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Abstract—The detection of water leakages in dikes using
distributed temperature sensors is an interesting prospect due
to the commercial viability of these optical fiber based sensors.
The acquired temperature data, being not directly interpretable,
requires intervention of advanced signal processing techniques.
In this work, we propose a system for the identification of singu-
larities such as existing dike structures and water leakages. The
distances where singularities exist show temperature variations
over the course of a day which are different from the nonsingular
zones. The different nonsingular zones though show a similar
temperature variation trend. The proposed system estimates this
reference trend as the most coherent component of the Singular
Value Decomposition applied on daily data. The corresponding
SVD residue subspace thus represents the deviation from the ref-
erence subspace and thus contains information on singularities.
The L2 norm of this residue is a good discrimination measure
for identification of these singularities.

I. INTRODUCTION

Fiber optic sensors are employed in diverse domains cover-

ing applications as engineering structures monitoring, fault de-

tection in electrical circuits, fire detection systems, parameter

sensing in oil and gas industry, etc. Now-a-days, an important

issue in engineering domain is the detection of anomalies,

such as leakages, (significant flow of water), in the dikes

to avoid disaster at mass level. In this regard, thermometric

based method employing optical fiber Distributed Temperature

Sensors (DTS) provides a very efficient method. The major

advantage of DTS is their commercial viability (low-cost

telecommunications grade fiber), ability to multiplex large

number of sensors along a single fiber and environmental

robustness [1], [2]. In addition, DTS have the capability to

provide long-gage temperature measurements along the optical

fiber length thus providing a monitoring range that may go

up to 30 km. The spatial and temperature resolutions depend

on the device used (e.g., a typical scale of measurement is 1
m spatial resolution for a temperature resolution of 0.01◦C
achievable with Sensornet’s Sentinel). The leakage detection

using DTS signals is a new research problem in the signal

processing domain. The aim of our research is the development

of an automated system based on the the processing of DTS

data capable of identifying the singularities such as water

leakages in dike structures.

The basic concept behind temperature acquisition is that a

change of ground temperature is brought about by a significant

flow of water through the structure due to leakages. However,

this change of temperature can equally be brought about by

other factors such as precipitation, seasonal effects, day/night,

the existing structures (e.g. drains), etc. Moreover, since the

fiber optic cable is buried in ground, the temperature signals

acquired by DTS are strongly influenced by the response of

the near surface (ground) where the acquisitions are made.

The acquired data is thus not interpretable in its present

form for the leakage detection purpose and necessitates some

processing to render it useful.

In this paper, we present a new system for the identification

of singularities in dike structures with the eventual goal of

proposing an automated functional device. The singularities

include the existing dike structures, the singularities in the

ground where the DTS are buried and most importantly the

water leakages that may occur in dikes. The temperature

variations over the course of a day at different observation

distances present a common trend except for the distances

having some singularities. Thus considering the temperature

signal for all the distances over a 24-hour period, we propose a

dissimilarity method for singularity identification based on the

classical data decomposition technique of Singular Value De-

composition (SVD) [3], [4], [5]. Since temperature monitoring

is a continuous process, we can take the mean of dissimilarity

measures obtained over several days to remove the random

effects that may occur at any particular day. We validate the

proposed system on real temperature data sets under different

scenarios. Particularly interesting amongst these scenarios

are those of artificial leakages and the real water leakages.

We present a brief introduction of the acquisition principle

followed by the theory of singular value decomposition and

focus on its efficient utilization for devising our system. We

conclude with a discussion on various scenarios to give an

insight into the practicability of the proposed system.

II. ACQUISITION PRINCIPLE AND DATA DESCRIPTION

The Distributed Temperature Sensors (DTS), based on

optical fibers, were successfully used for the acquisition of

temperature data [6], [7], [8]. These sensors provide tem-

perature observations over long distances with high spatial

and temperature resolutions. Moreover, their capability to

integrate a large number of passive optic sensors within a



single low-cost telecommunications grade optical fiber cable

significantly enhance their commercial viability. The cable

does not have any moving parts and is immune to mechanical

vibrations and EMC interference thus rendering it ideal for

industrial sensing applications. In most commercial distributed

temperature sensors, the acquisition principle of temperature

profiles is based on Raman scattering using Optical Time

Domain Reflectometry (OTDR) techniques [9]. The basic

setup of temperature sensing based on OTDR comprises of a

pulsed laser coupled to the optical fiber, the sensing element.

