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Institut de Mathématiques Elie Cartan - UMR 7502

Nancy-Université, CNRS, INRIA
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Abstract

We study a family of memory-based persistent random walks and we prove weak conver-
gences after space-time rescaling. The limit processes are not only Brownian motions with
drift. We have obtained a continuous but non-Markov process (Zt) which can be easely ex-
pressed in terms of a counting process (Nt). In a particular case the counting process is a
Poisson process, and (Zt) permits to represent the solution of the telegraph equation. We
study in detail the Markov process ((Zt, Nt); t ≥ 0).

1 The setting of persistent random walks.

1) The simplest way to present and define a persistent random walk with value in Z is to
introduce the process of its increments (Yt, t ∈ IN). In the classical symmetric random walk
case, this process is just a sequence of independent random variables satisfying IP(Yt = 1) =
IP(Yt = −1) = 1

2
for any t ≥ 0. Here we shall introduce some short range memory in these

increments in order to create the persistence phenomenon. Namely (Yt) is a {−1, 1}-valued
Markov chain: the law of Yt+1 given Ft = σ(Y0, Y1, . . . , Yt) depends only on the value of Yt.
This dependence is represented by the transition probability π(x, y) = IP(Yt+1 = y|Yt = x)
with (x, y) ∈ {−1, 1}2:

π =

(

1 − α α
β 1 − β

)

0 < α < 1, 0 < β < 1.

The persistent random walk is the corresponding process of partial sums:

Xt =
t

∑

i=0

Yi with X0 = Y0 = 1 or − 1. (1.1)

Let us discuss two particular cases:

• If α + β = 1, then increments are independent and therefore the short range memory
disappears. (Xt, t ∈ IN) is a classical Bernoulli random walk.

• The symmetric case α = β was historically suggested by Fürth [7] and precisely defined
by Taylor [14]. Goldstein [8] developed the calculation of the random walk law and
clarified the link between this process and the so-called telegraph equation. Some nice
presentation of these results can be found in Weiss’ book [17] and [18]. This partic-
ular short memory process is often called either persistent or correlated random walk
or Kac walks (see, for instance, [5]). An interesting presentation of different limiting
distributions for this correlated random walk has been given by Renshaw and Henderson
[11].

2) Recently, Vallois and Tapiero [15] studied the influence of the persistence phenomenon on
the first and second moments of a counting process whose increments takes their values in
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{0, 1} instead of {−1, 1}. They obtained some nearly linear behaviour for the expectation.
Using the transformation y → 2y − 1, it is easy to deduce that, in our setting, we have:

IE−1[Xt] := IE[Xt|X0 = Y0 = −1] =
α− β

1 − ρ
(t+ 1) − 2α

(1 − ρ)2
(1 − ρt+1). (1.2)

IE+1[Xt] := IE[Xt|X0 = Y0 = +1] =
α− β

1 − ρ
(t+ 1) − 2β

(1 − ρ)2
(1 − ρt+1). (1.3)

An application to insurance has been given in [16].
It is actually possible to determine the moment generating function (see Proposition 6.4 in
Section 6).

Φ(λ, t) = IE[λXt ], (λ ∈ R
∗
+).

However it seems difficult to invert this transformation; i.e. to give the law of Xt.
3) This leads us to investigate limit distributions. It is well-known that the correctly normal-
ized symmetric random walk converges towards the Brownian motion. Let us define the time
and space normalizations. Let α0 and β0 denote two real numbers satisfying:

0 ≤ α0 ≤ 1, 0 ≤ β0 ≤ 1. (1.4)

Let ∆x be a positive small parameter so that:

0 ≤ α0 + c0∆x ≤ 1, 0 ≤ β0 + c1∆x ≤ 1, (1.5)

where c0 and c1 belong to R (see in subsection 6.2 the allowed range of parameters).
Let (Yt, t ∈ IN) be a Markov chain whose transition probabilities are given by the matrix:

π∆ =

(

1 − α0 − c0∆x α0 + c0∆x

β0 + c1∆x 1 − β0 − c1∆x

)

. (1.6)

Let (Xt, t ∈ IN) be the random walk associated with (Yt) (cf. (1.1)). Define the normalized
random walk (Z∆

s , s ∈ ∆t IN) by the relation:

Z∆
s = ∆xXs/∆t

, (∆t > 0, ∆x > 0). (1.7)

Set (Z̃∆
s , s ≥ 0) the continuous time process obtained by linear interpolation of (Z∆

s ).
We introduce two essential parameters:

ρ0 = 1 − α0 − β0 (the asymmetry coefficient), (1.8)

η0 = β0 − α0. (1.9)

In this paper, we will aim at showing the existence of a normalization (i.e. to express ∆t in
terms of ∆x) which depends on α0, β0, so that (Z̃∆

s ) converges in distribution, as ∆x → 0.
Our main results and the organization of the paper will be given in Section 2.

2 The main results

2.1 Case : ρ0 = 1

Obviously ρ0 = 1 implies that α0 = β0 = 0, and the transition probabilities matrix is given
as

π∆ =

(

1 − c0∆x c0∆x

c1∆x 1 − c1∆x

)

(c0, c1 > 0).

In order to describe the limiting process, we introduce a sequence of independent identically
exponentially distributed random variables (en, n ≥ 1) with IE[en] = 1. We construct the
following counting process:

Nc0,c1
t =

∑

k≥1

1{λ1e1+λ2e2+...+λkek≤t}, (2.1)
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where

λk =

{

1/c0 if k is odd
1/c1 otherwise.

(2.2)

Finally we define

Zc0,c1
t =

∫ t

0

(−1)N
c0,c1
u du. (2.3)

For simplicity of notations, in the symmetric case (i.e. c0 = c1), N
c0
t (resp. Zc0

t ) will stand
for Nc0,c0

t (resp. Zc0,c0
t ). The process (Zc0

t ) has been introduced by Stroock (in [13] p. 37).
It is possible to show that if we rescale (Zc0

t ), this process converges in distribution to the
standard Brownian motion. This property has been widely generalized. For instance Bardina
and Jolis [1] have given weak approximation of the Brownian sheet from a Poisson process in
the plane.

Theorem 2.1. Let ∆x = ∆t and Y0 = X0 = −1. Then the interpolated persistent random
walk (Z̃∆

s , s ≥ 0) converges in distribution, as ∆x → 0, to the process (−Zc0,c1
s , s ≥ 0).

In particular if c0 = c1, then (Nc0
u ) is the Poisson process with parameter c0.

If Y0 = X0 = 1 then the interpolated persistent random walk (Z̃∆
s , s ≥ 0) converges in

distribution, as ∆x → 0, to the process (Zc1,c0
s , s ≥ 0).

Proof. See Section 4.

Next, in Section 3, we investigate the process (Zc0,c1
t , Nc0,c1

t ; t ≥ 0). In particular we
prove that it is Markov, we determine its semigroup and the law of (Zc0,c1

t , Nc0,c1
t ), t being

fixed. This permits to prove, when c0 = c1, the well-known relation (cf. [18], [5], [8], [9])
between the solutions of the wave equation and the telegraph equation. For this reason the
process (Zc0,c1

t ) will be called the integrated telegraph noise (ITN for short).
We emphasize that our approach based on stochastic processes gives a better understanding
of analytical properties.
We will give in Section 5 below two extensions of Theorem 2.1 to the cases where (Yt) is
1) a Markov chain which takes its values in {y1, . . . , yk},
2) a Markov chain with order 2 and valued in {−1, 1}.

2.2 Case : ρ0 6= 1

In this case, the limit process is Markov. We shall prove two kind of convergence results. The
first one corresponds to the law of large numbers and the second one looks like functional
central limit theorem.
Recall that (Z̃∆

t , t ≥ 0) is the linear interpolation of (Z∆
t ) and ρ0 (resp. η0) has been defined

by (1.8) (resp. (1.9)).

Theorem 2.2. 1) Suppose that r∆t = ∆x with r > 0. Then Z̃∆
t converges to the deterministic

limit − rtη0
1−ρ0

when ∆x → 0.

2) Suppose that r∆t = ∆2
x with r > 0, then the process (ξ∆t , t ≥ 0) defined by

ξ∆t = Z̃∆
t +

t
√
rη0

(1 − ρ0)
√

∆t

converges in distribution to the process (ξ0t , t ≥ 0), as ∆x → 0, where

ξ0t = 2r
( −τ

1 − ρ0
+

η0τ

(1 − ρ0)2

)

t+

√

r(1 + ρ0)

1 − ρ0

(

1 − η2
0

(1 − ρ0)2

)

Wt, (2.4)

(Wt, t ≥ 0) is a one-dimensional Brownian motion, τ = (c0 + c1)/2 and τ = (c1 − c0)/2.

Proof. See Section 6.

Gruber and Schweizer have proved in [10] a weak convergence result for a large class of
generalized correlated random walks. However these results and ours can be only compared
in the case α0 = β0.
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Note that

1 − η2
0

(1 − ρ0)2
= 0 ⇐⇒ α0 = 0 or β0 = 0.

Suppose for instance that α0 = 0. Then β0, c0 > 0 and

ξ∆t = Z̃∆
t +

t
√
r√

∆t

and ξ0t =
2rc0
β0

t.

Obviously, the diffusion coefficient of (ξ0t ) can also cancel when ρ0 = −1.
Since ρ0 = −1 ⇐⇒ α0 = β0 = 1, then c0, c1 < 0 and

ξ∆t = Z̃∆
t and ξ0t = −rτt.

This shows that, in the symmetric case (i.e. c0 = c1), we have ξ0t = 0. This means that the
normalization is not the right one since the limit is null. Changing the rescaling we can obtain
a non-trivial limit.

Proposition 2.3. Suppose α0 = β0 = 1, c0 = c1 < 0 and r∆t = ∆3
x with r > 0.

The interpolated persistent walk (Z̃∆
t , t ≥ 0) converges in law, as ∆x → 0, to (

√−rc0Wt, t ≥
0) where (Wt) is a standard Brownian motion.

Proof. See subsection 6.3

2.3 Organization of the paper

The third section presents few properties of the process (Zc0,c1
t , t ≥ 0) which has been defined

by (2.3). Theorem 2.1 will be proven in Section 4. Section 5 will be devoted to two extensions
of Theorem 2.1. In subsection 6.1 we determine the generating function of Xt (recall that Xt

has been defined by (1.1)). This is the main tool which permits to prove Theorem 2.2 and
Proposition 2.3 (see subsections 6.2 and 6.3).

