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Abstract

This paper is intended to give a probabilistic representation for stochastic viscosity
solution of semi-linear reflected stochastic partial differential equations with nonlin-
ear Neumann boundary condition. We use its connection with reflected generalized
backward doubly stochastic differential equations.
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1 Introduction

Backward stochastic differential equations (BSDEs, for short) were introduced by Pardoux
and Peng [10] in 1990, and it was shown in various papers that stochastic differential equa-
tions (SDEs) of this type give a probabilistic representation for solution (at least in the vis-
cosity sence) of a large class of system of semi-linear parabolic partial differential equations
(PDEs). Thereafter a new class of BSDEs, called backward doubly stochastic (BDSDEs),
was considered by Pardoux and Peng [11]. The new kind of BSDEsseems suitable for
giving a probabilistic representation for a system of parabolic stochastic partial differential
equations (SPDEs). We refer to Pardoux and Peng [11] for the link between SPDEs and
BDSDEs in the particular case where solutions of SPDEs are regular. The more general
situation is much more delicate to treat because of the difficulties of extending the notion
of viscosity solutions to SPDEs.

∗Supported by AUF post doctoral grant 07-08, Rf:PC-420/2460
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The notion of viscosity solution for PDEs was introduced by Crandall, Ishii and Li-
ons [5] for certain first-order Hamilton-Jacobi equations.Today the theory has become an
important tool in many applied fields, especially in optimalcontrol theory and numerous
subjects related to it.

The stochastic viscosity solution for semi-linear SPDEs was introduced for the first time
in Lions and Souganidis [8]. They use the so-called ”stochastic characteristic” to remove
the stochastic integrals from a SPDEs. On the other hand, twoother ways of defining
a stochastic viscosity solution of SPDEs is considered by Buckdahn and Ma respectively
in [2, 3] and [4]. In the two first paper, they used the ”Doss-Sussman” transformation to
connect the stochastic viscosity solution of SPDEs with thesolution of associated BDSDEs.
In the second one, they introduced the stochastic viscositysolution by using the notion
of stochastic sub and super jets. Next, in order to give a probabilistic representation for
viscosity solution of SPDEs with nonlinear Neumann boundary condition, Boufoussi et al.
[1] introduced the so-called generalized BDSDEs. They refer the first technique (Doss-
Sussman transformation) of Buckdhan and Ma [2, 3].

Based on the work of Boufoussi et al. [1] and employing the penalized method from
Ren et al. [13], the aim of this paper, is to establish the existence result for semi-linear
reflected SPDEs with nonlinear Neumann boundary condition of the form:





min
{

u(t,x)−h(t,x), ∂
∂t u(t,x)− [Lu(t,x)− f (t,x,u(t,x),σ∗ (x)∇u(t,x))]

−g(t,x,u(t,x))♦Bs} = 0, (t,x) ∈ [0,T]×Θ

u(0,x) = l(x), x∈ Θ

∂u
∂n(t,x)+ φ(t,x,u(t,x)) = 0, x∈ ∂Θ,

where♦ denotes the Wick product and, thus, indicates that the differential is to understand
in Itô’s sense. HereB is a standard Brownian motion,L is an infinitesimal generator of a
diffusion processX, Θ is a connected bounded domain andf , g, φ, l ,h are some measurable
functions. More precisely, we give some direct links between the stochastic viscosity solu-
tion of the previous reflected SPDE and the solution of the following reflected generalized
BDSDE:

Yt = ξ+

Z t

0
f (s,Ys,Zs)ds+

Z t

0
φ(s,Ys)dAs+

Z t

0
g(s,Ys)dBs

−

Z t

0
Zs ↓ dWs+Kt , 0≤ t ≤ T.

ξ is the terminal value,A is a positive real-valued increasing process and↓ dWs denote the
classical backward Itô integral with respect the BrownianmotionW. Note that our work
can be considered as a generalization of two results. First the one given in [13], where the
authors treat deterministic reflected PDEs with nonlinear Neumann boundary conditions
i.e g ≡ 0. The second result appears in [1] where the non reflected SPDE with nonlinear
Neumann boundary condition is considered.

The present paper is organized as follows. An existence and uniqueness result for so-
lution to large class of reflected generalized BDSDEs is shown in Section 2. Section 3 is
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devoted to give a definition of a reflected stochastic solution to SPDEs and by the same
occasion establishes its existence result.

2 Reflected generalized backward doubly stochastic differential
equations

2.1 Notation, assumptions and definition.

The scalar product of the spaceR
d(d ≥ 2) will be denoted by< ., . > and the associated

Euclidian norm by‖.‖.
In what follows let us fix a positive real numberT > 0. First of all{Wt ,0 ≤ t ≤ T}

and{Bt , 0≤ t ≤ T} are two mutually independent standard Brownian motions with values
respectively in IRd and IRℓ, defined respectively on the two probability spaces(Ω1,F1,P1)
and(Ω2,F2,P2). LetFB = {F B

t }t≥0 denote the natural filtration generated byB, augmented
by theP1-null sets ofF1; and letF B = F B

∞ . On the other hand we consider the following
family of σ-fields:

F W
t,T = σ{Ws−WT , t ≤ s≤ T}∨N 2,

whereN 2 denotes all theP2- null sets inF2. We also denoteFW
T = {F W

t,T}0≤t≤T .
Next we consider the product space(Ω,F ,P) where

Ω = Ω1×Ω2, F = F1⊗F2 andP = P1⊗P2.

For eacht ∈ [0,T], we define

F t = F B
t ⊗F W

t,T .

Note that the collectionF = {F t , t ∈ [0,T]} is neither increasing nor decreasing and it
does not constitute a filtration.

Further, we assume that random variablesξ(ω1), ω1 ∈ Ω1 and ζ(ω2), ω2 ∈ Ω2 are
considered as random variables onΩ via the following identification:

ξ(ω1,ω2) = ξ(ω1); ζ(ω1,ω2) = ζ(ω2).

In the sequel, let{At , 0≤ t ≤ T} be a continuous, increasing andF-adapted real valued
process such thatA0 = 0.

For anyd ≥ 1, we consider the following spaces of processes:

1. M2(0,T,Rd) denote the Banach space of all equivalence classes (with respect to the
measuredP× dt) where each equivalence class contains an d-dimensional jointly
measurable stochastic processϕt ; t ∈ [0,T], which satisfies :

(i) ‖ϕ‖2
M2 = E

Z T

0
|ϕt |

2dt < ∞;

(ii) ϕt is F t -measurable , for anyt ∈ [0,T].
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2. S2([0,T],R) is the set of one dimensional continuous stochastic processes which ver-
ify:

(iii ) ‖ϕ‖2
S2 = E

(
sup

0≤t≤T
|ϕt |

2 +

Z T

0
|ϕs|

2dAs

)
< ∞;

(iv) ϕt is F t -measurable , for anyt ∈ [0,T].

Let us give the data(ξ, f ,g,φ,S) which satisfy:

(H1) ξ is a square integrable random variable which isFT -measurable such that for all
µ> 0

E
(
eµAT |ξ|2

)
< ∞.

(H2) f : Ω× [0,T]×R×R
d →R, g : Ω× [0,T]×R×R

d →R
ℓ, andφ : Ω× [0,T ]×R→R,

are three functions such that:

(a) There existF t-adapted processes{ ft , φt , gt : 0≤ t ≤ T} with values in[1,+∞)
and with the property that for any(t,y,z) ∈ [0,T]×R×R

d, and anyµ > 0, the
following hypotheses are satisfied for some strictly positive finite constantK:





f (t,y,z), φ(t,y), andg(t,y,z)areF t -measurable processes,

| f (t,y,z)| ≤ ft +K(|y|+‖z‖),

|φ(t,y)| ≤ φt +K|y|,

|g(t,y,z)| ≤ gt +K(|y|+‖z‖),

E

(
Z T

0
eµAt f 2

t dt+
Z T

0
eµAt g2

t dt+
Z T

0
eµAt φ2

t dAt

)
< ∞.

