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We give an explicit form for the Lorentzian vertices recently introduced for possibly defining the

dynamics of loop quantum gravity. As a result of doing so, a natural regularization of the vertices is

suggested. The regularized vertices are then proven to be finite. An interpretation of the regularization in

terms of a gauge fixing is also given.
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I. INTRODUCTION

In the search for quantum gravity, loop quantum gravity
(LQG) [1] has provided a well-understood kinematical
framework, arising from standard quantization methods,
with the assumption that parallel transports have well-
defined operator analogs in the quantum theory. Spin
foams have been proposed as an approach to the dynamics
of the theory that retains manifest space-time covariance
(for reviews and some useful original papers, see [2,3]).
Through works of the past year [4–11], progress was made
in modifying the more traditional Barrett-Crane model
[12,13], by addressing the issue of the simplicity con-
straints—which turn the topological theory known as BF
theory into gravity [3,14]—with more care. As a result, the
kinematics of the models [5,6,10,11], covering all values of
the Immirzi parameter in both Euclidean and Lorentzian
signatures, exactly matched those of loop quantum
gravity.1

However, the issue of the finiteness of the Lorentzian
LQG spin-foam vertices was not addressed in the papers
[10,11]. We address the issue in this present paper. In this
paper we show that Lorentzian LQG spin-foam vertices
possess an overall multiplicative factor equal to the volume
of SLð2;CÞ, so that without regularization, the vertices are
indeed infinite. However, in computing expectation values
of quantities, these volume factors will just cancel.
Therefore, one can simply drop the overall volume factor
in the vertex. Such a regularization can be independently
justified via a gauge-fixing interpretation, similar to but
different from that in [15]; this is discussed in Appendix C.
We prove that with this regularization, the vertex is finite.
In both proposing the regularization and proving finiteness,
an explicit form of the LQG vertices derived in Sec. II is
key. This new form has formal similarities to the Barrett-
Crane Lorentzian vertex, which allows some of the reason-

ing of [16] to be used also for proving the finiteness of the
LQG vertices. Adaptations of the relevant arguments from
[16] are summarized in the form of a lemma and two
theorems in Appendix A. The rest of the proof of finiteness
of the LQG vertices is then presented in Sec. IV in the main
text.
For both the Euclidean and Lorentzian LQG models,

there still remains the issue of finiteness of the full state
sum for a fixed triangulation. We leave this issue for future
work. We would like to remark that the analysis presented
here does not directly apply to the Lorentzian model
proposed in [7]; nevertheless it could provide a foundation
for analysis of the Lorentzian model in [7].
The paper is organized as follows. We start with a brief

review of the Lorentzian LQG spin-foam models for finite
�, starting from a triangulation with spacelike tetrahedra;
in so doing, a more concrete and explicit approach is taken
than that originally taken in [11]. This then aides in sug-
gesting the regularization, proposed in the subsequent
section. In the last section we prove finiteness, in part
reusing reasoning from the paper [16]. Finally, we close
with a summary and brief discussion. Appendix C presents
the gauge-fixing interpretation of the regularization.

II. REVIEW OF THE MODELS

Here we review the classical discrete theory, canonical
quantization of the constraints, and path-integral dynamics
from [11], deriving a new expression for the vertex in the
process.

A. Classical discrete theory

The starting point is a Regge-like discretization of first
order gravity in the Plebanski formulation, in which grav-
ity is obtained by adding the so-called simplicity con-
straints to BF theory [3,14]. The continuum variables are
an SLð2;CÞ connection! and an slð2;CÞ-valued two-form
B on space-time; the simplicity constraints ensure that B is
of the form B ¼ ?e ^ e for some cotetrad e.
To construct the Regge-like discretization, introduce a

triangulation � of space-time M by (oriented) 4-
simplices. We will denote typical 4-simplicies, tetrahedra,

*Unité mixte de recherche (UMR 6207) du CNRS et des
Universités de Provence (Aix-Marseille I), de la Meditarranée
(Aix-Marseille II) et du Sud (Toulon-Var); laboratoire affilié à la
FRUMAM (FR 2291).

1This is not true for all the models proposed in the above
works; see [7,9].
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and triangles in � respectively by v, t, and f. The
basic variables then consist of an SLð2;CÞ group element
Vvtð� V�1

tv Þ for each 4-simplex v and tetrahedron t therein,
and an slð2;CÞ algebra element BfðtÞ for each tetrehedron

t and triangle f therein. Vvt is to be heuristically under-
stood as the parallel transport map, determined by !, from
the tetrahedron t to the center of the 4-simplex v. BfðtÞ is to
be understood as the integral of B ¼ ?e ^ e on the triangle
f, in the frame at t. (For details, see [6,9,11].)

It is convenient to furthermore define, for each triangle f
and each pair of tetrahedra t, t0 2 LinkðfÞ,

Ufðt; t0Þ :¼ Vtv1
Vv1t1Vt1v2

� � �Vvnt
0 ;

where the product is around the link in the clockwise
direction from t0 to t. The constraints on the variables are
then

(1) Ufðt; t0ÞBfðt0Þ ¼ BfðtÞUfðt; t0Þ 8 f and t, t0 2
LinkðfÞ.

