim of this paper is to prove on the
one hand that the complexity penalty used by Breiman et

al. [1] in the pruning algorithm is well-chosen, and, on



the other hand, that the final selection among the pruned
subtrees is, in terms of risk, not far from being optimal.
We focus more particularly on Gaussian and bounded re-
gression. The Gaussian case is classical and Birgé, Massart
[8] obtain optimal constants for the risk of the penalized
estimator in this case. The bounded case can be viewed
as a first step to obtain similar results for the two-class
classification problem, for which the penalty term is not
obviously proportional to the number of leaves. From this
viewpoint, the quadratic risk is equal to the misclassifica-
tion cost. This is why we do not address here the issue
of other estimation methods, as for example the maximum
likelihood estimation which is used in logistic regression
and can sometimes do better than least squares estimators
in this case.

Sections III and IV are respectively devoted to the two
above mentioned cases and consider separately the prun-
ing procedure and the final selection by test-sample. We
will see that, conditionally to the construction of Tmax,
the final estimator s̃ satisfies some oracle-type inequalities
for the Gaussian case when using either method M1 or
M2. Moreover, the penalty term is the same with the two
methods, although a factor logn1 can occur in the tem-
perature when L1 = L2. In addition, the penalized model
selection is made via pruning on random models defined on
{Xi ; (Xi, Yi) ∈ L1}. Then, by using Birgé and Massart’s
results for Gaussian regression on fixed design and working
conditionally to L1, as we will see in Sections III, the norm
occuring in the risk for pruning is the empirical norm ‖.‖

2

on {Xi ; (Xi, Yi) ∈ L2} for M1 and the empirical norm ‖.‖
1

on {Xi ; (Xi, Yi) ∈ L1} for M2. On the other hand, the
norm occuring in the risk for the discrete selection is the
empirical norm ‖.‖

3
on {Xi ; (Xi, Yi) ∈ L3}. Nevertheless,

under some truncation arguments, the results of Baraud
[15] or Wegkamp [14] can be applied and the results will
be true under the underlying norm ‖.‖. The results are
slightly different for the bounded case since the norms that
will occur are ‖.‖ for M1 and ‖.‖

1
for M2, the selection be-

ing made on a deterministic grid conditionally to L1 in the
M1 case. In that case, a connection can be made between
pruning and final selection by test-sample.

Note that the constants appearing in the upper bounds for
the risks are not sharp. We do not investigate the sharpness
of the constants here.

III. Gaussian Regression

Let us consider the Gaussian regression framework, where,
for a given i ∈ {1; . . . ;N}, εi is N (0, σ2)-distributed con-
ditionnally to Xi, with σ2 known. The two following sub-
sections give some more precise results on the pruning al-
gorithm for both the M1 and M2 methods, and particu-
larly on the constants appearing in the penalty function.
The last subsection validates the discrete selection by test-
sample. Note that the two results obtained for the vali-
dation of the pruning algorithm also hold in the case of
deterministic Xi’s.

A. Validation of the pruning algorithm

In this section, we focus on the pruning algorithm and show
that, for a convenient constant α, ŝTα

(where Tα is the
smallest minimizing subtree for the temperature α as de-
fined in subsection II-A) is not far from s in terms of its risk
conditionally to L1. Let us emphasize that the subsample
L3 plays no role in the two following results.

A.1 s̃ constructed via M1

Here we consider the second subsample L2 of n2 observa-
tions. We assume that Tmax is constructed on the first set
of observations L1 and then pruned with the second set
L2 independent of L1. Since the set of pruned subtrees is
deterministic according to L2, we make a selection among
a deterministic collection of models. By this way, since
Tmax is fixed, we do not have to look at the manner that
Tmax is constructed. Hence, in contrast to Proposition 2
in the following where the growing and pruning procedures
are made on the same sample, the parameters occuring in
the growing procedure, as the Vapnik-Chevonenkis dimen-
sion of the set of split used, play no role in the bounds or
constants we obtain here.

In the rest of the paper, given a subtree T of Tmax, we
write ST the linear subspace of L

2(X , µ) composed by all
the piecewise constant functions defined on the partition
associated with the leaves of T . ST is then a model on
which s will be estimated, and its dimension is |T |. Then
we choose the estimators as follows :

• For T � Tmax, ŝT = argmint∈ST
[γn2

(t)],
• For α > 0, Tα is the smallest minimizing subtree for the
temperature α as defined in subsection II-A and ŝTα

=
argmint∈STα

[γn2
(t)].

Let us now consider the behaviour of such ŝTα
.

Taking (1) into account, the following upper bound is ac-
tually an upper bound for the risk of ŝTα

conditionally to
L1 :

Proposition 1: Let ‖.‖
2

be the empirical norm on
{Xi ; (Xi, Yi) ∈ L2} and, for each T � Tmax and each
u ∈ ST , let

R
(2)
L1

(s, u) = E
[
‖s− u‖2

2
| L1

]
.

If α > σ2(1 + 4 log 2 + 2
√

2 log 2), then there exist some

nonnegative constants Σα and C
′

2 such that

R
(2)
L1

(s, ŝTα
) 6 C

′

1(α) inf
T�Tmax

{
inf

u∈ST

R
(2)
L1

(s, u) + σ2 |T |
n2

}

+C
′

2σ
2 Σα

n2

where C
′

1(α) > (1+4 log 2+2
√

2 log 2) and Σα are increas-
ing with α.
A proof of this proposition is given in subsection VII-A.

To conclude :

- the penalty term is the same as the one proposed by
Breiman et al. [1] in their pruning algorithm,



- the loss of ŝT with respect to s is

R
(2)
L1

(s, ŝT ) = inf
u∈ST

R
(2)
L1

(s, u) + σ2 |T |
n2
. (5)

Thus, for a large enough α, ŝTα
satisfies in this case

an oracle inequality up to some additive constants,
- the inequality holds only for large enough tempera-

tures α. Nevertheless, when α becomes too large,
the models are overpenalized, and the left hand
side E

[
‖s− ŝTα

‖2
2
| L1

]
will grow with α. The

main issue at this stage is to choose a temperature
α making a good compromise between the size of
E
[
‖s− ŝTα

‖2
2
| L1

]
and a large enough penalty term.

This issue is partially addressed in Section V. C
′

1(α)
and Σα are increasing with α, so both sides of the
inequality grow with α.

