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Multi-level fast multipole BEM for 3-D
elastodynamics

Marc Bonnet and Stéphanie Chaillat and Jean-François Semblat

Abstract To reduce computational complexity and memory requirementfor 3-D
elastodynamics using the boundary element method (BEM), a multi-level fast mul-
tipole BEM (FM-BEM) based on the diagonal form for the expansion of the elas-
todynamic fundamental solution is proposed and demonstrated on numerical exam-
ples involving single-region and multi-region configurations where the scattering of
seismic waves by a topographical irregularity or a sediment-filled basin is examined.

1 Introduction

The boundary element method (BEM) is a mesh reduction method, subject to re-
strictive constitutive assumptions but yielding highly accurate solutions. It is in par-
ticular well suited to unbounded-domain idealizations commonly used e.g. in seis-
mic wave modelling [6, 13]. Many early references on BEMs andtheir application
to elastodynamics can be found in the review articles [1, 2] and in e.g. [3].

To reduce computational complexity and memory requirementfor 3-D elasto-
dynamics using the boundary element method (BEM), a multi-level fast multipole
BEM (FM-BEM) treatment is proposed (see e.g. [12, 16] for expositions of FM-
BEM for Helmholtz-type problems and related references). By adapting to this con-
text recent implementations of the FMM for the Maxwell equations [7, 21], it brings
significant improvement over previously published elastodynamics FM-BEM [11].
The diagonal form [18] for the expansion of the elastodynamic fundamental solution
is used, with a truncation parameter adjusted to the subdivision level, a feature nec-
essary for achieving optimal computational efficiency. Theformulation is extended
to problems featuring piecewise-homogeneous media via a multi-region FM-BEM
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whose unknowns feature displacements and tractions on interfacial boundary el-
ements. The correctness and computational performances ofthe proposed single-
and multi-region versions of the elastodynamic FMM are demonstrated here on nu-
merical examples featuring up toO(2× 105) DOFs run on a single-processor PC,
including a 3-D site effect benchmark (semi-spherical empty canyon or sediment-
filled basin, with previously published results [15, 17, 20]for low-frequency cases
allowing comparisons).

2 Elastodynamic boundary element method

Let Ω ⊂ R
3 denote the region of space occupied by a three-dimensional elastic

solid with isotropic constitutive properties defined byµ (shear modulus),ν (Pois-
son’s ratio) andρ (mass density). Time-harmonic motions, with circular frequency
ω, induced by a prescribed traction distributiontD on the boundary∂Ω and in the
absence of body forces are considered for ease of exposition, other boundary con-
ditions needing only simple modifications to the treatment presented therein. The
displacementu on the boundary is governed by the well-known integral equation:

(Ku)(x) = f(x) (x ∈ ∂Ω), (1)

with the linear integral operatorK and the right-hand sidef defined by

(Ku)(x) = cik(x)ui(x) + (P.V.)
∫

∂Ω

ui(y)T k
i (x, y)dSy (2)

f(x) =

∫

∂Ω

tDi (y)Uk
i (x, y)dSy, (3)

where (P.V.) indicates a Cauchy principal value (CPV) singular integral and thefree-
termcik(x) is equal to0.5δik in the usual case where∂Ω is smooth atx. Moreover,
Uk

i (x, y) andT k
i (x, y) denote thei-th components of the elastodynamic funda-

mental solution [9], i.e. of the displacement and traction,respectively, generated at
y ∈ R

3 by a unit point force applied atx ∈ R
3 along the directionk:

Uk
i (x, y) =

1

k2
Sµ

(

(δqsδik − δqkδis)
∂

∂xq

∂

∂ys
G(r; kS) +

∂

∂xi

∂

∂yk
G(r; kP)

)

, (4a)

T k
i (x, y) = µ

[ 2ν

1 − 2ν
δijδhℓ + δihδjℓ + δjhδiℓ

] ∂

∂yℓ
Uk

h (x, y)nj(y), (4b)

in whichr = |y = x| andkS, kP are the respective S and P wavenumbers, so that

k2
S =

ρω2

µ
, kP = γkS, γ2 =

1 − 2ν

2(1 − ν)
, (5)
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G(·; k) is the free-space Green’s function for the Helmholtz equation with wavenum-
berk, given by

