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Four dimensional BF theory admits a natural coupling to extended sources supported on two
dimensional surfaces or string world-sheets. Solutions of the theory are in one to one correspondence
with solutions of Einstein equations with distributional matter (cosmic strings). We study new
(topological field) theories that can be constructed by adding extra degrees of freedom to the two
dimensional world-sheet. We show how two dimensional Yang-Mills degrees of freedom can be
added on the world-sheet, producing in this way, an interactive (topological) theory of Yang-Mills
fields with BF fields in four dimensions. We also show how a world-sheet tetrad can be naturally
added. As in the previous case the set of solutions of these theories are contained in the set of
solutions of Einstein’s equations if one allows distributional matter supported on two dimensional
surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity,
one important motivation to study these models is to explore the possibility of constructing a
background independent quantum field theory where local degrees of freedom at low energies arise
from global topological (world-sheet) degrees of freedom at the fundamental level.

PACS numbers:

I. INTRODUCTION

Topological field theories are simple examples of background independent field theories for which quantization can
be completely worked out. These theories are a natural play ground where conceptual as well as technical issues in
background independent quantum theory can be addressed in detail. Three-dimensional vacuum general relativity
is an important example of a topological field theory. Interestingly the topological nature of the theory can be
maintained if matter is added in the form of topological defects representing massive and spinning point particles [1].
Interest in the quantization of 2 + 1 gravity coupled to point particles has been revived in the context of the spin
foam [2] and loop quantum gravity [3] approaches to the nonperturbative and background-independent quantization
of gravity. On the one hand this simple system provides a nontrivial example where the strict equivalence between
the covariant and canonical approaches can be demonstrated [4]. On the other hand intriguing relationships with
field theories with infinitely many degrees of freedom have been obtained [5, 6]. The generalization of these models to
higher dimensions has been studied in [7]. As it is shown there, membrane-like defects of dimension d−3 are a natural
form of matter that couples to d-dimensional BF theory [8]. The resulting theory is in turn also a topological theory
and can be completely quantized using the techniques of loop quantum gravity. Among these higher dimensional
models the four-dimensional one (which couples to string-like defects) is of singular interest due to the special role
played by 4-dimensional BF theory in the construction of spin foam models of four-dimensional quantum gravity.
At first look these strings are a rather dull form of matter: at their location there are conical singularities of the

curvature tensor and the equations of motion imply that the string world sheet is locally flat [9] (vibrational modes
of the strings are pure gauge). Nevertheless, as we will argue in this paper, the feature that makes these strings
interesting is the fact that they are extended objects (this is also behind their exotic statistical properties [10]). This
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will allow us to couple four-dimensional BF theory with more physically appealing degrees of freedom. As the set
of possibilities is quite vast, we will restrict our attention to certain world-sheet theories that satisfy the following
two properties: (a) they can be naturally (or minimally) coupled to BF theory in 4d, and (b) the coupled system
defines a (topological) theory with no local degrees of freedom. Due to the close relationship between four-dimensional
BF theory and gravity, requirement (a) is expected to produce physically interesting models, as they might provide
natural candidates for the coupling of spin foam models of gravity with natural forms of matter. Requirement (b)
implies that the models studied here are expected to be non-perturbatively quantizable.
We believe that the study of these simple topological models can be of more relevance than a simple exercise in

the application of non-perturbative quantization techniques. We would like to explore the possibility that topological
theories, containing low dimensional objects, could be used to construct a background independent quantum field
theory with infinitely many (‘quasi-local’) degrees of freedom. This is in fact our motivation for imposing requirement
(b) above.
The article is organized as follows: In Section II we briefly review the coupling of strings to four-dimensional BF

theory. In Section III we show howYang-Mills degrees of freedom can be added to the strings. We analyze the equations
of motion of the coupled system and perform the canonical analysis to prove that the theory is topological. In Section
IV we add a tetrad field on the world sheet and obtain an interesting model whose equations of motion resemble
those of general relativity in a curious way. In Section V we study a purely two-dimensional model of background
independent Yang-Mills theory which naturally follows from the results of the previous sections. In Section VII we
present a speculative discussion about the possibility of using topological theories of the type introduced in this article
in order to define a background independent quantum field theory with infinitely many degrees of freedom..