Note that under the following condition on the distribution
µ of the (Xi)16i6N

inf
t∈ eTmax

µ(t) >
(logn1)

3

n1
, (6)

and using truncation, the results of Baraud [15] can be
applied and the same inequality holds under the L

2(X , µ)-
norm ‖.‖ on a large probability set.

A.2 s̃ constructed via M2

In this subsection we define the different estimators and
projections exactly in the same way as in subsection III-
A.1, where ‖.‖

2
is replaced by the empirical norm ‖.‖

1
on

{Xi ; (Xi, Yi) ∈ L1} since the models and the evaluations
of the empirical errors γn1

(ŝT ) are computed on the same
grid {Xi ; (Xi, Yi) ∈ L1}. In this case, we obtain nearly
the same performance for ŝTα

despite the fact that the
constants are not so accurate and can depend on n1 :

Proposition 2: Let PL1
denote the product distribution

on L1 and let ‖.‖
1
be the empirical norm on {Xi ; (Xi, Yi) ∈

L1}.
For T � Tmax, let s̄T verify ‖s− s̄T ‖2

1
= inf

u∈ST

‖s− u‖2
1
.

Let S denote the set of all splits used in the growing proce-
dure and let V denote the Vapnik-Chervonenkis dimension
of S. Suppose that V < +∞ and that n1 > V . Let ξ > 0,
Ln1,V = V (2 log 2 + log (n1/V )) and

αn1,V = 1 + 2Ln1,V + 2
√
Ln1,V .

If α > σ2αn1,V , then there exist nonnegative constant Σα

and C
′

2 such that

‖s− ŝTα
‖2

1
6 C

′

1(α) inf
T�Tmax

{
‖s− s̄T ‖2

1
+ σ2αn1,V

|T |
n1

}

+C
′

2

σ2

n1
ξ

on a set Ωξ such that PL1
(Ωξ) > 1 − 2Σαe

−ξ, where

C
′

1(α) > 1 and Σα are increasing with α.
A proof of this proposition is given in subsection VII-B.

The same conclusions as the ones of the M1 case hold in
this case. Note that
• the penalty term takes into account the complexity of the
collection of trees having fixed number of leaves which can
be constructed on {Xi ; (Xi, Yi) ∈ L1}. Since this com-
plexity is controlled via the VC-dimension V , V necessarily
appears in the penalty term. It differs from Proposition 1
in the sense that the models we consider are random, so
this complexity has to be taken into account to obtain an
uniform bound.
• Baraud [15] can no longer be applied in this case since
the size |Tmax| of the maximal tree is not easily controlled
without any assumption on the distribution µ nor on the
construction of Tmax.

Example : Let us consider the case where S is the set of
all half-spaces of X = R

d (which is more often used in the
CART algorithm). In this case, V = d + 1, consequently,
if n1 > V , we obtain a penalty of the form

penn(T ) = β
σ2

n1
|T |
(

1 + 2(d+ 1)

(
2 log 2 + log

n1

d+ 1

))

+2β
σ2

n1
|T |
(√

(d+ 1)

(
2 log 2 + log

n1

d+ 1

))

with β > 1. So, if CART provides some minimax estimator
on a class of functions, the log n1 term always appears for s
in this class when working in a linear space of low dimension
(on a signal for example). On the other hand, Birgé et. al

[8] show that the risk of ŝTα
explodes if β 6 1.

Thus, in both cases, the penalty of Breiman et al. [1] is
well-chosen and the pruning algorithm is valid. Theorem
II-A.1 gives another important piece of information : the
sequence of pruned subtrees contains all the information,
so it is useless to look at all the subtrees. To select a sub-
tree, or equivalently a suitable temperature α, one just has
to consider those that appear in the sequence.
In practice, as the suitable temperature α is unreachable,
a test-sample must be used to select a subtree. This par-
ticular method is examined in the next subsection.

B. Final Selection

Given the sequence (Tk)16k6K pruned from Tmax as de-
fined in subsection II-A.2, let us recall that the final esti-
mator s̃ provided by CART is defined by

s̃ = argmin
{ŝTk

;16k6K}

[γn3
(ŝTk

)] .

The performance of this estimator can be compared to the
performance of the subtrees (Tk)16k6K by the following :

Proposition 3: Let ‖.‖
3

denote the empirical norm on
{Xi ; (Xi, Yi) ∈ L3}.
(i) if s̃ is constructed via M1 :

E
[
‖s− s̃‖2

3
| L1, L2

]
6 C inf

16k6K
E
[
‖s− ŝTk

‖2
3
| L1, L2

]

+C
′ logK

n3
.



(ii) if s̃ is constructed via M2 :

E
[
‖s− s̃‖2

3
| L1

]
6 C inf

16k6K
E
[
‖s− ŝTk

‖2
3
| L1

]

+C
′ logK

n3
.

A proof of this proposition is given in subsection VII-C.

Note that under condition (6) and using truncation, if
n1 6 n3, the results of Baraud [15] can also be applied in
both cases, and the same inequality holds under the norm
‖.‖ on a large probability set. Let us also remark that
the results of Wegkamp [14] can be applied here since the
number of models is small. Nevertheless, since the different
norms cannot be compared easily, these results cannot be
connected to the results on the pruning procedure.

We can now conclude that :

• Except for the first trees of the sequence (Tk)16k6K for
which αk 6 σ2αn1,V , all the other trees have conditional
risks controlled by the infimum of the errors that can be
made on all the subtrees pruned from Tmax.
• The conditional risk of the final estimator s̃ with respect
to ‖.‖

3
is controlled by the infimum of the errors that can

be made on the subtrees of the sequence (Tk)16k6K .
• the discrete selection adds a term of order log(n1)/n3,
which is at worst of the same order as the penalty. Thus it
does not alter dramatically the accuracy of the estimation.
In addition, if CART provides a collection of models ST

such that
- the maximal dimension of the models is DN =
o (N/ logN),

- the approximation properties of the models are convenient
enough to ensure that the bias tends to zero with increasing
sample size N ,
then the upper bound of the risk tends to zero with N ,
providing a result of consistency for s̃.

Consequently if we take the pruning and selection proce-
dures separately, each of them has a convenient behaviour.
Nevertheless, having αn1,V and α > σ2αn1,V could per-
mit, via Theorem II-A.1, to choose a model without L3.
In that case, a general bound could be established for the
final estimator.

