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ABSTRACT

The anomaly detection based on processing of distributed
temperature sensors data is a new research problem. The ac-
quired data is highly influenced by the response of the ground
in which the sensors are buried. It therefore becomes essen-
tial to remove the influence of this response. This response,
being the most coherent factor in the acquired signal, appears
as the most energetic source vector. However, its classical
estimation by SVD runs the risk of taking into account ener-
getic phenomena like precipitations. We propose to charac-
terize such phenomena using higher order statistics thus giv-
ing a criteria of selecting only the data not influenced by such
phenomena. An overlapping window approach then allows
estimation of characteristic ground response source. More-
over, the corresponding ground response subspace is con-
structed by least squares based unmixing approach on the
characteristic source. This avoids also the physically unjus-
tifiable orthogonality condition of temporal variations of the
estimated sources imposed by SVD.

1. INTRODUCTION

The use of fiber optic sensors has been a common practice in
diverse domains covering applications as engineering struc-
tures monitoring, fault detection in electrical circuits, fire de-
tection systems, parameter sensing in oil and gas industry,
etc [1, 2]. Now-a-days, an important issue in engineering
domain is the detection of anomalies, such as leakages (sig-
nificant flow of water), in the dikes to avoid disaster at mass
level. One of the most promising methods for this purpose
is thermometric based method employing optical fiber Dis-
tributed Temperature Sensors (DTS). The major advantage
of DTS is their commercial viability (low-cost telecommuni-
cations grade fiber), ability to multiplex large number of sen-
sors along a single fiber and environmental robustness [1, 3].
The leakage detection using DTS signals is a new research
problem in the signal processing domain.
The basic concept behind temperature acquisition is that

a change of ground temperature is brought about by a sig-
nificant flow of water through the structure due to leakages.
However, this change of temperature can equally be brought
about by other factors such as precipitations, seasonal effects,
day/night, the existing structures (e.g. drains), etc. More-
over, since the fiber optic cable is buried in ground, the tem-
perature signals acquired by DTS are strongly influenced by
the response of the near surface (ground) where the acquisi-
tions are made. The leakage detection thus becomes a source
separation problem with sources being all of the above men-
tioned factors. Due to overwhelming influence of the ground

response on the acquired signals, it is imperative for a leak-
age detection scheme to first remove its dependence.
The source separation techniques have been successfully

employed in diverse domains like neural networks, biomed-
ical engineering, telecommunications, econometrics, geo-
physics, image processing, audio signal separation, spatio-
temporal data set analysis, etc [4, 5, 6]. More recently, they
have been employed to analyze fiber sensor signals for the
measurement of food color and water monitoring [7]. In mul-
tisensor signal processing (geophysics, underwater acoustic,
etc.), a classical source separation technique is based on the
Singular Value Decomposition (SVD). It is a useful tool to
perform a separation of the initial dataset into complemen-
tary orthogonal subspaces by extracting decorrelated vectors
[8, 9, 10].
In case of temperature data (a function of space and

time), we estimate the sources as a function of distance to
identify different phenomena in space. It is observed that the
first source vector obtained by application of SVD on temper-
ature data, representing the most significant energy, is usually
related to the ground response. However, a major problem is
that this estimated source vector can be influenced by en-
ergetic factors ephemeral in time (like significant precipita-
tions). In this paper, this problem is addressed by devising a
criteria based on higher order statistics (HOS), exploiting the
fact that ephemeral temporal phenomena have specific statis-
tical behavior. The data selectivity is done based on this cri-
teria to avoid these ephemeral phenomena. The first source
vector is estimated in sliding temporal windows on this se-
lected data and a characteristic vector from amongst these
windowed vectors is finally obtained using the mean opera-
tor. This characteristic vector serves as a better estimate of
the ground response source. Moreover, for constructing the
subspace corresponding to this estimated ground response
source, the physically unjustifiable orthogonality condition
imposed by SVD on the temporal variations of the estimated
sources is avoided by using a least squares (LS) based ap-
proach.

