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A Source Separation Technique for Processing
of Thermometric Data From Fiber-Optic DTS

Measurements for Water Leakage
Identification in Dikes

Amir A. Khan, Valeriu Vrabie, Jérôme I. Mars, Alexandre Girard, and Guy D’Urso

Abstract—Distributed temperature sensors (DTSs) show real
advantages over conventional temperature sensing technology
such as low cost for long-range measurement, durability, stability,
insensitivity to external perturbations, etc. They are particularly
interesting for long-term health assessment of civil engineering
structures such as dikes. In this paper, we address the problem of
identification of leakage in dikes based on real thermometric data
recorded by DTS. Formulating this task as a source separation
problem, we propose a methodology based on Principal Compo-
nent Analysis (PCA) and Independent Component Analysis (ICA).
As the first PCA estimated source extracts an energetic subspace,
other PCA sources allow to access the leakages. The energy of a
leakage being very low compared to the entire data, a temporal
windowing approach guarantees the presence of the leakages on
these other PCA sources. However, on these sources, the leakages
are not well separated from other factors like drains. An ICA
processing, providing independent sources, is thus proposed to
achieve better identification of the leakages. The study of different
preprocessing steps such as normalization, spatial gradient, and
transposition allows to propose a final scheme that represents a
first step towards the automation of the leakage identification
problem.

Index Terms—Dikes, distributed temperature sensors (DTSs),
independent component analysis (ICA), leakage identification,
principal component analysis (PCA), source separation, thermo-
metric data.

I. INTRODUCTION

F IBER-OPTIC sensors have long been employed in diverse
domains for various applications such as monitoring of

civil engineering structures, fault detection and metering in elec-
trical engineering, chemical sensing for environment and pollu-
tion control, parameter sensing in oil and gas industry, and early
fire detection systems [1]–[7]. In civil engineering, many aging
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infrastructures may become vulnerable in terms of their stability
due to various phenomena like internal erosion, adverse climatic
conditions, and other natural phenomena. Amongst these struc-
tures, attention is nowadays turned towards dikes for whom it
is imperative to detect the possible anomalies such as leakages
(significant flow of water) in advance so as to take preventive
measures accordingly.

The early conventional methods for detecting anomalies in
dikes were based on visual inspections and scheduled investi-
gations performed at the site. The measurements of different
parameters such as flow rates, pressure, and deformation form
some of the contemporary conventional methods. Recently,
some nonconventional methods such as the self-potential
method, the resistivity method and the temperature based
methods have been used for detection of anomalies [8]–[12].
The self-potential and resistivity methods have been used for in-
ternal erosion and leakage detection in many civil engineering
structures like dams and dikes. Even if the aforementioned
methods provide good solutions for detection of anomalies, the
major constraint is that these methods are manual. Moreover,
the acquisition setup is not economically viable. On the other
hand, the thermometric methods present efficient solutions
with the improved possibilities of temperature measurements
through the use of fiber-optic temperature sensors. These fiber-
optic sensors offer a multitude of advantages such as reduced
weight and dimensions, strong immunity to electromagnetic
interferences, environmental robustness, scale flexibility for
small gauge, long gauge measurements and low cost, etc. [13].
In fact, what sets them apart is the use of low-cost telecommuni-
cations grade fiber, which provides them an ability to multiplex
large number of sensors along a single fiber thus enhancing
their commercial viability. With the limitations of the existing
systems in terms of their dependence on tedious and error prone
human-based monitoring systems, it is imperative to develop
an automatic system which can alert of the possible leakages in
advance, while minimizing the false alarms.