3 Properties of the integrated telegraph noise

The aim of this section is to study the two dimensional process (Zc0,c1
t , Nc0,c1

t ; t ≥ 0) in-
troduced in (2.2) and (2.3). In the particular symmetric case c0 = c1, the study is simpler
since the process (Nc0

t , t ≥ 0) is a Poisson process with rate c0 (IE(Nc0
t ) = c0t) and Nc0

0 = 0.
However we shall study the general case.

First, we determine in Proposition 3.1 the conditional density of Zc0,c1
t given Nc0,c1

t = n.
As a by product we obtain the distribution of Zc0,c1

t (see Proposition 3.3). Second, we prove
in Proposition 3.5 that (Zc0,c1

t , Nc0,c1
t , t ≥ 0) is Markov and we determine its semi-group. We

conclude this section by showing that the solution of the telegraph equation can be expressed
in terms of the associated wave equation and (Zc0,c0

t )t≥0. For this reason, (Zc0,c1
t )t≥0 will be

called the integrated telegraph noise (ITN for short). Recall that:

τ =
c0 + c1

2
, τ =

c1 − c0
2

. (3.1)

Proposition 3.1. 1) IP(Nc0,c1
t = 0) = e−tc0 and given Nc0,c1

t = 0, we have Zc0,c1
t = t.

2) The counting process takes even values with probability:

IP(Nc0,c1
t = 2k) =

(c0c1)
kαk(t)

22kk!(k − 1)!
e−τt with αk(t) =

∫ t

−t

(t− z)k−1(t+ z)keτzdz, (3.2)

and the conditional distribution of Zc0,c1
t is given by

IP(Zc0,c1
t ∈ dz|Nc0,c1

t = 2k) =
1

αk(t)
(t− z)k−1(t+ z)keτz1[−t,t](z) (k ≥ 1). (3.3)

3) The counting process takes odd values with probability:

IP(Nc0,c1
t = 2k + 1) =

ck+1
0 ck1 α̃k(t)

22k+1(k!)2
e−τt with α̃k(t) =

∫ t

−t

(t− z)k(t+ z)keτzdz, (3.4)
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and the conditional distribution of Zc0,c1
t is given by

IP(Zc0,c1
t ∈ dz|Nc0,c1

t = 2k + 1) =
1

α̃k(t)
(t− z)k(t+ z)keτz1[−t,t](z) (k ≥ 0). (3.5)

Corollary 3.2. In the particular symmetric case c0 = c1, the conditional density function of
Zc0

t given Nc0
t = n is the centered beta density, i.e.

for n = 2k, k ∈ N
∗ : fn(t, z) = χ2k

(t+ z)k(t− z)k−1

t2k
1[−t,t](z), (3.6)

for n = 2k + 1, k ∈ N : fn(t, z) = χ2k+1
(t+ z)k(t− z)k

t2k+1
1[−t,t](z), (3.7)

with

χ2k+1 = χ2k+2 =
1

22k+1B(k + 1, k + 1)
=

(2k + 1)!

22k+1(k!)2
(k ≥ 0),

(B is the beta function (first Euler function): B(r, s) = Γ(r)Γ(s)
Γ(r+s)

).

Proof of Proposition 3.1. Associated with n ≥ 0 and a bounded continuous function f , we
define

∆n(f) = IE
[

f(Zc0,c1
t )1{N

c0,c1
t =n}

]

.

a) When n = 0, we obtain

∆0(f) = IE
[

f(Zc0,c1
t )1{t<λ1e1}

]

.

If t < λ1e1, then Zc0,c1
t = t and

∆0(f) = f(t) IP(t < λ1e1) = f(t)e−tc0 .

b) When n ≥ 1, using (2.1) we obtain

∆n(f) = IE
[

f(Zc0,c1
t )1{λ1e1+...+λnen≤t<λ1e1+...+λn+1en+1}

]

.

If λ1e1 + . . .+ λnen ≤ t < λ1e1 + . . .+ λn+1en+1 then

Zc0,c1
t =

∫ λ1e1

0

(−1)0du+

∫ λ1e1+λ2e2

λ1e1

(−1)du+ . . .+

∫ λ1e1+...+λnen

λ1e1+...+λn−1en−1

(−1)n−1du

+

∫ t

λ1e1+...+λnen

(−1)ndu.

Hence

Zc0,c1
t = λ1e1 − λ2e2 + λ3e3 + . . .+ (−1)n−1λnen + (−1)n(t− λ1e1 − . . .− λnen). (3.8)

c) Evaluation of ∆2k(f), k ≥ 1.
We introduce two sequences of random variables associated with (en):

ξe
k = e2 + . . .+ e2k, ξo

k = e1 + . . .+ e2k−1, (k ≥ 1). (3.9)

By (3.8), (2.2) and (3.9) we obtain the simpler expression

∆2k(f) = IE
[

f(t− 2ξe
k/c1)1{ξo

k
/c0+ξe

k
/c1≤t<ξo

k
/c0+ξe

k
/c1+e2k+1/c0}

]

.

Note that from our assumptions, ξe
k, ξo

k and e2k+1 are independent r.v.’s, ξo
k and ξe

k are both
gamma distributed with parameter k. Consequently:

∆2k(f) =
1

((k − 1)!)2

∫

Dt

exp{−c0(t− y/c0 − x/c1)}f(t − 2x/c1)e
−x−yxk−1yk−1dx dy

=
ck0e

−tc0

k!(k − 1)!

∫ tc1

0

f(t− 2x/c1)x
k−1(t− x/c1)

k exp
{( c0

c1
− 1

)

x
}

dx,
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where Dt = R
2
+ ∩ {y/c0 + x/c1 ≤ t}. Using the change of variable z = t − 2x/c1, we obtain

x = c1
t−z
2

, t− x/c1 = t+z
2

and

∆2k(f) =
(c0c1)

k

2

e−(c0+c1)t/2

k!(k − 1)!

∫ t

−t

f(z)
( t− z

2

)k−1( t+ z

2

)k

exp{(c1 − c0)z/2}dz. (3.10)

Finally (3.10) and (3.1) imply (3.2) and (3.3).
d) Evaluation of ∆2k+1(f) for k ≥ 0. The arguments are similar to those presented in part c).
On the event ξo

k+1/c0+ξe
k/c1 ≤ t < ξo

k+1/c0+ξe
k/c1+e2k+2/c1, we have: Zc0,c1

t = 2ξo
k+1/c0−t;

this implies

∆2k+1(f) = IE
[

1{ξo
k+1

/c0+ξe
k

/c1≤t} exp
(

− c1(t− ξo
k+1/c0 − ξe

k/c1)
)

f(2ξo
k+1/c0 − t)

]

.

Since ξo
k+1 and ξe

k are independent and gamma distributed with parameter k + 1 (resp. k),
we get

∆2k+1(f) =
ck+1
0 ck1
2(k!)2

e−(c0+c1)t/2

∫ t

−t

f(z)
( t− z

2

)k( t+ z

2

)k

exp
{

(c1 − c0)z/2
}

dz. (3.11)

This leads directly to (3.4) and (3.5). �

Let us recall the definition of the modified Bessel functions:

Iν(ξ) =
∑

m≥0

(ξ/2)ν+2m

m!Γ(ν +m+ 1)
.

Proposition 3.3. The distribution of Zc0,c1
t is given by

IP(Zc0,c1
t ∈ dx) = e−c0tδt(dx) + e−τtf(t, x)1[−t,t](x), (3.12)

where

f(t, x) =
1

2

[

√

c0c1(t+ x)

t− x
I1

(

√

c0c1(t2 − x2)
)

+ c0I0
(

√

c0c1(t2 − x2)
)]

eτx. (3.13)

Remark 3.4. Let us focus our attention to the symmetric case c0 = c1. We can introduce
some randomization of the initial condition as follows: let ǫ be a {−1, 1}-valued random
variable, independent from the Poisson process Nc0

t , with p := IP(ǫ = 1) = 1 − IP(ǫ = −1). It
is easy to deduce from (3.12) that we have

IP(ǫZc0
t /t ∈ dx) =

(

pδ1(dx) + (1 − p)δ−1(dx) + g(t, x)dx
)

e−c0t, (3.14)

with

g(t, x) =
c0t

2

{

I0
(

c0t
√

1 − x2
)

+
1 + (2p− 1)x√

1 − x2
I1

(

c0t
√

1 − x2
)}

1[−1,1](x)

and δ1(dx) (resp. δ−1(dx)) is the Dirac measure at 1 (resp. −1).
In the particular case p = 1/2, x → g(t, x) is an even function. G.H. Weiss ([18] p.393)
proved (3.14) using an analytic method based on Fourier-Laplace transform.

Proof of Proposition 3.3. The proof is a direct consequence of the expression of Proposition
3.1. Indeed, for each bounded continuous function ϕ we denote

∆ = IE[ϕ(Zc0,c1
t )] = ϕ(t)e−c0t +

∑

k≥1

∆2k(ϕ) +
∑

k≥0

∆2k+1(ϕ) = ϕ(t)e−c0t + ∆e + ∆o,

where ∆n(ϕ) = IE[ϕ(Zc0,c1
t )1{N

c0,c1
t =n}]. Using (3.2) and (3.3) we get

∆e = e−τt

∫ t

−t

ϕ(z)Se(z)e
τzdz,
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with

Se(z) =
1

2

∑

k≥1

(c0c1)
k

k!(k − 1)!

( t− z

2

)k−1( t+ z

2

)k

=
1

2

√
c0c1

√

t+ z

t− z

∑

k≥0

1

k!(k + 1)!

(

√

c0c1(t2 − z2)

2

)2k+1

=
1

2

√
c0c1

√

t+ z

t− z
I1

(

√

c0c1(t2 − z2)
)

.

For the odd indexes, by (3.4) and (3.5) we get

∆o = e−τt

∫ t

−t

ϕ(z)So(z)e
τzdz,

with

So(z) =
1

2

∑

k≥0

ck+1
0 ck1
(k!)2

( t2 − z2

4

)k

=
c0
2
I0

(

√

c0c1(t2 − z2)
)

.

�

Proposition 3.5. 1) (Zc0,c1
t , Nc0,c1

t ; t ≥ 0) is a R × IN-valued Markov process.

2) Let s ≥ 0 and n ≥ 0. Conditionally on Zc0,c1
s = x and Nc0,c1

s = n,
(

(Zc0,c1
t+s , Nc0,c1

t+s ), t ≥ 0
)

is distributed as










((

x+
∫ t

0
(−1)N

c0,c1
u du, n+Nc0,c1

t

)

, t ≥ 0
)

when n is even,

((

x−
∫ t

0
(−1)N

c1,c0
u du, n+Nc1,c0

t

)

, t ≥ 0
)

otherwise.

