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Multi-level fast multipole BEM for 3-D
elastodynamics

Marc Bonnet and Stéphanie Chaillat and Jean-FrancoibBem

Abstract To reduce computational complexity and memory requireni@n8-D
elastodynamics using the boundary element method (BEM)yl&-favel fast mul-
tipole BEM (FM-BEM) based on the diagonal form for the exganof the elas-
todynamic fundamental solution is proposed and demosesti@t numerical exam-
ples involving single-region and multi-region configuoats where the scattering of
seismic waves by a topographicalirregularity or a sedinfilat basin is examined.

1 Introduction

The boundary element method (BEM) is a mesh reduction methdigject to re-
strictive constitutive assumptions but yielding highlgarate solutions. Itis in par-
ticular well suited to unbounded-domain idealizations ownly used e.g. in seis-
mic wave modelling [6, 13]. Many early references on BEMs #radr application
to elastodynamics can be found in the review articles [1n2]ia e.qg. [3].

To reduce computational complexity and memory requireni@n8-D elasto-
dynamics using the boundary element method (BEM), a meNtll fast multipole
BEM (FM-BEM) treatment is proposed (see e.g. [12, 16] forasipions of FM-
BEM for Helmholtz-type problems and related referenceg)aapting to this con-
text recentimplementations of the FMM for the Maxwell edoias [7, 21], it brings
significant improvement over previously published elagt@anics FM-BEM [11].
The diagonal form [18] for the expansion of the elastodyredomdamental solution
is used, with a truncation parameter adjusted to the suidivievel, a feature nec-
essary for achieving optimal computational efficiency. Tdrenulation is extended
to problems featuring piecewise-homogeneous media vialé-ragion FM-BEM
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whose unknowns feature displacements and tractions orfaot@ boundary el-
ements. The correctness and computational performandbe groposed single-
and multi-region versions of the elastodynamic FMM are destrated here on nu-
merical examples featuring up @(2 x 10°) DOFs run on a single-processor PC,
including a 3-D site effect benchmark (semi-spherical gngainyon or sediment-
filled basin, with previously published results [15, 17, 28] low-frequency cases
allowing comparisons).

2 Elastodynamic boundary element method

Let 2 Cc R3 denote the region of space occupied by a three-dimensitastice
solid with isotropic constitutive properties defined py{shear modulus), (Pois-
son’s ratio) anc (mass density). Time-harmonic motions, with circular fregcy
w, induced by a prescribed traction distributitih on the boundary (2 and in the
absence of body forces are considered for ease of expqtioer boundary con-
ditions needing only simple modifications to the treatmeawmspnted therein. The
displacement: on the boundary is governed by the well-known integral équat

(Ku)(@) = f(®) (@€ d0), (1)

with the linear integral operatdt and the right-hand sidg defined by

(Ku)(x) = cir(x)u;(x) + (P.V.) 6.9 uz(y)TZ]‘”(m, y)dS, (2)

f(z) = /6 PVt @.v)is,. 3)

where (P.V.) indicates a Cauchy principal value (CPV) slagtegral and thé&ee-
terme;, (x) is equal td).54;;, in the usual case whetd? is smooth ate. Moreover,
Uk (x,y) andTF(z,y) denote thei-th components of the elastodynamic funda-
mental solution [9], i.e. of the displacement and tracti@spectively, generated at
y € R3 by a unit point force applied at € R? along the directiork:

1 o 0 g 0
k - S — R P . v . 4
Uz (ZB, y) kéﬂ ((61156116 6qk615) 8:17,1 Em G(ry kS) + 9 Oyn G(Ta kP))v ( a)
2v 0
Ti (:Ez y) - ,U/|:1 — 21/61]6}% + 6zh6_]€ + 6jh61Z ay[ Uh (:Ba y)nj (y)a (4b)

in whichr = |y = x| andks, kp are the respective S and P wavenumbers, so that

2
pw 9 1-2v
k:=" kp=nk = 5
S L 5 P YRS, Y 2(1 l/)7 ( )




Multi-level FM-BEM for elastodynamics 3

G(+; k) is the free-space Green'’s function for the Helmholtz equnatiith wavenum-

berk, given by

Grik) = exp(ikr)

4y ©)
n(y) is the unit normal té? directed outwards of?.