(b) There exist constantsc> 0, β < 0 and 0< α < 1 such that for any(y1,z1), (y2,z2)∈
R×R

d,





(i) | f (t,y1,z1)− f (t,y2,z2)|
2 ≤ c(|y1−y2|

2 +‖z1−z2‖
2),

(ii) |g(t,y1,z1)−g(t,y2,z2)|
2 ≤ c|y1−y2|

2 + α‖z1−z2‖
2,

(iii ) 〈y1−y2,φ(t,y1)−φ(t,y2)〉 ≤ β|y1−y2|
2.

(H3) The obstacle{St ,0≤ t ≤ T}, is a continuousF t -progressively measurable real-valued
process satisfying for anyµ> 0

E

(
sup

0≤t≤T
eµAt

∣∣S+
t

∣∣2
)

< ∞.

We shall always assume thatST ≤ ξ a.s.
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One of our main goal in this paper is the study of reflected generalized BDSDEs,

Yt = ξ+

Z t

0
f (s,Ys,Zs)ds+

Z t

0
φ(s,Ys)dAs+

Z t

0
g(s,Ys,Zs)dBs

−
Z t

0
Zs ↓ dWs+Kt, 0≤ t ≤ T. (2.1)

First of all let us give a definition to the solution of this BDSDEs.

Definition 2.1. By a solution of the reflected generalized BDSDE(ξ, f ,φ,g,S) we mean a
triplet of processes(Y,Z,K), which satisfies (2.1) such that the following holdsP- a.s

(i) (Y,Z) ∈ S2([0,T];R)×M2(0,T;Rd)

(ii) the maps 7→Ys is continuous

(iii ) Yt ≥ St , 0≤ t ≤ T,

(iv) K is an increasing process such thatK0 = 0 and
Z T

0
(Yt −St)dKt = 0.

Remark2.1. We note that although the equation (2.1) looks like a forward SDE, it is indeed
a backward one because a terminal condition is given att = 0 (Y0 = ξ). We use this technique
of reversal time due to the set-up of our problem that is, its connection to the the form of
our obstacle problem for SPDE with nonlinear Neumann boundary condition.

In the sequel,C denotes a positive constant which may vary from one line the other.

2.2 Comparison theorem

Let us give this comparison theorem related of the generalized BDSDE, which we will
need in the proof of our main result. The proof follows with the same computation as in
[15], with slight modification due to the presence of the integral with respect the increasing
processA. So we just repeat the main step.

Theorem 2.1. (Comparison theorem for generalized BDSDE) Let(Y,Z) and (Y′,Z′) be
the unique solution of the non reflected generalized BDSDE associated to(ξ, f ,φ,g) and
(ξ′, f ′,φ,g) respectively. Ifξ ≤ ξ′, f (t,Y′

t ,Z
′
t) ≤ f ′(t,Y′

t ,Z
′
t) and φ(t,Y′

t ) ≤ φ′
(t,Y′

t ), then
Yt ≤Y′

t , ∀ t ∈ [0,T].

Proof. Let us set∆Y =Y−Y′, ∆Z = Z−Z′ and(∆Y)+ = (Y−Y′)+ (with f + = sup{ f ,0}).
Using Itô’s formula, we get for all 0≤ t ≤ T

E((∆Yt)
+)2 +E

Z t

0
‖∆Zs‖

21{Ys>Y′
s}

ds

≤E((ξ−ξ′)+)2 +2E

Z t

0
(∆Ys)

+1{Ys>Y′
s}

{
f (s,Ys,Zs)− f ′(s,Y′

s,Z
′
s)

}
ds

+2E

Z t

0
(∆Ys)

+1{Ys>Y′
s}

{
φ(s,Ys)−φ′(s,Y′

s)
}

dAs

+E

Z t

0

∥∥g(s,Ys,Zs)−g(s,Y′
s,Z

′
s)

∥∥2 1{Ys>Y′
s}

ds, (2.2)
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where1Γ denote the characteristic function of a given setΓ ∈ F defined by

1Γ(ω) =

{
1 if ω ∈ Γ
0 if ω ∈ Γ.

From(H2)(b) we have

2(∆Ys)
+

{
f (s,Ys,Zs)− f ′(s,Y′

s,Z
′
s)

}
≤ 2(∆Ys)

+
{

f (s,Ys,Zs)− f (s,Y′
s,Z

′
s)

}

≤ (
1
ε

+ εc)((∆Ys)
+)2 + εc‖∆Zs‖

2,

2(∆Ys)
+

{
φ(s,Ys)−φ′(s,Y′

s)
}

≤ 2(∆Ys)
+

{
φ(s,Ys)−φ(s,Y′

s)
}

≤ β((∆Ys)
+)2

and
∥∥g(s,Ys,Zs)−g(s,Y′

s,Z
′
s)

∥∥2 1{Ys>Y′
s}

≤ c((∆Ys)
+)21{Ys>Y′

s}
+ α‖∆Zs‖

21{Ys>Y′
s}

.

Plugging these inequalities on (2.2) and choosingε =
1−α

2c
, we conclude that

E((∆Yt)
+)2 ≤ 0

which leads to∆Y+
t = 0 a.s. and soY′

t ≥Yt a.s. for allt ≤ T.

2.3 Existence and Uniqueness result

Our main goal in this section is to prove the following theorem.

Theorem 2.2. Under the hypotheses(H1), (H2) and (H3), there exists a unique solution
for the reflected generalized BDSDE(ξ, f ,φ,g,S).

Our proof is based on a penalization method but is slightly different from El Karoui et
al [7], because of the presence of the two integral with respect the increasing processA and
the Brownian motionB, and also because of the time reversal.

For eachn∈ N
∗, we set

fn(s,y,z) = f (s,y,z)+n(y−Ss)
− (2.3)

and consider the generalized BDSDE

Yn
t = ξ+

Z t

0
fn(s,Y

n
s ,Zn

s)ds+
Z t

0
φ(s,Yn

s )dAs

+
Z t

0
g(s,Yn

s ,Zn
s)dBs−

Z t

0
Zn

s ↓ dWs, (2.4)

obtained by the penalized method. We point out that the previous version of generalized
BDSDE is, in fact, the time reversal version of that considered in Boufoussi et al [1], due to
the set-up of our problem. We nonetheless use the same name because they are similar in
nature. Consequently, it is well known (see Boufoussi et al., [1]) that, there exist a unique
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(Yn,Zn) ∈ S2([0,T];R)×M2(0,T;Rd) solution of the generalized BDSDE(2.4) such that
for eachn∈ N

∗,

E

(
sup

0≤t≤T
|Yn

t |
2 +

Z T

0
‖Zn

s‖
2ds

)
< ∞.

In order to prove Theorem 2.2, we state the following lemmas that will be useful.