Remark 3.6. Note that Propositions 3.5 and 3.1 permit to determine the semigroup of
(

(Zc0,c1
t , Nc0,c1

t ), t ≥ 0
)

i.e. IP(Zc0,c1
t ∈ dx, Nc0,c1

t = n|Zc0,c1
s = y, Nc0,c1

s = m) where

t > s, n ≥ m and y ∈ [−s, s].
Proof of Proposition 3.5. Let t > s ≥ 0. Using (2.3) we get

Zc0,c1
t = Zc0,c1

s + (−1)N
c0,c1
s

∫ t−s

0

(−1)Ñs
udu,

where Ñs
u = Nc0,c1

s+u −Nc0,c1
s , u ≥ 0.

Note that (Ñs
u; u ≥ 0)

(d)
= (Nc0,c1

u ; u ≥ 0) if Nc0,c1
s ∈ 2 IN and (Ñs

u; u ≥ 0)
(d)
= (Nc1,c0

u ; u ≥ 0)
if Nc0,c1

s ∈ 2 IN+1. This shows Proposition 3.5. �

Next, we determine (in Proposition 3.8 below) the Laplace transform of the r.v. Zc0,c1
t . It

is possible to use the distribution of Zc0,c1
t (cf Proposition 3.3), but this method has the

disadvantage of leading to heavy calculations. We develop here a method which uses the fact
that (Zc0,c1

s ; s ≥ 0) is a stochastic process given by (2.3). The key tool is Lemma 3.7 below.
Roughly speaking Lemma 3.7 gives the generator of the Markov process (Zc0,c1

t , Nc0,c1
t ).

Lemma 3.7 is an important ingredient in the proof of Proposition 3.11 besides.

Lemma 3.7. Let F : R × IN → R denote a bounded and continuous function such that
z → F (z, n) is of class C1 for all n. Then

d

dt
IE[F (Zc0,c1

t , Nc0,c1
t )] = IE

[ ∂F

∂z
(Zc0,c1

t , Nc0,c1
t )(−1)N

c0,c1
t

]

+ IE
[ (

F (Zc0,c1
t , Nc0,c1

t + 1) − F (Zc0,c1
t , Nc0,c1

t )
)

×
(

c11{N
c0,c1
t ∈2 IN +1} + c01{N

c0 ,c1
t ∈2 IN}

)]

. (3.15)

Proof. Let us denote by ∆(t) = IE[F (Zc0,c1
t , Nc0,c1

t )]. In order to compute the t-derivative
we shall decompose the increment of t→ ∆(t) in a sum of two terms:

∆(t+ h) − ∆(t)

h
= Bh + Ch,
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with

Bh =
1

h

{

IE[F (Zc0,c1
t+h , Nc0,c1

t+h )] − IE[F (Zc0,c1
t , Nc0,c1

t+h )]
}

,

Ch =
1

h

{

IE[F (Zc0,c1
t , Nc0,c1

t+h )] − IE[F (Zc0,c1
t , Nc0,c1

t )]
}

.

Since F (·, n) is continuously differentiable with respect to the variable z and t → Zc0,c1
t is

differentiable (cf (2.3)), using the change of variable formula we obtain

1

h

{

F (Zc0,c1
t+h , Nc0,c1

t+h ) − F (Zc0,c1
t , Nc0,c1

t+h )
}

=
1

h

∫ t+h

t

∂F

∂z
(Zc0,c1

u , Nc0,c1
t+h )(−1)N

c0,c1
u du.

Therefore

lim
h→0

Bh = IE
[∂F

∂z
(Zc0,c1

t , Nc0,c1
t )(−1)N

c0,c1
t

]

. (3.16)

In order to study the limit of Ch, we consider two cases: Nc0,c1
t ∈ 2 IN and Nc0,c1

t ∈ 2 IN+1:

Ch =
1

h
IE

[(

F (Zc0,c1
t , Nc0,c1

t + Ñc1,c0
h ) − F (Zc0,c1

t , Nc0,c1
t )

)

1{N
c0 ,c1
t ∈2 IN+1}

]

+
1

h
IE

[(

F (Zc0,c1
t , Nc0,c1

t + Ñc0,c1
h ) − F (Zc0,c1

t , Nc0,c1
t )

)

1{N
c0 ,c1
t ∈2 IN}

]

,

where Ñh = Nc0,c1
t+h −Nc0,c1

t .
According to Proposition 3.5, conditionally on Zc0,c1

t and Nc0,c1
t ∈ 2 IN (resp. Nc0,c1

t ∈
2 IN+1), Ñh is distributed as Nc0,c1

h (resp. Nc1,c0
h ). Note that Proposition 3.1 implies that

IP(Nc0,c1
h ≥ 2) = o(h) and

IP(Nc0,c1
h = 1) =

c0
2

(eτh − e−τh

τ

)

e−τh = c0h+ o(h).

Consequently

lim
h→0

Ch = c1 IE
[(

F (Zc0,c1
t , Nc0,c1

t + 1) − F (Zc0,c1
t , Nc0,c1

t )
)

1{N
c0 ,c1
t ∈2 IN+1}

]

+ c0 IE
[(

F (Zc0,c1
t , Nc0,c1

t + 1) − F (Zc0,c1
t , Nc0,c1

t )
)

1{N
c0 ,c1
t ∈2 IN}

]

. (3.17)

Then, (3.16) and (3.17) clearly imply Lemma 3.7.

Let us introduce the two quantities:

Le(t) = IE
[

e−µZ
c0,c1
t 1{N

c0,c1
t ∈2 IN}

]

and Lo(t) = IE
[

e−µZ
c0,c1
t 1{N

c0,c1
t ∈2 IN+1}

]

, (t ≥ 0, µ ∈ R).

(3.18)
Since |Zc0,c1

t | ≤ t, then Le(t) and Lo(t) are well defined for any µ ∈ R. Note that µ→ Le(t)
(resp. µ→ Lo(t)) is a Laplace transform. We have mentioned the t-dependency only because
it will play an important role in our proof of Proposition 3.8 below.

Proposition 3.8. Let Le(t) and Lo(t) be defined by (3.18). Then

Le(t) =
1√
E

(

(−µ+ τ) sinh(t
√
E) +

√
E cosh(t

√
E)

)

e−τt, (3.19)

Lo(t) =
c0√
E

sinh(t
√
E)e−τt, (3.20)

IE[e−µZ
c0,c1
t ] =

1√
E

[

(−µ+ τ ) sinh(t
√
E) +

√
E cosh(t

√
E)

]

e−τt, (3.21)

where E = µ2 − 2τµ+ τ 2.

Proof. Applying Lemma 3.7 with the particular function F (z, n) = e−µz1{n∈2 IN}, we have:

d

dt
Le(t) = −µ IE

[

e−µZ
c0,c1
t (−1)N

c0,c1
t 1{N

c0,c1
t ∈2 IN}

]

+ E
[

e−µZ
c0,c1
t

(

1{N
c0,c1
t ∈2 IN+1} − 1{N

c0,c1
t ∈2 IN}

)

×
(

c11{N
c0,c1
t ∈2 IN +1} + c01{N

c0,c1
t ∈2 IN}

)]
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We deduce
d

dt
Le(t) = −(µ+ c0)Le(t) + c1Lo(t).

Similarly

d

dt
Lo(t) = −µ IE

[

e−µZ
c0,c1
t (−1)N

c0,c1
t 1{N

c0,c1
t ∈2 IN+1}

]

+ E
[

e−µZ
c0,c1
t

(

1{N
c0,c1
t ∈2 IN} − 1{N

c0,c1
t ∈2 IN +1}

)

×
(

c11{N
c0,c1
t ∈2 IN +1} + c01{N

c0,c1
t ∈2 IN}

)]

.

We get therefore
d

dt
Lo(t) = (µ− c1)Lo(t) + c0Le(t).

To sum up

d

dt

(

Le(t)
Lo(t)

)

=

(

−µ− c0 c1
c0 µ− c1

) (

Le(t)
Lo(t)

)

.

We deduce the expressions of Le(t) and Lo(t):

Le(t) = a+e
λ+t + a−e

λ−t Lo(t) = b+e
λ+t + b−e

λ−t, (3.22)

where λ± = −τ ±
√

µ2 − 2τµ+ τ 2 = −τ ±
√
E .

The constants a± and b± are evaluated with the initial conditions:

Le(0) = IP(Nc0,c1
0 ∈ 2 IN) = 1, Lo(0) = IP(Nc0,c1

0 ∈ 2 IN +1) = 0,

dLe

dt
(0) = −(µ+ c0)Le(0) + c1Lo(0) = −µ− c0,

dLo

dt
(0) = (µ− c1)Lo(0) + c0Le(0) = c0.

We obtain

a+ =
1

2
√
E

(−µ+ τ +
√
E) and a− =

1

2
√
E

(µ− τ +
√
E), (3.23)

b+ =
c0

2
√
E

and b− = − c0

2
√
E

(3.24)

Using (3.22), (3.23) and (3.24), Proposition 3.8 follows.

It is easy to deduce two direct consequences of Proposition 3.8. First, taking µ = 0 we
obtain IP(Nc0,c1

t ∈ 2 IN) and IP(Nc0,c1
t ∈ 2 IN+1). Second, taking the expectation in (2.3) we

get the mean of Zc0,c1
t .

Corollary 3.9. We have:

IP(Nc0,c1
t ∈ 2 IN) =

1

τ

[

τ sinh(τt) + τ cosh(τt)
]

e−τt,

IP(Nc0,c1
t ∈ 2 IN+1) =

c0
τ

sinh(τt)e−τt,

and

IE[Zc0 ,c1
t ] =

τ

τ
t+

c0
2τ 2

(1 − e−2τt).

Remark 3.10. The Laplace transform with respect to the time variable can also be explicitly

computed. We define F (µ, s) =
∫ ∞
0
e−st IE[e−µZ

c0,c1
t ]dt. Integrating (3.21) with respect to dt

we get

F (µ, s) =
1

2
√
E

(√
E + (−µ+ τ )

) 1

s−
√
E + τ

+
1

2
√
E

(√
E − (−µ+ τ )

) 1

s+
√
E + τ

=
(
√
E − µ+ τ )(s+

√
E + τ ) + (

√
E + µ− τ )(s−

√
E + τ )

2
√
E((s+ τ )2 − E)

=
2s
√
E + 4τ

√
E − 2µ

√
E

2
√
E((s+ τ )2 − E)

=
s+ 2τ − µ

(s+ τ )2 − E
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In the symmetric case, E equals µ2 + c20, then

F (µ, s) =
s+ 2c0 − µ

s2 + 2sc0 − µ2
. (3.25)

Let (Zt) be the symmetrization of (Zc0
t ) which is defined by an initial randomization:

Zt = ǫZc0
t , t ≥ 0,

where ǫ is independent of Zc0
t and IP(ǫ = ±1) = 1/2.