IV. Bounded Regression

In this section we consider the bounded regression frame-
work, where, for a given i ∈ {1; . . . ;N}, |Yi| 6 1 and εi

is an unknown bounded noise, centered conditionally to
Xi. The three following subsections yield about the same
results as those of section III.

A. Validation of the pruning algorithm

We will follow exactly the same lines and use the same
notation as in section III-A. All the remarks made in the
Gaussian case on the way each model selection is made are
still valid in this case.

A.1 s̃ constructed via M1

We have the following upper bound for the risk of ŝTα
con-

ditionally to L1 and L2 :
Proposition 4: Let PL2

be the product distribution on
L2. Let ξ > 0.
There exists a nonexplicit positive constant α0 such that,
if α > α0, then there exist some nonnegative constants Σα

and C
′

2 such that

‖s− ŝTα
‖2

6 C
′

1(α) inf
T�Tmax

{
inf

u∈ST

‖s− u‖2 +
|T |
n2

}

+C
′

2

1 + ξ

n2

on a set Ωξ such that PL2
(Ωξ) > 1 − 2Σαe

−ξ, where

C
′

1(α) > α0 and Σα are increasing with α.
A proof of this proposition is given in subsection VIII-A.

Remark 2. The fact that we do not know anything
about the noise (except that it is bounded) leads to a min-
imal temperature α0 that we cannot reach.

The conclusions concerning the bounded case are the same
as those of subsection III-A, except that ŝTα

does not ob-
viously satisfy an oracle inequality since the true risk is
unknown, but the inequality obtained is sufficient to vali-
date the pruning procedure.

A.2 s̃ constructed via M2

One gets the following upper bound for the risk of ŝTα

conditionally to L1 :
Proposition 5: Let PL1

denote the product distribution
on L1 and ‖.‖

1
be the empirical norm on {Xi ; (Xi, Yi) ∈

L1}.
For T � Tmax, let s̄T verify ‖s− s̄T ‖2

1
= inf

u∈ST

‖s− u‖2
1
.

Let ξ > 0 and

αn1,V = 1 + V
(
1 + log

n1

V

)
.

There exists a nonexplicit positive constant α0 such that, if
α > α0αn1,V , then there exist some nonnegative constants

Σα and C
′

2 such that

‖s− ŝTα
‖2

1
6 C

′

1(α) inf
T�Tmax

{
‖s− s̄T ‖2

1
+ αn1,V

|T |
n1

}

+C
′

2

1 + ξ

n1

on a set Ωξ such that PL1
(Ωξ) > 1 − 2Σαe

−ξ, where

C
′

1(α) > α0 and Σα are increasing with α.
A proof of this proposition is given in subsection VIII-B.

We can conclude exactly in the same way as for the pruning
validation of the Gaussian regression framework (subsec-
tion III-A), except that we do not know anything about the
minimal temperature to be chosen in the sequence given by
the pruning algorithm. It is therefore necessary to choose a
method to select the suitable subtree among the sequence.
One method consists in proceeding by test-sample.



B. Final Selection

In this framework, our goals are exactly the same as in
the Gaussian regression one. We define the final estima-
tor given by the CART algorithm as (3) and we analyze
the behavior of s̃ during the final step as in the Gaussian
regression case :

Proposition 6: Let ‖.‖
1

denote the empirical norm on
{Xi ; (Xi, Yi) ∈ L1}.
(i) if s̃ is constructed via M1 :

E
[
‖s− s̃‖2 | L1, L2

]
6 C inf

16i6K
‖s− ŝTi

‖2 + C
′ logK

n3
.

(ii) if s̃ is constructed via M2 :

E
[
‖s− s̃‖2

1
| L1

]
6 C inf

16k6K
E
[
‖s− ŝTk

‖2
1
| L1

]

+C
′ logK

n3
.

A proof of this proposition is given in subsection VIII-C.
We obtain similar bounds for the Gaussian and bounded
cases, then the conclusions concerning the performance of
s̃ are the same for both cases.

In addition, the following result holds for bounded regres-
sion. It is a consequence of Propositions 4, 5 and 6 :

Theorem 1: Given for i = 1, . . . , N

Yi = s(Xi) + εi

with (Xi, Yi) ∈ X × R and εi centered conditionally to
Xi, we assume that the (Xi)16i6N are identically dis-
tributed with common unknown distribution µ and that
|Yi| 6 1. We consider both methods M1 and M2. Let ‖.‖
be the L

2(X , µ)-norm and ‖.‖
1

be the empirical norm on
{Xi ; (Xi, Yi) ∈ L1}. Let l2 be the square distance associ-
ated with ‖.‖ if s̃ is constructred via M1 and with ‖.‖

1
if s̃

is constructed via M2.
Then there exist some nonnegative constants C1, C2 and
C3 such that :

E
[
l2(s̃, s) | L1

]
6 C1 inf

T�Tmax

[
inf

u∈ST

l2(u, s) +
|T |
n

]

+
C2

n
+ C3

logn1

n3
.

where n = n2 if s̃ is constructed via M1 and n = n1 if s̃ is
constructed via M2.

Proof: The proof remains the same if s̃ is constructed
either via M1 or M2. So we just give the proof for the M1
method.
Actually, since we have at most one model per dimension
in the pruned subtree sequence, it suffices to note that
K 6 n1. Then let α0 be the minimal constant given by
Proposition 4. Hence, since for a given α > 0 Tα belongs
to the sequence (Tk)16k6K ,

E
[
l2(s̃, s) | L1, L2

]
6 C inf

α>α0

l2(ŝTα
, s) + C

′ logK

n3
.

Then, by using Proposition 4 with α = 2α0 and by taking
the expectation according to L2, we obtain Theorem 1.

V. Open questions

We can conclude that pruning a maximal tree is a con-
venient algorithm in terms of model selection for the two
regression contexts mentioned above. But two questions
remain : first, “how to choose a convenient tree in the
pruned sequence ?”. The method we studied in this paper
gives positive results, but could it be possible to remove
the third (or second) subsample in order to obtain a better
upper bound for the risk of s̃ ? Actually, considering the
different results we obtained, if we had the true constant
α occurring in the penalty, we would only have to take, in
the sequence, the subtree Tk such that αk 6 α < αk+1.
Then the last term in the upper bound for the risk could
be removed. But in theory this α is unreachable since it
depends on too many unknown parameters, such as noise
variance σ2. We only have a minimal constant, which can
be interpreted as follows : when the temperature increases,
the number of leaves decreases. But it follows from Propo-
sitions 1, 2, 4 and 5 that a “good” subtree is associated
with a large enough temperature. Consequently a jump
in the number of leaves could occur when the temperature
becomes higher than the minimal constant. At this stage,
we hope that the “good” subtree is above this tempera-
ture. An answer could be to extract from the data the
right temperature for the penalized criterion. So far there
exists no general method to do this, but there are some
heuristic ones based on the theoretical results of Birgé and
Massart [8] and simulations (see Gey and Lebarbier [16] for
example).