Lemma 2.1. Let us consider(Yn,Zn) ∈ S2([0,T];R)×M2(0,T ;Rd) solution of BDSDE
(2.4). Then for any µ> 0, there exists C> 0 such that,

sup
n∈N∗

E

(
sup

0≤t≤T
eµAt |Yn

t |
2 +

Z T

0
eµAs |Yn

s |
2 dAs+

Z T

0
eµAs‖Zn

s‖
2 ds+ |Kn

T|
2
)

< C

where

Kn
t = n

Z t

0
(Yn

s −Ss)
−ds, 0≤ t ≤ T. (2.5)

Proof. From Itô’s formula, it follows that

eµAt |Yn
t |

2 +

Z t

0
eµAs‖Zn

s‖
2 ds

≤ eµAT |ξ|2 +2
Z t

0
eµAsYn

s f (s,Yn
s ,Zn

s)ds+2
Z t

0
eµAsYn

s φ(s,Yn
s )dAs−µ

Z t

0
eµAs|Yn

s |
2dAs

+
Z t

0
eµAs‖g(s,Yn

s ,Zn
s)‖

2ds+2
Z t

0
eµAsSsdKn

s +2
Z t

0
eµAs〈Yn

s ,g(s,Yn
s ,Zn

s)dBs〉

−2
Z t

0
eµAs〈Yn

s ,Zn
s ↓ dWs〉, (2.6)

where we have used
Z t

0
eµAs(Yn

s −Ss)dKn
s ≤ 0 and the fact that

Z t

0
eµAsYn

s dKn
s =

Z t

0
eµAs(Yn

s −Ss)dKn
s +

Z t

0
eµAsSsdKn

s ≤
Z t

0
eµAsSsdKn

s .

Using(H2) and the elementary inequality 2ab≤ γa2 + 1
γ b2, ∀γ > 0,

2Yn
s f (s,Yn

s ,Zn
s) ≤ (cγ1 +

1
γ1

)|Yn
s |

2 +2cγ1‖Zn
s‖

2 +2γ1 f 2
s ,

2Yn
s φ(s,Yn

s ) ≤ (γ2−2|β|−µ)|Yn
s |

2 +
1
γ2

φ2
s,

‖g(s,Yn
s ,Zn

s)‖
2 ≤ (1+ γ3)c|Y

n
s |

2 + α(1+ γ3)‖Zn
s‖

2 +(
1
γ3

+1)g2
s.

Taking expectation in both sides of the inequality (2.6) andchoosingγ1 =
1−α

6c
, γ2−µ= |β|
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andγ3 =
1−α
2α

we obtain for allε > 0

E(eµAt |Yn
t |

2)+ |β|E
Z t

0
eµAs |Yn

s |
2dAs+

1−α
6

E

Z t

0
eµAs‖Zn

s‖
2ds

≤CE

{
eµAT |ξ|2 +

Z t

0
eµAs|Yn

s |
2ds+

Z t

0
eµAs f 2

s ds+
Z t

0
eµAsφ2

sdAs+

Z t

0
eµAsg2

sds

}

+
1
ε
E

(
sup

0≤s≤t
(eµAsS+

s )2
)

+ εE(Kn
t )2 . (2.7)

On the other hand, we get from (2.4) that for all 0≤ t ≤ T,

Kn
t = Yn

t −ξ−
Z t

0
f (s,Yn

s ,Zn
s)ds−

Z t

0
φ(s,Yn

s )dAs−
Z t

0
g(s,Yn

s ,Zn
s)dBs+

Z t

0
Zn

s ↓ dWs.

(2.8)
Then we have

E(Kn
t )2 ≤ 5E

{
eµAT |ξ|2 +eµAt |Yn

t |
2 +

∣∣∣∣
Z t

0
f (s,Yn

s ,Zn
s)ds

∣∣∣∣
2

+

∣∣∣∣
Z t

0
φ(s,Yn

s )dAs

∣∣∣∣
2

+

∣∣∣∣
Z t

0
g(s,Yn

s ,Zn
s)dBs

∣∣∣∣
2

+

∣∣∣∣
Z t

0
Zn

s ↓ dWs

∣∣∣∣
2
}

. (2.9)

It follows by Hölder inequality and the isometry equality,together with assumptions(H2)(a)
that

∣∣∣∣
Z t

0
f (s,Yn

s ,Zn
s)ds

∣∣∣∣
2

≤ 3
Z t

0
eµAs( f 2

s +K2|Yn
s |

2 +K2‖Zn
s‖

2)ds,

E

∣∣∣∣
Z t

0
g(s,Yn

s ,Zn
s)dBs

∣∣∣∣
2

≤ 3E

Z t

0
eµAs[g2

s +K2|Yn
s |

2 +K2‖Zn
s‖

2]ds.

and

E

∣∣∣∣
Z t

0
Zn

s ↓ dWs

∣∣∣∣
2

≤ E

Z t

0
eµAs|Zn

s |
2ds.

Next, to estimate
∣∣R t

0 φ(s,Yn
s )dAs

∣∣2, let us assume first thatAT is a bounded real variable.
For anyµ> 0 given in assumptions(H1) or (H2)(a), we have

∣∣∣∣
Z t

0
φ(s,Yn

s )dAs

∣∣∣∣
2

≤

(
Z t

0
e−µAsdAs

)(
Z t

0
eµAs|φ(s,Yn

s )|2dAs

)

≤
2
µ

Z t

0
eµAs(φ2

s +K2|Yn
s |

2)dAs,

since
(

Z t

0
e−µAsdAs

)
≤

1
µ
[1−e−µAT ] ≤

1
µ
.
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The general case then follows from Fatou’s lemma.
Therefore, from(2.9) together with the previous inequalities, there exists a constant

independent ofAT such that

E(Kn
t )2 ≤CE

{
eµAT |ξ|2 +eµAt |Yn

t |
2 +

Z t

0
eµAs f 2

s ds+
Z t

0
eµAsφ2

sdAs+
Z t

0
eµAsg2

sds

+

Z t

0
eµAs |Yn

s |
2ds+E

(
sup

0≤s≤t
eµAs(S+

s )2
)

+

Z t

0
eµAs |Yn

s |
2 dAs+

Z t

0
eµAs‖Zn

s‖
2ds

}
.

(2.10)

Recalling again(2.7) and takingε small enough such thatεC < min{1, |β|, 1−α
6 }, we obtain

EeµAt |Yn
t |

2 +E

Z t

0
eµAs |Yn

s |
2dAs+E

Z t

0
eµAs‖Zn

s‖
2 ds

≤CE

{
eµAT |ξ|2 +

Z t

0
eµAs|Yn

s |
2ds+

Z t

0
eµAs f 2

s ds+
Z t

0
eµAsφ2

sdAs

+
Z t

0
eµAsg2

sds+E

(
sup

0≤s≤T
eµAs(S+

s )2
)}

Consequently, it follows from Gronwall’s lemma and (2.10) that

E

{
eµAt |Yn

t |
2 +

Z t

0
eµAs |Yn

s |
2dAs+

Z t

0
eµAs‖Zn

s‖
2ds+ |Kn

T|
2
}

≤CE

{
eµAT |ξ|2 +

Z T

0
eµAs f 2

s ds+
Z T

0
eµAsφ2

sdAs+

Z T

0
eµAsg2

sds+ sup
0≤t≤T

eµAt (S+
t )2

}
.

Finally, by application of Burkholder-Davis-Gundy inequality we obtain from(2.6)

E

{
sup

0≤t≤T
eµAt |Yn

t |
2 +

Z T

0
eµAs‖Zn

s‖
2ds+ |Kn

T |
2
}

≤ CE

{
eµAT |ξ|2 +

Z T

0
eµAs f 2

s ds+
Z T

0
eµAsφ2

sdAs

+

Z T

0
eµAsg2

sds+ sup
0≤t≤T

eµAt (S+
t )2

}
,

which end the proof of this Lemma.

Now we give a convergence result which is the key point on the proof of our main result.
We begin by supposing thatg is independent from(Y,Z). More precisely, we consider the
following equation

Yt = ξ+

Z t

0
f (s,Ys,Zs)ds+

Z t

0
φ(s,Ys)dAs+

Z t

0
g(s)dBs−

Z t

0
Zs ↓ dWs+Kt.

(2.11)

The penalized equation is given by

Yn
t = ξ+

Z t

0
f (s,Yn

s ,Zn
s)ds+n

Z t

0
(Yn

s −Ss)
−ds+

Z t

0
φ(s,Yn

s )dAs

+
Z t

0
g(s)dBs−

Z t

0
Zn

s ↓ dWs. (2.12)

9



Since the sequence of functions(y 7→ n(y−St)
−)n≥1 is nondecreasing, then thanks to the

comparison theorem 2.1, the sequence(Yn)n>0 is non-decreasing. Hence, Lemma 2.1 im-
plies that there exists aF t - progressively measurable processY such thatYn

t րYt a.s. So
the following result holds.