The thermometric data acquired at the site through fiber-optic
sensors is not directly interpretable in terms of leakage identi-
fication and localization. It is, therefore, imperative to process
this signal in a way that renders useful information concerning
the anomalies. The idea behind the use of temperature signals
is that a change of temperature between water of the canal and
that of the ground is brought about by a significant flow of water
through the structure due to leakages. However, this change of
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temperature can equally be brought about by other factors such
as the seasonal variations, precipitations, existing structures
(e.g., drains) etc. The problem of leakage identification can
thus be seen as a problem of source separation with the sources
being all aforementioned factors which can result in a possible
change of temperature. The underlying idea is not only to
separate out the response of the near surface, where the acqui-
sitions are made, but also to efficiently identify the leakages
in the presence of precipitations and other background effects.
The source separation techniques have been successfully em-
ployed in domains as diverse as neural networks, biomedical
engineering, telecommunications, econometrics, geophysics,
image processing, audio signal separation, spatio-temporal
data set analysis, etc. [14]–[16]. More recently, they have been
employed to analyze fiber sensor signals for the measurement
of food color and water monitoring [7]. The aim of this paper is
to propose a scheme based on the advanced signal processing
techniques so as to uncover the hidden information in the
observed temperature signals recorded on an experimental site
of Electricité de France (EDF). This experimental site, located
in the south of France, near Oraison City, is dedicated to the
study of leakage detection in dikes.

Amongst the three major sections of this paper, we start in
Section II with a description of the system and the principle of
acquisition which is based on distributed temperature sensors
(DTSs) [17] using the Raman technique. The representation of
the recorded signals and their characteristics are also discussed
in this section. The theoretical formulation of the problem is
presented in Section III using the advanced techniques of source
separation, namely, principal component analysis (PCA) and in-
dependent component analysis (ICA). After a brief theoretical
description of these techniques, a scheme is proposed to iden-
tify the information related to leakages. Section IV presents the
application of the proposed scheme to a real data set using dif-
ferent preprocessing techniques like normalization, spatial gra-
dient and transposition of data. A comprehensive discussion on
the results, including the choice of various parameters like the
number of PCA and ICA sources and the processing window
size, also forms the subject of Section IV. This study leads to
the selection of a particular scheme for leakage detection. The
conclusion follows in Section V, deducing on the results of pre-
vious sections and thus elaborating the possibility of identifica-
tion of leakages in dikes with the application of source separa-
tion techniques.

II. DATA SET

The sensors used for the acquisition of temperature signals
are DTSs based on optical fibers [1], [13], [17]. These sensors
provide temperature observations over long distances with
high spatial and temperature resolutions. Moreover, their ca-
pability to integrate a large number of passive optic sensors
within a single low-cost telecommunications grade optical
fiber significantly enhances their commercial viability. In most
commercial DTSs, the acquisition principle of temperature
profiles is based on Raman scattering using optical time-do-
main reflectometry (OTDR) techniques [18]. The basic setup
of temperature sensing based on OTDR is comprised of a

Fig. 1. Schematic representation of temperature monitoring system at site
Oraison.

pulsed laser coupled to the optical fiber, the sensing element.
The emitted photons interact with the molecules of the fiber
material. Thermally influenced molecular vibrations in the fiber
produce Raman scattering in the form of backscattering of some
photons of light. Consequently, this backscattered light carries
information about the fiber temperature and can thus be used
to obtain the temperature distribution along the fiber [19]. The
Raman backscattered light has two components: the Stokes and
Anti-Stokes scattering. The principle of temperature sensing
lies in the fact that the intensity ratio between Anti-Stokes and
Stokes components, , is temperature dependent and can
be described by

(1)

with the frequency of the input laser, the frequency
shift of Raman scattering, the Planck’s constant, and the
Boltzmann’s constant. Measuring the travel time of probe pulse
and the ratio , at the fiber input, allows to obtain the
temperature profile along the entire length of the fiber using
one-to-one relationship between the spatial resolution and the
traveling time.

For studying leakages, EDF proposed installation of a ther-
mometric data monitoring system based on the above principle
at an experimental test site located in the south of France (near
Oraison City). The aim of this site is to extract the information
pertaining to leakages (both natural and controlled) in the dike
of a canal. A schematic representation of this data monitoring
system is given in Fig. 1. A fiber-optic cable was installed in the
abutment at the toe end of the canal so as to intercept the water
leakage from the canal. The cable containing 4 optic fibers, of
type multimode 50/125, is buried at the downstream toe of the
canal at a depth of 1 m. These fibers take measurements in a loop
along the entire 2.2 km length of the cable. Two distinct zones,
(Zone 1, from approximately 0.2 to 1.25 km and Zone 2, from
approximately 1.25 to 2.2 km), corresponding to two different
elevation levels, will be exposed with varying intensities to di-
rect sunlight. The cable also circumvents two drains, D1 and
D2, situated at 0.561 and 0.858 km, respectively. The tempera-
ture data were recorded by a commercial device Sensornet, Sen-
tinel DTS-MR, with a capability of covering up to 8 km range.
The temperature resolution of this device is 0.01 with 1-m
spatial resolution. The basic principle of leakage detection by
DTS is that a leakage (significant flow of water) would result in
a thermal anomaly and would thus be detected by the fiber-optic
cable. The method utilized at the site is the passive method,
which is a natural measure of temperature. The method takes its
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TABLE I
CHARACTERIZATION OF THE STRUCTURES AND LEAKAGES FOR SITE ORAISON

