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GENERALIZED BACKWARD DOUBLY SDEs

AUGUSTE AMAN* T
U.F.R.M.I, Université de Cocody,
582 Abidjan 22, Cote d’'lvoire

N. MRHARDY ¥
F.S.S.M, Université Cadi Ayyad,
2390, Marrakech, Maroc

Abstract

This paper is intended to give a probabilistic represemtetir stochastic viscosity
solution of semi-linear reflected stochastic partial défgial equations with nonlin-
ear Neumann boundary condition. We use its connection willeated generalized
backward doubly stochastic differential equations.

AMS Subject Classification: 60H15; 60H20

Keywords: Backward doubly SDEs, Stochastic PDEs, Obstacle prob#tochastic vis-
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1 Introduction

Backward stochastic differential equations (BSDEs, farghwere introduced by Pardoux
and Peng[[10] in 1990, and it was shown in various papers thehastic differential equa-
tions (SDESs) of this type give a probabilistic representafior solution (at least in the vis-
cosity sence) of a large class of system of semi-linear jpdicabartial differential equations
(PDESs). Thereafter a new class of BSDEs, called backwarblgatochastic (BDSDES),
was considered by Pardoux and Pehd [11]. The new kind of BSREms suitable for
giving a probabilistic representation for a system of palialstochastic partial differential
equations (SPDEs). We refer to Pardoux and Pgrg [11] foritkebetween SPDEs and
BDSDEs in the particular case where solutions of SPDEs ayj@lae The more general
situation is much more delicate to treat because of the diififts of extending the notion
of viscosity solutions to SPDEs.

*Supported by AUF post doctoral grant 07-08, Rf:PC-420/2460
Taugusteaman5@yahoo.fr, Corresponding author.
*n.mrhardy@ucam.ac.ma



The notion of viscosity solution for PDEs was introduced byr@lall, Ishii and Li-
ons [$] for certain first-order Hamilton-Jacobi equatiofieday the theory has become an
important tool in many applied fields, especially in optinaahtrol theory and numerous
subjects related to it.

The stochastic viscosity solution for semi-linear SPDEs inroduced for the first time
in Lions and Souganidig][8]. They use the so-called "stobbaharacteristic” to remove
the stochastic integrals from a SPDEs. On the other hand,other ways of defining
a stochastic viscosity solution of SPDEs is considered bgkBahn and Ma respectively
in [B, @] and [#]. In the two first paper, they used the "Doss$Suan” transformation to
connect the stochastic viscosity solution of SPDEs wittstilation of associated BDSDEs.
In the second one, they introduced the stochastic viscasiytion by using the notion
of stochastic sub and super jets. Next, in order to give aghitibtic representation for
viscosity solution of SPDEs with nonlinear Neumann boupdandition, Boufoussi et al.
[[[] introduced the so-called generalized BDSDEs. Theyrrtfe first technique (Doss-
Sussman transformation) of Buckdhan and Md]2, 3].

Based on the work of Boufoussi et a[] [1] and employing theatized method from
Ren et al. [AB], the aim of this paper, is to establish thetemize result for semi-linear
reflected SPDEs with nonlinear Neumann boundary conditidheoform:

min{u(t,x) —h(t,x), %u(t,x) — [Lu(t,x) — f(t,x,u(t,x),0" (X)Ou(t,x))]
—g(t,x,u(t,x))0Bs} =0, (t,x) €[0,T]x 0O

u(0,x) =1(x), x€®©

GU(t, %) +@(t,x u(t,x)) =0, x€ O,

where{ denotes the Wick product and, thus, indicates that therdiftél is to understand

in Ité’s sense. Her® is a standard Brownian motioh,is an infinitesimal generator of a
diffusion proces«, @ is a connected bounded domain andgj, @, |, h are some measurable
functions. More precisely, we give some direct links betwte stochastic viscosity solu-
tion of the previous reflected SPDE and the solution of thieiohg reflected generalized
BDSDE:

t t t
Y= &+ | f(sY%azgdst [ osYodA+ [ gls o) de,

t
—/ZsldV\é+Kt,0§t§T.
0

¢ is the terminal valueA is a positive real-valued increasing process andil\; denote the
classical backward Itd integral with respect the Browmaotion W. Note that our work
can be considered as a generalization of two results. Rigspe given in[[13], where the
authors treat deterministic reflected PDEs with nonlineatuidann boundary conditions
i.e g=0. The second result appears jh [1] where the non reflectecES#D nonlinear
Neumann boundary condition is considered.