Relation (3.25) implies
∫ ∞

0

e−st IE[e−µZt ]dt =
s+ 2c0

s2 + 2sc0 − µ2
.

This identity has been obtained by Weiss in [18].

Let us now present a link between the ITN process and the telegraph equation in the
particular symmetric case c0 = c1 = c > 0. Recall that (Nc

t ) is a Poisson process with
parameter c.
Let f : R → R be a function of class C2 whose first and second derivatives are bounded. We
define

u(x, t) =
1

2

{

f(x+ at) + f(x− at)
}

, x ∈ R, t ≥ 0.

Then (cf [5]) u is the unique solution of the wave equation










∂2u

∂t2
= a2 ∂

2u

∂x2
,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = 0.

Proposition 3.11. The function

w(x, t) = IE
[

u
(

x,

∫ t

0

(−1)Nc
s ds

)]

, (x ∈ R, t ≥ 0)

is the solution of the telegraph equation (TE)














∂2w

∂t2
+ 2c

∂w

∂t
= a2 ∂

2w

∂x2
,

w(x, 0) = f(x),
∂w

∂t
(x, 0) = 0.

This result can be proved using asymptotic analysis applied to difference equation asso-
ciated with the persistent random walk [8] or using Fourier transforms [18]. Here we shall
present a new proof.
Proof of Proposition 3.11. Applying twice Lemma 3.7 to (z, n) → u(x, z) and (z, n) →
∂u
∂t

(x, z)(−1)n we obtain:

∂w

∂t
(x, t) = IE

[∂u

∂t

(

x,

∫ t

0

(−1)Nc
s ds

)

(−1)Nc
t

]

.

and

∂2w

∂t2
(x, t) = IE

[∂2u

∂t2

(

x,

∫ t

0

(−1)Nc
s ds

)]

− 2c IE
[∂u

∂t

(

x,

∫ t

0

(−1)Nc
s ds

)

(−1)Nc
t

]

.

Since u solves the wave equation we have

∂2w

∂t2
(x, t) = a2 ∂

2w

∂x2
(x, t) − 2c

∂w

∂t
(x, t).

The function w is actually the solution of the telegraph equation. It is easy to prove that w
satisfies the boundary conditions. �

Let us note that Proposition 3.11 can be extended to the asymmetric case c0 6= c1. In
this general case the telegraph equation is replaced by a linear system of partial differential
equations.
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Remark 3.12. 1) In [5], [9], an extension of Proposition 3.11 has been proved. Let A be the
generator of a strongly continuous group of bounded linear operators on a Banach space. If w
is the unique solution of this abstract ”wave equation”:

∂2w

∂t2
= A2w; w(·, 0) = f,

∂w

∂t
(·, 0) = Ag (f, g ∈ D(A))

then u(x, t) = IE
[

w
(

x,
∫ t

0
(−1)Nc

s ds
)]

solves the abstract ”telegraph equation”:

∂2u

∂t2
= A2u− 2c

∂u

∂t
, u(·, 0) = f,

∂u

∂t
(·, 0) = Ag.

2) In the same vein as [9], Enriquez [6] has introduced processes with jumps to represent
solutions of some linear differential equations and biharmonic equations in the presence of a
potential term. Moreover useful references are given in [6].
3) It is easy to deduce from Lemma 3.7 that the functions

we(x, t) = IE
[

u
(

x,

∫ t

0

(−1)N
c0,c1
s ds

)

1{N
c0,c1
t ∈2 IN}

]

, (x ∈ R, t ≥ 0)

wo(x, t) = IE
[

u
(

x,

∫ t

0

(−1)N
c0,c1
s ds

)

1{N
c0,c1
t ∈2 IN +1}

]

, (x ∈ R, t ≥ 0)

are solutions of the general telegraph system (TS)































∂2we

∂t2
= (c0c1 − c20)we + (c0c1 − c21)wo − 2c0

∂we

∂t
+ a2 ∂

2we

∂x2
,

∂2wo

∂t2
= (c0c1 − c20)we + (c0c1 − c21)wo − 2c1

∂wo

∂t
+ a2 ∂

2wo

∂x2
,

we(x, 0) = f(x), wo(x, 0) = 0
∂we

∂t
(x, 0) = −c0f(x)

∂wo

∂t
(x, 0) = c0f(x).

4 Convergence of the persistent walk to the ITN

Suppose ρ0 = 1. The aim of this section is to prove the convergence of the interpolated
persistent random walk towards the generalized integrated telegraph noise (ITN) i.e. Theorem
2.1. Let us start with preliminary results.
First, let us recall that (Xn, n ∈ IN) is the persistent random walk starting in 0 defined by
the increments process (Yn, n ∈ IN) (see Section 1) with transition probabilities

π∆ =

(

1 − c0∆t c0∆t

c1∆t 1 − c1∆t

)

.

Let (Tk; k ≥ 1) be the sign changes sequence of times :







T1 = inf{t ≥ 1 : Yt 6= Y0}

Tk+1 = inf{t > Tk : Yt 6= YTk
}; k ≥ 1.

(4.1)

We put T0 = 0 and
Ak = Tk − Tk−1 k ≥ 1 (4.2)

Let Nt be the number of times over [0, t] so that the sign of (Yn) changes:

Nt =
∑

j≥1

1{Tj≤t} (4.3)

The definition of Nt implies that:

Nt = k ⇐⇒ Tk ≤ t < Tk+1
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We suppose in this subsection that Y0 = −1.
We deduce from the identities above:

Xt =

k
∑

j=1

(−1)jAj + (−1)k+1(t− Tk + 1) where k = Nt. (4.4)

By (4.2) we obtain:
Tk = A1 + . . .+ Ak k ≥ 1. (4.5)

Hence the equations (4.3), (4.4) and (4.5) permit to emphasize the bijective correspondence
between (Xn; n ∈ IN) and (Ak; k ∈ IN).
We introduce the normalization of (Xn; n ∈ IN) given by (1.7) with ∆x = ∆t:

Z∆
s = ∆tXs/∆t

(s/∆t ∈ IN). (4.6)

Let us define:
N∆

s =
∑

j≥1

1{∑ j
i=1 ∆tAj≤s} s ≥ 0. (4.7)

Let us note that
N∆

s = Ns/∆t
if s/∆t ∈ IN .

That permits to extend the definition of Z∆
s to any s ≥ 0 by setting

Z̃∆
s =

k
∑

j=1

(−1)j(∆tAj) + (−1)k+1(s− ∆tTk + ∆t) k = N∆
s . (4.8)

Obviously Z̃∆
s = Z∆

s if s/∆t ∈ IN.
In order to study the asymptotic behaviour of (Z̃∆

s ) as ∆t → 0, we shall first prove the
convergence in distribution of (∆tAj)j≥1 and (N∆

s )s≥0.
We recall that some random variable ξ is exponentially distributed with parameter λ > 0 if
its density is given by 1

λ
e−x/λ1{x≥0}.

Lemma 4.1. The random variables (Ak) are independent and ∆tA2k (resp. ∆tA2k+1) con-
verges in distribution, as ∆t → 0, to the exponential law with parameter 1

c1
(resp. 1

c0
).

Proof. Since (Yn) is a Markov chain, then the (Ak) are independent. First let us study the
convergence in distribution of the sequence ∆tA2k. We use the Laplace transform of ∆tA2k:
ϕ(µ) = IE[e−µ∆tA2k ], µ ≥ 0. Since A2k is geometrically distributed with parameter c1∆t, we
obtain

ϕ(µ) =
∞

∑

j=1

e−µ∆tj(1 − c1∆t)
j−1c1∆t

=
c1∆t

eµ∆t − (1 − c1∆t)
=

c1∆t

(µ+ c1)∆t + o(∆t)
=

c1
µ+ c1

+ o(∆t) (4.9)

The function ϕ(µ) converges for any µ ≥ 0 to the Laplace transform of some exponential law
with parameter c−1

1 . This proves the convergence in distribution of ∆tA2k. Concerning A2k−1

the arguments are similar.

Let us recall that the counting process (Nc0,c1
t , t ≥ 0) has been defined through the se-

quence of jumps (en;n ≥ 1) via (2.1), and (en; n ≥ 1) are i.i.d. and exponentially distributed.

Lemma 4.2. Let s > 0, k ≥ 1 and Φk : R
k → R be a bounded continuous function. Then

1) lim
∆t→0

IP(N∆
s = 0) = IP(Nc0,c1

s = 0)

2) lim
∆t→0

IE[Φk(∆tA1,∆tA2, . . . ,∆tAk)1{N∆
s =k}] = IE[Φk(λ1e1, λ2e2, . . . , λkek)1{N

c0,c1
s =k}], where

λk has been defined by (2.2).

Proof. 1) Statement 1) follows from:

IP(N∆
s = 0) = IP(N⌊s/∆t⌋ = 0) = IP(T1 ≥ ⌊s/∆t⌋)

= IP(A1 ≥ ⌊s/∆t⌋) = IP(∆tA1 ≥ ∆t⌊s/∆t⌋)
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where ⌊a⌋ denotes the integer part of a.
2) Set k ≥ 1. The event {N∆

s = k} can be decomposed as follows:

{N∆
s = k} =

{

∆t

k
∑

j=1

Aj ≤ s

}

∩
{

∆t

k+1
∑

j=1

Aj > s

}

.

This identity imply existence of a bounded Borel function ψk : Rk+1 → R so that

Φk(∆tA1, . . . ,∆tAk)1{N∆
s =k}

= Φk(∆tA1, . . . ,∆tAk)1{∆t
∑

k
j=1 Aj≤s}1{∆t

∑k+1
j=1

Aj>s}

= ψk(∆tA1,∆tA2, . . . ,∆tAk+1).

Since Φk is continuous, the discontinuity points of ψk are included in:

U =
{

x ∈ R
k+1 :

k
∑

j=1

xj = s
}

∪
{

x ∈ R
k+1 :

k+1
∑

j=1

xj = s
}

.

By Lemma 4.1, (∆tA1, . . . ,∆tAk+1) converges in distribution towards (λ1e1, . . . , λk+1ek+1)
as ∆t → 0. Since the Lebesgue measure of U is null, the limit law does not charge U. We can
conclude evoking for instance Theorem 14 p.247 in [3]).