Second, “how to analyse the approximation quality of
CART to obtain an upper bound for the complete risk ?”.
Nobel, Olshen [5] and Nobel [6] give some asymptotic re-
sults on recursive partitioning. Engel [10] and Donoho [11]
obtain some upper bounds for the risk of the penalized
estimator in the particular construction obtained via a re-
cursive partitioning on a fixed dyadic grid. But we lack
approximation results concerning CART as introduced by
Breiman et al. [1]. This aspect of the problem remains to
be analyzed.

VI. Appendix A

A. Local bound for some empirical processes

Let (X,Y ) ∈ X × [−1, 1] be defined as Y = s(X) +
ε, where s takes values in [−1, 1] and ε is a noise
centered conditionally to X and bounded by 1. Let
{(X1, Y1); . . . ; (Xn, Yn)} be an n-sample of (X,Y ). Let µn

denote the empirical distribution on Xn
1 = (Xi)16i6n and

‖.‖
1

denote the empirical norm on Xn
1 . Then, given z and

u in L
2(µn), define

d2(z, u) = 16‖z − u‖2
1
.

For any tree T constructed on Xn
1 , define ST as the set of

all piecewise constant functions bounded by 1 defined on
the partition associated with the leaves of T . Then, for any



u ∈ ST and any σ > 0, define

BT (u, σ) = {z ∈ ST ; d(u, z) 6 σ}
= {z ∈ ST ; ‖u− z‖

1
6 σ/4} .

Finally, for z ∈ L
2(X ), define the centered empirical

quadratic contrast of z by

γ̄n(z) = γn(z) − E [γn(z) | Xn
1 ] (7)

where γn is defined for any given z ∈ L
2(X , µ) by

γn(z) =
1

n

n∑

i=1

(Yi − z(Xi))
2 .

Remark 3. If γn is evaluated on a sample (X ′
i) indepen-

dent of Xn
1 , it is easy to check that the bounds we obtain

in what follows are still valid by taking the marginal distri-
bution µ of X instead of µn, and the distance d associated
with the L

2(X , µ)-norm instead of the empirical norm ‖.‖
1
.

Then we have the following result :

Lemma 1: For any u ∈ ST and any σ > 0

E

[
sup

z∈BT (u,σ)

|γ̄n(z) − γ̄n(u)| | Xn
1

]
6 (7/2) σ

√
|T |
n
.

Proof: We have

γ̄n(z) − γ̄n(u) =
2

n

n∑

i=1

ǫi(z(Xi) − u(Xi))

+2νn ((s− u)(z − u)) − νn

(
(z − u)2

)
,

where νn is the re-centered empirical measure. So we have
three terms to study, that we simply denote by :

• A1 = E

[
sup

z∈BT (u,σ)

| 2n
∑n

i=1 ǫi(z(Xi) − u(Xi))| | Xn
1

]
,

• A2 = E

[
sup

z∈BT (u,σ)

|2νn ((s− u)(z − u)) | | Xn
1

]
,

• A3 = E

[
sup

z∈BT (u,σ)

|νn

(
(z − u)2

)
| | Xn

1

]
.

Then we fix an orthonormal basis of ST denoted by (ϕl)l∈ eT

adapted to T̃ (i.e. some normalized characteristic func-
tions), and we have

BT (u, σ) =



z ∈ ST ; z − u =

∑

l∈ eT

alϕl ,
∑

l∈ eT

a2
l 6

σ2

16



 . (8)

We will now bound each Ai, i = 1, 2, 3.

upper bound for A1:

Using the Cauchy-Schwarz inequality, for any z in BT (u, σ)
such that z − u =

∑
l∈eT alϕl, we get :

∣∣∣∣∣

n∑

i=1

ǫi(z(Xi) − u(Xi))

∣∣∣∣∣ 6

√∑

l∈eT

a2
l

√√√√√
∑

l∈ eT

(
n∑

i=1

ǫiϕl(Xi)

)2

6
σ

4

√√√√√
∑

l∈eT

(
n∑

i=1

ǫiϕl(Xi)

)2

.

Since the ǫi are centered random variables bounded by 1,
Jensen’s inequality implies :

A1 6
σ

2n

√√√√
∑

l∈ eT

n∑

i=1

E(ǫ2i | Xn
1 )ϕl(Xi)2 6

σ

2

√
|T |
n

upper bound for A2:

Given independent random signs (ζ1, ζ2, ...), independent
from (X1, .., Xn), for any z in BT (u, σ) let

ψ(z) =

n∑

i=1

ζi
(
s(Xi) − u(Xi)

)(
z(Xi) − u(Xi)

)
.

By a symmetrization argument (see [17] for more details
about symmetrization arguments) one has :

A2 6
4

n
E

[
sup

z∈BT (u,σ)

|ψ(z)| | Xn
1

]

For all i we have
∣∣s(Xi)− u(Xi)

∣∣ 6 1 and, if z ∈ BT (u, σ),

‖u − z‖
1

=
√∑

l∈eT a
2
l 6 σ/4 (8). So, using the Cauchy-

Schwarz inequality, we have :

A2 6
σ

n

√√√√
∑

l∈ eT

n∑

i=1

E(ζ2
i )ϕl(Xi)2

We can remark that the upper bound ofA2 is, up to a factor
2, the same as the upper bound of A1 and we can conclude :

A2 6 σ

√
|T |
n

upper bound for A3:

Given independent random signs (ζ1, ζ2, ...), independent
from (X1, .., Xn), one has by a symmetrization argument :

A3 6 E

[
sup

z∈BT (u,σ)

∣∣∣∣∣
2

n

n∑

i=1

ζi
(
z(Xi) − u(Xi)

)2
∣∣∣∣∣ | Xn

1

]

We now consider the contraction θ defined by
θ(x) = (x2 ∧ 1)/2. Then, since

∣∣(z(Xi) − u(Xi)
)∣∣ 6 1, we



have :

A3 6 E

[
sup

z∈BT (u,σ)

∣∣∣∣∣
2

n

n∑

i=1

ζiθ(z(Xi) − u(Xi))

∣∣∣∣∣ | Xn
1

]

We can now use a contraction inequality established by
Ledoux and Talagrand ([17], Lemma 6.3 and Theorem 4.12)
and conclude :

A3 6 E

[
sup

z∈BT (u,σ)

∣∣∣∣∣
8

n

n∑

i=1

ζi
(
z(Xi) − u(Xi)

)
∣∣∣∣∣ | Xn

1

]

Finally the upper bound is the same as the upper bound
of the first term A1 up to a constant. Then we get

A3 6 2σ

√
|T |
n
.

