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Abstract: This paper deals with a fractional system composed of a storage I-element and a 
fractance. The fractance is approximate by a network of 4 identical RC cells arranged in 
gamma and a purely capacitive cell, thus defining a rational system. When compared to 
each other, the dynamic behaviors of the fractional and the rational system show an 
excellent superposition of frequency and time-domain responses. Moreover, the 
robustness of stability margins obtained with both systems is illustrated versus variations 
of the I-element. Copyright © 2008 IFAC 
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1. INTRODUCTION 

 
The port-based approach (as represented in a bond-
graph) has demonstrated the benefits of using an 
integral causal form of the constitutive relations of 
storage ports, both for numerical simulation and the 
modelling process itself. In numerical simulation, 
integration is preferred to differentiation for obvious 
reasons like numerical noise and proper handling of 
initial conditions. For example, with a storage C-
element (using bond-graph terminology stands for: 
springs, torsion bars, electrical capacitors, gravity 
tanks, accumulators, …) (Dauphin-Tanguy, 2000), 
the causal relation between the power variables is 
given by: 
 

 ( ) ( ) ( )01

0
C

t
CC edf

c
te += ∫ ττ , (1) 

 
where fC(t) and eC(t) are the generalized flow and the 
generalized effort, eC(0) being an initial condition 
(I.C.) on the effort and c a characteristic parameter of 
the C-element. With a storage I-element (using bond-
graph terminology stands for: mass in translation, 
inertia in rotation, electrical or hydraulic self 

inductance, …), the causal relation between the 
power variables is given by: 
 

 ( ) ( ) ( )01

0
I

t
II fde

l
tf += ∫ ττ , (2) 

 
where fI(t) and eI(t) are the generalized flow and the 
generalized effort, fI(0) being an initial condition on 
the flow and l a characteristic parameter of the I-
element. 
Figure 1 presents two block diagrams that illustrate 
the causal relations for the C-element and I-element. 
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Fig. 1. Block diagrams of the C-element (a) and I-

element (b) 
 

For fractional systems, the benefits of using integral 
causal form are the same as rational systems 
(Trigeassou, et al., 1999). 

     



In this paper, the fractional system studied is 
composed of a storage I-element and a fractance 
defined by (Le Méhauté, et al., 1998). For the 
fractance, the generalized effort eλ(t) is proportional 
to the fractional integral of the generalized flow fλ(t), 
namely: 
 

    ( )
( ) ( )

( ) ( )0 
1Γ

11

0
λλλ ττ

τλ
edf

tm
te

t

m +
−−

= ∫ −
, (3) 

 
where eλ(0) is a function that takes into account the 
initial conditions (Hartley and Lorenzo, 2002; 
Hartley and Lorenzo, 2007; Lorenzo and Hartley, 

2007a,b) and where  ; if m 
= 0 then the fractance is a purely capacitive C-
element, if m = 1 then the fractance is a purely 
resistive R-element. 

[ 1,0and ∈∈ + mRλ

     

]

 
The objective of this paper is: 
- firstly, to compare the dynamic behaviors obtained 

with the fractance and with an approximation by a 
network of N identical RC cells, in particular when 
N is small (for example N = 4); 

- then, to highlight the damping robustness versus 
variation of the I-element. 

 
After this brief introduction, part 2 presents the 
modeling of the fractional system studied in this 
paper. Part 3 focuses on the analysis of the forced 
motion and part 4 on the free motion. Finally, 
conclusions are given in part 5.  
 
 

2. FRACTIONAL DYNAMIC SYSTEM 
 
In order to be generic, the relation (3) is rewritten 
under the form of a convolution product, namely: 
 
 , (4) ( ) ( ) ( ) ( )0* λλλ etftgte +=
 
where g(t) is the impulse response h(t) of the 
fractance or ( )th

~
 that of its approximation. 

This study being generic, no domain is privileged. 
However, in order to facilitate the representation, 
“electric diagrams” are used. 
 
Figure 2 presents the diagram of the studied 
fractional system where e0(t) is a generalized effort 
generator and f(t) the generalized flow of the I-
element. More precisely, the diagram of figure 2.a 
presents the association of the I-element with the 
fractance and the diagram of figure 2.b that of the I-
element with the approximation of the fractance. 
 
The approximation is a cascaded network of 4 
identical RC cells arranged in gamma, except the cell 
number 0 which is purely capacitive. The role of the 
capacitance C0 is essential in the achievement of a 
fractional integrator with a limited number N of cells. 
All the details of this network are given in (Moreau, 
et al., 2008). 
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Fig. 2. Electric circuits composed of an I-element 

with a fractance (a) and an I-element with an 
approximation of this fractance (b) 

 
The I-element and the fractance being in series, the 
generalized flow f(t) through each element is the 
same. Hence, the generalized effort e0(t) is equal to 
the sum of el(t) and eλ(t), namely: 
 
 ( ) ( ) (tetete l λ+ )=0 . (5) 
 
Finally, the causal relations of the system are: 
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Figure 3 presents a causal diagram established from 
relations (6) and used for numerical simulations. 
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Fig. 3. Causal diagram used for numerical 

simulations 
 
Such diagram presents a closed-loop structure. 
Relations between open-loop and closed-loop are 
used for analysis purposes in following paragraph. 
Moreover, the system being linear, the superposition 
principle is applied to study forced response 

( )( )0I.C.and00 =≠te , then free response 
( )( )0I.C.and00 ≠=te . 