Let us formulate a straightforward generalization of Lemma 4.2.

Lemma 4.3. Let n ∈ IN, (k1, . . . , kn) ∈ INn such that k1 ≤ k2 ≤ . . . ≤ kn and (s1, . . . , sn) ∈
R

n
+ with s1 ≤ s2 ≤ . . . ≤ sn. Let Φ : R

kn → R be a bounded and continuous function. Then

lim
∆t→0

IE[Φ(∆tA1, ...,∆tAkn)1{N∆
s1

=k1,...,N∆
sn

=kn}]

= IE[Φ(λ1e1, ..., λknekn)1{N
c0,c1
s1

=k1,...,N
c0,c1
sn =kn}] (4.10)

Proposition 4.4. The random variable Z̃∆
s converges in distribution towards −Zc0,c1

s , for
any s > 0, as ∆t → 0.

Proof. Let f : R → R be a continuous function which is bounded by M . Identities (4.8) and
(4.5) imply that IE[f(Z̃∆

s )] =
∑∞

k=0E∆(k), with

E∆(k) = IE
[

f
(

k
∑

j=1

(−1)j∆tAj + (−1)k+1
(

s− ∆t

k
∑

j=1

Aj + ∆t

))

1{N∆
s =k}

]

Applying Lemma 4.2 and (3.8), we obtain for any k ≥ 0,

lim
∆t→0

E∆(k) = E
[

f
(

k
∑

j=1

(−1)jλjej + (−1)k+1
(

s−
k

∑

j=1

λjej

))

1{N
c0,c1
s =k}

]

= IE[f(−Zc0,c1
s )1{N

c0,c1
s =k}].

Moreover since f is bounded by M , we get

|E∆(k)| ≤M IP(N∆
s = k).

Suppose that k ≥ 1. Then, using the Markov inequality and the independence property of
the random sequence (An, n ≥ 0), we obtain

IP(N∆
s = k) = IP

(

∆t

k
∑

j=1

Aj ≤ s < ∆t

k+1
∑

j=1

Aj

)

≤ IP
(

∆t

k
∑

j=1

Aj ≤ s
)

= IP
(

exp
{

− ∆t

k
∑

j=1

Aj

}

≥ e−s
)

≤ es IE
[

exp−∆t

k
∑

j=1

Aj

]

= es
k

∏

j=1

ϕj(1)
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where ϕj(µ) = IE[e−µ∆tAj ]. Since (Yn) is a Markov chain starting at Y0 = −1, for any j ≥ 1,
A2j−1 (resp. A2j) is geometrically distributed with parameter c0∆t (resp. c1∆t). According
to (4.9) we get

ϕ2j(1) =
c1∆t

e∆t − 1 + c1∆t
≤ c1∆t

∆t + c1∆t
=

c1
1 + c1

< 1.

By the same way, we have:

ϕ2j−1(1) ≤ c0
1 + c0

< 1.

As a result, there exists 0 < r < 1 so that

IP(N∆
s = k) ≤ esrk. (4.11)

We are now allowed to apply the dominated convergence theorem:

lim
∆t→0

IE[f(Z̃∆
s )] =

∑

k≥0

lim
∆t→0

E∆(k) =
∑

k≥0

IE[f(−Zc0 ,c1
s )1{N

c0,c1
s =k}] = IE[f(−Zc0,c1

s )].

Proposition 4.5. For any (s1, . . . , sn) ∈ R
n
+ such that s1 ≤ s2 ≤ . . . ≤ sn, the random vector

(Z̃∆
s1
, . . . , Z̃∆

sn
) converges in distribution to (−Zc0,c1

s1
, . . . ,−Zc0,c1

sn
), as ∆t tends to 0.

Proof. We follow the approach developed in the proof of Proposition 4.4. Let f : R
n → R be

a bounded and continuous function. We have:

IE
[

f(Z̃∆
s1
, . . . , Z̃∆

sn
)
]

=
∑

k1,...,kn

E∆(k1, . . . , kn),

where the sum is extended to (k1, . . . , kn) ∈ INn so that k1 ≤ k2 ≤ . . . ≤ kn and

E∆(k1, . . . , kn) = IE
[

f(Z̃∆
s1
, . . . , Z̃∆

sn
)1{N∆

s1
=k1,...,N∆

sn
=kn}

]

.

Identity (4.8) implies the existence of a bounded continuous function ψn : R
kn → R so that

E∆(k1, . . . , kn) = IE
[

ψn(∆tA1, . . . ,∆tAkn)1{N∆
s1

=k1,...,N∆
sn

=kn}

]

.

Applying Lemma 4.3, we get

lim
∆t→0

E∆(k1, . . . , kn) = IE[ψn(λ1e1, . . . , λknekn)1{N
c0,c1
s1

=k1,...,N
c0,c1
sn

=kn}].

According to the definition of the process Zc0,c1
s , we may deduce :

lim
∆t→0

E∆(k1, . . . , kn) = IE[f(−Zc0,c1
s1

, . . . ,−Zc0,c1
sn

)1{N
c0,c1
s1

=k1,...,N
c0,c1
sn

=kn}].

In order to obtain that

lim
∆t→0

IE[f(Z̃∆
s1
, . . . , Z̃∆

sn
)] = IE[f(−Zc0,c1

s1
, . . . ,−Zc0,c1

sn
)],

it suffices (cf the proof of Proposition 4.4) to prove that

∑

k1,...,kn−1

sup
∆t

|E∆(k1, . . . , kn)| <∞.

Since f is bounded,
|E∆(k1, . . . , kn)| ≤M IP(N∆

sn
= kn)

Using moreover (4.11) we get

∑

k1,...,kn

|E∆(k1, . . . , kn)| ≤Mesn
∑

kn

(kn)n−1rkn <∞

since r < 1.
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We are now able to complete the proof of Theorem 2.1. Since (Z̃∆
s ) and (Zc0,c1

s ) are both
continuous processes, the convergence of the process (Z̃∆

s ) to the process (−Zc0,c1
s ) will be

proved as soon as the following measure tension criterium (cf Theorem 8.3 p.56 in [2]) holds
: for all ε > 0 and η0, there exists some constants δ ∈]0, 1[ and µ > 0 such that

1

δ
IP

(

sup
s≤u≤s+δ

|Z̃∆
u − Z̃∆

s | ≥ ε
)

≤ η0, for any ∆t ≤ µ. (4.12)

Since (Z̃∆
s , s ≥ 0) is the interpolated persistent random walk, its slope is always equal to 1

or −1. Hence we obtain for any (u, s) ∈ R
2
+,

|Z̃∆
u − Z̃∆

s | ≤ |u− s|.

Consequently
sup

s≤u≤s+δ
|Z̃∆

u − Z̃∆
s | ≤ δ.

By choosing δ = ε/2 we get the tension criterium and so the convergence of the process (Z̃∆
s )

to the process (−Zc0,c1
s ).

5 Two extensions of Theorem 2.1

First of all, the extensions presented in this section concerns the regime ∆x = ∆t.

5.1 The case when (Yt) takes k values.

Let us introduce our parameters. Let k ≥ 2, y1, . . . , yk denote k real numbers, and (c(i, j); 1 ≤
i, j ≤ k) a matrix so that

c(i, j) ≥ 0 for any i 6= j, c(i, i) = 0,
k

∑

l=1

c(i, l) > 0 ∀i. (5.1)

We directly consider the asymptotic regime. Let (Yt) be a {y1, . . . , yk}-valued Markov chain,
with transition probability matrix:

π∆(yi, yj) =







c(i, j)∆t i 6= j

1 −
(

∑k
l=1 c(i, l)

)

∆t i = j,
(5.2)

where ∆t > 0 is supposed to be small so that

c(i, j)∆t ≤ 1,
(

k
∑

l=1

c(i, l)
)

∆t < 1.

Similarly to the case k = 2 and y1 = −1, y2 = 1, we are interested in the linear interpolation
(Z̃∆

s ; s ≥ 0) of the process (Z∆
s ; s ≥ 0) defined by (1.7).

Theorem 5.1. Suppose Y0 = yi. Then (Z̃∆
s ; s ≥ 0) converges in distribution, as ∆t → 0,

to the process
(

∫ t

0
Rsds; t ≥ 0

)

where (Rs) is a {y1, . . . , yk}-valued continuous-time Markov

chain starting at level yi, whose dynamic is the following: (Rt) stays on level yi an ex-

ponential time with parameter 1/
(

∑k
l=1 c(j, l)

)

and jumps to yj′ (j′ 6= j) with probability

c(j, j′)/
(

∑k
l=1 c(j, l)

)

.

Remark 5.2. In the case k = 2, y1 = −1 and y2 = 1, then ((−1)N
c0,c1
t ; t ≥ 0) (cf (2.1))

may be chosen as a realization of (Rt) when it starts at R0 = −1.

Proof of Theorem 5.1. We proceed as in the proof of Theorem 2.1 developed in Section 4.
Let (Tn)n≥1 be the sequence of stopping times defined by (4.1). Then:

Xt =

{

yi(t+ 1) 0 ≤ t < T1

yiT1 + YT1(t− T1 + 1) T1 ≤ t < T2.
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Recall that (Z∆
s ; s/∆t ∈ IN) has been defined by (4.5). From the relations above, it is easy

to deduce:

Z∆
s =

{

yi(s+ ∆t) 0 ≤ s ≤ ∆tT1

yi(∆tT1) + YT1(s− ∆tT1 + ∆t) ∆tT1 ≤ s < ∆tT2.

Let us determine the limit distribution of (∆tT1, YT1) as ∆t → 0. Set

V ∆(λ, j) = IE
[

e−λ∆tT11{YT1
=yj}

]

, λ > 0, j 6= i.

Proceeding as in the proof of Lemma 4.1, we obtain:

V ∆(λ, j) =
e−λ∆tc(i, j)∆t

1 −
[

1 −
(

∑k
l=1 c(i, l)

)

∆t

]

e−λ∆t

.

Using standard analysis, we deduce that (∆tT1, YT1) converges in distribution as ∆t → 0 to
(e′1, U1) where:

IE
[

e−λe′11{U1=j}

]

=
c(i, j)

λ+
∑k

l=1 c(i, l)
.

As a result, e′1 and U1 are independent, e′1 is exponentially distributed with parameter
1/

∑k
l=1 c(i, l) and

IP(U1 = j) =
c(i, j)

∑k
l=1 c(i, l)

.