So, combining the three inequalities, we have :

A1 +A2 +A3 6 (1/2 + 1 + 2)σ

√
|T |
n

and the lemma is proven.

B. A complexity bound

Let S be a class of subsets of X and (Sm)m∈M∗

n
a collec-

tion of tree-structured models constructed on n points of
X using S. Then we have :

Lemma 2: Let V denote the Vapnik-Chervonenkis di-
mension of S and suppose n > V . Let D ∈ N

∗ and, for
m ∈ M∗

n, Dm = Dim(Sm). Then

|{m ∈ M∗
n ; Dm = D}| 6

(ne
V

)DV

Proof: Let {x1; . . . ;xn} ∈ Xn. We want to bound
uniformly in {x1; . . . ;xn} the number of ways to construct
a tree having D leaves on these n points. Then we will
have lemma 2.
Let D be some positive integer. For a tree-structured
model Sm, Dm is the number of leaves of Sm. Thus, a
D-dimensional model is a tree having D leaves. For such
a tree, there are D − 1 non-terminal nodes, which implies
that there are D − 1 splits.

To prove the lemma, we use Sauer’s lemma that gives a
relationship between the different ways to split r points
of X in two parts using S, and the Vapnik-Chervonenkis
dimension V of S.
For A, a subset of X , we define A ∩ S = {A ∩ S ; S ∈ S}
and ∆(A) = |A ∩ S|. Then, for any integer r, we define
m(r) = max{∆(A) ; A ⊂ X , |A| = r}. Consequently the
number of ways to cut {x1; . . . ;xn} in two parts using S is
at most m(n). But one has by Sauer’s lemma that, for any
integer r

m(r) 6

V∑

j=0

(
r

j

)
.

Thus we obtain

|{m ∈ M∗
n ; Dm = D}| 6




V∑

j=0

(
n

j

)


D

.

Moreover, since n > V ,

V∑

j=0

(
n

j

)
6

V∑

j=0

nj

j!
6

(en
V

)V

and the proof is achieved.

VII. Appendix B

In the following sections, we denote by T the set of all
subtrees pruned from Tmax and consider µ, P and ‖.‖ as
defined in subsection II-B.

A. Proof of Proposition 1

We use the result established by Birgé and Massart in [8,
Theorem 2] on Gaussian model selection. For the sake of
completeness, let us recall this result.

Let n = n2 and ‖.‖n be the empirical norm associated with
the empirical distribution µn on the grid (X1, . . . , Xn).
Let us give a collection of linear deterministic models
(Sm)m∈Mn

, a penalty function penn : Mn −→ R+ and
a sample L2 from the random variable (X,Y ) defined as in
section III. Let s̄m denote the L

2(µn)-projection of s on
the model Sm, and Dm denote the dimension of Sm. Let
m̂ be defined by

m̂ = argmin
m∈Mn

[γ(ŝm) + penn(m)]

where ŝm is the minimum contrast estimator of s on Sm.
Then one gets :

Theorem VII-A.1 (Birgé, Massart) Let ξ > 0, η ∈]0, 1[,
K > 2 − η, and (Lm)m∈Mn

be a family of weights such
that Σ =

∑
m∈Mn

e−LmDm < +∞. If

penn(m) ≥ σ2Dm

n

(
K + 2(2 − η)Lm +

2

η

√
Lm

)
,

then

E
[
‖s− ŝm̂‖2

n

]
6 C(K, η) inf

m∈Mn

{
E
[
‖s− s̄m‖2

n

]
+ penn(m)

}

+σ2C′(K, η)
Σ

n
The collection of models we consider is T (depending
on the first subsample) and is deterministic condition-
nally to L1. For T ∈ T , the model considered is

ST =
{∑

t∈ eT at1lt ; ∀t ∈ T̃ at ∈ R

}
and its dimension is

|T |. Given this collection, to apply the result of Birgé and
Massart, we need to choose a convenient family of weights
(LT )T�Tmax

.

Taking L as a function of the dimension, one has :

Σ =
∑

T�Tmax

e−LT |T |

6
∑

D≥1

|{T � Tmax ; |T | = D}|e−L(D)D.



Furthermore, for any given dimension D, the number of
balanced binary trees having D final nodes is the Catalan
number (1/D)

(
2(D−1)

D−1

)
. Thus we have

Σ 6
∑

D≥1

1

D

(
2(D − 1)

D − 1

)
e−L(D)D

6
∑

D≥1

1

D
exp [(2 log 2 − L(D))D]

Taking L(D) = θ, with θ > 2 log 2 independent of D, we
immediately obtain Σα = Σθ < +∞. Then we get propo-
sition 1 by [8, Theorem 2].

B. Proof of Proposition 2

Let us denote by Xn
1 the sample (X1, . . . , Xn) of size n

of the random variable (X,Y ) and by µn the empirical
distribution on Xn

1 .

First we generalize Theorem VII-A.1 to random models,
and then we apply it to CART.

Theorem 2: Let n ∈ N. Consider the Gaussian regres-
sion model defined in section III. Then take an n-sample
of the random variable (X,Y ) and (Sm)m∈M∗

n
a count-

able family of finite dimensional linear subspaces with re-
spective dimensions Dm constructed on the grid Xn

1 . Fix
(Lm)m∈M∗

n
a family of weights satisfying the condition :

Σ =
∑

m∈M∗

n, Dm>0

e−LmDm < +∞

where Σ is deterministic.
Given a subspace Mn ⊂ M∗

n that can also depend on
(Y1, . . . , Yn), we select the estimators as follows :
• ŝm = argmin

t∈Sm

[γn(t)],

• m̂ = argmin
m∈Mn

[γn(ŝm) + penn(m)] and then s̃ = ŝm̂.