The emitted photons interact with the molecules of the fiber

material. Thermally influenced molecular vibrations in the

fiber produce Raman scattering in the form of backscattering

of some photons of light and can thus be used to obtain

the temperature distribution along the fiber [10]. The Raman

backscattered light has two components: the Stokes and Anti-

Stokes scattering. The principle of temperature sensing lies in

the fact that the intensity ratio between Anti-Stokes and Stokes

components is temperature dependent. Measuring the travel

time of probe pulse and the intensity ratio, at the fiber input,

gives the temperature profile along the entire length of the

fiber using one-to-one relationship between spatial resolution

and traveling time.

A thermometric data monitoring setup has been installed by

EDF at an experimental test site to study the leakages. The aim

of this site is to extract the information pertaining to leakages

(both natural and controlled) in the dike of canal. A schematic

representation of this installation is given in Fig. 1. A fiber

optic cable was installed in the abutment at the toe end of the

canal so as to intercept the water leakages from the canal. The

cable containing 4 optic fibers, of type multimode 50/125, is

buried at the downstream toe of the canal at a depth of 1 m.

Two distinct elevation levels (Zone1, from approximately 0.1
km to 1.25 km and Zone2, from approximately 1.25 km to 2.2
km) will be exposed with varying intensities to direct sunlight.

The cable also circumvents two drains, D1 and D2, situated

at 0.561 km and 0.859 km, respectively.

Fig. 1. The configuration of data acquisition at the experimental site.

For all the DTS devices, there is a trade off between

temperature resolution, spatial resolution, range and speed

of measurement. Allowing the DTS device more time to

acquire data results in a higher temperature resolution at the

cost of reduced measurement speed. Likewise, for a given

acquisition time, the measurement range varies inversely with

the temperature resolution. In our setup, the temperature data

was recorded by a commercial device Sensornet, Sentinel

DTS-MR, with a capability of covering up to 8 km range.

The temperature resolution of this device is 0.01◦C with 1-

meter spatial resolution which would allow us to detect very

closely the occurrence of water leakages.

The temperature data is acquired with a sampling interval

of 1 m along the entire cable length. Continuous temperature

monitoring is important in order to observe the temporal

evolution of the leakages. We have at our disposition several

acquisitions from years 2005 to 2007 which would allow us

to analyze different scenarios. These acquisitions were made

with a sampling interval of 1-hr which gives us 24 acquisitions

per day. The recorded data set for each day can be written as:

Yi =
{

yi(t, x) | 1 ≤ t ≤ Nt, 1 ≤ x ≤ Nx

}

, i = 1, ..., Ni

(1)

where Nt = 24 represents the number of acquisitions per

day and Nx represents the number of observation points. A

sample real data set over a period of nonconsecutive 30 days

in year 2005 with same meteorological conditions is shown in

Fig. 2. The different colors represent the scale of the recorded

temperature with dark blue showing lowest temperature and

dark red the highest. The same meteorological conditions here

refer to the days where there was no precipitation. Note here

that this selection was made by consulting the meteorological

data. The same can however be made using a criteria based on

higher order statistics developed by authors but that does not fit

into the scope of this paper and would be presented elsewhere.

We will see in the next section how we can exploit this data

set to extract useful information linked to the singularities.
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Fig. 2. Real DTS temperature data set for 30 nonconsecutive days, having no
precipitation instances, during summer 2005. The color map shows different
observed temperatures with increasing temperatures from blue to red.

III. METHODOLOGY

The aim of the proposed system is to give a measure

for characterization of singularities (the leakages, existing

structures, etc.) in distance. The motivation behind this idea is



that the singularities respond differently to daily temperature

variations than the homogeneous nonsingularity zones. As an

example, consider the temperature signals for day 1 from

Fig. 2 (see white rectangle) at 5 distances marked by arrows.