(2) (Discrete simplicity constraint)
9 is an assignment of a timelike nIt to each t, such
that

CI
ft
:¼ ntJð?BfÞJI � 0 8 f 2 t: (1)

Note that the simplicity constraint (1) implies both of the
more traditional simplicity constraints, the so-called diago-
nal simplicity constraint tr½ð?BfðtÞÞBfðtÞ� � 0 and cross-

simplicity constraints tr½ð?BfðtÞÞBf0 ðtÞ� � 0 8 f, f0 2 t.2

In the prior literature [5,6,11], the fact that (1) implies the
diagonal simplicity constraint as well the cross-simplicity
constraint was overlooked, so that diagonal simplicity was
imposed separately. We will see that these observations
extend to the quantum theory as well: the quantum version
of (1), appropriately understood, will be seen to already
contain within it the quantum diagonal simplicity con-
straint. Additionally, as noted in [11], (1) is able to distin-
guish between the B ¼ �?e ^ e and B ¼ �e ^ e sectors
of the Plebanski theory, selecting only the first of these
sectors.

The above constraints are incorporated as follows: (1) is
imposed prior to varying the action, while (2) is first solved
canonically and then the result inserted in the path
integral.3

Next consider a 3-surface � consisting of tetrahedra in
the triangulation �; call this triangulation �3. Let ��

denote the graph dual to �3. We will denote typical links
and nodes in �� by ‘, n, respectively. The canonical phase

space �� associated with � is then labeled by the basic
variables B‘ðnÞ 2 soð3; 1Þ, U‘ðn; n0Þ 2 SLð2;CÞ. Define
the array of slð2;CÞ matrices �IJ ¼ ��JI by

�i0 ¼ 1

2
�i; �ij ¼ �i

2
�ijk�

k: (2)

Define

J‘ðnÞ ¼ 1

16�G

�
B‘ðnÞ þ 1

�
?B‘ðnÞ

�
:

The nonzero Poisson brackets are then given by

fJ‘ðn0ÞIJ; U‘ðn; n0Þg ¼ U‘ðn; n0Þ�IJ; (3)

fJ‘ðnÞIJ; U‘ðn; n0Þg ¼ �IJU‘ðn; n0Þ; (4)

fJ‘ðnÞIJ; J‘ðnÞKLg ¼ �½IJ�½KL�
½MN�J‘ðnÞMN; (5)

where �½IJ�½KL�
½MN� denotes the structure constants in the

basis �IJ.

B. Quantization

The quantization of �� leads us to the kinematical space
of states

H � ¼ L2ðSLð2;CÞjLð��ÞjÞ: (6)

Let Ĵ‘ðnÞIJ denote the right-invariant vector fields, deter-
mined by the basis �IJ of slð2;CÞ, on the copy of SLð2;CÞ
associated with the link ‘, with orientation such that the
node n is the source of ‘. The B‘ðnÞ’s are then represented
by

B̂ ‘ðnÞ :¼ 16�G

�
�2

�2 þ 1

��
Ĵ‘ðnÞ � 1

�
?Ĵ‘ðnÞ

�
: (7)

As in [11], to solve the simplicity constraint, we gauge fix
the normal nIt in (1) to be nIt � nI :¼ ð1; 0; 0; 0Þ. The
simplicity constraints (1) are then imposed by appropri-
ately quantizing the ‘‘master constraint’’

Mn‘ :¼
X3
i¼1

½ð?BfðtÞÞ0i�2 (8)

associated to each node n and incident link ‘. To quantize
and solve this, it is convenient to introduce a basis of H �

adapted to the constraint. First, we recall that if H N;� is

the carrying space for a Lorentz irreducible representation
(irrep) ðN;�Þ in the principal series, one can decompose
H N;� into irreps of the SUð2Þ subgroup preserving nI,

arriving at

H N;� ¼ �k�N=2H k; (9)

where H k is the carrying space for the spin k SUð2Þ irrep
appearing in the decomposition. Using this, we construct a
basis of generalized SLð2;CÞ spin networks; specifically,
these will be the projected spin networks of [17] with the

2Thanks to Laurent Freidel for pointing out this fact about the
classical theory.

3The closure constraint,
P

f2tBfðtÞ ¼ 0, which is dealt with
more directly in other presentations, is exactly recovered only at
the quantum level, by the integration over connection variables
in the path-integral dynamics.
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normal gauge fixed to be nI. Given an assignment of a
Lorentz irrep ðN‘; �‘Þ in the principal series to each link, an
SUð2Þ spin kn‘ for each specification of a node and incident
link, and an SUð2Þ intertwiner in among the four SUð2Þ
irreps fkn‘g‘2n at n, we define

�fN‘;�‘;kn‘;ingðU‘Þ � hU‘ j fN‘; �‘; kn‘; ingi
:¼ ðO

‘

DðN‘;�‘ÞðU‘Þ

�O
n

½ð	‘2nPkn‘Þ 	 in�Þ; (10)

where Pk is the projector onto the spin-k component in the
decomposition (9). Note in this expression that at each
node ½ð	‘2nPkn‘Þ 	 in� is a tensor in 	‘2nH ðN‘;�‘Þ; the
role of the labels fk‘ng‘2n and in at each node is to specify
a tensor among the four Lorentz irreps on the adjacent
edges. Contracting these all together gives the desired
generalized SLð2;CÞ spin network (10). Note, in particular,
that even though SLð2;CÞ representations in the principal
series are infinite dimensional, the incorporation of the
projection operators Pk in (9) ensures that all contractions
involve effectively only finite sums, so that the right-hand

side of (10) is guaranteed to be finite. Finally, let L̂i
‘n

:¼
1
2 �

i
jkĴ

jk
‘ ðnÞ. The basis (10) then diagonalizes the operators

ðĴ‘ � Ĵ‘Þ�fN‘;�‘;kn‘;ing ¼ 1
2ðN2

‘ � �2
‘ � 4Þ�fN‘;�‘;kn‘;ing;