Let η ∈]0, 1[ and K > 2 − η. Let us consider a penalty
function on M∗

n such that

penn(m) >
σ2

n
Dm

(
K + 2(2 − η)Lm +

2

η

√
Lm

)

for all m ∈ M∗
n. Let ξ > 0, ‖.‖n the empirical norm on Xn

1

and sm = argmin
u∈Sm

‖s− u‖n.

Then the penalized estimator satisfies, for all m ∈ Mn,

‖s− s̃‖2
n 6 C1(K, η)

{
‖s− sm‖2

n + penn(m)
}

+C2(K, η)
σ2

n
ξ

on a set Ωξ such that P (Ωξ) > 1 − 2Σe−ξ and for suitable
constants C1(K, η) and C2(K, η).

Proof: We follow exactly the same lines as in [8],
the only difference being that all our upper bounds are
obtained by conditioning with respect to Xn

1 , so we skip
the proof. Note that the result holds on a set Ωξ having
probability measure P unconditional to Xn

1 . This is due

to the fact that Σ is deterministic and does not depend on
Xn

1 .

Application to tree partitions :

In that case we have n = n1. We consider Mn = T and we
take M∗

n as all the tree-structured partitions constructed
on the grid Xn

1 using S. Taking Theorem 2 into account
with n = n1, it suffices to choose the weights (Lm)m∈M∗

n

to obtain Proposition 2.

Taking the weights as a function of the dimension, we have
by Lemma 2:

Σ 6
∑

D>1

exp(−LDD +DV +DV log
n1

V
).

Then, we take LD = V (θ + log(n1/V )), with θ > 1 and we
obtain Proposition VII-B.

C. Proof of Proposition 3

Let us call n = n3. Then let us note that, for u ∈ L
2(µn),

‖s− u‖2
n = E [γn(u) − γn(s) | Xn

1 ] . (9)

Since this equality depends only on L3, the same proof can
be achieved for M1 as for M2, the only difference being in
the conditioning which depends on L1 and L2 for M1 and
only on L1 for M2. Consequently we just give the proof for
the M1 method.

Let k ∈ {1, . . . ,K} and take γ̄n as (7).
Then we have by (9) :

‖s− s̃‖2
n 6 ‖s− ŝTk

‖2
n + γ̄n(ŝTk

) − γ̄n(s̃)

6 ‖s− ŝTk
‖2

n + 2
σ√
n

(Z(s̃) − Z(ŝTk
))

where Zk,j =
(
Z(ŝTj

) − Z(ŝTk
)
)
/‖ŝTj

− ŝTk
‖n is N (0, 1)-

distributed, knowing subsamples L1 and L2.

The general principle is to use the fact that Zk,j is a Gaus-
sian variable to bound it uniformly in k, j. The result will
be an in-probability uniform upper bound for Zk,j that will
be integrated to obtain proposition 3.

Since Zk,j is a Gaussian variable conditionally to L1 and
L2, for all x ∈ R we have

P

[
Zk,j > x | L1, L2

]
6 e−x2/2.

Taking ξ > 0 and setting x =
√

2(logK + ξ) we get

P

[
Zk,j >

√
2(logK + ξ) | L1, L2

]
6 exp(− logK − ξ).

Thus

P

[
sup

16j6K
Zk,j >

√
2(logK + ξ) | L1, L2

]
6 e−ξ



and

sup
16j6K

{(
Z(ŝTj

) − Z(ŝTk
)
)
/‖ŝTj

− ŝTk
‖n

}
>
√

2(logK + ξ)

on a set Ωξ such that P (Ωξ | L1, L2) 6 e−ξ. So, given
0 < η < 1, using the two inequalities 2ab 6 (1 − η)a2 +
(1/(1 − η))b2 and (a + b)2 6 (1 + η)a2 + (1 + 1/η)b2, we
obtain, on Ωc

ξ,

2
σ√
n

(Z(s̃) − Z(ŝTk
)) 6 (1 − η2) ‖s− s̃‖2

n

+

(
1

η
− η

)
‖s− ŝTk

‖2
n

+

(
1

1 − η

)
σ2

n
2 (logK + ξ) .

We can now integrate the first inequality with respect to
the third subsample and we obtain

E
[
‖s− s̃‖2

n | L1, L2

]
6 C1(η)‖s− ŝTk

‖2
n + C2(η)

logK

n

+C3(η)
2σ2

n
.

This yields proposition 3.

VIII. Appendix C

A. Proof of Proposition 4

We apply the result established by Massart [9, Theorem
4.2] on bounded regression model selection. For the sake
of completeness, let us recall this result.

Let n = n2. Assume (Sm)m∈Mn
is a collection of models

and that one has a sample L2 of the random variable (X,Y )
defined as in IV-A. The contrast function is here bounded
by 1, and penn, s̄m, and m̂ are defined as in the proof of
Proposition 1.
Suppose that, for m ∈ Mn,

Sm =

{
∑

t∈C

at1lt ; C ∈ Cm, (at) ∈ [0, 1]|C|

}
,

where each Cm is a countable class of subsets of R. Then we
define Dm = Dim(Sm) as the dimension of the linear space
associated with Sm. One makes the following assumptions :
H1 : There exist some pseudo-distance d and some absolute
constant c such that for every (t, u) ∈ (L2(µ))2, one has
Vars [γ(t,X) − γ(u,X)] 6 d2(u, t), and particularly

Vars [γ(t,X) − γ(s,X)] 6 d2(s, t) 6 c‖s− t‖2

H2 : For any positive σ and for any u ∈ Sm, let us define

Bm(u, σ) = {t ∈ Sm ; d(u, t) 6 σ}
where d is given by assumption H1. We now assume that
for any m ∈ Mn, there exists some continuous function
φm mapping R+ onto R+ such that φm(0) = 0, φm(x)/x is
non-increasing and

E

[
sup

t∈Bm(u,σ)

|γ̄n(t) − γ̄n(u)|
]

6 φm(σ)

for all σ > σm, where σm is the solution of the equation
φm(x) = x2 , x > 0. One gets the following result :

Theorem VIII-A.1 (Massart) Let ξ > 0. Let K1 and K2

be two constants, with Ki > 0, i = 1, 2. Take a fam-
ily of weights (xm)m∈Mn

such that Σ =
∑

m∈Mn

e−xm <

+∞. Then, for some nonnegative constant K3, for every
m ∈ Mn and every positive ξ, if penn(m) > K1σ

2
m +

K2(xm/n) − K3(ξ/n) with probability larger than 1 −
exp(−xm − ξ),

‖s− ŝm̂‖2
6 C(K1,K2) inf

m∈Mn

[
‖s− s̄m‖2 + E[penn(m)]

]

+C′(K1,K2)
ξ + 1

n

on a set Ωξ such that PL2
(Ωξ) > 1 − 2Σe−ξ.