G(r; k) =
exp(ikr)

4πr
, (6)

n(y) is the unit normal to∂Ω directed outwards ofΩ.
The numerical solution of boundary integral equation (1) isbased on a discretiza-

tion of the surface∂Ω into isoparametric boundary elements, with piecewise-linear
interpolation of displacements and piecewise-constant interpolation of tractions,
based on three-noded triangular boundary elements, being used here. On collocat-
ing (1) at displacement nodes, a square complex-valued matrix equation of the form

[K]{u} = {f}, (7)

is obtained, where theN -vector{u} collects the sought degrees of freedom (DOFs),
here the nodal displacement components, while theN ×N matrix of influence co-
efficients[K] and theN -vector{f} arise from (2) and (3), respectively. Setting up
the matrix[K] classically requires the computation of all element integrals for each
collocation point, thus needing a computational time of orderO(N2).

The influence matrix[K] is fully-populated. Storing[K] is thus limited, on ordi-
nary computers, to BEM models of size not exceedingN = O(104). Direct solvers,
such as the LU factorization, have aO(N3) complexity and are thus also limited
to moderately-sized BEM models. Both limitations are overcome by (i) resorting to
an iterative solver, here GMRES [19], and (ii) acceleratingthe matrix-vector prod-
ucts[K]{u} requested by each iteration of GMRES using the fast multipole method
(FMM) so as the complexity of this operation becomes lower than theO(N2) oper-
ations entailed by standard BEM methods.

3 Elastodynamic Fast Multipole Method

The FMM is based on a reformulation of the fundamental solutions in terms of
products of functions ofx and ofy. This allows to re-use integrations with respect
to y when the collocation pointx is changed, thereby lowering theO(N2) com-
plexity per iteration entailed by standard BEMs. The elastodynamic fundamental
solutions (4a,b) are linear combinations of derivatives ofthe Green’s function (6)
for the Helmholtz equation. On recasting the position vector r = y −x in the form
r = r0 + (y − y0) − (x − x0), wherex0 andy0 are two poles andr0 = y0 − x0

(Fig. 1), the Helmholtz Green’s function is shown [8] to admit the decomposition

G(|r|; k) = lim
L→+∞

∫

ŝ∈S

eikŝ.(y−y0)GL(ŝ; r0; k)e−ikŝ.(x−x0) dŝ, (8)

whereS is the unit sphere ofR3 and thetransfer functionGL(ŝ; r0; k) is defined
in terms of the Legendre polynomialsPp and the spherical Hankel functions of the
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Fig. 1 Decomposition of the position vector: notation.

first kindh
(1)
p by:

GL(ŝ; r0; k) =
ik

16π2

∑

0≤p≤L

(2p + 1)iph(1)
p (k|r0|)Pp

(

cos(ŝ, r0)
)

. (9)

The decomposition (8)–(9) is seen to achieve the desired separation of variablesx
andy. Then, to recast the elastodynamic fundamental solutions in a form similar
to (8)-(9), one simply substitutes decomposition (8)-(9) into (4a,b) , to obtain the
following multipole decomposition of the elastodynamic fundamental solutions:

Uk
i (x, y) = lim

L→+∞

∫

ŝ∈S

eikPŝ.(y−y0) Uk,P
i,L (ŝ; r0) e−ikPŝ.(x−x0) dŝ

+ lim
L→+∞

∫

ŝ∈S

eikSŝ.(y−y0) Uk,S
i,L (ŝ; r0) e−ikSŝ.(x−x0) dŝ, (10)

T k
i (x, y) = lim

L→+∞

∫

ŝ∈S

eikPŝ.(y−y0) T k,P
i,L (ŝ; r0) e−ikPŝ.(x−x0) dŝ

+ lim
L→+∞

∫

ŝ∈S

eikSŝ.(y−y0) T k,S
i,L (ŝ; r0) e−ikSŝ.(x−x0) dŝ, (11)

with the elastodynamic transfer functions given in terms ofthe acoustic transfer
functionGL by

Uk,P
i,L (ŝ; r0) =

γ2

µ
ŝiŝkGL(ŝ; r0; kP), (12a)