ðĴ‘ � ?Ĵ‘Þ�fN‘;�‘;kn‘;ing ¼ N‘�‘�fN‘;�‘;kn‘;ing;

L̂2
n‘�fN‘;�‘;kn‘;ing ¼ kn‘ðkn‘ þ 1Þ�fN‘;�‘;kn‘;ing:

In terms of this basis, the master constraint (8), quantized
as in [11], is

M̂n‘�fN‘;�‘;kn‘;ing ¼
��

1þ 1

�2

�
ðk2n‘ � ðN‘=2Þ2Þ

þ 1

4�2
ð�‘ � �N‘Þ2

�
�fN‘;�‘;kn‘;ing:

(11)

As kn‘ � N‘=2, solving this constraint forces both of the
terms on the right-hand side to separately vanish. In all,
simplicity thus implies

k‘�‘ ¼
N‘

2
¼ �‘

2�
¼ k‘þ‘ (12)

for all ‘, and where ‘�, ‘þ denotes, respectively, the
source and target of ‘. Because kn‘ is the quantum number

for the non-Lorentz scalar quantity L̂2
n‘, this is not an

SLð2;CÞ invariant equation. This lack of SLð2;CÞ invari-
ance derives from the gauge fixing of nI and will be
relevant in Appendix C.

C. Path-integral dynamics

Consider the case when� consists of a single 4-simplex,
and let � denote its boundary graph. The vertex amplitude
is derived as the amplitude for a generalized spin-network
state on the boundary. We begin by writing down the
amplitude for the BF theory, reflecting the flatness equation
of motion present in the BF theory:

A½Utt0 � ¼
Z

dVvt�tt0�ðUtt0Vt0vVvtÞ; (13)

multiplying by a generalized spin network (10) and inte-
grating over the Utt0 with the Haar measure leads to the
amplitude for a generalized spin network on the boundary
of a single 4-simplex v

Av½Nf; �f; ktf; it� ¼
Z

dVvt�
4-simplex
fNf;�f ;ktf;itgðVtvVvt0 Þ

¼ ðPgauge
SLð2;CÞ�

4-simplex
fNf;�f ;ktf;itgÞjTriv:Conn:

� 15jSLð2;CÞðNf; �f; I
tðktf; itÞÞ; (14)

where Itðktf; itÞ :¼ Pt
SLð2;CÞ½ð	f2tPkftÞ 	 it�, and where

Pt
SLð2;CÞ denotes a formal group averaging over SLð2;CÞ

gauge transformations at t. At each t, Itðktf; itÞ is thus

formally an SLð2;CÞ intertwiner.
Combining with the simplicity constraints, we obtain an

SUð2Þ LQG spin-foam model with partition function

ZGR ¼ X
jf;it

Y
f

ð2jfÞ2ð1þ �2ÞY
v

Avðjf; itÞ (15)

with jf 2 N=2 and

Avðjf; itÞ :¼ Av½2jf; 2�jf; jf; it�
¼ 15jSLð2;CÞð2jf; 2�jf; Itðjf; itÞÞ: (16)

This is the vertex amplitude for general �, as in [11].
Setting � ¼ 0 gives the flipped Lorentzian model [10].

III. REGULARIZATION

Is the vertex (16) and/or (14) finite? The answer is no.
However, it is not hard to see that an observation similar to
that in [13] can be used to regularize it: the vertex consists
of an integral over five copies of the group, but one of these
is redundant. That is, if we perform any four of the five
integrals, the result is independent of the fifth integration
variable, so that the last integral is redundant.4

To demonstrate, number the tetrahedra 1, 2, 3, 4, 5, and
label the 5 group integration variables as V1, V2, V3, V4, V5.
Dropping the fifth integration, we symbolically write

4This comes from a SLð2;CÞ gauge invariance acting at each
vertex; see Appendix C.
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Performing the change of variables

V1 � ~V1 ¼ V�1
5 V1; (18)

V2 � ~V2 ¼ V�1
5 V2; (19)

V3 � ~V3 ¼ V�1
5 V3; (20)

V4 � ~V4 ¼ V�1
5 V4; (21)

using the right invariance of the Haar measures, and noting that for i; j ¼ 1; . . . ; 4, ~V�1
i

~Vj ¼ V�1
i Vj, the expression (17)

simplifies to

which is manifestly independent of the unintegrated group element V5. Thus, the last integral, when performed, simply
introduces a factor equal to the volume of SLð2; CÞ, which is infinite. We regularize it by simply dropping the last integral,
which, depending on how the V’s are numbered, could be any one of the five integrals. The result is independent of which
one you drop. Incorporating the simplicity constraints in the form (12), we thus propose

A
reg
v ðjf; itÞ :¼ A

reg
v ½2jf; 2�jf; jf; it�: (23)