Here again the collection of models we consider is T and,

for T ∈ T , ST =
{∑

t∈eT at1lt ; ∀t ∈ T̃ at 6 1
}

and its

dimension is |T |. Given this collection, to apply [9, Theo-
rem 4.2] we firstly choose the pseudo-distance d defined on
L

2(X , µ) in the following way: since Y is bounded by 1, for
all u and t in L

2(X , µ) we have

Var
[
(Y − u(X))2 − (Y − t(X))2

]
6 16 ‖u− t‖2. (10)

Then, given T ∈ T , by Lemma 1 we have

E

[
sup

t∈BT (u,σ)

|γ̄n(t) − γ̄n(u)| | L1

]
6

7

2
σ
√
|T |/n,

where, for u ∈ ST , BT (u, σ) = {t ∈ ST ; ‖t− u‖ 6 σ/2}.
Hence the solution of the equation σ2 = (7/2)σ

√
|T |/n is

σT = (7/2)
√
|T |/n.

The last step consists in choosing the sequence of
weights (xT )T�Tmax

such that the family (e−xT )T�Tmax
is

summable. Considering the same argument as in the proof
of Proposition 1 and taking x as a function of the dimen-
sion, we choose x(D) = θD, with θ > 2 log 2 independent
of D.

Thus we get proposition 4 by [9, Theorem 4.2].

B. Proof of Proposition 5

In what follows, we denote by Xn
1 the sample (X1, . . . , Xn)

of size n of the random variable X and by µn the empirical
distribution on Xn

1 .

First we generalize Theorem VIII-A.1 to random models,
and then we apply it to CART.

Theorem 3: Consider the bounded regression model de-
fined in section IV and (Sm)m∈M∗

n
a countable random

family of finite dimensional subspaces constructed on the
Xn

1 with respective dimensions Dm. Fix (xm)m∈M∗

n
a fam-

ily of weights satisfying the condition :

∑

m∈M∗

n, Dm>0

e−xm 6 Σ



with Σ deterministic.
Given a subspace Mn ⊂ M∗

n that can also depend on
(Y1, . . . , Yn), we select the estimators as follows :
• ŝm = argmint∈Sm

[γn(t)],
• m̂ = argminm∈Mn

[γn(ŝm) + penn(m)] and then s̃ = ŝm̂.
Moreover, we make the following assumptions :
H1: The contrast is bounded by some constant b.
H2: Let Zi = (Xi, Yi). There exists a nonnegative con-

stant c1 such that, for all t and u in L
2(X , µn),

1

n

n∑

i=1

Var [γ(t, Zi) − γ(u, Zi) | Xn
1 ] 6 c1‖t− u‖2

n

almost surely, where ‖.‖n is the empirical norm on
Xn

1 .
H3: Take γ̄n as (7) and for m ∈ M∗

n define Bm(u, σ) ={
t ∈ Sm ;

√
c1‖t− u‖n 6 σ

}
. Then for all m ∈ M∗

n

there exists some continuous function φm mapping
R+ onto R+ such that φm(0) = 0, φm(x)/x is non-
increasing and

E

[
sup

t∈Bm(u,σ)

|γ̄n(t) − γ̄n(u)| | Xn
1

]
6 φm(σ)

for all σ > σm where σm is such that φm(σm) = σ2
m.

Given H1, H2 and H3, given ξ > 0, if for all m ∈ M∗
n

penn(m) > K1σ
2
m +K2

xm

n

for some constants K1 and K2, then

‖s− s̃‖2
n 6 C1 inf

m∈Mn

{
‖s− sm‖2

n + penn(m)
}

+ C2
1 + ξ

n

on a set Ωξ such that P (Ωξ) > 1 − 2Σe−ξ.
Proof: Since there are just a few lines that change

from the proof of [9, Theorem 4.2], we just give a sketch of
proof. Note that assumption H2 permits to give exactly
the same upper bounds (except that they depend on Xn

1 )
for the variance as in [9]. We denote

√
c1‖.‖n by dn.

Taking (9) into account, we have the following upperbound-
ing :

‖s− s̃‖2
n 6 ‖s− sm‖2

n + wm̂,m(s̃)Vm̂,m (11)

+penn(m) − penn(m̂). (12)

where for m′ and M in M∗
n

wm′,M (t) = (dn(s, sM ) + dn(s, sm′))2 + (ym′ + yM )2,

Vm′,M = sup
t∈Sm′

[ |γ̄n(t) − γ̄n(sM )|
wm′,M (t)

]
,

with ym′ > σm′ and yM > σM to be chosen later.

Since the noise is unknown, we take Vm̂,m to ensure that
we have a bounded term that can be locally controlled.
Then the principle will be to bound Vm′,M uniformly in
m′,M in order to offset the penalty term penn(m̂). This

will be done by concentrating Vm′,M around its expecta-
tion uniformly in m′,M . A uniform in-probability up-
per bound will be obtained and the weights ym′ and yM

will be chosen to offset penn(m̂) in such a way that only
‖s − sm‖2

n +K wm̂,m(s̃) + penn(m) remains in the upper
bound of (11) on a large probability set. Let us notice that
this set will be unconditional to Xn

1 because Σ is determin-
istic by assumption.

We control Vm′,M for all possible values of m′ and M
in M∗

n by using Talagrand’s inequality for empirical pro-
cesses. Since E [Vm′,M | Xn

1 ] is involved in this inequality,
we control it by using assumption H3. Indeed, considering
the same arguments as in [9], we have

E [Vm′,M | Xn
1 ] 6 4

φm′(3ym′ + 3yM )

(ym′ + yM )2
+(ym′ +yM)−1n−1/2.