2. SYSTEM AND DATA DESCRIPTION

The temperature data is acquired through DTS using Opti-
cal Time Domain Reflectometry (OTDR) technique based
on the Raman backscattering principle [1]. A thermomet-
ric data monitoring system has been installed, by Electricité
de France (EDF), at an experimental test site in the south
of France (near Oraison city) with an aim to study leakages
(both natural and controlled) in the dike of canal (see Fig. 1).
A 2.2 km long fiber optic cable (containing 4 optic fibers, of



type multimode 50/125), is buried at the downstream toe of
the canal at a depth of 1 m to intercept water leakage from the
canal. Two distinct elevation levels, (Level1, from approxi-
mately 0.5 km to 1.25 km and Level2, from approximately
1.25 km to 2.2 km), will be exposed with varying intensities
to direct sunlight. The cable also circumvents two drains,
D1 and D2, located at 0.561 km and 0.858 km, respectively.
The temperature data were recorded by the device Sensornet,
Sentinel DTS-MR, with temperature and spatial resolutions
of 0.01◦C and 1-meter, respectively. To monitor temporal
evolution of the anomalies, acquisitions were made over a
period of five and a half weeks with a sampling interval of 2
hours. This gives a two-dimensional temperature data set, as
a function of displacement along the fiber and time:

Y = {y(x, t) | 1≤ x≤ Nx,1≤ t ≤ Nt} , (1)

where Nx and Nt are the number of observation points in dis-
tance and the total time samples, respectively. The data is
normalized so that each acquisition has a zero mean and unity
variance (Fig. 2). This removes daily and seasonal varia-
tions. Three artificial leakages, L1 (on day 28), L2 and L3
(on day 30), were introduced at the site with different flow
rates of 5, 1 and 1 lit/min and at different positions, 1.562,
1.547 and 1.569 km, respectively.

Figure 1: Data acquisition system.
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Figure 2: Normalized temperature data acquired at Oraison
site.

3. SUBSPACE DECOMPOSITION BY SVD

The SVD of the signal in Eq. (1) is defined as [9, 10]:

Y = UN∆NV
T
N =

N

∑
j=1

β ju jv
T
j , (2)

where N = min(Nx,Nt), ∆N ∈ R
N×N is a matrix containing

on its diagonal the singular values β j ≥ 0 arranged in a de-

scending order and UN ∈ R
Nx×N and VN ∈ R

Nt×N are or-
thogonal matrices, containing the left and right singular vec-
tors u j ∈ R

Nx and v j ∈ R
Nt respectively. The left singu-

lar vectors u j are identified as estimators of the sources de-
fined by different factors (ground response, existing struc-
tures (drains), leakages, etc.) and are orthogonal to each
other. The first vector, u1, being the most energetic, is linked
to the ground response. This orthogonality can be justified
considering that these factors are physically independent of
each other. On the other hand, the vectors v j, representing
the temporal variations of the sources, are also orthogonal by
construction which is not always physically justifiable. SVD
can be used to achieve separation between signal and noise
subspaces [10]:

Y = Y
SVD
sig +Y

SVD
residue =

P

∑
j=1

β ju jv
T
j +

N

∑
j=P+1

β ju jv
T
j (3)

where Y
SVD
sig is given in our case by the ground response,

which means that P= 1.