II. STRINGS COUPLED TO FOUR-DIMENSIONAL BF THEORY

The coupling of (d − 3)-dimensional membranes to d-dimensional BF theory (defined for a large class of structure
groups) was introduced in [7]. Here we concentrate on the case of strings coupled to four-dimensional BF theory with
structure group SO(3, 1) (see Refs. [11] for its canonical analysis and Refs. [12, 13] for alternative action principles).
If we denote M the four-dimensional space time manifold and W ⊂ M the two-dimensional world sheet of the string,
the action defining the coupling is given by

SST−BF =

∫

M

BIJ ∧ F IJ(A) + τ

∫

W

(B + dAq)
IJpIJ , (1)

where I, J = 1, .., 4, and if we denote TIJ ∈ so(3, 1) the generators of the Lie algebra then q = qIJTIJ is a so(3, 1)-
valued 1-form on W and p = pIJTIJ is a so(3, 1)-valued function on W . This action is invariant under the gauge
transformations:

B 7→ gBg−1 B 7→ B + dAη
A 7→ gAg−1 + gdg−1 q 7→ q − η
q 7→ gqg−1

p 7→ gpg−1,

(2)

where g ∈ C∞(M , G) and η is any g-valued (d− 3)-form. Varying the action with respect to the B field implies that
the connection A is flat except at W :

F = −p δW , (3)

where δW is the distributional 2-form (current) associated to the string world-sheet. So, the string causes a conical
singularity in the otherwise flat connection A. The strength of this singularity is determined by the field p, which
plays the role of a ‘momentum density’ for the string. Note that while the connection A is singular in the directions
transverse to W , it is smooth and indeed flat when restricted to W . Thus the equation of motion obtained from
varying q makes sense:

dAp = 0. (4)

This expresses conservation of momentum density and in fact implies that the field p remains in the same conjugacy
class, hence it can be writen as p = τλvλ−1 for v ∈ so(3, 1) a normalized vector and λ ∈ SO(3, 1). The constant τ
defines the string tension. Conjugacy classes of so(3, 1) are labelled by the two Lorentz Casimirs. So far we have fixed
only one by choosing the string tension τ2 = pIJp

IJ . The other Casimir defines an extra parameter s = pIJpKLǫ
IJKL
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(the geometric meaning of s will be discussed below). Notice that the strength of the conical singularity at the location
of the strings is in this sense non dynamical. This will change in the model of Section III.
Assuming the spacetime manifold is of the form M = Σ × R. We choose local coordinates (t, xa) for which

Σ is given as the hypersurface {t = 0}. By definition, xa with a = 1, 2, 3 are local coordinates on Σ. We also
choose local coordinates (t, s) on the 2-dimensional world-sheet W , where s ∈ [0, 2π] is a coordinate along the one-
dimensional string formed by the intersection of W with Σ. Performing the standard Legendre transformation one
obtains Ea

i = ǫabcBibc as the momentum canonically conjugate to Ai
b. Similarly, pIJ is the momentum canonically

conjugate to qIJ1 = qIJa (∂σ)
a. The phase space variables satisfy the following constraints:

LIJ := DaE
a
IJ − 2δS [q1[I|M|p

M
J]] ≈ 0 (5)

Ka
IK := ǫabcF IJ

bc (x) + δS [pIJ(∂σ)
a] ≈ 0, (6)

Here S ⊂ Σ denotes the one-dimensional curve representing the string, parametrized by xS (s), and for any field φ
on S we define

δS [φ] :=

∫

S

φ δ(3)(x− xS (s)).

The constraint (5) is the modified Gauss law of BF theory due to the presence of the string. The constraint (6) is the
modified curvature constraint containing the dynamical information of the theory. This constraint implies that the
connection A is flat away from the string S . Some care must be taken to correctly intepret the constraint for points
on S . By analogy with the case of 3d gravity, the correct interpretation is that the holonomy of an infinitesimal loop
circling the string at some point x ∈ S is exp(−p(x)) ∈ G, where p = τλvλ−1 as before. This describes the conical
singularity of the connection at the string world-sheet.
The BF phase space variables satisfy the standard commutation relations:

{Ea
i (x), A

j
b(y)} = δab δ

j
i δ

(3)(x− y) {Ea
i (x), E

b
j (y)} = {Ai

a(x), A
j
b(y)} = 0. (7)

The phase space of the string is parametrized in terms of the momentum pIJ and the ‘total angular momentum’
JIJ = 2q1[I|M|p

M
J]. The Poisson brackets of these variables are given by

{pIJ(s), JKL(s
′)} = cST

IJKLpST (s)δ
(1)(s− s′) {JIJ(s), JKL(s

′)} = cST
IJKLJST (s)δ

(1)(s− s′), (8)

where cST
IJKL are the structure constants of so(3, 1), and

{JIJ(s), λ(s′)} = −TIJλ(s)δ
(1)(s− s′). (9)

The string variables are still subject to the following first class constraints:

tr[TIJλzλ
−1]JIJ = 0 tr[pλzλ−1] = τtr[vz], (10)

where z ∈ g is such that [z, v] = 0. The last constraint is the generalization of the mass shell condition for point
particles in 3d gravity. The Poisson bracket of the string variables with the BF variables is trivial, as well as the
Poisson brackets among the pIJ .