name from the fact that in the absence of any anomaly, the mea-
sured temperature is driven by the phenomenon of conduction:
the transfer of heat results from the interaction between the tem-
perature of air and that of water present naturally in the ground.
The occurrence of leakage results in flow of water which brings
along additional heat by the phenomenon of advection [12].
Thus, when advection superposes conduction, thermometry can
help in identification of leakages. The identification of leakage
thus depends not only on the flow rate but also on the difference
in the temperatures between that of ground (which, in turn, de-
pends on the air temperature depending on the depth) and that
of water.

The temperature data using DTS are obtained along the en-
tire length of the fiber with a sampling distance of 1 m. In the
discussions that follow, this acquisition along the entire length
of the fiber will be called a profile. In addition, to monitor the
temporal evolution of the anomalies, which in itself is important
in any fault detection scheme, the profiles were acquired over
three months (April, May, and June). An acquisition period of
2 h, i.e., one profile acquisition every 2 h, was selected to have an
adequate resolution. The recorded data set is thus a two-dimen-
sional temperature signal, , as a function of displacement
along the fiber and time and can be written in matrix format as

(2)

where and are the number of observation points (also
called the temperature sensors) and the total acquisition time,
respectively. To test the efficiency of the proposed technique to
identify the leakages, three artificial leakages were introduced
during different times in the month of May with different flow
rates and positions. A description of these leakages along with
the localization of some existing drains present in the path of the
fiber-optic is given in Table I. In the next section, we are going
to briefly discuss the source separation techniques that we have
used for this data set along with a description of the proposed
scheme.

III. SOURCE SEPARATION TECHNIQUES

A. Data Decomposition

The temperature data acquired by the fiber is affected by var-
ious factors like ground response (permeability, physical com-
position, etc.), natural phenomena (seasonal temperature varia-
tions, precipitation), anomalies (leakages), structures of the dike
(drains), etc. A source signal as a function of displacement along
the fiber is assigned for each factor. Moreover, some factors such
as drains or leakages can be modeled by sparse sources, which
means that these sources are non-Gaussian. A recorded data set

can be considered as a mixture of these sources and we assume
that this mixture is linear. Likewise, since the sources originate
from noncorrelated phenomena, they are supposed to be inde-
pendent of each other. The problem can thus be formulated as

(3)

where represents the acquired data,
is the mixing matrix, designates the matrix made
up of the independent sources mentioned above, i.e., a source
represents a column of the matrix , and denotes the matrix
transposition. The problem is thus to find out the matrices,
and , from the observation matrix, , with the only hypoth-
esis that the sources are independent. The identification of each
of the above mentioned factors can thus be treated as a source
separation problem and in our application the most important
factor is leakage. The classical techniques commonly employed
are principal component analysis (PCA) and independent com-
ponent analysis (ICA). We explore briefly these two techniques.

1) Principal Component Analysis (PCA): PCA is widely
used in signal processing, statistics, and neural computing with
the goal to find out a space in which the desired inherent char-
acteristics of data are represented in a space of the smallest pos-
sible dimension [20], [21]. When the principal components are
calculated from the covariance matrix of the recorded data ,
an efficient method for their calculation is the singular value de-
composition (SVD) [21]:

(4)

where , is a matrix containing
on its diagonal the singular values arranged in a de-
scending order and and are
orthogonal matrices, containing left and right singular vec-
tors and , respectively. The right sin-
gular vectors are estimators of the sources defined by the
above mentioned factors [22]. As these vectors are orthonormal
by construction, the estimated sources are decorrelated and nor-
malized. The decorrelation allows to extract Gaussian sources,
which is not sufficient in our case because sources associated
with some factors such as the drains or the leakages can be
modeled by sparse and so non-Gaussian sources. However, it is
possible to decompose the initial data into two complementary
subspaces, namely, the signal subspace and the noise subspace
defined as