Lemma 2.2. If g does not dependent on(Y,Z), then for each n∈ N
∗,

E

(
sup

0≤t≤T

∣∣(Yn
t −St)

−
∣∣2

)
−→ 0, as n−→ ∞.

Proof. SinceYn
t ≥Y0

t , we can w.l.o.g. replaceSt by St ∨Y0
t , i.e. we may assume that

E(sup0≤t≤T S2
t ) < ∞. We want to compare a.s.Yt andSt for all t ∈ [0,T], while we do not

know yet ifY is a.s. continuous. Indeed, let us introduce the following processes





ξ := ξ+
Z T

0
g(s)dBs

St := St +

Z T

t
g(s)dBs

Y
n
t := Yn

t +

Z T

t
g(s)dBs

Hence,

Y
n
t = ξ+

Z t

0
f (s,Yn

s ,Zn
s)ds+n

Z t

0

(
Y

n
s −Ss

)−
ds+

Z t

0
φ(s,Yn

s )dAs−

Z t

0
Zn

s ↓ dWs. (2.13)

and we define Yt := sup
n

Y
n
t .

From Theorem 2.1, we have that a.s.,Y
n
t ≥ Ỹn

t , 0≤ t ≤T, n∈N
∗, where

{
(Ỹt

n
, Z̃n

t ), 0≤ t ≤ T
}

is the unique solution of the BSDE

Ỹn
t = ST +

Z t

0
f (s,Yn

s ,Zn
s)ds+n

Z t

0
(Ss−Ỹn

s )ds+
Z t

0
φ(s,Yn

s )dAs−
Z t

0
Z̃n

s ↓ dWs.

Let G = (G t)0≤t≤T be a filtration defined byG t = F W
t,T ⊗F B

0,T . We considerν aG-stopping
time such that 0≤ ν ≤ T. So we can write

Ỹn
ν = E

{
e−nνST +

Z ν

0
e−n(ν−s) f (s,Yn

s ,Zn
s)ds+n

Z ν

0
e−n(ν−s)Ssds

+

Z ν

0
e−n(ν−s)φ(s,Yn

s )dAs | Gν

}
. (2.14)

First, with the help of Hölder inequality and assumptions(H2)(a), we have

E

(
Z ν

0
e−n(ν−s) f (s,Yn

s ,Zn
s)ds

)2

≤
1
2n

E

(
Z ν

0
| f (s,Yn

s ,Zn
s |

2ds

)

≤
C
2n

E

(
Z T

0
eµAs( f 2

s + |Yn
s |

2 +‖Zn
s‖

2)ds

)
,

10



which provide

E

(
Z ν

0
e−n(ν−s) f (s,Yn

s ,Zn
s)ds

)2

−→ 0 asn→ ∞, (2.15)

sinceE

(
R T

0 eµAs( f 2
s + |Yn

s |
2 +‖Zn

s‖
2)ds

)
< C (see Lemma 2.1 and(H2)(a)).

Next, to prove that

E

(
Z ν

0
e−n(ν−s)φ(s,Yn

s )dAs

)2

−→ 0 as n→ ∞, (2.16)

let first suppose that there existsC1 such that‖AT‖∞ < C1. Using again Hölder inequality,
Lemma 2.1 and assumption(H2)(a), we get

E

(
Z ν

0
e−n(ν−s)φ(s,Yn

s )dAs

)2

≤ E

[(
Z T

0
e−[2n(ν−s)+µAs]dAs

)(
Z T

0
eµAs|φ(s,Yn

s )|2dAs

)]

≤
1
µ
(1−e−µC1)E

(
Z T

0
eµAs(φ2

s +K|Yn
s |

2)dAs

)

≤ C

whereC is independent ofAT . The result follows by Lebesgue dominated Theorem, since
R ν

0 e−n(ν−s)φ(s,Yn
s )dAs → 0 a.s.asn→ ∞. On the other hand it is easily seen that

e−nνST +n
Z ν

0
e−n(ν−s)Ssds→ Sν1{ν>0} +ST1{ν=0} a.s.asn→ ∞. (2.17)

According to(2.15)-(2.17), the equality(2.14) provides

Ỹn
ν −→ Sν1{ν>0} +ST1{ν=0} a.s.

and inL2(Ω), asn → ∞, andYν ≥ Sν a.s. which yields thatYν ≥ Sν a.s. From this and
the Section Theorem in Dellacherie and Meyer [6], it followsthat the last inequality holds
for all t ∈ [0,T]. Further(Yn

t −St)
− ↓ 0, a.s. and from Dini’s theorem, the convergence is

uniform in t. Finally, as(Yn
t −St)

− ≤ (St −Y0
t )+ ≤ |St |+

∣∣Y0
t

∣∣, the dominated convergence
theorem ensures that

lim
n−→+∞

E( sup
0≤t≤T

|(Yn
t −St)

− |2) = 0.

Proof of Theorem 2.2.ExistenceThe proof of existence will be divided in two steps.
Step1. g does not dependent on(Y,Z).
Recall thatYn

t րYt a.s. Then, Fatou’s lemma and Lemma 2.1 ensure

E

(
sup

0≤t≤T
eµAt |Yt |

2
)

< +∞,

11



It then follows from Lemma 2.1 and Lebegue’s dominated convergence theorem that

E

(
Z T

0
|Yn

s −Ys|
2ds

)
−→ 0, as n→ ∞. (2.18)

Next, we will prove that the sequence of processesZn converges inM2(0,T ;Rd) To this
end, forn≥ p≥ 1, Itô’s formula provide

∣∣Yn
t −Yp

t

∣∣2 +

Z t

0
‖Zn

s −Zp
s‖

2ds

= 2
Z t

0
(Yn

s −Yp
s )[ f (s,Yn

s ,Zn
s)− f (s,Yp

s ,Zp
s )]ds+2

Z t

0
(Yn

s −Yp
s )[φ(s,Yn

s )−φ(s,Yp
s )]dAs

−2
Z t

0
〈Yn

s −Yp
s , [Zn

s −Zp
s ] ↓ dWs〉+2

Z t

0
(Yn

s −Yp
s )(dKn

s −dKp
s ).

From the same step as before, by using again assumptions(H2), there exists a constant
C > 0, such that

E

{∣∣Yn
t −Yp

t

∣∣2 +
Z t

0
|Yn

s −Yp
s |

2dAs+
Z t

0
‖Zn

s −Zp
s‖

2ds

}

≤ CE

{
Z t

0
|Yn

s −Yp
s |

2ds+ sup
0≤s≤T

(Yn
s −Ss)

−Kp
T + sup

0≤s≤T
(Yp

s −Ss)
−Kn

T

}
,

which, by Gronwall lemma, Hölder inequality and Lemma 2.1 implies

E

{∣∣Yn
t −Yp

t

∣∣2 +
Z t

0
|Yn

s −Yp
s |

2 dAs+
Z t

0
‖Zn

s −Zp
s‖

2 ds

}

≤ C

{
E

(
sup

0≤s≤T
|(Yn

s −Ss)
− |2

)}1/2

+C

{
E

(
sup

0≤s≤T
|(Yp

s −Ss)
− |2

)}1/2

.