 
 

3. FORCED RESPONSE 
 
By supposing the initial conditions equal to zero, the 
Laplace transform of relations (6), namely: 
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allows to establish the functional diagram of figure 4 
presents where β(s) is the open-loop transfer function 
given by: 
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for the fractance, and  
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for its approximation (Moreau, et al., 2008). 
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Fig. 4. Functional diagram for analysis 
 
 
In the case of the fractance, the expression of β(s) is: 
 

 ( ) ns
bs =β , (11) 

 
where n = 2 – m and b = 1/(lλ). The closed-loop 
transfer is given by 
 

 ( ) ( )
( ) bs

b
sE
sEsT n +

==
0

λ . (12) 

 
Figure 5 presents the responses of the fractional 
system obtained with the fractance (______) and its 
approximation (- - - -) for the nominal value l0 of the 
parameter l. More precisely, the frequency responses 
of the fractional integrator and its approximation are 
presented in figure 5.a; the open-loop Nichols loci in 
figure 5.b ; the gain diagrams of the closed-loop 
transfer in figure 5.c and the step responses of eλ(t) to 
an unit step e0(t) in figure 5.d. 
 
It is important to note the excellent superposition of 
the frequency responses (figure 5.c) and of the step 
responses (figure 5.d) of the closed-loop obtained 
with the fractional integrator and its approximation. 
This result is very interesting as far as the fractional 
behavior is only synthesized in a single decade 
(figure 5.a). In fact, it is fundamental that the open-
loop cross-over frequency ωu belongs to this decade 
to obtain such a result (figure 5.b). 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

50

100

150

200

Frequency (rad/s)

G
ai

n 
(d

B)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-90

-60

-30

00

Frequency (rad/s)

P
ha

se
 (d

eg
.)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

50

100

150

200

Frequency (rad/s)

G
ai

n 
(d

B)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-90

-60

-30

00

Frequency (rad/s)

P
ha

se
 (d

eg
.)

 
(a) 

-270 -225 -180 -135 -90 -45 00
-40

-30

-20

-10

0

10

20

30

40

6 dB

2 dB
1 dB

0 dB

Open-Loop Phase (deg)

O
pe

n-
Lo

op
G

ai
n 

(d
B)

-270 -225 -180 -135 -90 -45 00
-40

-30

-20

-10

0

10

20

30

40

6 dB

2 dB
1 dB

0 dB

Open-Loop Phase (deg)

O
pe

n-
Lo

op
G

ai
n 

(d
B)

 
(b) 

10
-2

10
-1

10
0

10
1

-25

-20

-15

-10

-5

0

5

Frequency (rad/s)

G
ai

n 
(d

B)

10
-2

10
-1

10
0

10
1

-25

-20

-15

-10

-5

0

5

Frequency (rad/s)

G
ai

n 
(d

B)

 
(c) 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

St
ep

re
sp

on
se

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

St
ep

re
sp

on
se

 
(d) 

 
Fig. 5. Comparison of fractional system responses 

obtained with the fractance (______) and its 
approximation (- - - -): frequency responses of the 
fractional integrator and its approximation (a); 
open-loop Nichols loci (b); gain diagrams of the 
closed-loop transfer (c) and step responses of 
eλ(t) to an unit step e0(t) (d)  

     



Remark 
In a general way, the numerical simulation of 
frequency responses of a fractional system is not a 
problem. But, the numerical simulation of time 
responses is more delicate. So, the response eλ(t) to 
an unit step u(t) (figure 5.d) is obtained firstly from 
its Laplace transform 
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s
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and after a decomposition under the form  
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then by the inverse Laplace transform of (14), 
namely: 

 ( ) ( ) [ ] , (15) n
nn

n
tbEtu

bss
s

s
te −−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−= − )(1TL 1

λ

)

 
where En[-b tn] is the Mittag-Leffler function 
(Hartley and Lorenzo, 2002) defined by 
 

 [ ] ( )
(∑

∞

= +Γ
−

=−
0 1i
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n

n in
tbtbE . (16) 

 
So, the step response presented in figure 5.d is 
obtained by programming the relation (16) where the 
sum is truncated at i = 100. This value is chosen very 
large in order to obtain a fractional system response 
very close to the true one. 
 
Considering the excellent capability that has the 
network of 4 identical RC cells arranged in gamma to 
reproduce the behavior of the fractance associated 
with an I-element, the next paragraph focuses on the 
performance obtained with this approximation.  
 