(5)
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These subspaces are orthogonal, the first one being contained
in a space of dimension and the second one in a space of
dimension . The critical parameter is the choice of the
number “ ,” the number of singular values retained to construct
the signal subspace. This decision is usually based on the ob-
servation of the singular values, , by defining a threshold for
keeping the most significant singular values [16]. As we saw
above, PCA allows to extract orthogonal sources, but in real
practice we cannot ensure that the orthogonality condition holds
for the inherent sources. A more realistic technique not driven
by the orthogonality condition is based on the independence of
the sources and forms the subject of the next section.

2) Independent Component Analysis (ICA): ICA is a blind
decomposition of a multichannel data set made up of unknown
linear mixtures of unknown source signals based on the assump-
tion that the sources are mutually statistically independent [14],
[15], [22]–[24]. The statistical independence of sources means
that the cross-cumulants of any order vanish. In general, the
third-order cumulants are negligible and are discarded and we
use the fourth-order cumulants which are considered suitable for
instantaneous mixtures [25]. Considering the noise-free model
for ICA

(6)

where is an observation matrix, a
source matrix, and a mixing matrix. The goal of
ICA is to estimate the mixing matrix and/or the source matrix

from the observation matrix with the only hypothesis that
the sources are independent.

ICA can be usually resolved by a two-step algorithm, con-
sisting of a prewhitening step and a higher order step. The first
step is directly carried out by SVD on the raw data to obtain
the whitened (decorrelated and normalized) vectors . At this
point, a matrix can be constructed considering vectors
which can be chosen from those defining one of the two sub-
spaces or in (5). The matrix in (6) thus repre-
sents the subspace constructed with the corresponding vectors

and . The second step then comprises of finding a rotation
matrix , which diagonalizes the tensor of fourth-order
cross-cumulants constructed with the columns of . One of the
popular algorithms for finding this rotation matrix is the joint ap-
proximate diagonalization of eigenmatrices (JADE) algorithm
[25]. JADE uses the joint diagonalization of cumulant matrices
obtained by unfolding the tensor of fourth-order cross-cumu-
lants. This second step provides independent vectors from
the decorrelated ones given by SVD. These independent vec-
tors are the columns of the matrix . ICA can then be
synthesized as follows [22]:

(7)

where the first equality is given by the first step and is written
with respect to the SVD decomposition defined previously,
while the second equality is given by the second step. The

are called modified singular values [22]. The second step
relaxes the orthogonality condition on the vectors , while
imposing a fourth-order independence criterion for the vectors

. This allows to extract non-Gaussian sources thus providing
better estimates of the sources defined by the most important
factors. The ICA decomposition allows to extract a second
signal subspace defined by sources

(8)

B. Proposed Scheme

The methodology adopted for the identification of leakages
will now be discussed. As a first step of data decomposition in
subspaces, PCA is applied. The precipitations and the leakages
are ephemeral phenomena in time and time/space domains re-
spectively and are considered as “noise.” This, in turn, means
that they are not coherent to all the acquired data and are thus
not going to be revealed in the first few vectors obtained by
PCA. The result of PCA is analyzed in terms of choice of the
number of singular values, , to be kept for constructing the
signal subspace . The choice of this value is made on the
basis of the most significant singular values, which are depen-
dent on the source signals (as we will see in the next section).
Following the construction of the signal subspace, the noise or
the PCA residue subspace can be obtained as the difference
between the initial data signal , contained in a space of di-
mension , and the signal subspace constructed with PCA
sources , contained in a space of dimension . This residue
is of dimension and is denoted as . ICA
is then applied on this residue but considering only “ ” sources
to be estimated, which means that only the decorrelated sources