T k,P
i,L (ŝ; r0) =

ikSγ
3

µ
Cijhℓ ŝℓŝhŝkGL(ŝ; r0; kP)nj(y), (12b)

Uk,S
i,L (ŝ; r0) =

1

µ
(δik − ŝkŝi)GL(ŝ; r0; kS), (12c)

T k,S
i,L (ŝ; r0) =

ikS

µ
(δhk − ŝkŝh)Cijhℓ ŝℓGL(ŝ; r0; kS)nj(y). (12d)

In practice, the limiting processL → +∞ in (8) or (10), (11) cannot be per-
formed exactly and is replaced with an evaluation for a suitably chosen finite
value ofL, empirically established from numerical experiments. Onesuch formula,
known from previous studies on FMMs for Maxwell equations [7], reads:

L(d) =
√

3kd + Cǫ log10(
√

3kd + π), (13)
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whered denotes the linear cell size. In this work, distinct truncation levelsLP and
LS are defined according to (13) withk = kP andk = kS, respectively.

3.1 Single-region FM-BEM

To have maximal efficiency, FM-BEM algorithms must confine non-FM calcula-
tions to the smallest possible portion of the boundary whileclustering whenever
possible the computation of influence terms into the largestpossible non-adjacent
groups. This is achieved by the multi-level FMM [7, 16, 21], based on using large
cells and hierarchically subdividing each cell into2×2×2 = 8 children cubic cells.
This cell-subdivision approach is systematized by means ofan oct-tree structure of
cells. The levelℓ = 0, composed of only one cubic cell containing the whole surface
∂Ω, is the tree root. The level-0 cell is divided into2×2×2 = 8 children cubic cells,
which constitute the levelℓ = 1. All level-1 cells being adjacent, the FMM cannot
be applied to them. The levelℓ = 2 is then defined by dividing each level-1 cell into
8 children cells, and so contains64 cells. The subdivision process is further repeated
until the finest levelℓ = ℓ̄, implicitly defined by a preset subdivision-stopping cri-
terion, is reached. Level-ℓ̄ cells are usually termedleaf cells. The FMM is applied
from levelℓ = 2 to levelℓ = ℓ̄, i.e. features̄ℓ−1 “active” levels.

The multi-level approach basically consists in first applying the FMM to all in-
fluence computations between disjoint level-2 cells (so as to use the largest clusters
whenever possible), and then recursively tracing the tree downwards, applying the
FMM to all interaction between disjoint level-ℓ cells that are children of adjacent
level-(ℓ−1) cells (Fig. 2). Finally, interactions between adjacent leaf cells are treated
using traditional (i.e. non FM-based) BE techniques. This approach thus minimizes
the overall proportion of influence computations requiringthe traditional treatment.

The computation of the discretized linear operator (2), i.e. of the matrix-vector
product[K]{u}, by the multi-level elastodynamic FMM hence consists of thefol-
lowing main steps:

1. Initialization: compute multipole moments for all lowest-level cellsCy = C ℓ̄
y:

RS,u
k (ŝ; C(ℓ̄)

y ) = −ikSA
S,u
ijk

∫

∂Ω∩C
(ℓ̄)
y

ui(y)nj(y)eikSŝ.(y−y
(ℓ̄)
0 )dSy (14a)

RP,u(ŝ; C(ℓ̄)
y ) = −2ikSγ

3AP,u
ij

∫

∂Ω∩C
(ℓ̄)
y

ui(y)nj(y)eikPŝ.(y−y
(ℓ̄)
0 )dSy (14b)

RS,t
k (ŝ; C(ℓ̄)

y ) =
1

µ
AS,t

ki

∫

∂Ω∩C
(ℓ̄)
y

ti(y)eikSŝ.(y−y
(ℓ̄)
0 )dSy (14c)

RP,t(ŝ; C(ℓ̄)
y ) =

γ2

µ

∫

∂Ω∩C
(ℓ̄)
y

ŝata(y)eikPŝ.(y−y
(ℓ̄)
0 )dSy (14d)
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level ℓ level ℓ+1

x

d
(ℓ)

x

d
(ℓ+1)

C
(ℓ+1)
y ∈A(C

(ℓ+1)
x )