Using the approach developed in Section 4, we can prove Theorem 5.1. The details are left
to the reader. �

5.2 The case when (Yt) is a Markov chain of order 2.

Let (Yt) be a Markov chain with order 2. For simplicity we suppose that it takes its values in
{−1, 1}. Obviously (Yt, Yt+1)t≥0 is a Markov chain with state space

E = {(−1,−1), (−1, 1), (1,−1), (1, 1)}.

Let π∆ be the transition probability matrix:

π∆ =









1 − c0∆t c0∆t 0 0
0 0 1 − p0 p0

p1 1 − p1 0 0
0 0 c1∆t 1 − c1∆t









(5.3)

where ∆t, c0, c1, p0, p1 > 0 and c0∆t, c1∆t, p0, p1 < 1.
Let us introduce:

vi =
pi

1 − (1 − p0)(1 − p1)
, c′i = civi, i = 0, 1. (5.4)

Recall that (Z∆
t ) and (Z̃∆

t ) have been defined by (4.6), resp. (4.8), (Nc0,c1
t ) is the counting

process defined by (2.1), and

Zc0,c1
t =

∫ t

0

(−1)N
c0,c1
u du, t ≥ 0.

Theorem 5.3. 1) Suppose that Y0 = Y1 = −1 (resp. Y0 = Y1 = 1) then (Z̃∆
s ; s ≥ 0)

converges in distribution, as ∆t → 0, to (−Zc′0,c′1
s ; s ≥ 0) (resp. (Z

c′1,c′0
s ; s ≥ 0)).

2) Suppose Y0 = 1 and Y1 = −1 (resp. Y0 = −1, Y1 = 1) then (Z̃∆
s ; s ≥ 0) converges in

distribution, as ∆t → 0, to

(

(ǫ− 1)

∫ s

0

(−1)N
c′0,c′1
u du+ ǫ

∫ s

0

(−1)N
c′1,c′0
u du; s ≥ 0

)

where ǫ is independent from (N
c′0,c′1
u ), (N

c′1,c′0
u ) and

IP(ǫ = 0) = 1 − IP(ǫ = 1) = v1 (resp. IP(ǫ = 1) = 1 − IP(ǫ = 0) = v0).
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Remark 5.4. 1) Note that (Yt)t∈IN is a Markov chain if and only if 1 − c0∆t = p1 and
1− c1∆t = p0. If we replace formally p0 (resp. p1) by 1− c1∆t (resp. 1− c0∆t) in (5.4) and
take the limit ∆t → 0, we obtain vi = pi and c′i = ci. We recover Theorem 2.1.
2) The fact that (Yt) is a Markov chain with order 2 does not modify drastically the limit.
The limit process can be expressed in terms of processes of the type (Zα,β

s ; s ≥ 0).

Proof of Theorem 5.3. 1) We only consider the case Y0 = Y1 = 1. Let us define T1, T2 and
T3 as follows:

T1 = inf{t ≥ 1, Yt = −1}, T2 = inf{t ≥ T1+1, Yt = Yt−1}, T3 = inf{t ≥ T2+1, Yt 6= YT2}.

Using the definition (cf (1.1)) of (Xt) we easely obtain:

Xt =

{

t+ 1 0 ≤ t < T1

T1 + X̂t T1 ≤ t < T2

where X̂t equals either −1 or 0.
Moreover, when T2 ≤ t < T3, we have:

Xt =

{

T1 − 2 − (t− T2) if T2 − T1 is odd
T1 + 1 + (t− T2) otherwise.

According to (1.7), we can deduce:

Z∆
s =



























s+ ∆t 0 ≤ s ≤ ∆tT1

∆tT1 + ∆tX̂s/∆t
∆tT1 ≤ s < ∆tT2

∆tT1 − 2∆t − (s− ∆tT2) ∆tT2 ≤ s < ∆tT3, YT2 = −1

∆tT1 + ∆t + s− ∆tT2 ∆tT2 ≤ s < ∆tT3, YT2 = 1

(note that T2 − T1 is odd if and only if YT2 = −1).
2) a) Proceeding as in the proof of Theorem 2.1, we can prove that ∆tT1 converges in
distribution, as ∆t → 0, to e′1, where e′1 is exponentially distributed with parameter 1/c1.

Then (Z̃∆
s ; 0 ≤ s ≤ ∆tT1)

(d)−→ (s; s ≤ e′1), as ∆t → 0.
b) The distribution of T2 − T1 does not depend on ∆t. Moreover |X̂·| ≤ 1, then the limit of
the length of the interval [∆tT1,∆tT2] is null. We have

IP(YT2 = −1) =
∑

l≥0

(

(1 − p1)(1 − p0)
)l

p1 = v1.

c) Using the strong Markov property, we easely show that (Z̃∆
s+∆tT2

; 0 ≤ s ≤ ∆t(T3−T1))
(d)−→

(e′1 +YT1s; 0 ≤ s ≤ e′2), as ∆t → 0, where (e′1, YT1) (resp. (e′1, e
′
2)) are independent r.v.’s and

conditionally on YT2 = 1 (resp. YT2 = −1) e′2 is exponentially distributed with parameter
1/c1 (resp. 1/c0).

d) Let us summarize the former analysis. We have proved that (Z̃∆
s ; s ≥ 0)

(d)−→ (
∫ s

0
R̂udu, s ≥

0), where (R̂u) is a continuous-time Markov chain which takes its values in {−1, 1} and R̂0 = 1.
Moreover the dynamic of (R̂u) is the following: (R̂u) stays in 1 (resp. −1) an exponential
time with parameter 1/c1 (resp. 1/c0) and moves to −1 (resp. 1) with probability v1 (resp.
v0). Note that (R̂u) is allowed to stay in the same site. It is classical (cf [12]) to prove that

(R̂u)u≥0
(d)
= (Z

c′1,c′0
u )u≥0 where c′0 and c′1 are defined by (5.4). �

6 Convergence of the persistent random walk to-

wards the Brownian motion with drift

In subsection 6.1 below we determine the generating function of Xt, where Xt is the persistent
random walk defined by (1.1). This allows to prove Theorem 2.2 and Proposition 2.3 in
subsections 6.2, 6.3.
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6.1 The moment generating function of Xt

Let us recall that the increments process (Yt, t ∈ N) is a Markov chain valued in the state
space E = {−1, 1}. Its transition probability is given by

π =

(

1 − α α
β 1 − β

)

0 < α < 1, 0 < β < 1.

The persistent random walk (Xt, t ∈ N) is defined by the partial sum:

Xt =
t

∑

i=0

Yi with X0 = Y0 = 1 or − 1.

Lemma 6.1. Let us define the functions at and bt:

at(j) = IP(Xt = j, Yt = −1) and bt(j) = IP(Xt = j, Yt = 1). (6.1)

Then,
at+1(j) = (1 − α)at(j + 1) + βbt(j + 1) (6.2)

bt+1(j) = αat(j − 1) + (1 − β)bt(j − 1). (6.3)

Proof. Using the Markov property of (Yt) we have:

at+1(j) = IP(Xt+1 = j, Yt+1 = −1, Yt = −1) + IP(Xt+1 = j, Yt+1 = −1, Yt = 1)

= IP(Xt = j + 1, Yt+1 = −1, Yt = −1) + IP(Xt = j + 1, Yt+1 = −1, Yt = 1)

= (1 − α)at(j + 1) + βbt(j + 1).

The second recursive formula involving (bt(j)) can be obtained similarly.

Let us define the moment generating function Φ(λ, t) = IE[λXt ], (λ > 0). We decompose
Φ(λ, t) as

Φ(λ, t) = Φ−(λ, t) + Φ+(λ, t), (6.4)

with
Φ−(λ, t) = IE[λXt1{Yt=−1}], Φ+(λ, t) = IE[λXt1{Yt=1}]. (6.5)

Lemma 6.2. 1) Φ−(λ, 0) = 1
λ

IP(Y0 = −1) and Φ+(λ, 0) = λ IP(Y0 = 1).
2) The moment generating function verifies the following induction equations:

Φ−(λ, t+ 1) =
1 − α

λ
Φ−(λ, t) +

β

λ
Φ+(λ, t) (6.6)

Φ+(λ, t+ 1) = αλΦ−(λ, t) + (1 − β)λΦ+(λ, t) (6.7)

Proof. Definition (6.1) implies that

Φ−(λ, t) =
∑

j∈Z

λjat(j) =
t+1
∑

j=−t−1

λjat(j).

Hence,

Φ−(λ, t+ 1) =
∑

j

λjat+1(j) = (1 − α)
∑

j

λjat(j + 1) + β
∑

j

λjbt(j + 1)

= (1 − α)
1

λ

∑

j

λj+1at(j + 1) +
β

λ

∑

j

λj+1bt(j + 1)

=
1 − α

λ
Φ−(λ, t) +

β

λ
Φ+(λ, t).

The proof of (6.7) is similar.
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Lemma 6.3. Let f(λ, t) be equal to either Φ−(λ, t) or Φ+(λ, t), then

f(λ, t+ 2) −
(1 − α

λ
+ (1 − β)λ

)

f(λ, t+ 1) + (1 − α− β)f(λ, t) = 0. (6.8)

Proof. By (6.6), we get

Φ+(λ, t) =
{

Φ−(λ, t+ 1) − 1 − α

λ
Φ−(λ, t)

}λ

β
. (6.9)

Replacing t by t+ 1 in (6.9), we obtain

Φ+(λ, t+ 1) =
{

Φ−(λ, t+ 2) − 1 − α

λ
Φ−(λ, t+ 1)

}λ

β
. (6.10)

Using successively (6.7), (6.10) and (6.9), we have:

αλΦ−(λ, t) = Φ+(λ, t+ 1) − (1 − β)λΦ+(λ, t)

=
λ

β

{

Φ−(λ, t+ 2) − 1 − α

λ
Φ−(λ, t+ 1)

}

−1 − β

β
λ2

{

Φ−(λ, t+ 1) − 1 − α

λ
Φ−(λ, t)

}

.

Finally

Φ−(λ, t+ 2) −
(

1 − α

λ
+ (1 − β)λ

)

Φ−(λ, t+ 1) +
(

(1 − α)(1 − β) − αβ
)

Φ−(λ, t) = 0.

The proof concerning f(λ, t) = Φ−(λ, t) is similar and is left to the reader.