Finally, from Burkhölder-Davis-Gundy’s inequality, we obtain

E

(
sup

0≤s≤T
|Yn

s −Yp
s |

2 +
Z t

0
|Yn

s −Yp
s |

2 dAs+
Z T

0
‖Zn

s −Zp
s‖

2 ds

)
−→ 0, asn, p−→ ∞,

which provides that the sequence of processes(Yn,Zn) is Cauchy in the Banach space
S2([0,T];R)×M2(0,T;Rd). Consequently, there exists a couple(Y,Z) ∈ S2([0,T];R)×
M2(0,T;Rd) such that

E

{
sup

0≤s≤T
|Yn

s −Ys|
2 +

Z t

0
|Yn

s −Ys|
2 dAs+

Z T

0
‖Zn

s −Zs‖
2 ds

)
→ 0, asn→ ∞.

On the other hand, we rewrite (2.8) as

Kn
t = Yn

t −ξ−
Z t

0
f (s,Yn

s ,Zn
s)ds−

Z t

0
φ(s,Yn

s )dAs−
Z t

0
g(s)dBs+

Z t

0
Zn

s ↓ dWs. (2.19)

By the convergence ofYn, Zn (for a subsequence), the fact thatf ,φ are continuous and
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• supn≥0 | f (s,Y
n
s ,Zs)| ≤ fs+K

{
(supn≥0 |Y

n
s |)+‖Zs‖

}
,

• supn≥0 |φ(s,Yn
s )| ≤ φs+K

{
(supn≥0 |Y

n
s |)

}
,

• E
R T

0 | f (s,Yn
s ,Zn

s)− f (s,Yn
s ,Zs)|

2ds≤CE
R T

0 ‖Zn
s −Zs‖

2ds

we get the existence of a processK which verifies for allt ∈ [0,T]

E |Kn
t −Kt|

2 −→ 0

and such thatP-a.s. and for allt ∈ [0,T],

Yt = ξ+

Z t

0
f (s,Ys,Zs)ds+

Z t

0
φ(s,Ys)dAs+Kt +

Z t

0
g(s)dBs−

Z t

0
Zs ↓ dWs.

It remains to show that(Y,Z,K) solves the reflected BSDE(ξ, f ,φ,g,S). In this fact,
since(Yn

t ,Kn
t )0≤t≤T tends to(Yt ,Kt)0≤t≤T in probability uniformly in t , the measuredKn

converges todK weakly in probability, so that
R T

0 (Yn
s −Ss)dKn

s →
R T

0 (Ys−Ss)dKs in prob-
ability asn→ ∞. On the other hand, in view of Lemma 2.2,Yt ≥ St a.s., and thus

R T
0 (Ys−

Ss)dKs ≥ 0. Moreover,
R T

0 (Yn
s −Ss)dKn

s = −n
R T

0 |(Yn
s −Ss)

−|2ds≤ 0 and passing to the
limit we get

R T
0 (Ys−Ss)dKs ≤ 0, which together with the above proved(ii) of the defini-

tion.
Step2. The general case. In light of the above step, and for any(Ȳ, Z̄) ∈ S2([0,T];R)×
M2(0,T;Rd), the BDSDE

Yt = ξ+

Z t

0
f (s,Ys,Zs)ds+

Z t

0
φ(s,Ys)dAs+

Z t

0
g(s,Ȳs, Z̄s)dBs−

Z t

0
Zs ↓ dWs+Kt

has a unique solution(Y,Z,K) ∈ S2([0,T];R)×M2(0,T;Rd). So, we can define the map-
ping

Ψ : S2([0,T];R)×M2(0,T;Rd) −→ S2([0,T];R)×M2(0,T;Rd)
(Ȳ, Z̄) 7−→ (Y,Z) = Ψ(Ȳ, Z̄).

Now, let(Y,Z), (Y′,Z′), (Ȳ, Z̄) and(Ȳ′, Z̄′)∈S2([0,T];R)×M2(0,T;Rd) such that(Y,Z)=
Ψ(Ȳ, Z̄) and (Y′,Z′) = Ψ(Ȳ′, Z̄′). Put ∆η = η−η′ for η = Y,Ȳ,Z, Z̄. By virtue of Itô’s
formula, we have

Eeµt+βAt |∆Yt |
2 +E

Z t

0
eµs+βAs‖∆Zs‖

2ds

= 2E

Z t

0
eµs+βAs∆Ys

{
f (s,Ys,Zs)− f (s,Y′

s,Z
′
s)

}
ds+2E

Z t

0
eµs+βAs∆Ys

{
φ(s,Ys)−φ(s,Y′

s)
}

dAs

+2E

Z t

0
eµs+βAs∆Ysd(∆Ks)+

Z t

0
eµs+βAs

∥∥g(s,Ȳs, Z̄s)−g(s,Ȳ′
s, Z̄′

s)
∥∥2

ds

−µE

Z t

0
eµs+βAs |∆Ys|

2ds−βE

Z t

0
eµs+βAs |∆Ys|

2dAs.
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But sinceE

Z t

0
eµs+βAs∆Ysd(Ks−K′

s) ≤ 0, then from(H2) there existsα < α′ < 1 such that

Eeµt+βAt |∆Yt |
2 + αE

Z t

0
eµs+βAs‖∆Zs‖

2ds

≤

(
1−α′

c
+1−α′−µ

)
E

Z t

0
eµs+βAs|∆Ys|

2ds+ βE

Z t

0
eµs+βAs|∆Ys|

2dAs

+cE
Z t

0
eµs+βAs|∆Ȳs|

2ds+ αE

Z t

0
eµs+βAs|∆Z̄s|

2ds

Next, denoteγ =
1−α′

c
+1−α′ and choosingµ such thatµ− γ =

α′c
α

, we obtain

c̄E

Z t

0
eµs+βAs |∆Ys|

2 ds+ |β|E
Z t

0
eµs+βAs|∆Ys|

2dAs+E

Z t

0
eµs+βAs‖∆Zs‖

2ds

≤
α
α′

(
c̄E

Z t

0
eµs+βAs |∆Ȳs|

2ds+E

Z t

0
eµs+βAs‖∆Z̄s)‖

2ds

)
,

≤
α
α′

(
c̄E

Z t

0
eµs+βAs |∆Ȳs|

2ds+ |β|E
Z t

0
eµs+βAs |∆Ȳs|

2 dAs+E

Z t

0
eµs+βAs‖∆Z̄s)‖

2ds

)

wherec̄ =
c
α

.

Now, since
α
α′

< 1, then it follows thatΨ is a strict contraction onS 2([0,T ],R)×

M 2((0,T);Rd) equipped with the norm

‖(Y,Z)‖2 = c̄E
Z t

0
eµs+βAs |Ys|

2ds+ |β|E
Z t

0
eµs+βAs|Ys|

2dAs+E

Z t

0
eµs+βAs‖Zs‖

2ds

and it has a unique fixed point, which is the unique solution ofour BDSDE.
UniquenessLet us define

{(∆Yt ,∆Zt,∆Kt) , 0≤ t ≤ T} =
{
(Yt −Y′

t ,Zt −Z′
t ,Kt −K′

t ), 0≤ t ≤ T
}

where{(Yt ,Zt ,Kt) , 0≤ t ≤ T} and
{
(Y′

t ,Z
′
t ,K

′
t ), 0≤ t ≤ T

}
denote two solutions of the

reflected BDSDE associated to the data(ξ, f ,g,φ,S).
It follows again by Itô’s formula that for every 0≤ t ≤ T

|∆Yt |
2 +

Z t

0
‖∆Zs‖

2ds

= 2
Z t

0
∆Ys( f (s,Ys,Zs)− f (s,Y′

s,Z
′
s))ds+

Z t

0
‖g(s,Ys,Zs)−g(s,Y′

s,Z
′
s)‖

2ds

+2
Z t

0
∆Ys(φ(s,Ys)−φ(s,Y′

s))dAs+

Z t

0
〈∆Ys,(g(s,Ys,Zs)−g(s,Y′

s,Z
′
s))dBs〉

−2
Z t

0
〈∆Ys,∆ZsdWs〉+2

Z t

0
∆Ysd(∆Ks).