to are considered in the second step of the ICA
algorithm and that in (7). This allows a new subspace
decomposition giving: 1) a second signal subspace con-
structed with “ ” significant ICA sources, and thus contained in
a space of dimension and 2) a noise subspace or ICA residue
denoted as , obtained as the difference be-
tween the PCA residue and . This ICA residue should con-
tain the information uniquely related to the leakages. This seem-
ingly simple technique requires some important decisions like
the choice of the number of PCA singular values used to
construct the first signal subspace, the number of ICA sources
to be estimated , and the number of ICA sources to be re-
tained for constructing the second signal subspace . In ad-
dition, the processing can be done on the totality of the data or
using a sliding window (in order to consider only short duration
analysis). The latter will introduce an additional parameter in
form of the sliding window size. The preprocessing steps that
can be applied to the data before the application of source sepa-
ration techniques have to be investigated as well. Summarizing
the above discussion, the proposed scheme for the identifica-
tion of leakages is presented in Fig. 2. In the next section, we
will present the results of application of the proposed method
on real data preceded by a study of preprocessing methods and
followed by a discussion on the results.
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Fig. 2. Proposed scheme based on the temperature data for identification of
leakages in dikes using source separation techniques (PCA and ICA).

IV. RESULTS AND DISCUSSION

A. Preprocessing

We present next the preprocessing steps that will be used for
real data set. Note that these steps are combined as described in
the next section.

As a first preprocessing step, the data set is normalized (zero
mean and unity variance of each profile, i.e., of each column of
the recorded data set ). This normalization leads to attenua-
tion of the temporal variability of the data (daily and seasonal
variations).

The leakages are characterized by high dynamics with a steep
slope, whereas other factors are characterized by slow variations
(low-frequency contents), either in time or in distance. Taking
the gradient (derivative) of the data with respect to time or dis-
tance may thus partially remove the slow variations. There are
two possibilities for the gradient: the temporal gradient and the
spatial gradient. In the temporal gradient, the gradient operator
is applied for each sensor along the entire time duration of the
signal, whereas in the spatial gradient, the gradient operator
is applied for each profile along the entire length of the fiber.
The former thus attenuates the effects of existing structures like
drains (which exist at all times) and seasonal variations, while
the latter attenuates the effects of the ground response and pre-
cipitations (which vary slowly along the distance). The fact that
the spatial gradient is calculated using relative differences be-
tween successive sensors for each profile ensures that the result
no more depends on seasonal variations. Note that for this pro-
cessing, the normalization step is not mandatory. Application of
temporal gradient, however, results in the loss of the temporal
evolution of the leakages, and thus of useful information. For
this purpose, we use only the spatial gradient as a preprocessing
step.

Though it may be inapt to state here explicitly as a prepro-
cessing step, yet in certain cases we perform a transposition,
after normalization and derivative (provided it is taken), before
passing the data on to the source separation process. This means
that we consider the data set in (3) instead of and that for
each factor, the assigned source is a function of time. Processing
data in this manner may give a possible characterization of phe-
nomena which exist at all times.

B. Results on Data Set

In this section, we present the results of application of the pro-
posed scheme on a real thermometric data set. The data for the
period of three months: April, May, and June is used for analysis
purposes and is presented in the Fig. 3(a), with the temperature
variations (in ) expressed by grayscale variations as function
of time and distance along the fiber. The normalized data, as
discussed in previous subsection, is presented in Fig. 3(b). Note
that recordings on 200 m length of the fiber-optic cable corre-
sponding to hydraulic station are not taken into consideration.

1) Processing on the Entire Data: In this section, the results
obtained by application of the proposed scheme on three-
months data are presented. The normalized version of this
data [Fig. 3(b)] is treated to obtain the singular values ,
where the first 20 values are represented in Fig. 4(a). The ratio

is low, meaning that the coherence
between the sources estimated by PCA is not so significant
and these sources characterize the recorded noise rather than
the useful information. The choice of the parameters “ ” and
“ ” is based on the decrease of these singular values. We started
off by setting the threshold at for constructing the
signal subspace using PCA as it marks a change of slope in the
singular values graph [16]. Then, sources are estimated
by applying ICA on the PCA residue. Of these two sources,
one source each was used to characterize the signal and the
noise subspace, thus giving . The sources estimated by
PCA and ICA are presented in Figs. 4(b)–(f). The PCA sources
do not reveal any discrimination with regards to the leakages
(see Table I for details) but the drains, D1 and D2, can be
distinguished on the third PCA source at 0.56 and 0.86 km,
respectively. We also observe on the ICA sources, , that ICA
does not bring any complementary information concerning the
leakages. Note that the sources extracted by PCA are arranged
in a decreasing order of energy. However, the energy of a
leakage is very low as compared to entire data and thus the
leakages remain present in the residue even if we take many
singular values for constructing the PCA signal subspace. We
tested different values of , , and , but the results are quite
similar to those obtained previously, which led us to conclude
that the estimation of leakages is incomplete. However, the
energy of a leakage is relatively large compared to short dura-
tion recorded data, so we will now focus our attention on short
duration analysis and will show that the processing is better
adapted with windowed data.