C
(ℓ+1)
y ∈I(C

(ℓ+1)
x )

C
(ℓ+1)
x

C
(ℓ)
y ∈A(C

(ℓ)
x )

C
(ℓ)
x

Fig. 2 Multi-level fast multipole algorithm. Only multipole moments from non-adjacent (light-
grey) cellsC(ℓ)

y 6∈ A(C
(ℓ)
x ) may provide (through transfer) FM-computed contributionsto

(Ku)FM(x) at collocation pointsx lying in cell C(ℓ)
x . Upon cell subdivision (right), new FM-

computed contributions to collocation points in cellC
(ℓ+1)
x originate from cellsC(ℓ+1)

y in the

interaction listI(C
(ℓ+1)
x ) of C(ℓ+1)

x , while the adjacent regionA(C
(ℓ+1)
x ) reduces in size.

having setAS,u
ijk = δikŝj + δjkŝi − 2ŝiŝj ŝk, AP,u

ij = ν(1− 2ν)−1δij + ŝiŝj and

AS,t
ki = δki − ŝkŝi.

2. Upward pass: recursively aggregate multipole moments by moving upwardin
the tree until level 2 is reached. Denoting byS(C) the set of children of a given
cell C, the transition from a level-(ℓ+1) cell to its parent level-ℓ cell is based on
identities

RS,u
k (ŝ; C(ℓ)

y ) =
∑

C
(ℓ+1)
y ∈S(C

(ℓ)
y )

exp
[

−ikSŝ.∆y
(ℓ)
0

]

RS,u
k (ŝ; C(ℓ+1)

y ) (15a)

RP,u(ŝ; C(ℓ)
y ) =

∑

C
(ℓ+1)
y ∈S(C

(ℓ)
y )

exp
[

−ikPŝ.∆y
(ℓ)
0

]

RP,u(ŝ; C(ℓ+1)
y ). (15b)

(with ∆y
(ℓ)
0 = y

(ℓ+1)
0 −y

(ℓ)
0 ). A crucial feature of the elastodynamic multi-level

FMM is that the number and location of the quadrature points on S are level-
dependent, a consequence of the previously-mentioned dependence (13) ofL on
the cell size. Hence, application of identities (15a,b) requires an extrapolation
procedure [4, 7] furnishing the values ofRS,u

k andRP,u at the level-ℓ quadrature
points from those at the level-(ℓ+1) quadrature points.

3. Transfer: initialize local expansions for each level-ℓ cell C(ℓ)
x and at each level

2≤ ℓ≤ ℓ̄ using

LS,u
k (ŝ(ℓ); C(ℓ)

x ) =
∑

C
(ℓ)
y ∈I(C

(ℓ)
x )

GL(ŝ(ℓ); r0; kS)RS,u
k (ŝ(ℓ); C(ℓ)

y ) (16a)

LP,u(ŝ(ℓ); C(ℓ)
x ) =

∑

C
(ℓ)
y ∈I(C

(ℓ)
x )

GL(ŝ(ℓ); r0; kP)RP,u(ŝ(ℓ); C(ℓ)
y ) (16b)
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whereI(C), theinteraction listof a given cellC (Fig. 2), is the set ofsame-level
cells which are not adjacent toC while having a parent cell adjacent to that ofC.
For a level-2 cell,I(C2) collects all level-2 cells not adjacent toC2.

4. Downward pass: for all levels3 ≤ ℓ ≤ ℓ̄, the local expansion for each level-ℓ cell
C(ℓ)

x is updated with the contribution from the parent level-(ℓ−1) cell, by means
of the identity

LS,u
k (ŝ; C(ℓ)

x ) = LS,u
k (ŝ; C(ℓ)

x ) + exp
[

−ikS(ŝ.∆x
(ℓ)
0 )

]

LS,u
k (ŝ; C(ℓ−1)

x ) (17a)

LP,u(ŝ; C(ℓ)
x ) = LP,u(ŝ; C(ℓ)

x ) + exp
[

−ikP(ŝ.∆x
(ℓ)
0 )

]

LP,u(ŝ; C(ℓ−1)
x ) (17b)

(with ∆x
(ℓ)
0 = x

(ℓ−1)
0 −x

(ℓ)
0 ). Similarly to step 2, application of identity (17a,b)

requires an inverse extrapolation procedure [4, 7] furnishing the values ofLS,u
k

andLP,u at the level-ℓ quadrature points from those at the level-(ℓ−1) quadrature
points.