The numerical solution of boundary integral equation (bedsed on a discretiza-
tion of the surfacé/? into isoparametric boundary elements, with piecewisedmn
interpolation of displacements and piecewise-constaetpolation of tractions,
based on three-noded triangular boundary elements, bsedhere. On collocat-
ing (1) at displacement nodes, a square complex-valuedxegfuation of the form

[K{u} = {[}, (7)

is obtained, where th& -vector{u} collects the sought degrees of freedom (DOFs),
here the nodal displacement components, whileNhe N matrix of influence co-
efficients[ K] and theN-vector{ f} arise from (2) and (3), respectively. Setting up
the matrix[ K] classically requires the computation of all element irtgyfor each
collocation point, thus needing a computational time okortd( N?).

The influence matrixk] is fully-populated. StoringK] is thus limited, on ordi-
nary computers, to BEM models of size not exceeding: O(10%). Direct solvers,
such as the LU factorization, havely N3) complexity and are thus also limited
to moderately-sized BEM models. Both limitations are oweme by (i) resorting to
an iterative solver, here GMRES [19], and (ii) acceleratimg matrix-vector prod-
ucts[K]{u} requested by each iteration of GMRES using the fast mukipgthod
(FMM) so as the complexity of this operation becomes lowanttheO (N ?) oper-
ations entailed by standard BEM methods.

3 Elastodynamic Fast Multipole M ethod

The FMM is based on a reformulation of the fundamental sohgiin terms of
products of functions of and ofy. This allows to re-use integrations with respect
to y when the collocation point is changed, thereby lowering tiig( N2) com-
plexity per iteration entailed by standard BEMs. The eldgtamic fundamental
solutions (4a,b) are linear combinations of derivativeshef Green’s function (6)
for the Helmholtz equation. On recasting the position veete: y — « in the form
r=ro+ (y —yy) — (x — x0), wherex, andy, are two poles andy = y, — x¢
(Fig. 1), the Helmholtz Green'’s function is shown [8] to atithe decomposition

G(r|; k) = LEIE Seik§.(y—yo)gL(§;,’,0; k)e—iké.(w—wo) ds, 8)

whereS is the unit sphere oR? and thetransfer functionG, (8; ro; k) is defined
in terms of the Legendre polynomial} and the spherical Hankel functions of the
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0 == Yo

Fig. 1 Decomposition of the position vector: notation.

first kind A" by:

ikQ > @p+ VPR (klro|) Py (cos(8, 7). (9)

S pac k) =
gL(S,TO, ) 1671
0<p<L

The decomposition (8)—(9) is seen to achieve the desireatatpn of variables:
andy. Then, to recast the elastodynamic fundamental solutiorassform similar
to (8)-(9), one simply substitutes decomposition (8)-(8pi(4a,b) , to obtain the
following multipole decomposition of the elastodynamiafiamental solutions:

Uf(m,y) — lim eikp§-(y*yo)uikf(§;ro> o—ikpd.(z—m0) (43
L—too Jses ’

+ LHIE Seiksé»(y*yo)uﬁf(g;ro)efiksé.(zfmo) ds, (10)

Tik(m, y) — hm eik’pé’.(y*yo) /lel,lp(§7 TO) e*ikpé’.(mfmo) d§
L—+00 Jses '

+ LHIE ) etks8-(¥—yo) 7;{28(5; ro) eSS (z=20) g3 (11)

with the elastodynamic transfer functions given in termshaf acoustic transfer
functionG, by

2

UM (3;r0) = 1-5,8,G1. (35703 ke, (12a)
’ 1
. iksy? . R
Z{Cip(s; o) = Z,y Ciine$e5n5kGL(8; 105 kp)nj (y), (12b)
US(3: 7o) = ! 5.5 S o
i,L (8;m0) = ;(5% — 518:)GL(8; 705 ks), (12¢)
o ik . ) .
T5(81m0) = 73(5% — 8181)CijnedeGL(8; 10 ks)n (y). (12d)