Fig. 3 (solid lines) shows these temperature variations over

a 24 hour period at these 5 distances. Amongst them, two

distances are at the two drains, D1 and D2, one in a region

containing a singularity of the ground (1.7 km) in which fiber

is buried, whereas the remaining two are in homogeneous

nonsingularity zones (0.3 km and 1.264 km). The ground

singularity (1.6-1.7 km) corresponds to the zone where ma-

terial composition of ground is different from other zones. It

can be observed that the drains and the singularity show a

different trend of variation as compared to the homogeneous

nonsingularity zone. It is based on this 24-hour temperature

variation that we will be devising our measure. The idea would

thus be to find a suitable reference vector from the 24-hour

temperature variations at all the sensing distances and then to

compare this reference vector with vectors at all the distances.
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Fig. 3. (Solid Lines): The 24-hour temperature profiles on day 1 at 5

different distances of image in Fig. 2 (see white rectangle and arrows). The
singular zones (D1, D2 and 1.7 km) present a different trend as compared
to nonsingular zones (0.3 km and 1.264 km). (Dashed Lines): Y

1

sig at same

day and distances as solid lines, showing that estimated reference vectors for
singular zones have large deviations as compared to nonsingular zones.

A. Singular Value Decomposition

The singular value decomposition (SVD) of a signal is

defined as [4], [5]:

Yi = Ui
N∆i

NViT
N =

N
∑

j=1

βi
ju

i
jv

iT
j , (2)

where N = min(Nt, Nx), ∆i
N ∈ RN×N is a matrix contain-

ing on its diagonal the singular values βi
j ≥ 0 arranged in

a descending order and Ui
N ∈ RNt×N and Vi

N ∈ RNx×N

are orthogonal matrices, containing the left and right singular

vectors, ui
j ∈ RNt and vi

j ∈ RNx , respectively. The left

singular vectors ui
j are identified as estimators of reference

vectors and are orthogonal to each other. In the present case,

these vectors are a function of time and differ from one

day to another. The singular values of SVD are sorted in a

descending order giving the degree of coherence of estimated

vectors from the most coherent to the least coherent. The

right singular vectors, vi
j , represent the spatial variations of

the estimated reference vectors. SVD allows to decompose

the initial data space into complementary subspaces. More

specifically, it can be used to achieve separation between signal

and noise subspaces [5]:

Yi = Yi
sig +Yi

residue =
P

∑

j=1

βi
ju

i
jv

iT
j +

N
∑

j=P+1

βi
ju

i
jv

iT
j (3)

B. Singularity Detection

The singularities at the data site can be identified with

their peculiar behavior of giving temperature variations over

a period of a day that are different from those of nonsin-

gular zones. SVD can be used in the first step to identify

from amongst the 24-hour temperature profiles, at different

observation distances, the one which is a representative of

the nonsingularities. This reference vector can be obtained

by observing the singular values obtained by application of

SVD as in (3). Generally, the first singular value contains

most of the signal energy and the first vector, ui
1, being

the most energetic, is the most coherent component of the

processed signal and can therefore be taken as the reference

vector. The vector vi
1 represents the spatial variation of the

estimated reference vector. The corresponding subspace for

this reference vector, Yi
sig , can be constructed using P = 1

in (3). The signal subspace, Yi
sig , represents an estimate of

the ground response for each day [11]. It can be interpreted

in our case as a subspace constructed by the reference vector,

ui
1, extracted from the 24-hour temperature variations at all

the distances.

The singularities can be identified by using a measure of dis-

similarity between this reference vector and the recorded data

at all distances. This information linked to the dissimilarity can

be found in the residue subspace of the SVD, Yi
residue. One of

the possible measures for this dissimilarity is the L2 norm for

each column, yi
residue(x), of the residue subspace, Yi

residue,

as each column of this subspace represents the deviation from

the reference vector. This can be formulated as follows:

d(x, i) =
∥

∥yi
residue(x)

∥

∥

2
, x = 1, ..., Nx; i = 1, ..., Ni (4)

Thus we will have a dissimilarity matrix, D =
{d(x, i) | 1 ≤ x ≤ Nx, 1 ≤ i ≤ Ni}. Repeating the procedure

over Ni days, we can take the mean of D over Ni to get

an average dissimilarity vector, d(x). This averaging would

allow to reduce the effects of random external factors that

may change from one day to another. The above described

system can be implemented with the help of schematic as

shown in Fig. 4. In the next section, we will present different

scenarios on real temperature data set in order to show the

efficacy of the proposed system under different conditions.



Fig. 4. SVD based singularity detection system.