5. When the leaf levelℓ = ℓ̄ is reached, all local expansions have been computed.
The far contribution(Ku)FM(x) is evaluated using

(Ku)FM
k (x) ≈

Q
∑

q=1

w(ℓ̄)
q

[

e−ikSŝ
(ℓ̄)
q .(x−x

(ℓ̄)
0 )LS,u

k (ŝq; C(ℓ̄)
x )

+ e−ikPŝq.(x−x
(ℓ̄)
0 )(ŝ(ℓ̄)

q )kLP,u(ŝq; C(ℓ̄)
x )

]

, (18)

and the near contribution is evaluated for all level-ℓ̄ (leaf) cellsCx according to

(Ku)near
k (x) = cik(x)ui(x)

+
∑

C
(ℓ̄)
y ∈A(C

(ℓ̄)
x )

(P.V.)
∫

∂Ω∩C
(ℓ̄)
y

ui(y)T k
i (x, y)dSy. (19)

The computation of the right-hand side (3) follows the same steps, with the multi-
pole momentsRS,u

k ,RP,u and local expansionsLS,u
k ,LP,u replaced with their coun-

terpartsRS,t
k ,RP,t andLS,t

k ,LP,t. The above steps are found [4] to have a complexity
of at mostO(N log N), with the exception of the direct and inverse extrapolations
in steps 2 and 4, whose complexity isO(N3/2).

The near-field contribution (19) involves (i) CPV-singular, (ii) weakly-singular
and (iii) non-singular element integrals. CPV-singular integrals are split into (singu-
lar) integrals involving the static Kelvin traction kerneland (nonsingular) comple-
mentary integrals. The former are then evaluated analytically, taking advantage of
the fact that three-noded triangular elements, which have constant unit normal and
Jacobian, are used. Weakly-singular integrals (which feature the kernelUk

i (x, y))
and non-singular integrals are computed using numerical Gaussian quadrature (the
weak singularity being first cancelled by means of a suitablechange of coordinates).
Finally, when∂Ω presents an edge or corner atx, the free-termcij(x) is evaluated
using the method of [14].
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A detailed account of the implementation of this single-region elastodynamic
FMM is described in [4], wherein analytical and numerical verifications of the al-
gorithmic complexity of single-level and multi-level versions are also addressed.

3.2 Multi-region FM-BEM

The above FM-BEM formulation can be naturally extended to multi-domain con-
figurations. Such problems involve displacement and traction degrees of freedom
associated with interfacial displacementsuij or tij on the common interfaceΓij

separating subregionsΩi andΩj (with tij conventionally defined in terms of the
unit normalnij directed fromΩi to Ωj). Invoking the perfect bonding conditions

uij = uji, tij = −tji (20)

the interfacial quantitiesuij , tij with i < j are retained as independent unknowns.
For each subdomainΩi, the governing integral equation (1) is discretized by col-
location at the displacement nodes and the element centres.This defines for each
subregion arectangular, overdetermined system of BEM equations. The FM-BEM
then evaluates for eachΩi the corresponding matrix-vector product. To define a
square global system of equations, equations resulting from collocation at inter-
face element nodes or centres arising from both adjacent subdomains are linearly
combined, an operation that is performed externally on the matrix-vector products
generated by the FM-BEM. A detailed presentation of this BEM-BEM coupling ap-
proach, including numerical experiments allowing to select suitable values of the
weighting coefficients used in the foregoing equation combinations, is given in [5].

4 Numerical examples

Following are a few sample numerical results obtained on test problems using the
present elastodynamic single-region or multi-region FM-BEMs. Other examples are
presented in [4] and [5].