IV. PROOF OF FINITENESS

For each set of labels f�f; Nf; ktf; itg determining a projected spin network on the 4-simplex boundary graph, let
~F�f;Nf;ktf;it : SLð2;CÞ5 ! C denote the integrand in the definition of the associated vertex (17). That is, define
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where the schematic on the right-hand side represents the
projected spin network with its 10 SLð2;CÞ arguments.
Next, every element V 2 SLð2;CÞ can be decomposed

V ¼ BðxÞR (25)

for some R 2 SUð2Þ and some boost BðxÞ. We here pa-
rametrize the boosts by a point x in the hyperboloid H of
future directed unit timelike vectors in Minkowski space,
with BðxÞ denoting the unique boost mapping e :¼
ð1; 0; 0; 0Þ to x. Decomposing each of the arguments of ~F
in the manner (25), and using the SUð2Þ invariance of the
projected spin network on the right-hand side of (24) to
drop the rotations,

~F �f;Nf ;ktf;itðV1; . . . ; V5Þ ¼ ~F�f;Nf ;ktf;itðBðx1Þ; . . . ; Bðx5ÞÞ:
(26)

Next, for each �, N, k � N=2, and m� 2 f�k;�kþ
1; . . . ; kg, define

K
�;N
km;k0m0 ðx1; x2Þ :¼ D

�;N
km;k0m0 ðBðx1Þ�1Bðx2ÞÞ: (27)

Let us label faces f in v by the two tetrahedra ðtt0Þ they
bound, so that each f is labeled by an unordered pair of
numbers 1, 2, 3, 4, 5. Furthermore, let us label pairs ðt; fÞ 2
v by ordered pairs of tetrahedra ðt; ðtt0ÞÞ ¼: tt0, and hence
ordered pairs of numbers 1, 2, 3, 4, 5. For each assignment
of �ðtt0Þ, Nðtt0Þ to faces f 2 v and ktt0 , mtt0 to pairs ðt; fÞ �
ðt; ðtt0ÞÞ 2 v, define

½F�ðtt0Þ;Nðtt0 Þ;ktt0 �fmtt0 g :¼
Z

dx1dx2dx3dx4


 Y
t;t02f1;2;3;4;5g

t<t0

K
�ðtt0 Þ;Nðtt0 Þ
ktt0mtt0 ;kt0 tmt0t

ðxt; xt0 Þ; (28)

where dx denotes the volume form on the hyperboloid.
One can check that in terms of the decomposition (25), the
Haar measure decomposes as

dV ¼ dRdx; (29)

where dR is the Haar measure on SUð2Þ. Using this equa-
tion, one sees the vertex is equal to

Areg
v ½�f;Nf; kft; it� ¼ ½	t2vit� � ½F�f;Nf ;kft�: (30)

Because the contraction sums on the right-hand side are all
finite, it is sufficient to prove finiteness of the elements
½F�f;Nf ;kft�fmðtfÞg in order to prove finiteness of the vertex.
We shall do this, using arguments very similar to [16].

Let us now look at the boosts entering (28). First we
rewrite the composition of two boosts Bðx1Þ�1, Bðx2Þ as

Bðx1Þ�1Bðx2Þ ¼ Rðx1; x2ÞBzðrðx1; x2ÞÞR0ðx1; x2Þ (31)

for some two rotations Rðx1; x2Þ, Rðx1; x2Þ and boost
Bzðrðx1; x2ÞÞ in the z direction, where rðx1; x2Þ denotes
the rapidity of the boost. We can always choose this
decomposition such that rðx1; x2Þ is positive, and we do
so. rðx1; x2Þ is in fact the hyperbolic distance between x1
and x2. To see this, we recall that the hyperbolic distance,
or hyperbolic angle, between two points x1, x2 2 H is
defined by

dðx1; x2Þ :¼ cosh�1ðx1; x2Þ; (32)

where ð�; �Þ denotes the Minkowski metric. We thus have

coshdðx1; x2Þ ¼ ðx1; x2Þ ¼ ðBðx1Þe; Bðx2ÞeÞ
¼ ðe; Bðx1Þ�1Bðx2ÞeÞ
¼ ðe; Rðx1; x2ÞBzðrðx1; x2ÞÞR0ðx1; x2ÞeÞ
¼ ðRðx1; x2Þ�1e; Bzðrðx1; x2ÞÞR0ðx1; x2ÞeÞ
¼ ðe; Bzðrðx1; x2ÞÞeÞ ¼ coshrðx1; x2Þ

(33)

so that rðx1; x2Þ ¼ dðx1; x2Þ, proving rðx1; x2Þ is the hyper-
bolic distance, as claimed.
Now, let us consider the matrix elements of BzðrÞ in a

given representation ð�;NÞ in the principal series. We use
the canonical basis for the carrying space, i.e., the basis

diagonalizing L̂2 and L̂z: L̂2jk;mi ¼ kðkþ 1Þjk;mi,
L̂zjk;mi ¼ mjk;mi. Because the generator Kz :¼ J03 of

z boosts commutes with L̂z, we have

D
�;N
km;k0m0 ðBzðrÞÞ ¼ �mm0d

�;N
kk0mðrÞ (34)

for some function d�;N
kk0mðrÞ. As shown in Appendix B, the

behavior of d�;N
kk0mðrÞ in the r ! 1 limit is of the form

d�;N
kk0mðrÞ / e��N;mr; (35)

where

�N;m ¼ 1þ
��������mþ N

2

��������� 1: (36)