A. Geometrical interpretation

Here we present a brief account of the analysis carried out in [9]. The full set of equations of motion of the theory
is

F (A) = −p δW

dAB = −[q, p] δW

dAp|W = 0, φ∗
W
(B + dAq) = 0

, (11)

where φ∗
W

in the last equation denotes the pull back of the corresponding 2-forms to W . Therefore, the field config-
urations A = 0, B = 0, q = 0, p =constant gives a solution to the equations of motion in an open region U ⊂ M
such that any open set containing points of W has points outside U . Since the theory is topological, all the solutions
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are equivalent to this one in U through a gauge transformation. Assume that we have a coordinate system in U with
coordinate functions XI , (for I = 1, · · · , 4). In order to recover an interpretation of fields on a flat background we
can make a gauge transformation of the type (2) with gauge parameter ηIJ = X [IdXJ]. In this gauge the solution is

BIJ
ab = eI[a eJb] = δI[aδ

J
b] qIJa = X [IdaX

J]. (12)

We see that in this gauge the B field defines a flat background geometry. There is still the residual gauge freedom
that maintains this property of the B field given by gauge transformations of the form η0 = df for some arbitrary f .
We call this family of gauges flat gauges. The integrability conditions that follow from the equation dB = [q, p]δW

imply that d[p, q] = 0 or equivalently that [p, q] = dα for some potential α. If α = 0 it can be shown that [p, q] = 0
has non trivial solutions if s = pIJpKLǫ

IJKL = 0 1. In that case the string world-sheet XI(σ, t) is given by a plane
in Minkowski spacetime passing through the origin defined by either the equation pIJXI = 0 or ⋆pIJXI = 0. We can
translate the plane off the origin by choosing αIJ = C [IXJ] (this choice sends XI to XI +CI). If s 6= 0 then equation
[p, q] = 0 implies XI = 0.
One can establish a strict connection between these solutions and solutions of general relativity representing a

cosmic string. In cylindrical coordinates {∂t, ∂r, ∂ϕ, ∂z} such that the string is lying along the z axis and goes through
the origin the metric of a cosmic string solution of tension τ is:

ds2 = gµνdx
µ ⊗ dxν = −dt2 + dr2 + (1− a)2r2dϕ2 + dz2, (13)

where a = (1− 4Gτ), G is the Newton constant. The dual co-frame for the above metric is written

e0 = dt e1 = cosϕdr − a r sinϕdϕ e2 = sinϕdr + a r cosϕdϕ e3 = dz, (14)

such that ds2 = eI ⊗ eJηIJ . The spin connection (s.t. dAe = 0) is

A = AIJ
µ JIJdx

µ = 4Gτ J12 dϕ, (15)

where JIJ are the so(3, 1) generators. We can identify now the string momentum p above, namely pIJJIJ = τJ12.
From the distributional identity ddϕ = 2πδ2(r)dxdy (x = r cosϕ, y = r sinϕ), it is immediate to compute the torsion
T = T 0e0 and curvature F = F 12 σ12 of the cosmic string induced metric:

T 0 = 0, F 12 = 8πGτ δ2(r) dxdy. (16)

The above fields are clearly a solution of Einstein’s equations with distributional matter

ǫIJKLe
J ∧ FKL = 8πGτ ǫIJKLe

JJIJ
12 δW . (17)

The previous solution is in one to one correspondence with the solution of (11)

B = (e ∧ e)∗, A = 4Gτ J12 dϕ, p = τ J12, qIJ = (zdt− tdz) δ
[I
0 δ

J]
3 = (zdt− tdz)JIJ

21 . (18)

One can construct a two string solution by ‘superimposing’ two solutions of the previous kind at different locations
(notice that the equations are non linear so the new solution is not the sum of two solutions). It can be show that the

torsion dAB is proportional to the distance separating the worldsheets in the flat-gauge where BIJ
ab = δ

[I
a δ

J]
b . More

strings can be added in a similar fashion.