In practice, the limiting process — +oo in (8) or (10), (11) cannot be per-
formed exactly and is replaced with an evaluation for a biytahosen finite
value of L, empirically established from numerical experiments. Gueh formula,
known from previous studies on FMMs for Maxwell equation féads:

L(d) = V3kd + C, log,,(V3kd + =), (13)
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whered denotes the linear cell size. In this work, distinct trummatevelsLp and
Ls are defined according to (13) with= kp andk = ks, respectively.

3.1 Single-region FM-BEM

To have maximal efficiency, FM-BEM algorithms must confinensteM calcula-
tions to the smallest possible portion of the boundary whblilestering whenever
possible the computation of influence terms into the largessible non-adjacent
groups. This is achieved by the multi-level FMM [7, 16, 214skd on using large
cells and hierarchically subdividing each cell ita 2 x 2 = 8 children cubic cells.
This cell-subdivision approach is systematized by mearsafct-tree structure of
cells. The level =0, composed of only one cubic cell containing the whole s@rfac
012, is the tree root. The levélcell is divided inta2 x 2x2 = 8 children cubic cells,
which constitute the level = 1. All level-1 cells being adjacent, the FMM cannot
be applied to them. The levék= 2 is then defined by dividing each levéleell into

8 children cells, and so contaifi$ cells. The subdivision process is further repeated
until the finest level = ¢, implicitly defined by a preset subdivision-stopping cri-
terion, is reached. Levélcells are usually termeleaf cells The FMM is applied
from level/ =2 to level/ =/, i.e. featureg — 1 “active” levels.

The multi-level approach basically consists in first appdythe FMM to all in-
fluence computations between disjoint leReadells (so as to use the largest clusters
whenever possible), and then recursively tracing the tosendvards, applying the
FMM to all interaction between disjoint levéleells that are children of adjacent
level-(¢—1) cells (Fig. 2). Finally, interactions between adjacent ¢edis are treated
using traditional (i.e. non FM-based) BE techniques. Thisraach thus minimizes
the overall proportion of influence computations requitimg traditional treatment.

The computation of the discretized linear operator (2),dfehe matrix-vector
product[K|{u}, by the multi-level elastodynamic FMM hence consists offtile
lowing main steps:

1. Initialization: compute multipole moments for all lowest-level c&lls= 05:

RE“(8;C0) = —iksASy / ui(y)n (y)etts v gs, (14a)
ancs?
RPu(3;00) = —2ikgy® AP / wi(y)n(y)et S @=vi)as,  (14b)
Y Y anncs?

1 " o 3
Ri’t(§;c(l)) - _A%t/ 7 ti(y)elkssv(y*yég))dgy (14c)
Y o Jagnetd
Y ko (y—y D
R (3;0()) = — Guta(y)ett Yo ) gg, (14d)
Y K Joagnel?
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Fig. 2 Multi-level fast multipole algorithm. Only multipole momés from non-adjacent (light-
grey) ceIIsCée) Z A(Cg(f)) may provide (through transfer) FM-computed contributidos
(Ku)™(x) at collocation pointse lying in cell e, Upon cell subdivision (right), new FM-
computed contributions to collocation points in c€fi“"™ originate from celisc'™™ in the
interaction listZ(CS")) of ¢S, while the adjacent regior(CS“™) reduces in size.

having setAZS]’}f = 6ik§j + 6jk§z — 2§i§j§kr AZ’U = l/(l — QV)_léij + §l§3 and
AR =01 — 5.

2. Upward passrecursively aggregate multipole moments by moving upward
the tree until level 2 is reached. Denoting 8{C) the set of children of a given
cell C, the transition from a leve(¢ + 1) cell to its parent level-cell is based on

identities

Ry“(&C) = Y exp[-iksd. Ayl | Ry (8 CHY) (15a)
cytescy?)
RPUgC) = Y exp[—iked.Ayy | RPU(5; 0L, (15b)

ey es(es?)