2) Processing on Windowed Data: We present here the re-
sults of processing between the last day of April and the 13th
day of May (both inclusive). This windowed section contains
the three leakages and the two drains but there are no signif-
icant precipitations. The application of the same scheme con-
sidering normalized data produces the sources given in Fig. 5
along with the first 20 singular values that result from the PCA.
The first PCA source represented in Fig. 5(b) does not contain
any information that is pertinent to the leakages. Note that this
source is very similar with the one given by considering the
three-months data set [see Fig. 4(b)]. This source reveals two
temperature zones: Zone 1, from approximately 0.2 to 1.25 km
and Zone 2, from 1.25 to 2.2 km. The former has temperature
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Fig. 3. (a) Raw data along the entire length of the fiber acquired over a period of three months. (b) Normalized data.

Fig. 4. Singular values and sources for the data of three months of April, May, and June treated in its entirety: (a) first 20 singular values; (b)–(d) first three PCA
sources; (e) and (f) first two ICA sources.

values primarily below zero, whereas the latter has values above
zero. At the actual Oraison site, these two zones correspond to
two different elevation levels, with Zone 1 at lower elevation
and Zone 2 at higher elevation (see Fig. 1). These different el-
evation levels mean that Zone 2 will be more exposed to direct
sunlight than Zone 1. Consequently, this first PCA source char-
acterizes the ground response. This, in itself, is an important re-
sult as no a priori information regarding the elevation levels was
incorporated in the separation algorithm, yet we have a ground

response characterizing source. The ratio is now
80%, which means that the first PCA source extracts a more en-
ergetic subspace than in the previous case, allowing to access the
leakages by the next PCA sources. Indeed, the other two PCA
sources [in Fig. 5(c) and (d)] contain the information linked to
the leakage L1 located at 1.562 km (see the arrows). We can
thus choose and . After the ICA step, the first ICA
source in Fig. 5(e) contains the information linked to the drains
(D1, D2), whereas the second ICA source contains the infor-
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Fig. 5. Source separation for a 14 day windowed data section: (a) first 20 singular values; (b)–(d) first three PCA sources; and (e), (f) first two ICA sources. The
leakage L1, whose location is marked by arrows, does not appear in the first ICA source but is present in the second PCA source.

Fig. 6. (a) Envelop of the ICA residue for the windowed data section. (b) Zoom of (a) in the vicinity of leakages.

mation linked significantly to the leakage. We can thus choose
to detect the leakages. The envelope (representing the

module) of the ICA residue is shown in Fig. 6, along with its
zoomed version in the vicinity of the leakages. It is worthwhile
to consider the behavior of PCA and ICA for identification of the
leakages. The first PCA source contains no information linked
to the leakages so we are quite safe in terms of constructing
the first signal subspace with only one PCA source. Meanwhile,

the second PCA source contains the leakage and the drains si-
multaneously. If we compare the second PCA source with the
first ICA source in terms of the relative strengths of the leakage
and the drains, we observe that the first ICA source contains no
information concerning the leakages. Using fourth-order statis-
tics, ICA allows to extract independent factors, which are leak-
ages and drains. Using the first ICA source for constructing the
second signal subspace will thus result in a better separation of
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Fig. 7. Sources for the data with spatial gradient taken for a window size of 14 days and an index 121. (a) and (b) First two PCA sources. (c) and (d) First two
ICA sources.

drains and leakages. Consequently, when we construct the ICA
residue, the drains will be less visual because a part of them has
already been retained for constructing the signal subspace with

ICA sources. This justifies the second step of our proposed
scheme of performing the ICA on the PCA residue.