In order to obtain the explicit form of Φ−(λ, t) and Φ+(λ, t) in terms of λ and t, it suffices
to compute the roots ϑ− and ϑ+ of the following polynomial

ϑ2 −
(

1 − α

λ
+ (1 − β)λ

)

ϑ+ 1 − α− β = 0 (6.11)

Its discriminant equals

D =
(1 − α

λ
+ (1 − β)λ

)2

− 4(1 − α− β). (6.12)

It is clear that

D =
(1 − α

λ
+ (1 − β)λ+ 2

√
ρ
)(1 − α

λ
+ (1 − β)λ− 2

√
ρ
)

=
1

λ

(1 − α

λ
+ (1 − β)λ+ 2

√
ρ
)(

(1 − β)λ2 − 2
√
ρλ+ 1 − α

)

. (6.13)

Since the discriminant of λ→ (1− β)λ2 − 2
√
ρλ+ 1−α is equal to −4αβ then D > 0 for any

λ > 0.
Consequently the roots of (6.11) are:

ϑ± =
1

2

(1 − α

λ
+ (1 − β)λ±

√
D

)

. (6.14)

We deduce the following result.

Proposition 6.4. 1) The moment generating function Φ(λ, t) satisfies

Φ(λ, t) = a+ϑ
t
+ + a−ϑ

t
− (6.15)

with

a+ =
1 − α+ λ(λα− ϑ−)

λ2
√
D

and a− =
1

λ
− a+ if X0 = Y0 = −1

and

a+ =
(1 − β)λ2 + β − λϑ−√

D
and a− = λ− a+ if X0 = Y0 = 1.
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Proof. Suppose that X0 = Y0 = −1. Let us first determine the values of the generating
function at time t = 0 and t = 1:

Φ(λ, 0) = Φ+(λ, 0) + Φ−(λ, 0) =
1

λ
IP(Y0 = −1) + λ IP(Y0 = 1) =

1

λ
= a+ + a−

Moreover, using (6.6) and (6.7) with t = 0, we get

Φ(λ, 1) = Φ+(λ, 1) + Φ−(λ, 1) =
(1 − α

λ
+ αλ

)

Φ−(λ, 0) =
1 − α

λ2
+ α = a+ϑ+ + a−ϑ−.

It is clear that Lemma 6.3 and Φ(λ, t) = Φ+(λ, t)+Φ−(λ, t) implies that Φ(λ, t) satisfies (6.8).
Then (6.15) follows by standard arguments. The second case X0 = Y0 = 1 can be proved in
a similar way.

6.2 Proof of Theorem 2.2

We keep the notations given in Section 1. Let α0 and β0 be two real numbers in [0, 1]. Let
∆x be a small space parameter so that:

0 ≤ α0 + c0∆x ≤ 1, 0 ≤ β0 + c1∆x ≤ 1,

where c0 and c1 belong to R.
Note that α0 > 0 (resp. β0 > 0) implies that α0 + c0∆x > 0 (resp. β0 + c1∆x > 0) when ∆x

is small enough. If α0 < 1 (resp. β0 < 1), similarly α0 + c0∆x < 1 (resp. β0 + c1∆x < 1)
as soon as ∆x is small. In the case α0 = 1 (resp. β0 = 1) c0 (resp. c1) has to be chosen in
] −∞, 0].
We assume that the coefficients of the transition probability matrix π∆ of the Markov chain
(Yt) satisfy:

α = α0 + c0∆x, β = β0 + c1∆x (6.16)

i.e. π∆ is given by (1.6). (Xt) is defined by (1.1) and (Z∆
s ) is the normalized persistent

random walk:
Z∆

s = ∆xXs/∆t
, (∆t > 0, ∆x > 0, s ∈ ∆t IN).

(Z̃∆
t ; t ≥ 0) denotes the linear interpolation of (Z∆

t ).
Recall that ρ0 = 1 − α0 − β0 and η0 = β0 − α0. Note that ρ0 6= 1 ⇐⇒ α0 + β0 6= 0

Proposition 6.5. Let ρ0 6= 1,
1) if r∆t = ∆x with r > 0 then Z̃∆

t converges towards the deterministic limit − rtη0
1−ρ0

as ∆x

tends to 0.
2) if r∆t = ∆2

x with r > 0, Z̃∆
t + t

√
rη0

(1−ρ0)
√

∆t
converges in distribution to the Gaussian law

with mean

m = rt
( −c

1 − ρ0
+

η0c

(1 − ρ0)2

)

(6.17)

and variance

σ2 =
r(1 + ρ0)

1 − ρ0

(

1 − η2
0

(1 − ρ0)2

)

t, (6.18)

where
c = c0 + c1 and c = c1 − c0. (6.19)

Proof. We shall prove the statement under the condition X0 = Y0 = −1. If X0 = Y0 = +1,
the limit is obtained by changing the sign and replacing c0 (resp. c1) by c1 (resp. c0).
1) Let Φ(λ, t) be the generating function associated with Xt. In order to determine the limit
distribution of Z∆

t , let us introduce:

φ(µ, t) = E−1[e
−µZ̃∆

t ], (6.20)

where IE−1 denotes the expectation when Y0 = −1. Observe that

φ(µ, t) = Φ(e−µ∆x ,
t

∆t
) = E−1[e

−µ∆xX(t/∆t)], (6.21)

when t/∆t ∈ IN.
According to Proposition 6.4, when t/∆t ∈ IN, φ(µ, t) can be expressed in terms of a+, a−
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and
√
D.

First let us study the asymptotic expansion of the discriminant D as ∆x → 0. It is convenient
to set:

δ̄ = c0∆x and δ̂ = c1∆x. (6.22)

Applying (6.12) with α = α0 + δ̄ and β = β0 + δ̂ we have:

D =
(

(1 − α0 − δ̄)eµ∆x + (1 − β0 − δ̂)e−µ∆x

)2

− 4(1 − α0 − β0 − δ̄ − δ̂).

By (6.22) we get

D =
(

(2 − α0 − β0) + ∆x

(

µ(β0 − α0) − c0 − c1
)

(6.23)

+∆2
x

(

µ2

2
(2 − α0 − β0) + µ(c1 − c0)

)

+ o(∆2
x)

)2

− 4
(

1 − α0 − β0 − ∆x(c0 + c1)
)

(6.24)

It is clear that D admits the following asymptotic expansion, as ∆x → 0:

D = A0 + A1∆x + A2∆
2
x + o(∆2

x)

It is usefull to note that α0 and β0 can be expressed in terms of η0 and ρ0:

α0 =
1 − η0 − ρ0

2
and β0 =

1 + η0 − ρ0

2
.

Let us compute A0, A1 and A2 using standard analysis:

A0 = (2 − α0 − β0)
2 − 4(1 − α0 − β0) = α2

0 + β2
0 + 2α0β0 = (α0 + β0)

2 = (1 − ρ0)
2.

A1 = 2(2 − α0 − β0)
(

µ(β0 − α0) − (c0 + c1)
)

+ 4(c0 + c1)

= 2µ(2 − α0 − β0)(β0 − α0) − 4(c0 + c1) + 2(α0 + β0)(c0 + c1) + 4(c0 + c1)

= 2
{

µ(2 − α0 − β0)(β0 − α0) + (α0 + β0)(c0 + c1)
}

= 2
(

µη0(1 + ρ0) + c(1 − ρ0)
)

. (6.25)

A2 = 2(2 − α0 − β0)
(µ2

2
(2 − α0 − β0) + µ(c1 − c0)

)

+
(

µ(β0 − α0) − (c0 + c1)
)2

= µ2
(

(2 − α0 − β0)
2 + (β0 − α0)

2
)

+2µ
(

(2 − α0 − β0)(c1 − c0) − (β0 − α0)(c0 + c1)
)

+ (c0 + c1)
2

= 2µ2
(

(α0 − 1)2 + (β0 − 1)2
)

+ 4µ
(

(1 − β0)c1 − (1 − α0)c0
)

+ (c0 + c1)
2

= µ2(η2
0 + (1 + ρ0)

2) + 2µ
(

(1 + ρ0)c− η0c
)

+ c2. (6.26)

Under the condition ρ0 6= 1, we have

√
D = (1 − ρ0)

√

1 +
A1

(1 − ρ0)2
∆x +

A2

(1 − ρ0)2
∆2

x + o(∆2
x)

Hence √
D = B0 +B1∆x +B2∆

2
x + o(∆2

x)

with
B0 = 1 − ρ0,

B1 =
1

2

A1

1 − ρ0
=

1

1 − ρ0

{

µ(2 − α0 − β0)(β0 − α0) + (α0 + β0)(c0 + c1)
}

= µ
η0(1 + ρ0)

1 − ρ0
+ c
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B2 =
1

2

A2

1 − ρ0
− 1

8

A2
1

(1 − ρ0)3
. (6.27)

As a result, B2 is a second order polynomial function with respect to the µ-variable:

B2 = µ2B22 + µB21 +B20.

Identities (6.25), (6.26) and (6.27) imply:

B20 =
c2

2(1 − ρ0)
−

(

2c(1 − ρ0)
)2

8(1 − ρ0)3
= 0

B21 =
1

2

2
(

(1 + ρ0)c− η0c
)

1 − ρ0
− 1

8

8η0c(1 − ρ0)(1 + ρ0)

(1 − ρ0)3
= c

1 + ρ0

1 − ρ0
− 2η0c

(1 − ρ0)2

B22 =
1

2

η2
0 + (1 + ρ0)

2

1 − ρ0
− 1

8

4η2
0(1 + ρ0)

2

(1 − ρ0)3
=

1

2

(

η2
0 + (1 + ρ0)

2
)

(1 − ρ0)
2 − η2

0(1 + ρ0)
2

(1 − ρ0)3

=
(1 + ρ0)

2

2(1 − ρ0)
− 2η2

0ρ0

(1 − ρ0)3
.

Consequently

√
D = 1 − ρ0 +

(

µ
η0(1 + ρ0)

1 − ρ0
+ c

)

∆x +
{

µ2
( (1 + ρ0)

2

2(1 − ρ0)
− 2η2

0ρ0

(1 − ρ0)3

)

+µ
(

c
1 + ρ0

1 − ρ0
− 2η0c

(1 − ρ0)2

)}

∆2
x + o(∆2

x). (6.28)

2) The first order development suffices to determine the limit of φ(µ, t) as ∆x → 0. Indeed

√
D = 1 − ρ0 +

∆x

1 − ρ0

{

µη0(1 + ρ0) + c(1 − ρ0)
}

+ o(∆x). (6.29)

From (6.14) and (6.16) we can easely deduce

ϑ± =
1

2
(1 + ρ0) +

∆x

2
(µη0 − c) ± 1

2

{

1 − ρ0 + ∆x

(µη0(1 + ρ0)

1 − ρ0
+ c

)}

+ o(∆x).