III. MINIMAL COUPLING OF WORLD SHEET YANG-MILLS WITH 4D BF THEORY

Yang Mills theory in two dimensions can be written in a way that resembles BF theory if one is given a 2-form field
ρ, namely

SY M =

∫

W

[EaF a(A) + ρEaEa] , (19)

1 If we allow for complex pIJ , then solutions exist also if pIJ is self-dual (or anti self-dual).
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where a = 1, . . . , dim(g) are internal indices labeling the elements of a basis of the Lie algebra g of the gauge group of
our choice G (we require G to be compact and g to have an invariant metric with which we raise and lower internal
indices). The field A =

(

Aa
µdx

µ
)

⊗Ja is the g-valued connection 1-form, [Ja, Jb] = f c
abJc where f

c
ab are the structure

constants with respect to the basis {Ja}. AUnder these assumptions the internal metric can be taken as kab = cTr JaJb
(assuming a matrix form for the generators Ja and c is a constant that depends on the dimension of the representation
of the Ja). The field Ea is a collection of dim(g) many 0-forms. One can show that if ρ is non-degenerate (i.e., a
volume form) the previous action is equivalent to the standard Yang Mills action

SY M =

∫

W

√
ggµνgρρF a

µνFρρ a,

where the 2d metric gµν is such that ρ =
√
gdx1 ∧ dx2. If one does the canonical analysis of the BF like action above

one finds that the total Hamiltonian is not weakly vanishing due to the presence of the background structure provided
by the (non-dynamical) ρ. It is also easy to check through the canonical analysis that the theory has no local degrees
of freedom. Sometimes it is said that 2d YM is topological; however, this is not strictly the case because, even though
the degrees of freedom are global (and certainly tied to the topology of W ), they are also related to the background
structure ρ.
The simplest way of coupling two-dimensional Yang Mills theory with four-dimensional BF theory to produce a

background independent field theory is to combine the B field and the world sheet variable p to produce a volume
2-form ρ = BIJpIJ on the world sheet. The result is given by the following action:

SBFY M =

∫

M

BIJ ∧ F IJ (ω) +

∫

W

([

BIJEaEa − dωq
IJ
]

pIJ + EaF a(A)
)

(20)

The equations of motion of the new model are

F (ω) + δW [EaEap] = 0, dωB + δW [qp] = 0, φ∗
W (EaEaB − dωq) = 0, (21)

and

2B · p Ea + F a(A) = 0. (22)

We have not explicitly written the equations dωp = 0, and dAEa = 0 as they implied by the integrability conditions
arising from the Bianchi identities for the curvature of ω and A, respectively.
Now we show that the new model is in fact a topological field theory (i.e. background independent with no local

degrees of freedom). In order to do this we perform the 3+1 decomposition of the previous action and analyze its
phase space structure. The unconstrained phase space is parametrized by the canonical variables (Eµ

IJ , A
KL
ν ) and

(pIJ , qKL
1 ) (of the previous section) plus the Yang-Mills canonical pair (Ea,Ab

1). The constraints relating the bulk
degrees of freedom with the ones on the world sheet are

LIJ := dAµE
µ
IJ + 2δS [q[I|M|p

M
J]] ≈ 0 (23)

KµIJ := ǫµνρF IJ
νρ (x) + δS [EaEapIJ∂µ

σ ] ≈ 0. (24)

Notice that LIJ is precisely the same as (5), while KIJ is a simple modification of (6). In fact there are new constraints

Ga := dAEa ≈ 0, (25)

which is the standard Gauss law of Yang-Mills. These equations (together with Hamilton’s equations of motion) imply
that EaEa = constant. It is easy to see that the constraint algebra closes forming a first class system of 6+18+dim(g)
local constraints for the same number of configuration variables {qIJ1 , AIJ

µ ,Aa
1}. The model has no local degrees of

freedom 2. The curvature constraint implies that the space-time connection is flat in the bulk and there is a conical
singularity at the string. The strings on Σ can be viewed as flux lines of Yang-Mills electric field which back react
with the environment producing a conical singularity whose strength is modulated by the Yang-Mills ‘energy density’
ρE = δS [EaEapIJ ]. As mentioned in the introduction the strength of the curvature singularity is now dynamical.

2 There is a subtlety concerning the constraints KIJ . In fact when we are away from the string the source term vanishes and the Bianchi
identity implies that only 3 out of the 6 ones are independent. On the string the Bianchi identity implies dAp = 0 which is indeed and
independent condition.
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IV. ADDING A WORLD SHEET ‘FRAME’ FIELDS

The idea follows from the observation that the two-dimensional field theory defined by the following action has no
local degrees of freedom

S =

∫

W

([

dqIJ + ∗(eI ∧ eJ)
]

pIJ + πIde
I
)

(26)

where ∗(eI ∧ eJ) = 1
2ε

IJ
KLe

K ∧ eL, W is a two-dimensional surface, qIJ = −qJI is a set of six 1-forms on W , eI is a
set of four 1-forms on W , pIJ = −pJI is a set of six 0-forms (functions) on W , πI is a set of four 0-forms (functions)
on W . In principle, there are other terms that can also be added to the action, for instance, (d ∗ qIJ )pIJ = dqIJ ∗ pIJ
and (eI ∧ eJ)pIJ .
In order to count the number of degrees of freedom let us perform the canonical analysis of this model. Let