Since
Z T

0
∆Ysd(∆Ks) ≤ 0,
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and by using similar computation as in the proof of existence, we have

E

{
|∆Yt |

2 +

Z T

0
|∆Ys|dAs+

Z T

0
‖∆Zs‖

2ds

}
≤ CE

Z T

0
|∆Ys|

2ds,

from which, we deduce that∆Yt = 0 and further∆Zt = 0. On the other hand since

∆Kt = ∆Yt −
Z t

0

(
f (s,Ys,Zs)− f (s,Y′

s,Z
′
s)

)
ds−

Z t

0

(
φ(s,Ys)−φ(s,Y′

s)
)

dAs

−
Z t

0

(
g(s,Ys,Zs)−g(s,Y′

s,Z
′
s)

)
dBs+

Z t

0
∆Zs ↓ dWs,

we have∆Kt = 0. The proof is complete now.

3 Connection to stochastic viscosity solution for reflectedSPDEs
with nonlinear Neumann boundary condition

In this section we will investigate the reflected generalized BDSDEs studied in the previous
section in order to give a probabilistic interpretation forthe stochastic viscosity solution of
a class of nonlinear reflected SPDEs with nonlinear Neumann boundary condition.

3.1 Notion of stochastic viscosity solution for reflected SPDEs with nonlinear
Neumann boundary condition

With the same notations as in Section 2, letFB = {F B
t }0≤t≤T be the filtartion generated by

B, whereB is a one dimensional Brownian motion. ByM B
0,T we denote all theFB-stopping

timesτ such 0≤ τ ≤ T, a.s.M B
∞ is the set of allFB-stopping times that are almost surely

finite. For generic Euclidean spacesE andE1 we introduce the following vector spaces of
functions:

1. The symbolC k,n([0,T]×E;E1) stands for the space of allE1-valued functions de-
fined on [0,T]×E which arek-times continuously differentiable int and n-times
continuously differentiable inx, and C k,n

b ([0,T]× E;E1) denotes the subspace of
C k,n([0,T]×E;E1) in which all functions have uniformly bounded partial deriva-
tives.

2. For any sub-σ-field G ⊆ F B
T , C k,n(G , [0,T ]×E;E1) (resp. C k,n

b (G , [0,T ]×E;E1))

denotes the space of allC k,n([0,T ]×E;E1) (resp. C k,n
b ([0,T]×E;E1)-valued random

variable that areG ⊗B ([0,T]×E)-measurable;

3. C k,n(FB, [0,T]×E;E1) (resp.C k,n
b (FB, [0,T ]×E;E1)) is the space of all random fields

φ ∈ C k,n(FT , [0,T]×E;E1 (resp. C k,n(FT , [0,T ]×E;E1), such that for fixedx ∈ E,
the mapping(t,ω1) → α(t,ω1,x) is FB-progressively measurable.

4. For any sub-σ-field G ⊆ F B and a real numberp≥ 0, Lp(G ;E) to be allE-valued
G -measurable random variableξ such thatE|ξ|p < ∞.
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Furthermore, regardless their dimensions we denote by< ., . > and|.| the inner product and
norm inE andE1, respectively. For(t,x,y) ∈ [0,T]×R

d×R, we denoteDx = ( ∂
∂x1

, ...., ∂
∂xd

),

Dxx = (∂2
xixj

)d
i, j=1, Dy = ∂

∂y, Dt = ∂
∂t . The meaning ofDxy andDyy is then self-explanatory.

Let Θ be an open connected bounded domain ofR
d (d ≥ 1). We suppose thatΘ is

smooth domain, which is such that for a functionψ ∈ C 2
b (Rd), Θ and its boundary∂Θ are

characterized byΘ = {ψ > 0}, ∂Θ = {ψ = 0} and, for anyx∈ ∂Θ, ∇ψ(x) is the unit normal
vector pointing towards the interior ofΘ.

In this section, we consider the continuous coefficientsf andφ,

f : Ω1× [0,T]×Θ×R×R
d −→ R

φ : Ω1× [0,T]×Θ×R −→ R

with the property that for allx∈ Θ, f (.,x, ., .) andφ(.,x, .) are Lipschitz continuous inx and
satisfy the conditions(H′

1) and(H2), uniformly in x, where, for some constantK > 0, the
condition(H′

1) is:

(H′
1)

{
| f (t,x,y,z)| ≤ K(1+ |x|+ |y|+‖z‖),
|φ(t,x,y)| ≤ K(1+ |x|+ |y|).

Furthermore, we shall make use of the following assumptions:

(H3) The functionσ : R
d −→R

d×d andb : R
d −→R

d are uniformly Lipschitz continuous,
with common Lipschitz constantK > 0.

(H4) The functionsl : Θ −→R andh : [0,T]×Θ −→R are continuous such that, for some
K > 0,

|l(x)| ≤ K(1+ |x|)

|h(t,x)| ≤ K(1+ |x|)

h(0,x) ≤ l(x), x∈ Θ.

(H5) The functiong∈ C 0,2,3
b ([0,T]×Θ×R;R).

Let us consider the related obstacle problem for SPDE with nonlinear Neumann boundary
condition:

O P ( f ,φ,g,h,l)





min

{
u(t,x)−h(t,x), −

∂u(t,x)
∂t

− [Lu(t,x)+ f (t,x,u(t,x),σ∗(x)Dxu(t,x))]dt

−g(t,x,u(t,x))♦Bs} = 0, (t,x) ∈ [0,T]×Θ

u(0,x) = l(x), x∈ Θ

∂u
∂n

(t,x)+ φ(t,x,u(t,x)) = 0, (t,x) ∈ [0,T]×∂Θ,
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where

L =
1
2

d

∑
i, j=1

(σ(x)σ∗(x))i, j
∂2

∂xi∂x j
+

d

∑
i=1

bi(x)
∂

∂xi
, ∀x∈ Θ,

and

∂
∂n

=
d

∑
i=1

∂ψ
∂xi

(x)
∂

∂xi
, ∀x∈ ∂Θ.

As in the work of Buckdahn-Ma [2, 3], our next goal is to define the notion of stochastic
viscosity toO P ( f ,φ,g,h). So, we shall recall some of their notation. Letη ∈ C (FB, [0,T]×
R

d ×R) be the solution to the equation

η(t,x,y) = y+
Z t

0
〈g(s,x,η(s,x,y)),◦dBs〉,

where the stochastic integrals have to be interpreted in Stratonowich sense. We have the
following relation with the standard Itô integral:
Z t

0
〈g(s,x,η(s,x,y)),◦dBs〉 =

1
2

Z t

0
〈g,Dyg〉(s,x,η(s,x,y)ds+

Z t

0
〈g(s,x,η(s,x,y)),dBs〉.

Under the assumption(H5) the mappingy 7→ η(s,x,y) defines a diffeomorphism for all
t,x, a.s. Hence if we denote byε(s,x,y) its y-inverse, one can show that (cf. Buckdahn and
Ma [2])

ε(t,x,y) = y−
Z t

0
〈Dyε(s,x,y)g(s,x,y),◦dBs〉. (3.1)

To simplify the notation in the sequel we denote

Af ,g(ϕ(t,x)) = Lϕ(t,x)+ f (t,x,ϕ(t,x),σ∗Dxϕ(t,x))−
1
2
(g,Dyg)(t,x,ϕ(t,x))

andΨ(t,x) = η(t,x,ϕ(t,x)).