This, in particular, implies that for any � > 0,

lim
r!1e

ð1��Þrd�;N
kk0mðrÞ ¼ 0: (37)

Because eð1��Þrd�;Nkk0mðrÞ is furthermore continuous, we

know eð1��Þrd�;N
kk0mðrÞ is bounded on r 2 ½0;1Þ, so that

there exists C
�;N;�
kk0m 2 Rþ such that

eð1��Þrd�;N
kk0mðrÞ<C

�;N;�
kk0m ) d

�;N
kk0mðrÞ<C

�;N;�
kk0m e�ð1��Þr

(38)

for all r 2 ½0;1Þ.
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Consider next the matrix elements of the rotations in
(31). From p. 63 in [18], for R a rotation,

D�;N
km;k0m0 ðRÞ ¼ �kk0D

k
mm0 ðRÞ (39)

where Dk
mm0 ðRÞ are the matrix elements in the spin-k

representation of SUð2Þ. Because matrix elements on the

right-hand side are in a unitary representation, and we are
using an orthonormal basis, all of these matrix elements
have an absolute value less than or equal to 1.5

Let us put the above observations together. From (31),
(34), and (39), we have

D
�;N
km;k0m0 ðBðx1Þ�1Bðx2ÞÞ ¼

X
m002f�minfk;k0g;�minfk;k0gþ1;...;minfk;k0gg

Dk
mm00 ðRÞd�;Nkk0m00 ðrðx1; x2ÞÞDk0

m00m0 ðR0Þ; (40)

where the one sum has been made explicit. We then have

jD�;N
km;k0m0 ðBðx1Þ�1Bðx2ÞÞj �

X
m00

jDk
mm00 ðRÞd�;Nkk0m00 ðrðx1; x2ÞÞDk0

m00m0 ðR0Þj ¼ X
m00
jDk

mm00 ðRÞjjd�;Nkk0m00 ðrðx1; x2ÞÞjjDk0
m00m0 ðR0Þj

� X
m00

jd�;Nkk0m00 ðrðx1; x2ÞÞj<
�X
m00
C
�;N;�
kk0m00

�
e�ð1��Þr: (41)

Defining C
�;N;�
kk0 :¼ P

mC
�;N;�
kk0m , which is finite because the

sum is finite, we thus have

jK�;N
kk0;mm0 j ¼ jD�;N

km;k0m0 ðBðx1Þ�1Bðx2ÞÞj<C
�;N;�
kk0 e�ð1��Þr

(42)

for all r 2 ½0;1Þ. This bound (42), given the expression
(28) for ½F�f;Nf;kft�mft

, allows us to adapt the arguments of
Baez and Barrett in [16] to show that ½F�f;Nf;kft�mft

is finite.
Let us summarize how the arguments of Baez and

Barrett can be used. The bound (42) is the analog of
Lemma 1 in [16]. Lemma 2, 3, and 4 in [16] can be used
again without change. One can prove the analog of
Lemma 5, and Theorems 2 and 3 in [16] using logic
analogous to that in [16]. For completeness, we present
these analogs in Appendix A. The desired finiteness of
½F�f;Nf ;kft�mft

then comes as a corollary. As was already

noted, this in turn is then sufficient to prove that the vertex
amplitude (30) is finite for all labels f�f; Nf; kft; itg on the

4-simplex graph. Note this finiteness of the vertex holds
even prior to imposing the simplicity constraints (12);
nevertheless it is the case when (12) is satisfied that ulti-
mately concerns us.6 Note this proves finiteness of the
vertex for all finite gamma, as well as for the flipped case.

V. DISCUSSION

In this paper, by writing the Lorentzian vertex of [11] in
a more concrete manner, we were able to see a natural way
to regularize the vertex. We then proved the vertex, so
regularized, is finite.
We close with a remark concerning the finiteness of the

state sum. In order to prove finiteness of the state sum, one

would need the explicit evaluation of the constants C
�;N;�
kk0

in (42) as functions of the representation labels (see
Appendix B). However, we leave this for further
investigation.
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APPENDIX A: PROOFOF FINITENESS FROMTHE
MATRIX ELEMENT BOUND

Throughout this Appendix we will use the notion of
integrability of what we call a labeled graph. Given a graph
�, we assign a principal series representation ð�‘; N‘Þ to
each link ‘, and to each pair ðn; ‘Þ of a node and incident
link, we assign an SUð2Þ spin kn‘ and a half-integer mn‘ 2
f�kn‘;�kn‘ þ 1; . . . ; kn‘g. The graph �, together with the
labels �‘,N‘, kn‘, andmn‘ which we collectively denote by
�, is what we call a ‘‘ labeled graph.’’ Given such a labeled
graph ð�;�Þ, choose an arbitrary node t� in �, and number
the nodes in �, starting with t�; 1; . . . ;M for convenience.
As in Sec. IV, denote links by the unordered pair ðijÞ of
numbers corresponding to the nodes at either end, and let
ordered pairs ij of adjacent nodes denote the choice of a

5To see that this is true for a general unitary matrix U, and
orthonormal basis xi, from UUy ¼ 1 we have hxi; UUyxji ¼
�ij, so that for i ¼ j we have