(ya) = (y0, y1) = (τ, σ) be local coordinates on W which is assumed to have the form W = S × R; the coordinate
time τ labels the points along R and the space coordinate σ labels the points on S which is assumed to have the
topology of S1. Therefore, using

qIJ = qIJa dya = qIJ0 dτ + qIJ1 dσ,

eI = eI0dτ + eI1dσ, (27)

The action becomes

S =

∫

R

dτ

∫

S

dσ
(

q̇IJ1 pIJ + ėI1πI − λIJDIJ − λIGI

)

, (28)

where λIJ := −qIJ0 and λI := −eI0 are Lagrange multipliers imposing the constraints

DIJ = ∂σpIJ ≈ 0 (29)

CI = ∂σπI + εKL
IJe

J
1 pKL ≈ 0. (30)

There are no more constraints. Smearing the constraints with test fields

D(N) =

∫

S

dσN IJGIJ , C(a) =

∫

S

dσaICI (31)

to compute the Poisson brackets

{D(N), D(M)} = 0,

{D(N), C(a)} = 0,

{C(a), C(b)} = D(∗[a, b]) (32)

with [a, b]IJ := aIbJ − aJbI . Thus all the 10 constraints are first class for the 10 configuration variables (qIJ1 , eI1).
Therefore, the system has no local degrees of freedom, it is a topological field theory.
In the spirit of what was done in the previous section now we couple this world sheet action to the four-dimensional

BF theory in such a way to maintain the topological character of the model. There is a natural choice of coupling
leading to the new model introduced in this section, namely:

SBFY MGR =

∫

M

BIJ ∧ F IJ(ω) +

∫

W

([

BIJEaEa − dωq
IJ + ∗(eI ∧ eJ)

]

pIJ + πIdωe
I + EaF a(A)

)

. (33)

We call this model BFYMGR (whereGR stands for general relativity) due to the suggestive similarity of the equations
of motion with those of general relativity in the first order formalism. In order to make this statement more explicit
let us analyze the equations of motion of the model. The observation is that on the world sheet variations with respect
to p imply that B = E−2(∗(e ∧ e) − dq), hence the B field is simple up to a gauge transformation. Therefore, the
simplicity constraints that reduce BF theory to general relativity are satisfied on the world sheet. The conclusion is
more transparent is we study the remaining equations of motion. For instance we have

F IJ = −pIJ E2δW → F̄ IJ
µν = −pIJ E2 and ǫIJKLe

JpKL = dAπI , (34)
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where F̄ IJ
µν is the smearing of the curvature tensor a two-dimensional surface dual to the world sheet along the

coordinates µ− ν, more precisely

F̄ IJ
µν :=

∫

µ−ν

F IJ .

Now we can appropriately combine the previous equations and obtain

ǫµνρτ ǫIJKLe
J
ν F̄

KL
ρτ = ǫµν(dAπI)νE2, (35)

where ǫµν := ǫµνρτ (dt)ρ(dσ)τ , and we have assumed that E2 is non vanishing in order to bring it to the right hand
side. The previous equation has a suggestive similarity to Einstein’s equation with source Tµν = tI(µe

I
ν) where

tIµ = (dAπI)µE2. This is why we call this topological model BFYMGR.
We have emphasized the similarity of this model with Einstein’s theory of gravity in order to motivate the intro-

duction of this model. Now let us stress why this is quite different in fact. The main reason is that, in contrast with
general relativity, this model is a topological theory with no local excitations. This conclusion becomes transpar-
ent in the Hamiltonian analysis which yields the following set of constraints for the canonical variables (Eµ

IJ , A
KL
ν ),

(pIJ , qKL
1 ), (Ea,Ab

1), and (πI , e
J
1 )

LIJ := dAµE
µ
IJ + 2δS [q[I|M|p

M
J]] ≈ 0,

KµIJ := ǫµνρF IJ
νρ (x) + δS [EaEapIJ∂µ

σ ] ≈ 0,

Ga := dAEa ≈ 0

which are just the same as (23), (6) and (25) in addition to the new world sheet constraints

CI := dωπI + 2eJ ∗ pIJ ≈ 0 (36)

It is easy to see using the results of the previous sections that the constraints form a first class set of 24 + dim(g)
local constraints for the same number of configuration variables. The degrees of freedom are topological.