Moreover, the parameter l of the I-element is 
considered as uncertain [ ]( )maxmin ; lll ∈ . 
 
Figure 6 illustrates the influence of the l variation on 
the dynamic behavior of the fractional system. More 
precisely, figure 6.a presents the open-loop Nichols 
loci, figure 6.b the gain diagrams of the closed-loop 
transfer and figure 6.c the step responses of eλ(t). 
 
The variation of l leads to an open-loop gain 
variation that is why the open-loop frequency 
responses are tangent to the same Nichols magnitude 
contour (figure 6.a). So, one can observe the 
robustness of the resonant peak (figure 6.b) and the 
robustness of the first overshoot (figure 6.c) versus l 
variation.  
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Fig. 6. Illustration of the stability margin robustness 

versus l variation (l0 blue, lmin green and lmax red): 
open-loop Nichols-loci (a); gain diagrams of the 
closed-loop transfer function (b) and step 
responses of generalized effort eλ(t) (c) 

 
 

4. FREE RESPONSE 
 
In order to facilitate the analysis of the free response, 
a state space representation of the fractance 
approximation is used, namely: 
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the eCi(t) being the generalized efforts of elements Ci, 
and  
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The Laplace transform of relation (17) leads to 
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where ( )0x  is the initial condition vector associated 
with elements Ci. The relation (21) can be rewritten 
under the form 
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Finally, back to the time-domain by inverse Laplace 
transform leads to  
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relation of the form 
 
 ( ) ( ) ( )teete λλλ

~0 += , (25) 
 
by putting 
 

  (26) ( ) ( ) ( ){(∑
=

− Ψ=
5

1

1 00
i

ii xsTLeλ })
 

and ( ) ( ) ( )tfthte *
~~ =λ . (27) 

 
So, the functional diagram of figure 3 is completed in 
accordance with previous developments (figure 7). 
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Fig. 7. Functional diagram for simulation by taking 
into account the initial conditions eCi(0) associated 
with elements Ci

 
For the study of free response e0(t) = 0, and the initial 
conditions are: 
 

 ( ) ( ) [ 4;010and00 ∈∀ ]== ief Ci . (28) 
 
In this case and for the nominal value l0 of the 
parameter l, figure 8.a presents the contributions of 
each term of the sum eλ(0) defined by the relation 
(26). Figure 8.b shows the plot of eλ(0) (green) and 
the plots of ( )teλ

~ (red) and (blue). ( )teλ
It is important to note that the sum eλ(0) of all 
contributions eCi(0) is equal to unity. 
Finally, figure 9 presents free response of ( )teλ for 
the same initial conditions and for the values l0, lmin 
and lmax of l, showing thus the robustness of the 
stability margin versus l variation. 
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Fig. 8. Contributions of each term of the sum eλ(0) 
defined by the relation (26) (a) and plots of eλ(0) 
(green), ( )teλ

~ (red) and (blue) (b) ( )teλ
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Fig. 9. Free response of eλ(t) for the same initial 

conditions and for the values l0, lmin and lmax of l  
 

In a first step, the interest of using the fractance 
approximation for taking into account initial 
conditions is to observe (in this particular case) that 
eλ(0) is equal to a constant (unity if all the eCi(0) = 1 
and if f(0) = 0). In a second step, it is possible to 
affirm (always in this particular case) that eλ(0) is an 
unit constant and to replace the impulse response 

( )th
~

 of the approximation by that of the fractance, 
namely h(t). Thus, with e0(t) = 0, f(0) = 0 and eλ(0) = 
1, the relation (6) is rewritten under the form: 
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The Laplace transform of relation (29), namely:  
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leads to an expression of the form  
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that can be reduced to  
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always by putting n = 2 – m and b = 1/(lλ). Knowing 
that eλ(0) = 1, the inverse Laplace transform leads to: 

 ( ) ( ) [ n
nn

n
tbE

bss
ste −=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
= −1TLλ ], (34) 

where En[-b tn] is the Mittag-Leffler function defined 
by the relation (16). 
Figure 10 presents, for the nominal value l0, the free 
motion of eλ(t) obtained with the approximation       
(- - - -) and with the Mittag-Leffler function (______) 
truncated at i = 100. One can observe the excellent 
superposition of the two plots.  
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Fig. 10. Free response of eλ(t) obtained with the 

approximation (- - - -) and with the Mittag-Leffler 
function (______) truncated at i = 100  

 
5. CONCLUSION 

 
In this paper, a fractional system and its 
approximation have been studied. The comparison of 
the dynamic behaviors obtained with both systems 
shows the excellent capability that has the network of 
4 identical RC cells arranged in gamma to reproduce 
the behavior of the fractance. Moreover, the 
robustness of stability margin obtained with both 
systems is illustrated versus the I-element variation.  
The perspectives in the continuity of this study are a 
take into account uncertainties and/or non-linearities 
of the R and C elements according to context of the 
application. 
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