IV. APPLICATION ON DTS TEMPERATURE DATA SET

The real temperature data in Fig. 2 is initially used for the

analysis. The data is over a period where there are neither

any artificially introduced leakages nor any real leakages as

confirmed by the experts. This can thus serve as a reference

data set for other scenarios. Moreover, the monitoring inter-

val was chosen here by consulting the meteorological data

with similar meteorological conditions (e.g., no precipitation

instances). The application of SVD on each day data, Yi,

reveals an extremely energetic first singular value, βi
1, of about

99%. The first SVD source vector, ui
1, is thus a very good

representative of each 24-hour temperature response of the

site under study and can thus be selected as the reference

vector. The reference subspace, Yi
sig , is then constructed

using the spatial variation of this source, with P = 1. A

quick analysis of this reference subspace instantly reveals the

underlying idea. The dotted lines in Fig. 3 show this reference

subspace on day 1 of the current data set at the 5 distances

previously referred to in Sec. III. Three of these distances

(drains, D1, D2, and at 1.7 km) correspond to the singularities,

whereas the other two to reference nonsingularity zones (0.3
km and 1.264 km). It can be observed from this figure that

the estimated reference vectors (dashed lines) are close to

the original temperature variations in the initial data (solid

lines) only for the nonsingularity zones, whereas they show

large deviations in case of singularity zones. This validates the

fact that the reference vector is indeed a good representative

of the nonsingularity zones. The residue subspace, Yi
residue,

is constructed for each day using the remaining singular

values. This subspace contains the useful information from the

singularity detection perspective as it represents the deviation

from the reference subspace. The residue subspace for day 1 is

shown in Fig. 5 and it can be observed that it is predominated

by the drains, D1 and D2.

Calculating the L2-norm of (4), we obtain the dissimilarity

measure, d(x, i), for each day at all the distances as shown
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, obtained with SVD for day 1 of
nonconsecutive 30 days data set. This subspace represents the deviation from
the reference subspace, Y

i
sig , thus putting into evidence the singularities.

in the top window of Fig. 6. For a given distance, the

variations corresponding to different days result from several

factors which may vary over days. These may include the

duration and intensity of the sunlight on a particular day,

the air temperature, the wind speed, etc. The resolution of

the acquisition material could also be one of the factors.

But despite these minor variations, there are certain distances

where the behavior is different from others. This is the case

with the drains and the singularity of the ground surface.

In order to remove the influence of the random variations

that may occur over the studied period, we can calculate the

mean of d(x, i) over a monitored time zone. For example, in

the present case, it is calulated for Ni = 30 days. The resultant

average dissimilarity measure is given in the bottom window

of Fig. 6 where only the information that is coherent between

the monitoring days is retained. Analyzing the two elevation

zones (see Fig. 1), we first focus our attention to Zone 1

(from 0.2 − 1.25 km). This mean vector mainly identifies

the two drains for Zone 1. Otherwise, this zone does not

contain any useful information from the anomaly detection

point of view. Considering the Zone 2, it should be mentioned

that this zone is more non-homogeneous in terms of material

composition than Zone 1. This zone is typified by the presence

of a singularity around 1.6 − 1.7 km which is identified by

two peaks at its start and end in the mean vector.

A. Case of Continuous Analysis

The temperature monitoring at the dike using the DTS can

be employed as a continuous process as, once installed, the

acquisition device does not require any human intervention.

At the present site, the data was acquired continuously over

the period of 1 year from spring 2005 to spring 2006 and

intermittently over certain other periods till 2007. So, we use

the continuously acquired data to validate the proposed system

on two scenarios to show the repeatability and the leakage

detection for artificially introduced leakages.

1) Repeatability of Measure: The proposed system was

tested on another data set under the same meteorological con-

ditions as those of the previous case and with no occurrence

of artificial or real leakages but in a different monitoring

interval in spring, 2006. The results obtained for the average

dissimilarity matrix on Ni = 10 days are shown in Fig. 7 and
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a comparison with the results obtained previously for summer,