V. A TWO-DIMENSIONAL BACKGROUND INDEPENDENT YANG-MILLS THEORY

Using what we have learnt we can also define a 2-dimensional background independent Yang Mills theory by making
the 2-form ρ appearing in eq. (19) dynamical in an world sheet intrinsic way: namely ρ = (eI ∧ eJ)pIJ . The resulting
action is

STY M =

∫

W

([

dqIJ + ∗(eI ∧ eJ) + eI ∧ eJEaEa
]

pIJ + EaF a(A) + πIde
I
)

. (37)

The canonical analysis performed along the lines of the one corresponding to the previous model leads to the following
constraints

Ga = dAEa ≈ 0 (38)

DIJ = ∂σpIJ ≈ 0 (39)

CI = ∂σπI + 2eJ 1pIJEaEa + 2eJ 1 ∗ pIJ ≈ 0 (40)

The first one is the familiar Gauss law of Yang Mills theory while the remaining ones correspond to the appropriate
modification of the ones obtained above. The constraint algebra gives

{G(α), G(β)} = G([α, β]g),

{D(N), D(M)} = 0,

{D(N), C(a)} = 0,

{C(a), C(b)} = D(∗[a, b] + E2[a, b]) +G(2[a, b]IJpIJ E) (41)

with [a, b]IJ := aIbJ −aJbI and [α, β]g is the commutator in the Lie algebra g. The constraint algebra closes and gives
a first class system. As before we have 10 + dim(g) local constraints for the same number of configuration variables;
hence the system is a topological field theory.
We end this section with a remark. Notice that the constraint algebra has field dependent structure constants. This

is characteristic of the constraint algebra of general relativity, although here the field dependence is much simpler
since the quantity E2 is constant on the world sheet due to the Gauss constraint. These are genuine field dependent
structure constants.
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VI. QUANTIZATION

We have shown how the coupling of four-dimensional BF theory to strings introduced in [7] allows for the definition
of a large class of topological field theories with physically interesting kinematical degrees of freedom. The set
possibilities is indeed very large so we have concentrated here on two cases of special interest: world sheet Yang-Mills
theories defined in terms of structure groups G possessing an adG invariant metric in their Lie algebra g, and a world
sheet tetrad (with intriguing resemblance with general relativity).
The fact that these models are topological indicates that their non-perturbative quantization should be well defined.

Indeed the quantization of the model of Section III follows straightforwardly from the results of [7] and [9]. This should
be clear from the fact that the phase space structure presented in Section III is quite similar to the one of the theory
briefly reviewed in Section II whose loop quantization is set up in [7] and completely worked out in [9]. The only new
ingredient are the Yang-Mills unconstrained degrees of freedom which are specially well suited for the application of
loop variables techniques.
More precisely a basis of the kinematical Hilbert space—space of solutions of all quantum constraints with the sole

exception of the curvature constraint (24)—of the model (20) is given by: (1) A bulk S0(3, 1) spin network functional
of the S0(3, 1)-connection A based on a graph γ ∈ Σ with open ends at n points on the string S , (2) an n-point spin
functional of λ (recall that the variable p = λvλ−1 for vg normalized and λ ∈ G), (3) a functional of the G-connection
A given by the trace of the Wilson loop of A around the string S in an unitary irreducible representation of G (Figure
1). If G is compact we can always think of the latter quantum number as n ∈ N, where n labels the n-th eigenvalue

ǫn of the square of the electric field ÊaEa. The physical Hilbert space is obtained by imposing the quantum version of
the constraint (24). This amounts for requiring the holonomy of loops around the string carrying Yang-Mills quantum
flux number n ∈ N to be in the conjugacy class of exp (−ǫnv). The techniques developed in [9] can be simply extended
to treat this case.

n

m

FIG. 1: The elements of a natural basis of the kinematical Hilbert can be written as the product of: 1) A functional of the
Lorentz connection labelled by a graph in space and the assignment of unitary irreducible representations of the Lorentz group,
i.e., a SO(3, 1) spin-network state (represented by the thin-lines graph), 2) An n-point spin function (represented here by the
endpoints of the thin-lines-graph on the strings; see [7] for the precise definition), 3) A functional of the Yang-Mills connection
given by the product of Wilson loops on a unitary representation of the structure group G along the each string component.