1 ¼ hxi; UUyxii ¼
X
k

hxi; Uxkihxk; Uyxii

¼ X
k

hxi; Uxkihxi; Uxki ¼
X
k

jhxi; Uxkij2

from which jhxi; Uxkij2 � 1.
6The finiteness in the unconstrained case may be useful for

defining a Lorentzian BF-theory model; but in a BF-theory
model, one will be summing over all possible ktf in the state
sum, which is an infinite sum for each pair ðtfÞ.
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node i and link ðijÞ incident on it. Then ð�;�Þ is said to be
an integrable graph if the following quantity is finite:

F�ð�Þ :¼
�YN
i¼1

Z
xi2H

dxi

� Y
i;j2f1;...;Mg

i<j

K
�ðijÞ;NðijÞ
kijmij;kjimji

ðxi; xjÞ; (A1)

whereK
�ðijÞ;NðijÞ
kijmij;kjimji

ðxi; xjÞ is defined as in (27). Note Eq. (28)
is a special case of Eq. (A1) when � is the boundary of a 4-
simplex.

We prove in this Appendix the analogs of Lemma 5 and
Theorem 2 of [16]. Although not all of the analog of
Theorem 3 of [16] is needed for this paper, we state it in
full as well, for completeness, though without proof, as the
proof is an immediate adaptation of that in [16].7

The importance of Lemma 5 is twofold. In the first
place, it is important in the proof of Theorem 2, which
states that the tetrahedron graph is integrable. Secondly,
and more importantly, it guarantees that, given an inte-
grable graph, every other graph constructed from it by
adding a node with at least three legs will also be inte-
grable. This is the first part of Theorem 3. These two
conclusions then imply that the 4-simplex graph is inte-
grable, which we state as a corollary. Notice the full con-
tent of Theorem 3 in fact proves integrability for a much
larger class of graphs. The integrability of these more
general graphs may be useful, e.g., for defining versions
of the new spin-foam models in which polyhedra more
general than 4-simplices are allowed.

(Analog of) Lemma 5.—If n � 3, the integral

J :¼
Z
H
dxjK�1;N1

k1k
0
1;m1m

0
1
ðx; x1Þj � � � jK�n;Nn

knk
0
n;mnm

0
n
ðx; xnÞj

converges and for any 0< �< 1=3 there exists
C�ðf�i; Ni; ki; k

0
igÞ, i ¼ 1 � � �n, function of the representa-

tion labels, such that for any ðx1; . . . ; xnÞ,

J � C�ðf�i; Ni; ki; k
0
igÞ exp

�
�n� 2� n�

nðn� 1Þ
X
i<j

rij

�
;

where rij :¼ dðxi; xjÞ.
Proof.—First, using (42) one has

jK�1;N1

k1k
0
1
;m1m

0
1
ðx; x1Þj � � � jK�n;Nn

knk
0
n;mnm

0
n
ðx; xnÞj

�
�Yn
i¼1

C�i;Ni;�
kik

0
i

�
e�ð1��ÞP ri ; (A2)

where ri :¼ dðx; xiÞ. Define ~C :¼ Q
n
i¼1 C

�i;Ni;�
kik

0
i

, and then

one has

J � 4� ~C
Z 1

0
sinh2rdre�ð1��ÞP ri ; (A3)

where r is defined as the distance of x from the bary center
of the points ðx1; . . . ; xnÞ. The fact that it exists is the object
of Lemma 4 in [16]. From the same lemma, one hasX

ri � nr: (A4)

In addition, defining

M :¼ 1

n
min
x

X
i

riðxÞ; (A5)

one has X
ri � nM: (A6)

Both inequalities can be used to prove the following bound
for J:

J � 4� ~CC0e�ðn�2�n�ÞM; (A7)

for some positive constant C0 depending only on � and n.
From the triangle inequality, one hasX

ri � 1

n� 1

X
i<j

rij; (A8)

and

M � 1

nðn� 1Þ
X
i<j

rij; (A9)

which then implies the lemma with C ¼ 4� ~CC0. j
(Analog of) Theorem 2.— The tetrahedron graph, with

any labeling, is integrable.
Proof.—We will show that the following quantity (for

any fixed x1 2 H and independent of it) is finite:

I :¼
Z
H3

dx2dx3dx4jK	12ðx1; x2ÞK	13ðx1; x3ÞK	14ðx1; x4Þ

 K	23ðx2; x3ÞK	24ðx2; x4ÞK	34ðx3; x4Þj; (A10)

where 	ij denotes, for short, the set of labels

ð�ðijÞ; NðijÞ; kij; mij; kji; mjiÞ. Start by integrating over x4
using Lemma 5,

I � C�ðf	ijgÞ
Z
H2

dx2dx3e
�ð1=6Þð1�3�Þðr12þr13þr23Þ


 jK	12ðx1; x2ÞK	13ðx1; x3ÞK	23ðx2; x3Þj; (A11)

where rij ¼ dðxi; xjÞ. Next, we integrate over x3. Consider
the quantity

L :¼
Z
H
dx3e

�ð1=6Þð1�3�Þðr13þr23ÞjK	13ðx1; x3ÞK	23ðx2; x3Þj:
(A12)