(with Ayéé) = ygé“) — yff)). A crucial feature of the elastodynamic multi-level
FMM is that the number and location of the quadrature point$ @are level-
dependent, a consequence of the previously-mentioneddepee (13) of. on
the cell size. Hence, application of identities (15a,b)uiezs an extrapolation
procedure [4, 7] furnishing the valuesﬁjf’“ andRP* at the level¢ quadrature
points from those at the levél-+ 1) quadrature points.
3. Transfer initialize local expansions for each levékell c!” and at each level

2< ¢ </using

Lyt39ey = > Gu3iroiks) Ry (31 C) (16a)

cPezel?)
Py = > Gr3Yros ke)RPM (31 C) (16b)

cy)ez(cs”)
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whereZ (C), theinteraction listof a given cellC (Fig. 2), is the set ofame-level
cells which are not adjacent tbwhile having a parent cell adjacent to that(bf
For a level-2 cellZ(C?) collects all level-2 cells not adjacent .

4. Downward passfor all levels3 < ¢ < /, the local expansion for each levetell
c¥is updated with the contribution from the parent legél- 1) cell, by means
of the identity

£5%(8;C0) = £3%(3;C1) + exp[—iks(5. 42| L3V (3;¢Y)  (17a)
LR (8,00 = £P4(3;C0) + exp[—ike(5.42{)] £P(3;¢4V)  (17Db)

(with Aa:ge) = xff’l) — xff)). Similarly to step 2, application of identity (17a,b)
requires an inverse extrapolation procedure [4, 7] fuingphhe values of(‘,i’“
and£P* at the level¢ quadrature points from those at the leyél-1) quadrature
points. B

5. When the leaf level = /7 is reached, all local expansions have been computed.
The far contributior(Ku)™ (z) is evaluated using

(Ku)iM(@) = wsh) [6*““5552)-(m*mg))ﬁ‘:’u@q; o)
qg=1

+etetaomail) (50), Pz, c0)]. (18)
and the near contribution is evaluated for all le¥¢leaf) cellsC,, according to
(Ku)i®(@) = cin(z)ui()

LY ev / i (y)TE (@, y)dS,. (19)
@ @ oancy)
Cy eAC:”)

The computation of the right-hand side (3) follows the satepss with the multi-
pole momentgzi’“, RP* and local expansion@i’”, LP replaced with their coun-
terpartsRi’t, RP and[,i’t, LPt. The above steps are found [4] to have a complexity
of at mostO(N log N), with the exception of the direct and inverse extrapolation
in steps 2 and 4, whose complexity($N>/2).

The near-field contribution (19) involves (i) CPV-singulér) weakly-singular
and (iii) non-singular element integrals. CPV-singuldegrals are split into (singu-
lar) integrals involving the static Kelvin traction kerreatd (nonsingular) comple-
mentary integrals. The former are then evaluated anallytitaking advantage of
the fact that three-noded triangular elements, which hawnstant unit normal and
Jacobian, are used. Weakly-singular integrals (whichufeahe kernelUF (x, y))
and non-singular integrals are computed using numericas§&an quadrature (the
weak singularity being first cancelled by means of a suitebénge of coordinates).
Finally, wheno (2 presents an edge or cornemgtthe free-terne;;(x) is evaluated
using the method of [14].
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A detailed account of the implementation of this singleivagelastodynamic
FMM is described in [4], wherein analytical and numericalifieations of the al-
gorithmic complexity of single-level and multi-level véyas are also addressed.