Another important remark concerns the relationship of this model with 4-dimensional Yang-Mills coupled to general
relativity. There is a close relationship between SO(3, 1) BF theory and general relativity [14, 15, 16, 17]. More
precisely one can obtain the action of general relativity in the first order formulation by constraining the B field to be
of the form B = (e∧ e)∗ for a tetrad field e. This idea is in fact at the core of the definition of many spin foam models
for four-dimensional quantum gravity [18]. Here we would like to point out that if such constraint is imposed on the
B field appearing in the action (20) then the naive quantum amplitude for a world sheet configuration with quantized
Yang-Mills electric field squared ǫn is proportional to exp (i Ap[W ]ǫn) where Ap[W ] is the area of the world sheet
computed with the area form (e ∧ e)∗IJpIJ . This is precisely the functional dependence of the Yang-Mills amplitude
in any dimension [19]. We think that the model presented here might present a new perspective for the definition of
a natural coupling of Yang-Mills fields with gravity in the context of spin foam models of quantum gravity.
It would be interesting to undertake the quantization of the model of Section IV. This would require the non-

perturbative quantization of the tetrad field eI1 and its conjugate momentum πI . We would like to study this question
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in detail in the future. Nevertheless, it seems clear that topological invariance should considerable simplify matters.
Its seems that if this question can be resolved then one should be able to quantize the model of Section V. An
interesting feature of these models (from loop quantum gravity perspective) is that their constraint algebras represent
simpler models of that of general relativity, since as in the latter, they possess field dependent structure constants.
Perhaps some technical issues concerning the quantization of such theories can be clarified in this simpler context.
The model of Section IV is in addition interesting because of its additional resemblance to general relativity.

VII. SOME SPECULATIVE REMARKS

Let us finish with more speculative considerations which are however an important additional motivation for the
study presented here. The most fundamental question of loop quantum gravity is whether one can construct a quantum
field theory in the absence of a non-dynamical background metric. Several known results such as the quantization of
Chern-Simons theory, 2+1 gravity, BF theory, etc., show that this is possible at least when dealing with topological
field theories. The difficult question is whether one can construct an explicit non trivial example of background
independent quantum field theory (with infinitely many degrees of freedom, i.e., infinitely many physical observables).
One can argue that the entire framework of standard quantum field theory is based on the notion of particle, where
a Fourier modes are the basic building block in the construction of standard quantum field theories. Similarly, we
would like to explore the possibility that the finitely many degrees of freedom encoded in topological models, of the
kind presented here, might be put together (be ‘second quantized’) in order to define a QFT with infinitely many
degrees of freedom. Our ideas are at this stage rather heuristic with some aspects based in unproven assumptions
motivated by properties of very simple models [20]. The degree to which these assumptions can be made into factual
statements will be explored elsewhere.
The basic idea goes as follows: In the model of [7] as well as those presented here, the topology of the space time

manifold M and the embedded world sheet W are held fixed. Under these conditions the transition amplitudes
between kinematical states can be computed. When the topology of the world sheet is trivial (e.g. a cylinder
W = S1 × R or an ensemble of any arbitrary number of disconnected cylinders) these amplitudes can be used to
define the so called physical inner product of the (canonically defined) quantum theory. Let us call Hn with n ∈ N,
the physical Hilbert space so defined for the quantum theory associated with classical configuration space containing
n disconnected strings. One can construct a theory with infinitely many degrees of freedom defining the ‘Fock’ space
F = ⊕∞

n=0Hn with the infinite set of quantum observables associated with the multi-string states (for the explicit
construction in the particle case see [6]). However, from our perspective 3 such a theory seems rather trivial because
there is no interaction between the Hn’s for different values of n.

FIG. 2: Interacting string world sheets

When the world sheet topology is non trivial (e.g. it has branching components as in Figure 2 and/or non vanishing
genus) the quantum amplitudes are still well defined (in the spin foam representation) but have no clear-cut physical
interpretation 4. It is tempting to interpret these amplitudes as providing the definition of physical interacting
transition amplitudes in a theory where the kinematical Hilbert space is the Hilbert space F defined above. This
interpretation would be consistent if: (1) the sum over world sheet topologies would be convergent, and (2) the
transition amplitudes define a positive semidefinite inner product in F . This last requirement is highly non trivial—
it is the counterpart of unitarity in background dependent quantum field theory. If these conditions hold, this would
provide a consistent way of rendering the world sheet topology dynamical achieving the goal of defining a non trivial

3 In [6] the context in which F is introduce is quite different. There one uses it to setup a perturbation theory.
4 A field theoretic interpretation as Feynman diagrams in the context of perturbation theory of an associated effective field theory is
proposed in [5].
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(i.e. interacting) quantum field theory with infinitely many degrees of freedom: the latter given by the ensemble
global degrees of freedom of all world sheet topologies.
Due to the fact that topology of two-dimensional orientable manifolds is characterized by a single integer (the

genus g) condition (1) above can be satisfied if the amplitudes are suitably damped for high g. In fact the sum over
two-dimensional topologies does converge in simple models such as 2d BF theory (see for instance [20]). Some positive
indication that property (2) could be realized for models of the kind presented here also comes from the study of this
simple case. However, the model in [20] is too simple an the sum over world sheets does not lead to a theory with
infinitely many degrees of freedom. If the sum over world sheet topologies can be achieved in the models presented
here, due to the the non trivial character of the degrees of freedom involved, be believe they might lead to non trivial
examples of background independent field theories with infinitely many degrees of freedom. We would like to explore
this possibility in the future.