The results obtained above highlight the fact that the energy
of the identified leakage is very low as compared to the entire
data but becomes relatively large when compared to the data of a
short duration processing window. Various window sizes were
used in order to select a suitable size for processing our data
set. Our findings revealed that a window size of 14 days gives
the best results. For smaller window sizes, the first ICA source
was found to contain a relatively significant information on the
leakages. Keeping this first source for the signal subspace con-
struction led to the result that the relative strength of the iden-
tified leakages as compared to the drains was low. In addition,
for window sizes greater than 14 days, the results were not good
and were corrupted with noise artifacts. In order to justify the vi-
ability of the proposed scheme on the entire data set, we process
the three-months data set with a sliding window of 14 days.

3) Processing in Temporal Sliding Window: As mentioned
above, it is important to process the data in windowed sections,
so we apply our processing scheme on the entire data using a
temporal sliding window of 14 days. We consider an overlap-
ping sliding window method with the results of the processing
of each 14 day block placed at the center of the corresponding
block. The processing window is then slided in steps of 16 points
with each point corresponding to an acquisition of 2 h. This
sliding step size smooths the edge effects and was chosen after
trials with different sizes. By considering processing on sliding

window of 14 days, the proposed scheme extracts the leakages,
as shown in Fig. 6. We focus here on two other cases: spatial
gradient with and without transposition of data.

Spatial Gradient: The leakages are characterized by high dy-
namics, whereas other factors such as the ground response have
low frequency behavior. Taking the spatial gradient of the data
may reduce somewhat the effect of these factors, as well as
that of seasonal variations. Following the normalization prepro-
cessing step, the spatial gradient of the data was taken. As we
observed in the previous sections, the choice of the parameters

, and depends on the singular values, as well as the in-
formation contained in the estimated sources. So, we present
results with different indices, where an index is defined here
as the combination “ .” For example, , ,
and constitute the index 121. The estimated PCA and
ICA sources are presented in Fig. 7 and the ICA residue with an
index 121 is given in Fig. 8. We notice on the first PCA source
[see Fig. 7(a)] that effects of the ground response are attenu-
ated as compared to the nongradient case [see Fig. 5(b)]. The
first ICA source in Fig. 7(c) contains little information linked to
the leakage L1, however, it is highly dominated by the informa-
tion linked to the drains. The residue obtained is energetic at the
position of leakages, as shown in Fig. 8, which gives the best
possibility of leakage identification. The residue still contains
some information linked to the drains (the horizontal lines in
the residue) but the leakages are nevertheless identified. Other
parameters have been tested in order to completely eliminate
the information linked to the drains. The results obtained with
an index 142 and the window length of 14 days are presented in
Fig. 9. The results obtained are very much similar in terms of
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Fig. 8. Residue for the data with spatial gradient taken for a window size of 14 days and an index 121. (a) Envelop of ICA residue. (b) Zoom of (a) in the vicinity
of leakages.

Fig. 9. Residue for the data with spatial gradient taken for a window size of 14 days and an index 142. (a) Envelop of ICA residue. (b) Zoom of (a) in the vicinity
of leakages.

the final residue to what were obtained for the index 121. The
effects related to precipitation and drains are observable in the
residue with their inherent characteristics. Previously, we have
also tested different window sizes. However, the best possibility
of leakage identification was obtained with an index 121 consid-
ering a window size of 14 days.

Spatial Gradient and Transposition of Data: The original
data after being normalized is passed through the spatial gra-
dient and then transposed. The idea behind data transposition
was to see if we could possibly characterize the existing struc-
tures (the drains). This means that we consider the data set
in (3) instead of and that the extracted sources depend on
time. It should, however, be noted that we use the same orienta-
tion while plotting the results, i.e., time on horizontal axis and
displacement along the fiber on vertical axis. This is done so
as to simplify the comparison with the results obtained previ-
ously. With a window size of 14 days used for the analysis and

an index 121, the ICA residue in Fig. 10 reveals energetic leak-
ages. A close observation of the leakages, however, reveals that
the identified leakages are not well localized in distance. For ex-
ample, the leakage originally located at 1.562 km is not iden-
tified at the same position in the residue. Instead, two maxima
of this leakage occur at 1.561 and 1.563 km, thereby already
introducing a localization error. The result with an index 142,
using the same window size of 14 days, is given in Fig. 11. It
can be clearly observed that there is a loss of temporal evolu-
tion of the leakages in addition to the spatial localization error.
In order to give a quantitative measure, we compare the energy
of the first identified leakage against that of the background in
terms of SNR. A window of size 3 6 centered on the leakage

is first selected. The energy of this leakage is then calcu-
lated as the sum of the squares of each element of this window.
The energy of the background is then estimated in the same
manner but this time centering the window in the background (a
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Fig. 10. Residue for the data with spatial gradient taken and transposition applied for a window size of 14 days and an index 121. (a) Envelop of ICA residue.
(b) Zoom of (a) in the vicinity of leakages.