4. ESTIMATION OF AN AVERAGE SOURCE

The estimation of the first source, u1, by applying sub-
space decomposition over the entire data runs the risk of
being influenced by ephemeral energetic factors like pre-
cipitations. To overcome this problem, SVD is thus calcu-
lated in small time blocks using overlapping temporal slid-
ing window approach by choosing a suitable sliding win-
dow size (∆T ) and an overlapping interval. It should be
recalled here that since the estimated sources are a func-
tion of distance, we look to eliminate effects of temporal
ephemeral phenomena and thus consider only temporal win-

dowing and not spatial windowing. Considering the mth data
block, Ym = {y(x, t)|1≤ x≤ Nx, tm ≤ t ≤ tm+∆T}, this de-
composition can be written as:

Ym = U
m
N∆mNV

mT
N =

N

∑
j=1

βmj u
m
j v
mT
j (4)

where N =min(Nx,∆T ) and tm depends on ∆T and the over-
lapping interval. Amongst the first SVD sources, um1 , with
m = 1, ...,M and M the total number of blocks, there will
be some uniquely linked to the ground response while others
influenced by ephemeral phenomena. The goal is to select a
characteristic vector ū1 from amongst these u

m
1 vectors.

The application of the mean operator for the selection
purpose assures that the selected vector will be adapted to all
time zones. However, there will be zones where the vectors
u
m
1 are dominated by phenomena other than the ground re-
sponse (like precipitation) and, if significant, they can intro-
duce false results due to averaging. In order to avoid this situ-
ation, we employ a criteria based on higher order statistics to
identify these defective transient zones (time blocks). Once
these zones have been identified, their contribution can be
removed from the data. The third and the fourth order statis-
tics are considered here, namely the skewness (κ3(t)) and the
kurtosis (κ4(t)), respectively. The estimators for skewness
and kurtosis are defined using the k-statistics and their def-
initions can be found in [11] along with their variances, σ3
and σ4. It should be mentioned that the variances of skew-
ness and kurtosis estimators do not depend on time, t, but



uniquely on the number of elements used to estimate them, so
on the number of sensors in our application. It was found out
that the skewness and kurtosis for the temporal zones con-
taining instances of precipitation were significantly different
from those not containing any precipitation. The data selec-
tion is made by considering uniquely the zones for which the
skewness and kurtosis values fall within a threshold around
the reference values for the respective estimators. The ref-

erence values, κ
re f
3 and κ

re f
4 , are calculated here as median

values of the data skewness, κ3(t), and kurtosis, κ4(t). The
median was chosen here to avoid factors that act as impulsive
perturbations, such as significant precipitations, with respect
to the analyzed time zone. For the selection of the thresh-
old, it was observed that placing too low a threshold does not
allow the separation of ephemeral phenomena from rest of
the data. A threshold of ±σ , for example, does not permit
an efficient identification of ephemeral phenomena. How-
ever, the phenomena identified with thresholds of ±2σ and
±3σ are almost identical and thus ±2σ can be selected as
an optimum threshold. Having removed the ephemeral time
zones from the data, Y, using the above criteria, the sliding
window SVD of Eq. (4) is applied on this curtailed data,

Y
sel . An average ground response source vector is estimated
by applying the mean operator on the first SVD vectors ob-
tained for each position of the sliding window. The adopted
approach is summarized in the three step algorithm in Fig. 3,
where the first step is the HOS calculation and the threshold
selection, the second step is the data selection eliminating the
defective zones based on results of step 1 and the third step
is the final source estimation using overlapping sliding tem-
poral windows on the selected data followed by averaging to
find the characteristic source vector. Once the characteris-
tic source vector, ū1 has been obtained, we move on to the
subspace separation step.

Figure 3: Algorithm for estimating an average ground re-
sponse using a HOS criteria.

5. SUBSPACE DECOMPOSITION USING LEAST
SQUARES

The construction of subspace corresponding to the average
source vector, ū1, requires the temporal variation of this vec-
tor. One possible approach is to use the concept of source
unmixing as posed in hyper spectral image processing [12].
Since, our goal is to remove the effects of ground response,
characterized by ū1, we can rewrite this approach as follows.
Let the linear model of the recorded data be given by:

Y = Y
LS
sig+Y

LS
residue = ū1α +Y

LS
residue (5)

where α represents the temporal variations of the vector ū1
on the recorded data, and together with ū1 defines a signal
subspace, YLSsig. The residue Y