VIII. DISCUSSION

We have shown how the extended nature of the conical defects that naturally couple to four dimensional BF theory
allow for the introduction of physically interesting world-sheet fields while keeping the topological character of the
theory. These models are expected to be non-perturbatively quantizable. In particular, the coupling of Yang-Mills
theory with BF theory described in Section III can be quantized in a rather direct way by using the thecniques of
Refs. [7, 9]. For this theory we get at a remarkably simple description of states in the kinematical Hilbert space where
bulk-geometry spin network states are dual to Yang-Mills electric field flux lines (see Figure 1). The strength of the
conical singularities at the location of flux lines is proportional to the electric field square.
The models are in close relationship with gravity in at least two independent ways. On the one hand, as we argued

in Section IIA, solutions of the topological models are in one to one correspondence with solutions of Einstein’s
equations. This correspondence between solutions has to be interpreted with due care as the gauge symmetries of
our models is much larger than the one of general relativity. In particular local excitations such as gravitons are pure
gauge in our model. Nevertheless the correspondence among solutions might be of relevance if some of the hopes
described in the previous section could be realized. On the other hand, our model is linked to gravity along the well
known relationship between four dimensional BF theory and general relativity explicitly exhibit in the Plebansky
formulation of gravity. In particular, it would be interesting to compare our model with the coupling to Yang-Mills
theories proposed in [22].
These models are simple but non trivial. In particular, the presence of geometric degrees of freedom as well as

matter-like degrees of freedom make them potentially useful for the study of various conceptual difficulties in non-
perturbative quantum gravity.
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IX. APPENDIX

Here we construct a truly background independent model which will lead to a genuinely topological theory. The
discussion of the first part of this paper gives a clear way to defining a background independent analog. The action is

S =

∫

W

[

EaF a(A) + (β (eI ∧ eJ)∗ + γ eI ∧ eJ)pIJEaEa + pIJF
IJ(ω) + πIdωe

I
]

, (42)

where we have replaced q by q = ∗(eI ∧ eJ)pIJ in the previous action, F =
(

1
2F

a
µνdx

µ ∧ dxν
)

⊗ Ja with F a
µν(A) =

∂µA
a
ν−∂νA

a
µ+fa

bcA
b
µA

c
ν and—in order to make the eI and pIJ fields dynamical—added the natural term pIJF

IJ(ω)+

πIdωe
I which also requires the introduction of the connection ωIJ . Of course there are other additional fields which

can be added to the action (42) but, for the moment, let us look just at this action. The parameters β, and γ are
coupling constants.
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After the 1+1 decomposition, (xµ) = (x1, x2) = (τ, σ), each of the terms become: The action becomes (neglecting
space boundary terms)

S =

∫

dτ ∧ dσ
[

EaȦa
1 + πIJ ω̇

IJ
1 + pI ė

I
1 − λaGa − λICI − λIJDIJ

]

(43)

with

Ga := dAEa (44)

CI := dωπI + βp∗IJe
J

1EaEa + γpIJe
J

1EaEa

DIJ := dωpIJ +
1

2
(πIeJ1 − πJeI1) .

Smearing the constraints with test fields

G(α) :=

∫

S

dσαaGa, C(λ) :=

∫

S

dσλICI , D(N) :=

∫

S

dσN IJDIJ (45)

The constraint algebra gives

{C(λ), C(Λ)} =

∫

S

(

[λ,Λ]IJ
(

2γ

φ2
EaEa

)

DIJ +
4γ

φ2
Ea[λ,Λ]IJpIJGa

)

, [λ,Λ]IJ :=
1

2

(

λIΛJ − λJΛI
)

(46)

{G(α), G(β)} = G([α, β]) (47)

{G(α), C(M)} = {G(α), D(N)} = 0

{D(N), D(M)} = D([N,M ])

{D(N), C(β)} = C(N · β)
{C(M), C(N)} = E2D([N,M ]) + 2G([N,M ] · p E)

where [N,M ]I and (N · β)I := N IJβJ is the commutator in the Lie algebra so(4). The constraints are all first class
which leads to the conclusion that there are zero local degrees of freedom.
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