2005 (Fig. 6) validates the repeatability of the proposed system

with drains and the singularity of the ground being once again

identified as the major singularities.
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2) Artificial Water Leakages (Percolation): At the monitor-

ing site, three artificial leakages of percolation-type, L1, L2
and L3, were introduced with different flow rates of 5, 1 and 1
lit/min and at different positions, 1.562, 1.547 and 1.569 km,

respectively in the month of May, 2005. A hot point (HP ) was

also introduced at 0.674 km. These leakages are impulsional in

distance and exist momentarily in time as well. The leakages

result in flow of water which would bring about a change in

the ground temperature and thus would present a source of

singularity. The proposed system calculates here the average

dissimilarity vector over Ni = 10 days and when we would

have the start of water leakages (percolations) in the analyzed

time period, we will have the results as in Fig. 8. It can be

observed that as for the reference case with no leakages, the

drains and the singularity zone are identified. The difference

in this case is the detection of the three artificially introduced

leakages and the hot point, HP . From the zoomed version in

the vicinity of the leakages in bottom window of Fig. 8, it can

be observed that the 3 leakages are uniquely identified with

L1 offering the most dissimilarity due to its highest flow rate.

The other two lower flow rate leakages are also detected.
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zoomed view in the vicinity of artificial leakages shows leakage L1 offering
the most dissimilarity due to its highest flow rate.

B. Case of Discontinuous Analysis (Real Leakage Detection)

As a case of discontinuous analysis, we tested the proposed

system on the data acquired in 2007. The resulting mean

dissimilarity vector over Ni = 30 days for this case is given

in Fig. 9. A comparison of this result with the one obtained in

2005 (see Fig. 6) makes an interesting reading. While the two

drains, D1 and D2 are identified along with the singularity

zone between 1.6-1.7 km, there is one marked difference. A

singularity is observed just after the second drain at a distance

around 0.91 km in the present case which was not there

in 2005. The investigation into this singularity by physical

inspection at the acquisition site revealed existence of a real

water leakage in the dike structure just after the drain D2.

This real leakage has a nonimpulsive signature as opposed to

the artificial leakages of the previous subsection. This leakage

exists over the distance between 0.907 km and 0.916 km.

Its detection as a singularity is justified by the fact that it

brings additional water around the optical fiber thus providing

more conduction and different temperature variation than the

homogeneous nonsingular zones.



0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance (km)

d
 (

x
)

D1

D2

Singularity
   ZoneLeakage

Fig. 9. The dissimilarity measure for temperature data acquired in 2007

reveals occurrence of a real water leakage in 2007.

V. DISCUSSION

The test of the dissimilarity measure performed for three

cases validated the proposed measure. In the present analysis,

the precipitation zones were avoided making use of the avail-

able meteorological data. In the absence of the availability

of this data, a criteria based on higher order statistics can be

used which will be presented in another work but not included

here to avoid unnecessary digressions. It was observed that the

drains present a significant singularity and since they form part

of permanent structures, so they are always detected. Another

singularity that exists always at the current acquisition site is

identified by its starting and trailing edges between 1.6 and

1.7 km. Using the continuous monitoring intervals, the system

repeatability was validated. In addition, it was shown that

the impulsional artificial leakages (percolations) are extracted

quite well with the proposed system and their strength of

detection depends on the leakage flow rate. As an example

of discontinuous analysis, we tested the proposed method on

the temperature data of 2007 where it was observed that while

the permanent singularities are always detected, a real leakage

has occurred in the dike just after the second drain. This

leakage having not been detected in 2005 was validated by

checking the physical inspection records of the site. Based

on these validations, a functional automated system can be

implemented using the basic signal processing units.

VI. CONCLUSION

In this paper, we presented a system for the identification

of singularities in and around the dike of a canal using

real temperature data sets acquired by distributed temperature

sensors. The DTS offer the practical solutions for long term,

automatic temperature acquisitions with the exceptional ad-

vantage of using low-cost and environmentally robust optical

fiber cables. The acquired data though is not immediately

exploitable and thus signal processing is needed. We showed

in this work how the temperature variations over the 24-hour

period can be exploited to detect the singularities. It was

shown that the first SVD source vector can be used to extract

a reference vector over this 24-hour interval. The residue

subspace constructed with SVD over several days can be used

to construct a dissimilarity matrix employing the L2 norm. The

resultant measure can be averaged out over several days thus

minimizing the external effects during the acquisition thereby

providing an efficient means of singularity detection. The tests

on several real scenarios revealed the efficiency of this system.

It was shown that it works well both for the artificially induced

impulsional water leakages as well as the real water leakages

that may occur in the dike structure due to some internal

deterioration phenomena in the dikes.
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