Definition 3.1. A random fieldu∈ C
(
FB, [0,T]×Θ

)
is called a stochastic viscosity sub-

solution of the stochastic obstacle problemO P ( f ,φ,g,h,l) if u(0,x) ≤ l (x), for all x∈ Θ, and
if for any stopping timeτ ∈M B

0,T , any state variableξ ∈ L0
(
F B

τ ,Θ
)
, and any random field

ϕ ∈ C 1,2
(
F B

τ , [0,T]×R
d
)
, with the property that forP-almost allω ∈ {0 < τ < T} the

inequality
u(t,ω,x)−Ψ(t,ω,x) ≤ 0 = u(τ(ω),ξ(ω))−Ψ(τ(ω),ξ(ω))

is fulfilled for all (t,x) in some neighborhoodV (ω,τ(ω) ,ξ(ω)) of (τ(ω) ,ξ(ω)), the fol-
lowing conditions are satisfied:

(a) on the event{0 < τ < T}∩{ξ ∈ Θ} the inequality

min
{

u(τ,ξ)−h(τ,ξ),A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ)
}
≤ 0 (3.2)

holds,P-almost surely;

17



(b) on the event{0 < τ < T}∩{ξ ∈ ∂Θ} the inequality

min
[
min

{
u(τ,ξ)−h(τ,ξ),A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ)

}
,

−
∂Ψ
∂n

(τ,ξ)−φ(τ,ξ,Ψ(τ,ξ))

]
≤ 0 (3.3)

holds,P-almost surely.

A random fieldu ∈ C
(
FB, [0,T ]×Θ

)
is called a stochastic viscosity supersolution of the

stochastic obstacle problemO P ( f ,φ,g,h,l) if u(0,x) ≥ l (x), for all x ∈ Θ, and if for any
stopping timeτ ∈ M B

0,T , any state variableξ ∈ L0
(
F B

τ ,Θ
)
, and any random fieldϕ ∈

C 1,2
(
F B

τ , [0,T]×R
d
)
, with the property that forP-almost allω ∈ {0 < τ < T} the in-

equality
u(t,ω,x)−Ψ(t,ω,x) ≥ 0 = u(τ(ω),ξ(ω))−Ψ(τ(ω),ξ(ω))

is fulfilled for all (t,x) in some neighborhoodV (ω,τ(ω) ,ξ(ω)) of (τ(ω) ,ξ(ω)), the fol-
lowing conditions are satisfied:

(a) on the event{0 < τ < T}∩{ξ ∈ Θ} the inequality

min
{

u(τ,ξ)−h(τ,ξ),A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ)
}
≥ 0 (3.4)

holds,P-almost surely;

(b) on the event{0 < τ < T}∩{ξ ∈ ∂Θ} the inequality

max
[
min

{
u(τ,ξ)−h(τ,ξ),A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ)

}
,

−
∂Ψ
∂n

(τ,ξ)−φ(τ,ξ,Ψ(τ,ξ))

]
≥ 0 (3.5)

holds,P-almost surely.

Finally, a random fieldu∈ C
(
FB, [0,T]×Θ

)
is called a stochastic viscosity solution of

the stochastic obstacle problemO P ( f ,φ,g,h,l) if it is both a stochastic viscosity subsolution
and a supersolution.

Remark3.1. Observe that iff , φ are deterministic andg≡ 0, the flowη becomesη(t,x,y) =
y, ∀ (t,x,y) and Ψ(t,x) = ϕ(t,x). Thus, definition 3.1 coincides with the definition of
(deterministic) viscosity solution of PDEO P ( f ,φ,0,h,l) given by Ren et al in [13].

3.2 Existence of stochastic viscosity solutions for SPDE with nonlinear Neu-
mann boundary condition

The main objective of this subsection is to show how the stochastic obstacle problem
O P ( f ,φ,g,h,l) is related to reflected generalized BDSDE(2.1) introduced in Section 1. For
this end we recall some known results on reflected diffusions. We consider

s 7→At,x
s is increasing

18



Xt,x
s = x+

Z t

s
b
(
Xt,x

r

)
dr +

Z t

s
σ

(
Xt,x

r

)
d ↓Wr +

Z t

s
∇ψ

(
Xt,x

r

)
dAt,x

r , ∀s∈ [0, t] ,

At,x
s =

Z t

s
I{Xt,x

r ∈∂Θ}dAt,x
r . (3.6)

We note here that due to the direction of the Itô integral,(3.6) should be viewed as going
from t to 0 (i.e.,Xt,x

0 should be understood as the terminal value of the solutionXt,x ). It
is then clear (see [9]) that under conditions(H3) on the coefficientsb andσ, (3.6) has a
unique strongFW-adapted solution. We refer to Pardoux and Zhang [12]( Propositions 3.1
and 3.2), and Słomiǹski [14],for the following regularityresults.

Proposition 3.1. There exists a constant C> 0 such that for all for all t≤ t1 < t2 ≤ T and
x1,x2 ∈ Θ, the following inequalities hold:

E

[
sup

t2≤s≤T

∣∣Xt1,x1
s −Xt2,x2

s

∣∣4
]
≤C

{
|t2− t1|

2 + |x1−x2|
4.

}

and

E

[
sup

t2≤s≤T

∣∣At1,x1
s −At2,x2

s

∣∣4
]
≤C

{
|t2− t1|

2 + |x1−x2|
4.

}
.

Moreover, for all p≥ 1, there exists a constant Cp such that for all(t,x) ∈ R+×Θ,

E
(∣∣At,x

s

∣∣p)
≤Cp(1+ tp)

and for each µ,0 < s< t, there exists a constant C(µ, t) such that for all x∈ Θ,

E

(
eµAt,x

s

)
≤C(µ, t).

Now, we consider the following reflected generalized BDSDE:for (t,x) ∈ [0,T]×Θ




Yt,x
s = l

(
Xt,x

0

)
+

Z s

0
f
(
r,Xt,x

r ,Yt,x
r ,Zt,x

r

)
dr +

Z s

0
g
(
r,Xt,x

r ,Yt,x
r

)
dBr

+
Z s

0
φ
(
r,Xt,x

r ,Yt,x
r

)
dAt,x

r +Kt,x
s −

Z s

0

〈
Zt,x

r ,↓ dWr
〉
,

Yt,x
s ≥ h(s,Xt,x

s )such that
Z T

0

(
Yt,x

r −h(r,Xt,x
r )

)
dKt,x

r = 0, 0≤ s≤ t.

(3.7)

where the coefficientsl , f , g, φ andh satisfy the hypotheses(H′
1), (H2),(H4) and(H5).

Proposition 3.2. Let the ordered triplet(Yt,x
s ,Zt,x

s ,Kt,x
s ) be a solution of the BDSDE(3.7).

Then the random field(s, t,x) 7→Yt,x
s , (s, t,x) ∈ [0,T]× [0,T]×Θ is almost surely continu-

ous.