4.1 Scattering of SV waves by a semi-spherical canyon

This example is concerned with the perturbation by a semi-spherical canyon of ra-
diusa of an oblique incident plane SV-wave of unit amplitude traveling in a elas-
tic half space (Fig. 3) characterized byν = 1/3. This problem has been previ-
ously studied in [10] by means of a wave function expansion and, for low frequen-
cies, in [17] using a standard BEM. Results obtained for a lowfrequency such that
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Fig. 3 Scattering of SV waves by a semi-spherical canyon: geometryand notation

-2 0 2
s / a

0

0,5

1

1,5

2

2,5

3

3,5

4

di
sp

la
ce

m
en

t m
od

ul
us

|uy| (present FMM, D=2.5R)

|uy| Eshraghi et al.

|uz| (present FMM, D=2.5R)

|uz| Eshraghi et al.

Fig. 4 Scattering of SV waves by a semi-spherical canyon: horizontal and vertical computed dis-
placement on line ABCDE (with points A, B, C, D, E defined on Fig. 3) plotted against normalized
arc-length coordinates/a along ABCDE (θ = 0, kSa = 0.75π)
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Fig. 5 Scattering of SV waves by a semi-spherical canyon: horizontal and vertical computed dis-
placement on line ABCDE (with points A, B, C, D, E defined on Fig. 3) plotted against normalized
arc-length coordinates/a along ABCDE (θ = π/6, kSa = 0.75π)
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kSa = 0.75π are seen to agree well with published results from [10] (θ = 0, Fig. 4)
and [10, 17] (θ = π/6, Fig. 5). The free surface is here meshed within a truncation
radiusD = 2.5a, a relatively small value chosen so as to reproduce the condi-
tions used in [10, 17], and the mesh featuresN = 7, 602 nodal unknowns overall.
The computation required 8 (resp. 11) GMRES iterations for the caseθ = 0 (resp.
θ = π/6) and 1.5s of CPU per iteration on a single-processor PC (RAM:3GB, CPU
frequency: 3.40 GHz), with the GMRES relative tolerance setto 10−3. The leaf
level is ℓ̄ = 3, with the linear sizedmin of leaf cells such thatkSd

min ≈ 1.45.

4.2 Test problem for the multi-region FMM

The test problem of a spherical cavity subjected to an internal time-harmonic uni-
form pressureP , surrounded by two concentric spherical layersΩ1, Ω2 embedded
in an unbounded elastic mediumΩ3, is considered (Fig. 6). The radii of the cavity
and two surrounding interfaces area1, a2, a3, respectively The mechanical prop-
erties of the respective media, in arbitrary units, are(ρ1, µ1, ν1) = (3, 4, 0.25),
(ρ2, µ2, ν2) = (6, 5, 0.25), (ρ3, µ3, ν3) = (2, 1, 1/3). A closed-form exact so-
lution is available for this test problem. Results in terms of RMS errors between
numerical solutions computed using the present multi-domain FM-BEM and their
analytical counterparts, given in Table 1, show that the formulation achieves satis-
factory accuracy (the GMRES relative tolerance being againset to10−3).

Fig. 6 Test problem: pressurized spherical cavity surrounded by concentric layers
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4.3 Wave amplification in a semi-spherical basin

This example is again concerned with the perturbation of an oblique incident plane
SV-wave of unit amplitude traveling in a elastic half space,this time by a semi-
spherical filled basin (Fig. 7). This configuration, has beenstudied in the frequency
domain in [15] using a standard indirect BEM (using the half-space Green’s func-
tions) . The mechanical parameters are defined throughµ1 = cS1 = 1, cP1 = 2,
µ2 = 1/6, cS2 = 1/2 andcP2 = 1. Results obtained for an incidence angleθ = π/6
and a frequency such thatkSa = 2π1 are presented, in terms of thex, y andz com-
ponents of the surface displacement, in Figures 8, 9 and 10. The free surface is here
meshed within a truncation radiusD = 5a, and the mesh featuresN = 143, 451
nodal unknowns (discretized versions of the displacementu1 on the truncated free
surface and the interfacial displacementsu12 and tractionst12). The computation
required 484 GMRES iterations and 36s of CPU per iteration.

Fig. 7 Propagation of an oblique incident plane SV-wave in a semi-spherical basin: notation.

5 Conclusions

In this contribution, the Fast Multipole Method has been succesfully extended to3D
single-region and multi-region elastodynamics in the frequency domain. Combined
with the BEM formulation, it permits to reduce the computational burden, in both
CPU time and memory requirements, for the analysis of elastic wave propagation
(e. g. seismic), and allows to run BEM models of large size on an ordinary PC.