7The parts of the argument of [16] involving the mathematical
details of the ‘‘propagator’’ [Eq. 3 in [16]] are entirely encapsu-
lated in Lemma 5 and Theorem 2. In proving analogs of the
results of [16] for the present case, the only difference is that the
relevant propagator is now Eq. (27) of this paper. This is why
only the analogs of Lemma 5 and Theorem 2 need to be fully
reproven here.
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By (42), one has

L � ~C
Z
H
dx3e

�ðr13þr23Þ½ð7=6Þ�ð3�=2Þ�: (A13)

Now, introduce the new coordinate system ðk; l; 
Þ, where
k ¼ 1

2ðr13 þ r23Þ; l ¼ 1
2ðr13 � r23Þ; (A14)

and 
 is the angle between the plane containing x1, x2, x3
and a given plane containing x1 and x2. Their ranges are
k 2 ½r122 ;1Þ, l 2 ½� r12

2 ; r122 �, and 
 2 ½0; 2�Þ. The mea-

sure dx3 on H in this coordinate system reads (see the
Appendix of [16])

dx3 ¼ 2
sinhr13 sinhr23

sinhr12
dkdld
: (A15)

In terms of these new coordinates, we have

L �
~C

sinhr12

Z 2�

0
d


Z ðr12=2Þ

�ðr12=2Þ
dl
Z 1

ðr12=2Þ
dke�kðð1=3Þ�3�Þ

� 2�r12 ~C

sinhr12
e�r12ðð1=6Þ�ð3�=2ÞÞ (A16)

for � < 1=9< 1=3. Plugging this in the evaluation of I, we
get

I � C0 Z drr sinhre�rðð4=3Þ�3�Þ � C0 Z drre�rðð1=3Þ�3�Þ;

(A17)

which is finite for 0< �< 1=9 and some constant C0
depending on the representation labels f	ijg. j

(Analog of) Theorem 3.—A graph obtained from an
integrable graph by connecting an extra vertex to the ex-
isting labeled graph by at least three edges, with arbitrary
labeling, is integrable. A graph obtained from an integrable
graph by adding extra edges, with arbitrary labeling, is
integrable. A graph constructed by joining two disjoint
integrable graphs at a vertex is integrable.

Using the analog of Lemma 5 above, the first assertion
follows using the same arguments as in [16]. The second
and third assertions follow using the same arguments as in
[16].

Corollary 1.—The 4-simplex graph, with any labeling, is
integrable.

APPENDIX B: USEFUL FACTS ABOUT THE
LORENTZ GROUP

Let V 2 SLð2;CÞ, then one has the following decom-
position:

V ¼ RdðrÞR0; (B1)

where R, R0 2 SUð2Þ, and

dðrÞ ¼ BzðrÞ ¼ er=2 0
0 e�r=2

 !
: (B2)

The Haar measure in this decomposition reads

dV ¼ 1

4�
dRdR0sinh2rdr: (B3)

We complete this Appendix with some explicit formulas

for the matrices d
�;N
kk0mðrÞ, referred to in the main text. In

particular, we show that the asymptotic behavior (35)
holds. We closely follow Secs. 4 and 5 of [18]. We start
with the following useful expression:

d
�;N
kk0mðrÞ ¼ f� � �gð1=2Þð2 sinhrÞ�k�k0


X
�;�

c��e
�r sinhðrði�=2þ �ÞÞ

ði�=2þ �Þ sinhr ; (B4)

where �þ k0 and �þ k0 are integers, and

f� � �g ¼
�
ð2kþ 1Þð2k0 þ 1Þ


 ðkþ N
2Þ!ðk� N

2Þ!ðk0 þ N
2Þ!ðk0 � N

2Þ!
ðkþmÞ!ðk�mÞ!ðk0 þmÞ!ðk0 �mÞ!

�
: (B5)

To define the coefficients c��, it is useful to redefine the

summation labels ð�;�Þ ! ða; bÞ, while introducing a new
sum over integers ðn1; n2Þ:

2b ¼ �þ �þ k0 � kþ N

2
þ 2n1 �m; (B6)

2a ¼ ���þ k0 þ kþm� N

2
� 2n1: (B7)

The sum over ð�;�Þ can then be traded by a sum over
ðn1; n2; a; bÞ:
X
��

c��ð� � �Þ ¼
X
n1;n2

kþm

n1

 !
k�m

n1 �mþ N
2

 !
k0 þm

n2

 !


 k0 �m

n2 �mþ N
2

 !X
a;b

ð�1Þaþbþm�ðN=2Þ


 kþ k0 � n1 � n2 þm� N
2

a

 !


 n1 þ n2 �mþ N
2

b

 !
ð� � �Þ; (B8)

where all summations extend over the domain where the
binomial coefficients do not vanish. From Eq. (B4), one
sees that the asymptotic behavior for r ! 1 is of the form:

d�;N
kk0mðrÞ  e�rðkþk0þ1�ð�þ�ÞmaxÞ; (B9)

for (�þ �) taking its maximal value. One can check that
this maximal value is given by

ð�þ �Þmax ¼ kþ k0 �
��������mþ N

2

�������� (B10)

which then gives the asymptotic behavior
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d
�;N
kk0mðrÞ  e�r½1þjmþðN=2Þj� (B11)

as advertised in the main text. A last step, which is not
necessary for the proof of finiteness but should be very
useful for the finiteness analysis of the state-sum model, is

the evaluation of the maximum of eð1��Þrd�;N
kk0mðrÞ, as a

function of r. This would allow for the explicit expression

of the coefficients C
�;N;�
kk0 in (42) in terms of the represen-

tation labels.