3.2 Multi-region FM-BEM

The above FM-BEM formulation can be naturally extended tdtiRslomain con-
figurations. Such problems involve displacement and taatiegrees of freedom
associated with interfacial displacement$ or ¢t on the common interface;;
separating subregiong; and (2, (with ¢/ conventionally defined in terms of the
unit normaln® directed from(; to £2;). Invoking the perfect bonding conditions

wl = udi, = g (20)

the interfacial quantities’, t*/ with i < j are retained as independent unknowns.
For each subdomaif?;, the governing integral equation (1) is discretized by col-
location at the displacement nodes and the element cefitnesdefines for each
subregion aectangular overdetermined system of BEM equations. The FM-BEM
then evaluates for eacf?; the corresponding matrix-vector product. To define a
square global system of equations, equations resulting frollocation at inter-
face element nodes or centres arising from both adjacewftosohins are linearly
combined, an operation that is performed externally on th&irivector products
generated by the FM-BEM. A detailed presentation of this BEEM coupling ap-
proach, including numerical experiments allowing to setgtable values of the
weighting coefficients used in the foregoing equation corations, is given in [5].

4 Numerical examples

Following are a few sample numerical results obtained onpexblems using the
present elastodynamic single-region or multi-region FEM&. Other examples are
presented in [4] and [5].

4.1 Scattering of SV waves by a semi-spherical canyon

This example is concerned with the perturbation by a seméspal canyon of ra-
diusa of an oblique incident plane SV-wave of unit amplitude ttangein a elas-
tic half space (Fig. 3) characterized bby= 1/3. This problem has been previ-
ously studied in [10] by means of a wave function expansiah &or low frequen-
cies, in [17] using a standard BEM. Results obtained for affegquency such that
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Fig. 3 Scattering of SV waves by a semi-spherical canyon: geonagitiynotation

4 T T T
r - -y (present FMM, D=2.5R}
3.5~ ° |uy| Eshraghi et al. 7
g 3 — |4, (present.FMM, D=2.5R)|
§ L o |u Eshraghi et al.
£ 2,5 - ,~ -
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g b b
© b P
2 P 4
o

Fig. 4 Scattering of SV waves by a semi-spherical canyon: horaartid vertical computed dis-
placement on line ABCDE (with points A, B, C, D, E defined on.Epplotted against normalized
arc-length coordinate/a along ABCDE ¢ =0, ksa = 0.757)

8 T T T T T
PN - -y (present FMM, D=2.5R)
€ oy o |u | (Reinoso et al)
6l f '2? o Ul (Eshraghi et al.) i
#$ « — |4, (present FMM, D=2.5R)
& = |u,|(Reinoso etal.) 1
* %a o |u,| (Eshraghietal.)

displacement modulus
N
e

N

Fig. 5 Scattering of SV waves by a semi-spherical canyon: horaartid vertical computed dis-
placement on line ABCDE (with points A, B, C, D, E defined on.Epplotted against normalized
arc-length coordinate/a along ABCDE @ = /6, ksa = 0.757)
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ksa = 0.757 are seen to agree well with published results from [2G}(, Fig. 4)

and [10, 17] ¢ = 7 /6, Fig. 5). The free surface is here meshed within a truncation
radius D = 2.5q, a relatively small value chosen so as to reproduce the eondi
tions used in [10, 17], and the mesh featuhés= 7, 602 nodal unknowns overall.
The computation required 8 (resp. 11) GMRES iterationsHerdase) = 0 (resp.

0 =m/6) and 1.5s of CPU per iteration on a single-processor PC (R2GB, CPU
frequency: 3.40 GHz), with the GMRES relative toleranceteet0—3. The leaf
level is? = 3, with the linear sizel™" of leaf cells such thatsd™" ~ 1.45.

4.2 Test problem for the multi-region FMM

The test problem of a spherical cavity subjected to an imldime-harmonic uni-
form pressure?, surrounded by two concentric spherical layéxs (2> embedded
in an unbounded elastic mediuf®, is considered (Fig. 6). The radii of the cavity
and two surrounding interfaces adg, as, a3, respectively The mechanical prop-
erties of the respective media, in arbitrary units, &g p1,v1) = (3, 4, 0.25),
(p2, u2,v2) = (6,5, 0.25), (p3, pus,v3) = (2, 1, 1/3). A closed-form exact so-
lution is available for this test problem. Results in termidRd1S errors between
numerical solutions computed using the present multi-doraM-BEM and their
analytical counterparts, given in Table 1, show that thenfdation achieves satis-
factory accuracy (the GMRES relative tolerance being ageiino10—3).