Fig. 11. Residue for the data with spatial gradient taken and transposition applied for a window size of 14 days and an index 142. (a) Envelop of ICA residue.
(b) Zoom of (a) in the vicinity of leakages.

region in the leakage vicinity which does not contain any leak-
ages). Note that we have supposed here a constant background,
otherwise, the energy must be estimated by computing a
mean energy for different window positions. The SNR is then
calculated as:

(9)

It was found out that the SNR reduces from 70 dB for the non-
transposed case to about 30 dB for the transposed case. This re-
duction of SNR coupled with loss of temporal evolution of the
leakages and the inability to provide their exact spatial localiza-
tion render the transposed data analysis less attractive against
the nontransposed case.

We also tested the other possible case, i.e., the transposed data
without gradient. We found out that the leakages are identified
with a relatively low SNR, which might render the eventual de-
tection difficult. In the next subsection, we briefly discuss the
observations obtained from these results.

C. Discussion

We have studied the cases with various preprocessing steps,
as well as with various window sizes. In addition to that, the
choice of the number of sources to be estimated in the two steps
of the treatment, i.e., , was also studied. We found out
that for our thermometric data set, a sliding window of 14 days
gives the best identification of leakages. It is difficult to make
a clear distinction between different window sizes but the leak-
ages identified with a window of 14 days have a higher SNR.
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We observed that the analysis with the nontransposed data (i.e.,
with time on the horizontal axis and the distance on the vertical
axis) gives us a better possibility of leakage identification than
the transposed case. Moreover, the noise (the undesired effects
other than leakages, such as drains and precipitations) that ap-
pears in the final residue has lowest energy when we use non-
transposed data before processing. The notion of applying the
spatial gradient reveals the leakages more clearly, i.e., the iden-
tified leakages are relatively more energetic than what we obtain
without applying the gradient. Based on the above discussion,
we can work out the following scheme for the separation and
identification of the leakages.

First of all, the data is normalized thus rendering each column
at zero mean and unity variance. Then, the spatial gradient of the
data is taken to attenuate the slow variations. This step is fol-
lowed by the subsequent application of PCA and ICA. We per-
form this analysis using the sliding window approach, where a
window of 14 days is the best in terms of leakage identification.

V. CONCLUSION

In the present work, we have proposed a method for the
identification of leakages in dikes using the temperature data
obtained through fiber-optic DTSs. We showed how it is
possible to treat leakage identification as a source separation
problem. The sources were considered as defining the response
of the ground, the known structures in the path of the fiber
sensors (drains), the seasonal variations, the precipitations
and, of course, the leakages, the last ones being our desired
signals. We have shown that with the help of techniques based
on data decomposition and source separation, we can identify
the leakages. It was shown how certain preprocessing steps,
like data normalization and application of spatial gradient, can
enhance the possibility of leakage identification. Moreover,
we also proved with different analyses that the application of
separation techniques in the temporally sliding window gives
us a better possibility of leakage identification. The question
on the choice of the window size arises for which it was found
that a window of 14 days gives the best results. The choice
of the number of sources to be estimated by PCA and ICA
techniques was addressed by observing the estimated sources
as a function of distance along the fiber, as well as the singular
values. It was found that for the best results, a single source
should be utilized for constructing the signal subspace with
PCA. The corresponding residue should then be treated using
ICA on two sources and a second signal subspace should be
constructed with one ICA source. With the application of some
rather simple signal processing techniques, we have shown that
it is possible to identify leakages that may exist in dikes. Their
flow rate and a development of possible mathematical model
for the characterization of leakages along with the application
of multidimensional data processing techniques for a better
representation of the final residue will form the follow up of
this work.
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