Table 1 Pressurized spherical cavity surrounded by concentric layers: relative RMS errors

N k1
Sdmin k1

Sa1 ℓ̄i E(u1) E(u12) E(t12) E(u23) E(t23) Iters.

55, 778 0.82 2.17 3; 3; 3 3.0 10−2 1.4 10−2 2.2 10−2 1.3 10−2 2.8 10−2 59

215, 058 1.88 4.93 3; 3; 4 1.0 10−2 1.3 10−2 1.0 10−2 1.4 10−2 1.4 10−2 43
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3.55E−2

5.53E+0

1.10E+1

1.65E+1

2.20E+2

Fig. 8 Diffraction of an oblique incident SV plane wave by a semi-spherical basin: computedx
component of displacement on basin surface and meshed part of free surface (normalized frequency
kSa = 2π)

1.23E−3

3.65E+0

7.30E+0

1.10E+1

1.46E+1

Fig. 9 Diffraction of an oblique incident SV plane wave by a semi-spherical basin: computedy
component of displacement on basin surface and meshed part of free surface (normalized frequency
kSa = 2π)

1.77E−3

4.33E+0

8.66E+0

1.30E+1

1.73E+1

Fig. 10 Diffraction of an oblique incident SV plane wave by a semi-spherical basin: computedz
component of displacement on basin surface and meshed part of free surface (normalized frequency
kSa = 2π)
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Comparisons with analytical or previously published numerical results show the
efficiency and accuracy of the present elastodynamic FM-BEM.

Applications of the present FM-BEM to realistic cases in seismology are under
way. Moreover, a natural extension of this work consists in formulating multipole
expansions of other fundamental solutions, with the half-space elastodynamic fun-
damental solution being currently investigated. Also, extending the formulation to
complex wavenumbers will allow more realistic modelling where viscoelastic con-
stitutive properties are assumed for the propagation medium. Finally, improving the
efficiency of the elastodynamic FM-BEM also requires further research into refined
(direct/inverse) extrapolation techniques (for loweringtheO(N3/2) of this step) and
a well-chosen preconditioning strategy (for reducing the GMRES iteration count).
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6. Dangla, P., Semblat, J. F., Xiao, H., Delépine, N. A simple and efficient regularization

method for 3D BEM: application to frequency-domain elastodynamics. Bull. Seism. Soc.
Am., 95:1916–1927 (2005).

7. Darve, E. The Fast Multipole Method : Numerical Implementation.J. Comp. Phys., 160:195–
240 (2000).

8. Epton, M.A., Dembart, B. Multipole translation theory for the three-dimensional Laplace and
Helmholtz equations.SIAM J. Sci. Comp., 16:865–897 (1995).

9. Eringen, A.C., Suhubi, E.S.Elastodynamics, vol. II-linear theory. Academic Press (1975).
10. Eshraghi, H., Dravinski, M. Scattering of plane harmonic SH, SV, P and Rayleigh waves by

non-axisymmetric three-dimensional canyons: a wave function expansion approach.Earth-
quake Engng. and Struct. Dyn., 18:983–998 (1989).

11. Fujiwara, H. The fast multipole method for solving integral equations of three-dimensional
topography and basin problems.Geophys. J. Int., 140:198–210 (2000).

12. Gumerov, N. A., Duraiswami, R.Fast multipole methods for the Helmholtz equation in three
dimensions. Elsevier (2005).

13. Guzina, B. B., Pak, R. Y. S. On the Analysis of Wave Motionsin a Multi-Layered Solid.
Quart. J. Mech. Appl. Math., 54:13–37 (2001).

14. Mantic, V. A new formula for the C-matrix in the Somigliana identity. J. Elast., 33:191–201
(1993).

15. Mossessian, T.K., Dravinski, M. Amplification of elastic waves by a three dimensional valley.
Part 1: steady state response.Earthquake Engng. Struct. Dyn., 19:667-680 (1990).

16. Nishimura, N. Fast multipole accelerated boundary integral equation methods.Appl. Mech.
Rev., 55(4) (2002).
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