Proof. If we denote byEFs the conditional expectation with respect toFs, then we can show
that there exists a constantC > 0 such that for all(t,x), (t ′,x′) ∈ [0,T ]×Θ the following
inequality holds
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∣∣∣Yt,x
s −Yt ′,x′

s

∣∣∣
2

≤CE
Fs

[
eµkT

∣∣∣l(Xt,x
0 )− l(Xt ′,x′

0 )
∣∣∣
2
+

Z T

0
eµkr

∣∣∣ f
(
r,Xt,x

r ,Yt,x
r ,Zt,x

r

)
− f

(
r,Xt ′,x′

r ,Yt ′,x′
r ,Zt ′,x′

r

)∣∣∣
2
dr

+
Z T

0
eµkr

∣∣φ
(
r,Xt,x

r ,Yt,x
r

)∣∣2 d|A|r +
Z T

0
eµkr

∣∣∣φ
(
r,Xt,x

r ,Yt,x
r

)
−φ

(
r,Xt ′,x′

r ,Yt ′,x′
r

)∣∣∣
2
dAt ′,x′

r

+

Z T

0
eµkr

(
h(r,Xt,x

r )−h(r,Xt ′,x′
r )

)
d∆Kr

]
,

where∆K := Kt,x−Kt ′,x′ , A= At,x−At ′,x′ andk ,
∣∣A

∣∣+At ′,x′ where
∣∣A

∣∣ is the total variation
of the processA. Using the assumptions(H′

1) and(H2), we get

∣∣∣Yt,x
s −Yt ′,x′

s

∣∣∣
2

≤CE
Fs

[
eµkT

∣∣∣l(Xt,x
0 )− l(Xt ′,x′

0 )
∣∣∣
2
+

Z T

0
eµkr

∣∣∣Xt,x
r −Xt ′,x′

r

∣∣∣
2
dr

+

Z T

0
eµkr

∣∣∣Xt,x
r −Xt ′,x′

r

∣∣∣
2
dAt ′,x′

r +

Z T

0
eµkr

(
h(r,Xt,x

r )−h(r,Xt ′,x′
r )

)
d∆Kr

+ sup
0≤s≤T

eµkT

(
1+

∣∣Xt,x
s

∣∣2
+

∣∣Yt,x
s

∣∣2
)∣∣∣At,x−At ′,x′

∣∣∣
T

]
.

It follows using Proposition 3.1 that
∣∣∣At,x−At ′,x′

∣∣∣
T
→0 P-a.s., and∀s∈ [0, t],

∣∣∣Xt,x
s −Xt ′,x′

s

∣∣∣
2
→

0 P-a.s. as(t,x)→ (t ′,x′). Thus, the continuity follows from the continuity of the functions
l andh.

Let now define

u(t,x) = Yt,x
t , (t,x) ∈ [0,T]×Θ. (3.8)

Theorem 3.1. u∈C(FB, [0,T]×Θ) is a stochastic viscosity solution of obstacle problem
O P ( f ,φ,g,h,l).

Proof. For each(t,x) ∈ [0,T]×Θ,n≥ 1, let{nYt,x
s ,nZt,x

s , 0≤ s≤ t} denote the solution of
the generalized BDSDE

nYt,x
s = l(Xt,x

0 )+
Z s

0
f (r,Xt,x

r ,nYt,x
r ,nZt,x

r )dr +n
Z s

0
(nYt,x

r −h(r,Xt,x
r ))−dr

+
Z s

0
φ(r,Xt,x

r ,nYt,x
r )dAt,x

r

Z s

0
g(r,Xt,x

r ,nYt,x
r )dBr −

Z s

0

nZt,x
r ↓ dWr .

It is know from Boufoussi et al [1] that

un(t,x) = nYt,x
t , (t,x) ∈ [0,T]×Θ,
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is the stochastic viscosity solution of the parabolic SPDE:





∂un(t,x)
∂t +[Lun(t,x)+ fn(t,x,un(t,x),σ∗Dxun(t,x))]+g(t,x,un(t,x))♦Bt = 0,

(t,x) ∈ [0,T]×Θ,

un(0,x) = l(x), x∈ Θ,

∂un
∂n (t,x)+ φ(t,x,un(t,x)) = 0, (t,x) ∈ [0,T]×∂Θ.

(3.9)

where fn(t,x,y,z) = f (t,x,y,z)+n(y−h(t,x))− .
However, from the results of the previous section, for each(t,x) ∈ [0,T]×R

d,

un(t,x) ↑ u(t,x) a.s. asn→ ∞.

Sinceun andu are continuous, it follows from Dini’s theorem that the above conver-
gence is uniform on any compacts.

We now show thatu is a stochastic viscosity subsolution of obstacle problem of O P ( f ,φ,g,h,l).
Let (τ,ξ)∈M B

0,T ×L0(F B
τ ;Θ) satisfyingu(τ,ξ)> h(τ,ξ), P-a.s. andϕ∈ C 1,2

(
F B

τ , [0,T]×Θ
)

such that forP-almost allω ∈ {0 < τ < T}, we have

u(ω, t,x)−Ψ(ω, t,x) < 0 = u(ω,τ(ω),ξ(ω))−Ψ(ω,τ(ω),ξ(ω)) (3.10)

for all (t,x) in some neighborhoodV (ω,τ(ω) ,ξ(ω)) of (τ(ω) ,ξ(ω)).
According the classical Lemma 6.1 in [5], there exists sequence of random variables

(τk,ξk)k≥0 such that(τk,ξk)→ (τ,ξ), P-a.s., andϕk ∈ C 1,2
(
F B

τk
, [0,T]×Θ

)
satisfyingϕk →

ϕ, P-a.s., such that

unk(ω, t,x)−Ψk(ω, t,x) < 0 = unk(ω,τk(ω),ξk(ω))−Ψk(ω,τk(ω),ξk(ω))

for all (t,x) in some neighborhoodV (ω,τk (ω) ,ξk (ω)) ⊂ V (ω,τ(ω) ,ξ(ω)) for k large
enough.

On other hand, fork enough large, let us define

τ̄k = inf{t, unk(t,x)−Ψk(t,x) = 0}, x∈ Θ.

It easily seen that(τ̃k)k = (τ̄k)k ∩ (τk)k is a sequence of stopping time satisfiedτ̃k → τ.
Moreover, denoting by(ξ̃k)k the subsequence of(ξk)k associated to(τ̃k)k, it follows that
(τ̃k, ξ̃k) ∈M B

0,T ×L0(F B
τk

;Θ) and

unk(ω, t,x)−Ψk(ω, t,x) < 0 = unk(ω, τ̃k(ω), ξ̃k(ω))−Ψk(ω, τ̃k(ω), ξ̃k(ω)) (3.11)

for all (t,x) in some neighborhoodV (ω, τ̃k (ω) , ξ̃k (ω)) ⊂ V (ω,τ(ω) ,ξ(ω)) for k large
enough.

Thus, sinceun is a viscosity solution of SPDE(3.9) and according to(3.11), we get:
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(a) On the event{0 < τ̃k < T}∩{ξ̃k ∈ Θ} the inequality

A fnk ,g

(
Ψk

(
τ̃k, ξ̃k

))
−DyΨk

(
τ̃k, ξ̃k

)
Dtϕk

(
τ̃k, ξ̃k

)
≤ 0

holds,P-a.s.

(b) On the event{0 < τ̃k < T}∩{ξ̃k ∈ ∂Θ} the inequality

min
[
A fnk ,g

(
Ψk

(
τ̃k, ξ̃k

))
−DyΨk

(
τ̃k, ξ̃k

)
Dtϕk

(
τ̃k, ξ̄k

)
,

−
∂Ψk

∂n
(τ̃k, ξ̃k)−φ(τ̃k, ξ̃k,Ψk(τ̃k, ξ̃k))

]
≤ 0

holds,P-a.s.

From the assumption thatu(τ,ξ) > h(τ,ξ) and the uniform convergence ofun, it follows
that fork large enoughunk(τ̃k, ξ̃k) > h(τ̃k, ξ̃k).

Therefore, taking the limit ask→ ∞ in the above inequality yields:

(a) On the event{0 < τ < T}∩{ξ ∈ Θ} the inequality

A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ) ≤ 0

holds,P-a.s.

(b) On the event{0 < τ < T}∩{ξ ∈ ∂Θ} the inequality

min[A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ) ,

−
∂Ψ
∂n

(τ,ξ)−φ(τ,ξ,Ψ(τ,ξ))

]
≤ 0

holds,P-a.s.

This proved thatu is a stochastic viscosity subsolution ofO P f ,φ,g,h,l .
By the same argument as above one can show thatu given by(3.8) is also a stochastic

viscosity supersolution ofO P f ,φ,g,h,l .
We conclude thatu is a stochastic viscosity ofO P f ,φ,g,h,l , which end the proof.
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