4

Fig. 6 Test problem: pressurized spherical cavity surroundedbgentric layers
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4.3 Wave amplification in a semi-spherical basin

This example is again concerned with the perturbation oftdigoe incident plane
SV-wave of unit amplitude traveling in a elastic half spaites time by a semi-
spherical filled basin (Fig. 7). This configuration, has bstewied in the frequency
domain in [15] using a standard indirect BEM (using the tsgl&ce Green’s func-
tions) . The mechanical parameters are defined through cs; = 1, ¢p1 = 2,
w2 =1/6, cso = 1/2 andepe = 1. Results obtained for an incidence angle /6
and a frequency such thaga = 27, are presented, in terms of they andz com-
ponents of the surface displacement, in Figures 8, 9 andH®fr€e surface is here
meshed within a truncation radiu3 = 5a, and the mesh feature$ = 143,451
nodal unknowns (discretized versions of the displacerménin the truncated free
surface and the interfacial displacemeaté and tractiong!?). The computation
required 484 GMRES iterations and 36s of CPU per iteration.

|

q
<
<
[
T4 _ ¢

-

Fig. 7 Propagation of an oblique incident plane SV-wave in a sqghescal basin: notation.

5 Conclusions

In this contribution, the Fast Multipole Method has beercsstully extended t8 D
single-region and multi-region elastodynamics in the diestcy domain. Combined
with the BEM formulation, it permits to reduce the compudatl burden, in both
CPU time and memory requirements, for the analysis of elagtive propagation
(e. g. seismic), and allows to run BEM models of large size wrainary PC.

Table 1 Pressurized spherical cavity surrounded by concentrergayelative RMS errors
N kid™ klar ¢; E(u') E@'?) E@l'?) E@?®) E(t?) Iters.
55,778 0.82 2.17 3;3;3 3.010~2 1.41072 2.21072 1.310~2 2.810~2 59
215,058 1.88 4.93 3;3;4 1.01072 1.31072 1.01072 1.41072 1.410~2 43
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2.20E42
1.65E+1
1.10E+1
5.53E4+0
3.55E—2

Fig. 8 Diffraction of an oblique incident SV plane wave by a sentiegcal basin: computed
component of displacement on basin surface and meshed fra surface (normalized frequency

ksa = 2m)
1.46E+1
1.10E+1
7.30E4+0
3.65E40
1.23E-3

Fig. 9 Diffraction of an oblique incident SV plane wave by a sentiesfical basin: computeg
component of displacement on basin surface and meshed frae surface (normalized frequency

ksa = 2m)
1.73E+1
1.30E+1
8.66E+0
4.33E40
1.77E-3

Fig. 10 Diffraction of an oblique incident SV plane wave by a sentieical basin: computed
component of displacement on basin surface and meshed fra surface (normalized frequency
ksa = 2m)
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Comparisons with analytical or previously published nuoarresults show the
efficiency and accuracy of the present elastodynamic FM-BEM

Applications of the present FM-BEM to realistic cases irss®logy are under
way. Moreover, a natural extension of this work consistsoimiulating multipole
expansions of other fundamental solutions, with the haédfeg elastodynamic fun-
damental solution being currently investigated. Alsogexting the formulation to
complex wavenumbers will allow more realistic modellinges viscoelastic con-
stitutive properties are assumed for the propagation medtinally, improving the
efficiency of the elastodynamic FM-BEM also requires furtlesearch into refined
(direct/inverse) extrapolation techniques (for loweriingO (N3/2) of this step) and
a well-chosen preconditioning strategy (for reducing thRES iteration count).

Acknowledgements This work is part of the project Quantitative Seismic HazAsbessment
(QSHA, http://gsha.unice.fr) funded by the French Natidgtesearch Agency (ANR)
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