Then

ϑ+ = 1 + ∆x
µη0

1 − ρ0
+ o(∆x) and ϑ− = ρ0 − ∆x

( µη0ρ0

1 − ρ0
+ c

)

+ o(∆x). (6.30)

Let t′ = ⌊ t
∆t

⌋∆t. Since Z̃∆
t = Z̃∆

t′ + (t− t′)∆xY⌊t/∆t⌋+1 and |Yn| ≤ 1, then

|φ(µ, t) − φ(µ, t′)| ≤ C∆x∆t, (6.31)

where C is a constant which only depends on µ.
Recall that identity (6.20) and Proposition 6.4 lead to

φ(µ, t′) = a+ϑ
t′/∆t

+ + a−ϑ
t′/∆t

− (6.32)

where

a+ =
(1 − α)e2µ∆x + α− ϑ−e

µ∆x

√
D

and a− = eµ∆x − a+. (6.33)

It is obvious that (6.33) and (6.30) imply: lim∆x→0 a+ = 1 and lim∆x→0 a− = 0.
Since lim∆t→0 ϑ− = ρ0 and −1 < ρ0 < 1 then

lim
∆x ∆t→0

a−ϑ
t′/∆t

− = 0. (6.34)

Consequently, the second term in (6.32) tends to 0. It is important to note that the initial
condition X0 = Y0 = −1 disappears. Let us study the first term in the right hand side of
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(6.32). Note that lim∆x→0 ϑ+ = 1, then if ∆x is small enough, we can take the logarithm of
ϑ+. From (6.30) a straightforward calculation gives

log ϑ+ = ∆x
µη0

1 − ρ0
+ o(∆x)

Choosing r∆t = ∆x and using (6.32), (6.34) and (6.31), we obtain the following limit:

lim
∆x→0

φ(µ, t) = exp{ rµη0t
1 − ρ0

}.

Since the convergence holds for any µ ∈ R, we can conclude (cf Theorem 3 in [4]) that

lim
∆x→0

IE−1[exp(iuZ̃∆
t )] = exp

{

− iurη0t

1 − ρ0

}

, for any u ∈ R.

Thus Z̃∆
t converges in distribution, as ∆x → 0, to the Dirac measure at − rη0t

1−ρ0
.

3) Next, we consider the convergence of the process

ξ∆t = Z̃∆
t +

tη0
√
r

(1 − ρ0)
√

∆t

.

Hence we define

ψ(µ, t) = IE−1[e
−µξ∆

t ] = e
− µtη0

√
r

(1−ρ0)
√

∆t φ(µ, t).

To determine the limit of ψ(µ, t) as ∆t,∆x → 0, from (6.32) and (6.34) we may deduce that
it suffices to compute the second order development of the root ϑ+. Using (6.14) and (6.28)
we get:

ϑ+ =
1

2
(1 + ρ0) +

∆x

2
(µη0 − c) +

∆2
x

2

(µ2(1 + ρ0)

2
+ µc

)

+
1 − ρ0

2
+

∆x

2

(µη0(1 + ρ0)

1 − ρ0
+ c

)

+
∆2

x

2

(

µ2
( (1 + ρ0)

2

2(1 − ρ0)
− 2η2

0ρ0

(1 − ρ0)3

)

+ µ
(

c
1 + ρ0

1 − ρ0
− 2η0c

(1 − ρ0)2

))

+ o(∆2
x).

As a result

ϑ+ = 1+∆x
µη0

1 − ρ0
+∆2

x

(µ2

2

(1 + ρ0

1 − ρ0
− 2η2

0ρ0

(1 − ρ0)3

)

+µ
( c

1 − ρ0
− η0c

(1 − ρ0)2

))

+o(∆2
x). (6.35)

We take r∆t = ∆2
x. Then

lim
∆x→0

ψ(µ, t) = lim
∆x→0

(

a+ϑ
rt/∆2

x
+ exp

{

− µrη0t

1 − ρ0

1

∆x

})

= lim
∆x→0

exp
{

− µrη0t

1 − ρ0

1

∆x
+

rt

∆2
x

log ϑ+

}

.

It is straightforward to deduce

lim
∆x→0

ψ(µ, t) = exp
{

−mµ+
σ2µ2

2

}

(6.36)

with

m = r
( −c̄

1 − ρ0
+

η0c

(1 − ρ0)2

)

t (6.37)

σ2 =
r(1 + ρ0)

1 − ρ0

(

1 − η2
0

(1 − ρ0)2

)

t. (6.38)

4) Since (6.36) holds for any µ ∈ R, this implies that ξ∆t converges in distribution, as ∆x → 0,
to the Gaussian distribution with mean m and variance σ2. (see Theorem 3 in [4])
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Proposition 6.6. Assume that ρ0 6= 1 and r∆t = (∆x)2. Let us denote ξ∆ the process
defined by

ξ∆t = Z̃∆
t +

t
√
rη0

(1 − ρ0)
√

∆t

.

Then (ξ∆t1 , ξ
∆
t2 , . . . , ξ

∆
tn

) converges in distribution, as ∆x → 0, towards (ξ0t1 , ξ
0
t2 , . . . , ξ

0
tn

) where
ξ0 is given by

ξ0t = r
( −c

1 − ρ0
+

η0c

(1 − ρ0)2

)

t+

√

r(1 + ρ0)

1 − ρ0

(

1 − η2
0

(1 − ρ0)2

)

Wt.

(Wt, t ≥ 0) is the one-dimensional Brownian motion starting at 0.

Proof. The proof is only presented in the case n = 2. For simplicity let s = t1 < t2 = t.
We are interested in the limit of the random vector (ξ∆s , ξ

∆
t ). Let us then compute the two

dimensional Fourier transform

Ψ∆(µ, λ) = IE−1

[

eiµ(ξ∆
t −ξ∆

s )eiλξ∆
s

]

, (λ, µ ∈ R).

Since the process (Xt, Yt) is Markovian, we obtain

Ψ∆(µ, λ) = IE−1

[

eiµξ∆
t−s

]

IE−1

[

1{Y (s/∆t)=−1}e
iλξ∆

s

]

+ IE+1

[

eiµξ∆
t−s

]

IE−1

[

1{Y (s/∆t)=+1}e
iλξ∆

s

]

,

when s/∆t and t/∆t belongs to IN.

Note that |ξ∆u − ξ∆u′ | ≤ ∆x∆t when u′ =
⌊

u
∆t

⌋

∆t. Consequently

Ψ∆(µ, λ) ∼
∆x→0

IE−1

[

e
iµξ∆

t′−s′
]

IE−1

[

1{Y (s′/∆t)=−1}e
iλξ∆

s′
]

+IE+1

[

e
iµξ∆

t′−s′
]

IE−1

[

1{Y (s′/∆t)=+1}e
iλξ∆

s′

]

, (s′ = ⌊s/∆t⌋∆t, t
′ = ⌊t/∆t⌋∆t).

According to Proposition 2.2,

lim
∆x→0

E−1

[

e
iµξ∆

t′−s′
]

= lim
∆x→0

E+1

[

e
iµξ∆

t′−s′
]

= e(iµm− σ2

2
µ2)(t−s)

where m and σ2 are defined by (6.37), resp. (6.38). Then we can deduce:

lim
∆x→0

Ψ∆(µ, λ) = e(iµm− σ2

2
µ2)(t−s) lim

∆x→0
IE−1

[

eiλξ∆
s′

]

= e(iµm− σ2

2
µ2)(t−s) lim

∆x→0
IE−1

[

eiλξ∆
s

]

= e(iµm− σ2

2
µ2)(t−s)e(iλm− σ2

2
λ2)s

= IE
[

exp{iµ(ξ0t − ξ0s) + iλξ0s}
]

We are now able to end the proof of Theorem 2.2 (item 2). We may apply, without any
change, the measure tension criterium used in the proof of convergence of (Z∆

t ) in the case
α0 = β0 = 1 (see the end of Section 4). This, and Proposition 6.6 show that (ξ∆t )t≥0 converges
in distribution as ∆x → 0 to the Brownian motion with drift (ξ0t )t≥0.

6.3 Proof of Proposition 2.3

We suppose α0 = β0 = 1, c1 = c0 < 0 and r∆t = ∆3
x where r > 0.

We briefly sketch the proof of Proposition 2.3. The approach is similar to the one developed
in the case 2) of Theorem 2.2. We only prove that Z̃∆

t converges to the Gaussian distribution
with 0-mean and variance equals −rc0t. Using Theorem 3 in [4], it is equivalent to show

lim
∆x→0

IE−1

[

e−µZ̃∆
t

]

= e
−rc0tµ2

2 , ∀µ ∈ R.
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We have already observed that we may reduce to the case t/∆t ∈ IN; in this case we have
Z̃∆

t = Z∆
t and

IE−1

[

e−µZ∆
t

]

= Φ
(

e−µ∆x ,
t

∆t

)

where Φ(λ, t) is the moment generating function associated with (Xt) (see the beginning of
subsection 6.1). Recall that Φ(λ, t) is given by identity (6.15).
Note that:

α = α0 + c0∆x = 1 + c0∆x, β = β0 + c0∆x = 1 + c0∆x.

Since α and β have to belong to [0, 1], this implies that c0 < 0. Recall that D, ϑ+ and ϑ− are
the real numbers which have been defined by (6.12) resp. (6.14) (with λ = e−µ∆x). We have:

D = 4c20∆
2
x cosh2(µ∆x) + 4(1 + 2c0∆x),

ϑ± = −c0∆x cosh(µ∆x) ±
√

c20∆
2
x cosh2(µ∆x) + 1 + 2c0∆x.

Using classical analysis we get:

√
D/2 =

√

1 + 2c0∆x + c20∆
2
x + o(∆3

x) = 1 + c0∆x + o(∆3
x),

ϑ+ = 1 − c0µ
2

2
∆3

x + o(∆3
x), ϑ− = −1 − 2c0∆x + o(∆x).

lim
∆x→0

a+ = 1, lim
∆x→0

ϑ
t/∆t

+ = lim
∆x→0

exp
{

− t

∆t

c0µ
2

2
∆3

x

}

= exp
{

− c0r
µ2

2
t
}

,

lim
∆x→0

a− = 0, lim
∆x→0

|ϑ−|t/∆t = lim
∆x→0

exp
{ t

∆t
2c0∆x

}

= lim
∆x→0

exp
{2c0rt

∆2
x

}

= 0 (c0 < 0).

Relation (6.15) implies that the variable Z∆
t is asymptotically normal distributed with

variance −rc0t.
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