Hence, using the monoticity assumption on φm′(x)/x, since
ym′ + yM > ym′ > σm′ and σM > 0, we get by definition
of σm′

4
φm′(3ym′ + 3yM )

(ym′ + yM )2
6 12

φm′(σm′)

(ym′ + yM )σm′

6 12
σm′ + σM

ym′ + yM
.

Then we finally have

E [Vm′,M | Xn
1 ] 6 (ym′ + yM )−1

[
12(σm′ + σM ) + n−1/2

]
.

Hence Talagrand’s inequality leads, for ξ > 0 and appro-
priate constants κ1 and κ2, for all m′ and M in M∗

n, to

Vm′,M 6
κ1

ym′ + yM

[
12σm′ +

n−1/2

2
+ 12σM +

n−1/2

2

]

+
κ2

ym′ + yM

[(√
xm′ + ξ/2

4n
+

√
xM + ξ/2

4n

)]

+
κ2b

y2
m′ + y2

M

[
xm′ + xM + ξ

n

]

on an event Ω̃ξ such that P
(
Ω̃ξ | Xn

1

)
> 1−2Σe−ξ. Then,

since Σ is deterministic, we have P
(
Ω̃ξ

)
> 1 − 2Σe−ξ.

Hence if we define for all m′ ∈ M∗
n

ym′ = 2K

[
κ1

(
12σm′ +

n−1/2

2

)
+ κ2

√
xm′ + ξ/2

4n

]

+2K

[√
κ2b

xm′ + ξ/2

n

]

so that on Ω̃ξ, one has Vm′,M 6 1/K for all m′ and M in
M∗

n, we derive from (11) that

‖s− s̃‖2
n 6 ‖s−sm‖2

n +wm̂,m(s̃)K−1+penn(m)−penn(m̂).

Thus, using the same technique as in [9] and assumption

H2, and taking Ωξ = Ω̃ξ ∩ Ωn, the proof is achieved.



Application to the risk bound of the CART estimator

In that case we have n = n1, Mn = T and M∗
n as the

collection of all trees that can be constructed on the grid
{X1; . . . ;Xn1

} using S. Taking Theorem 3 into account,
we have to check assumptions H1, H2 and H3 and then
to choose the family of weights (xm)m∈M∗

n
.

Since Y is supposed to be bounded by 1 and since we con-
sider all the functions in L

2(X , µn) also bounded by 1, the
contrast is bounded by 1 and we have assumption H1.
Then H2 is checked with c1 = 16. Furthermore, in the
same manner as in the proof of Proposition 4, since lemma
1 is still valid when working with ‖.‖n, we have H3 with
φT (σ) = (7/2)σ

√
|T |/n and σT = (7/2)

√
|T |/n.

Finally, since Lemma 2 is true uniformly on (x1, . . . , xn),
we choose the weights (xT )T�Tmax

in the same manner
as in the proof of Proposition 2 and we obtain xT =
V (θ + log(n/V )) |T | with θ > 1.
And the proof is achieved by Theorem 3.

C. Proof of Proposition 6

As for the proof of Proposition 3, the only difference being
in the norms used, it suffices to give the proof of Propo-
sition 6 for the M1 method. We use the same definitions
and notation.

We have
‖s− s̃‖2

6 ‖s− ŝTk
‖2 + Vkwk,

where
wk =

(
d(s, ŝTk

) + d(s, s̃)
)2

+ C2

Vk =
γ̄n(ŝTk

) − γ̄n(s̃)
(
d(s, ŝTk

) + d(s, s̃)
)2

+ C2
,

with d2(t, u) = E[(γ(t, .) − γ(u, .))2] satisfying d2(t, s) 6

2 ‖t− s‖2 (see [9]), and C a nonnegative constant we will
choose later in the proof. The road map of this proof is
exactly the same as the one of the proof of Proposition
5. Note that, since the collection of models considered
is finished, we will use Berstein’s instead of Talagrand’s
inequality to bound Vk uniformly in k.

Let

Vk,j =
γ̄n(ŝTk

) − γ̄n(ŝTj
)

(
d(s, ŝTk

) + d(s, ŝTj
)
)2

+ C2
.

We use Bernstein’s concentration inequality for centered
and bounded random variables in order to bound the ran-
dom variable Vk,j uniformly on k and j to obtain an uni-
form upper bound for Vk. To proceed, note that

n Vk,j =

n∑

i=1

Gi − E(Gi)

wk,j

with −1 6 Gi 6 1. Then, since for all l > 2

( |Gi|
wk,j

)l

6

( |Gi|
wk,j

)2(
1

C2

)l−2

,

by Bernstein’s inequality we obtain, for x > 0

P
[
n Vk,j ≥

√
2vx+

x

C2
| L1, L2

]
6 e−x (13)

where v =

n∑

i=1

E
[
|Gi|2/w2

k,j

]
is bounded by :

v =
nd2(ŝTk

, ŝTj
)

w2
k,j

6
n

4C2
.

Then, taking ξ > 0 and setting x = logK + ξ in (13), we
get :

P

[
Vk,j ≥

√
(logK + ξ)

2nC2
+

(logn+ ξ)

nC2
| L1, L2

]
6
e−ξ

K
.

Thus, except on a set Ωξ with probability lower than e−ξ,
we have

Vk 6
1

C

√
(logK + ξ)

n

(
1 +

1

C

√
(logK + ξ)

n

)
.

Then, taking C = B
√

(logK + ξ)/n, where B will be cho-
sen later, we get

‖s− s̃‖2
6 ‖s− ŝTk

‖2 +
1

B
(1 +

1

B
) wk,

except on Ωξ.
Then, using the condition satisfied by d and the inequality
(a+ b)2 6 2(a2 + b2), we obtain

(
1 − 4

B
(1 +

1

B
)

)
‖s− s̃‖2

6

(
1 +

4

B
(1 +

1

B
)

)
‖s− ŝTk

‖2

+B (1 +
1

B
)
(logK + ξ)

n
,

except on Ωξ.
Given B > 5 to ensure that 1 − (4/B)(1 + 1/B) > 0, we
finally obtain on Ωc

ξ

‖s− s̃‖2
6 C1(B) ‖s− ŝTk

‖2 + C2(B)
logK

n
+ C3(B)

ξ

n
.

Taking the expectation with respect to the third subsam-
ple, we get Proposition 6.
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