LS
residue is defined by phenom-

ena other than the ground response. The vector α can be
estimated using a Least Squares (LS) procedure as:

α̂LS = (ūT1 ū1)
−1

ū
T
1Y (6)

The final residue, YLSresidue, is devoid of the effects of ground
response. The residue subspace thus highlights the infor-
mation linked to other important factors such as precipita-
tions, anomalies (leakages), drains, etc. The differences be-
tween this decomposition and the one obtained by using the
SVD Eq. (3) is that: (1) the source vector characterizing
the ground response does not take into account ephemeral
phenomena such as precipitations, and (2) there is no orthog-
onality condition imposed on the temporal variations of the
sources.

6. RESULTS AND DISCUSSION

The proposed algorithm is applied to normalized real tem-
perature data in Fig. 2. The data contains information linked
to the drains, the leakages, instances of precipitation, all of
whom are more or less masked by the response of the ground
where DTS are buried. The normalization here has been done
so as to bring each acquisition to zero mean and unity vari-
ance thus reducing the effects of seasonal variations. The
ground response source estimation by processing the data in
its entirety runs the risk of being influenced by phenomena
like precipitation that are ephemeral in time. Thus we adopt
the approach as highlighted in Fig. 3. In the first step, we
calculate skewness and kurtosis of the data along with their
variances. The corresponding results are presented in Fig. 4
with skewness in the top window and kurtosis in the bottom
window. The thresholds, selected as ±2σ , with σ = σ3 be-
ing the variance of the skewness estimator and σ = σ4 that of
kurtosis estimator, are represented by the dashed lines. These
results show that there are mainly two time zones (Z1 and
Z2), where the values of these statistics surpass their respec-
tive thresholds. With the study of the meteorological data,
it was found out that these two zones correspond primarily
to instances of precipitation. The application of threshold
for removing these two temporal zones results in selection
of data for which the general trend observed with the higher
order statistics remains more constant than with the entire
data. Having curtailed the data to remove the influence of
temporal ephemeral phenomena, the next step is to evaluate
the ground response source vector by scanning the data us-
ing temporal sliding windows. A window size ∆T = 1 day
(corresponding to 12 acquisition points for the current data)
was selected along with an overlapping of 25%. It should
be mentioned here that other window sizes and sliding steps
were also tested but no significant change in the end result
was obtained. The first source vector, um1 , is thus estimated in
different sliding windows, with m= 1, ...,M andM = 25, the
total number of overlapping windows in our application. The
fact that the first sources represent about 95% of the total en-
ergy for each window and that they have approximately iden-
tical shapes means that these sources are related to the most
coherent factor of the data, i.e., the ground response. The
characteristic vector, ū1, is then obtained by taking the mean
of all these overlapping vectors and is represented in Fig.
5. In this source, two separate levels can be observed, one
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Figure 5: Estimated source ū1 using the HOS criteria as
highlighted by the scheme of Fig. 3.

from approximately 0.5km to 1.25km and the other one from
1.25km to 2.2km. As evident from the fiber layout scheme
of the actual test site (see Fig. 1), these levels correspond to
the physical ground structure present at the actual site of data
acquisition. Moreover, a strong singularity is noted in the re-
gion from 1.63−1.7 km, which also corroborates well with
the physical site as the material composition of the ground
around this distance is different from those in other regions.
This validates the fact that this source indeed represents the
ground response. Moreover, due to the HOS criteria, this
source is devoid of the precipitation effects while at the same
time being a representative of all time zones due to averaging
operation.
The signal subspace corresponding to the source obtained