APPENDIX C: CONSIDERATION OF FULL
TRIANGULATION AND THE GAUGE-FIXING

INTERPRETATION OF THE REGULARIZATION

In the main text, for brevity, we did not derive the spin-
foam sum from a discrete path integral on the full triangu-
lation. Because of the new nature of the derivation—spe-
cifically the use of nongauge invariant tensors—the
derivation of (15) using the full triangulation has a small
difference from the standard derivation. We review this
difference. With the derivation based on the full triangu-

lation in mind, we then review the internal gauge-fixing
procedure in [15], which is the standard procedure in
lattice gauge theories [19]. We will see that this gauge-
fixing procedure cannot be used in our case, but must be
modified; the modified procedure will be equivalent to the
regularization proposed in the main text.
Given the parallel transports Vtv around the link of a face

f, let UfðtÞ :¼ Ufðt; tÞ denote their composition in clock-

wise order starting at t. The discrete action [5,6,11] is

Sdisc ¼ 1

16�G

X
f2�

tr

�
ðBfðtÞ þ 1

�
?BfðtÞ

�
�½UfðtÞ�

�

¼ X
f2�

trðJfðtÞ�½UfðtÞ�Þ; (C1)

where �: SLð2;CÞ ! SOð3; 1Þ denotes the standard 2-1
homomorphism. Next, for any four SLð2;CÞ irreps
ð�4; N4Þ; . . . ; ð�4; N4Þ, we have the following resolution
of the identity on H N1;�1

	 � � � 	H N4;�4
:

1 ðk1;m1Þ���ðk4;m4Þðk01;m0
1Þ���ðk04;m0

4Þ¼ �k1
k0
1
� � ��k4

k0
4

X
w2B~k1 ;...

~k4

wm1���m4ðwyÞm0
1
���m0

4

¼ X
~k1;...;~k4

X
w2B~k1 ;...;

~k4

½ð	4
i¼1P~ki

Þ 	 w�m1���m4½ð	4
i¼1P~ki

Þ 	 w�ym0
1
���m0

4
; (C2)

whereB~k1;...;~k4
is a fixed orthonormal basis ofH ~k1

	 � � � 	
H ~k4

for each 4-tuple of SUð2Þ spins ~k1; . . . ; ~k4, and the Pk

are as in Eq. (10). We then compute the partition function
for (C1) using the same strategy as in [3], except using the
resolution of the identity on the full tensor space, instead of
just on the intertwiner space. This yields

Z :¼
Z Y

f

dJfðtÞ
Y
ðt;vÞ

dVtve
iSdisc½J;V�

¼ X
kft;wt

�Y
f

X1
n¼0

Z 1

�1
ðN2

f þ�2
fÞd�

�Y
v

Av½�f;Nf;ktf;wt�;

(C3)

where for each vertex v, the integrations over the five
connection variables fVvtgt2v are absorbed into the expres-
sion for Av in Eq. (14).

Now, a discrete gauge transformation is specified by a
group element Gv 2 SLð2;CÞ at each vertex and a group
element Gt 2 SLð2;CÞ at each tetrahedron, with action
Vvt � GvVvtG

�1
t , BfðtÞ � GtBfðtÞG�1

t . Let us review

the gauge-fixing procedure of [15]: we will then see why
the gauge-fixing procedure of [15] does not work in our
case, and then we will present a different procedure.

First, if one does not impose the simplicity constraints,
(C3) is a partition function for the BF theory, so that the
gauge-fixing strategy of [15] applies. One first chooses a

maximal tree T of the 1-skeleton of the cell complex ��
dual to the triangulation �. Each 1-cell of T is an edge e
dual to a tetrahedron t, with parallel transport VvtVtv0 . As T
contains no closed loops, one can use the aforementioned
gauge freedom to fix to the identity all Vvt in T. This is the
gauge-fixing procedure of [15] (adapted to the present
variables).
In the new models, however, we must impose the sim-

plicity constraints (12), kft ¼ Nf

2 ¼ �f

2� . As noted in the

main text, because kft is the quantum number of a non-

Lorentz invariant quantity, these constraints break SLð2;CÞ
gauge symmetry at the tetrahedra, reducing the gauge there
to SUð2Þ 3 Gt � gt (see Fig. 1). As a consequence one

FIG. 1 (color online). The figure stands for a general dual
triangulation. The gauge invariance is reduced at the tetrahedra.
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will no longer be able to completely fix the group elements
on a maximal tree (one may fix the rotation part of the
group leaving it a pure boost, but this does not help us in
the proof of finiteness). At the end of the day, we are able to
fix to the identity only one Vtv per 4-simplex, which is
equivalent to the regularization procedure presented earlier
in this paper. Let Vtvv denote the group element in v that

we gauge fix to the identity. This gauge-fixing condition
implies Gvg

�1
t ¼ 1, i.e. Gv ¼ gt. Thus the Gv gauge free-

dom is precisely the gauge that has been fixed by Vtvv ¼ 1,
leaving the SUð2Þ gauge transformations at the tetrahedra
free.
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