by application of SVD on the entire data (i.e. without apply-
ing the HOS criteria) can be constructed by using the sub-
space decomposition of Eq. (3). The residue, YSVDresidue, ob-
tained by subtracting this signal subspace from the normal-
ized data is given in Fig. 6. The temporal variation of HOS
based estimated source, ū1, is obtained using the LS based
approach to avoid the orthogonality condition of SVD. The
final residue,YLSresidue, thus obtained using the HOS criteria
and LS method is given in Fig. 7. It can be observed
that the removal of the ground response results in bringing
to evidence other phenomena such as the precipitations, the
leakages and the drains (Fig. 6 and Fig. 7). The residue sub-
space obtained by applying SVD on the entire data differs
from the one obtained using the proposed method. The first
immediate observation is that subspaces using the proposed
approach are overall smoother as compared to the approach
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Figure 6: Residue subspace,YSVDresidue, obtained with SVD.
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Figure 7: Residue subspace Y
LS
residue using the LS approach

on HOS based source ū1.

based on SVD. This is specially visible in the zones which
are sparse in terms of their information content. The zoomed
versions of the two residues (Fig. 8(a)-(b)) highlight this dif-
ference. Another noticeable artifact of the global SVD tech-
nique is that it compensates the time zones of more intensity
with those of opposite intensity (Fig. 8(a)), which means to
say that it performs a sort of positive/negative compensation
in time. This is due to the orthogonality constraint imposed
on the temporal variation of the sources. The overall result
is that it introduces false information into the residue sub-
space which was not there in the first place. However, using
our proposed method, these artifacts are not observed (Fig.
8(b)).
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Figure 8: Zoom of residues showing relatively smoother LS
residue and undue compensation in SVD residue.

Fig. 9 shows the two residues on day 21, withY
SVD
residue in

the top andY
LS
residue in the bottom plot. Both these plots have



been normalized by their respective maxima for ease of com-
parison. It can be noted that not only the LS based residue
is smoother but also the singularity of the ground, in the
1.63− 1.7 km region (previously identified in Fig. 5, encir-
cled here), is relatively more energetic in SVD based residue
than the LS based residue. This singularity is thus better esti-
mated by the proposed HOS and LS based approach as a part
of ground response and thus eliminated in the residue.
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Figure 9: Residues on day 21 (top Y
SVD
residue, bottom Y
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residue)

showing more pronounced singularity (encircled) in SVD
residue than LS residue.

Moreover, the proposed approach reveals with relatively
more intensity the useful phenomena in the residue subspace.
As an example, a zoom of the two residues on day 28 (when
L1 occurred at 1.562km) in Fig. 10 shows that the leakage
L1 has higher SNR inY

LS
residue (calculated with respect to the

background in L1’s vicinity) than in Y
SVD
residue. This is an im-

portant result for leakage detection objective as the leakage
is better separated from the background.
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here) in LS based residue.

7. CONCLUSION

The detection of anomalies in dikes using bidimensional tem-
perature data acquired by distributed temperature sensors is
a new research problem in the signal processing domain and
there are not many priors to this work. In this paper, we pre-
sented a subspace separation technique to remove the influ-
ence of the ground response where acquisitions are made.
The removal of this source is important as it masks other
useful information in the data like the presence of leakages.
It was observed that the first source of SVD applied on the

DTS data is linked to the ground response where the acqui-
sitions are made. This source estimation might however be
effected by transient temporal phenomena in the data. A cri-
teria based on higher order statistics was proposed to iden-
tify them. It was shown that phenomena like precipitation
can be efficiently identified by using the HOS, skewness and
kurtosis. Based on this criteria, temporal data zones can be
selected which are devoid of these transient phenomena. The
first source vector is estimated in overlapping temporal slid-
ing windows applied on this curtailed data. The characteris-
tic ground response source is finally obtained as mean of the
source vectors estimated in these time blocks. The temporal
variation of this characteristic source (for constructing the
corresponding ground response subspace) is estimated using
least squares unmixing approach. This allows to avoid the
unjustifiable orthogonality condition imposed by SVD on the
temporal variation of the estimated source. The method was
applied to a real data set and the resulting residue subspace
was found not only to be devoid of the global SVD artifacts
but also found out to better put to evidence the useful infor-
mation.
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