The present paper is organized as follows. An existence aiggieness result for so-
lution to large class of reflected generalized BDSDEs is shimwSection 2. Section 3 is
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devoted to give a definition of a reflected stochastic satutao SPDEs and by the same
occasion establishes its existence result.

2 Reflected generalized backward doubly stochastic differgial
equations

2.1 Notation, assumptions and definition.

The scalar product of the spaBé(d > 2) will be denoted by< .,. > and the associated
Euclidian norm byj|.||.

In what follows let us fix a positive real numb@&r> 0. First of all{W,0<t <T}
and{B;, 0 <t < T} are two mutually independent standard Brownian motionk watues
respectively in R and R, defined respectively on the two probability spaf@s, 71,P1)
and(Qz, 72,P,). LetFB = { 7,B};>0 denote the natural filtration generatedfyaugmented
by thePs-null sets of7q; and let¥ B = 7.B. On the other hand we consider the following
family of o-fields:

T =0{We—Wr t <s<T}vao,

wherea, denotes all th@,- null sets inF,. We also denot&¥ = {ftf’}’}og@.
Next we consider the product spa@®, ¥ ,P) where

Q=0 xQ, F =F1@F, andP =P1®P,.
For eacht € [0,T], we define
Fi=FC®R F 1

Note that the collectiofr = {7, t € [0, T]} is neither increasing nor decreasing and it
does not constitute a filtration.

Further, we assume that random variabi¢an ), w; € Q1 and{(uy), w, € Q, are
considered as random variables@via the following identification:

&(wy, ) = &(w); (o) = (wy).

In the sequel, lefA;, 0 <t < T} be a continuous, increasing aRehdapted real valued
process such th#y = 0.
For anyd > 1, we consider the following spaces of processes:

1. M?(0,T,RY) denote the Banach space of all equivalence classes (wjikae® the
measuredP x dt) where each equivalence class contains an d-dimensioimdlyjo
measurable stochastic procgsd € [0, T], which satisfies :

T
() 1913 = [ jor Pt < e
(i) ¢; is F;-measurable , for anye [0, T].



2. ([0, T],R) is the set of one dimensional continuous stochastic preseskich ver-
ify:
i) 1912 =5 (sup o2+ [ l0sZan,) <o
0<t<T 0
(iv) ¢; is F-measurable , for anye [0, T].
Let us give the dat&, f, g, S) which satisfy:

(H1) & is a square integrable random variable whichFismeasurable such that for all
u>0
E (é"7[E%) < oo

(H2) F:Qx[0,T]xRxRY—-R,g:Qx[0,T]xRxRI - R andp: Qx [0,T] xR — R,
are three functions such that:

(a) There existr;-adapted processés;, @, g : 0 <t < T} with values in[1,+o)
and with the property that for an,y,z) € [0,T] x R x RY, and anyu > 0, the
following hypotheses are satisfied for some strictly pesifinite constank:

( f(t,y,2), @(t,y), andg(t,y, z) areF-measurable processes
[f(t,y.2)] < fe+ Kyl +112]),
9(t,y)| < @ +Klyl,

9(t,y,2)| < g+ K|yl +I|zl),

T T T
A 2 A 2 A o
E(A e ﬂdL+A e gdt+A e @dA>< .

(b) There exist constants> 0, B < 0 and O< a < 1 such that for anyy1,z), (y2,2) €
R x RY,

(I) ’ f(t7y17zl) - f(t7y2722)’2 < C(‘yl _y2’2+ HZ]_ - 22H2)7
(") ‘g(tvylvzl) - g(t7y2722)’2 < C’yl —Y2‘2+0‘Hzl - 22H27
(iii ) (y1 —y2,0(t,y1) — @(t,y2)) < Blyr —y2|*.

(H3) The obstacldS,0 <t < T}, is acontinuoug;-progressively measurable real-valued
process satisfying for any> 0

(supe“’*\SW)

0<t<T

We shall always assume that < ¢ a.s.
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One of our main goal in this paper is the study of reflected gdized BDSDEsS,

t t t
VR /O (S Yo, Zo)ds+ /0 oS, Yo)dAs + /O oS Y, Z) dBs
t
—/zsidV\é+Kt, 0<t<T. 2.1)
0

First of all let us give a definition to the solution of this BDEs.

Definition 2.1. By a solution of the reflected generalized BDS[ZEf, @,g,S) we mean a
triplet of processes$Y,Z,K), which satisfies[(2] 1) such that the following hollsa.s

(i) (¥,2) € ([0, T;;R) x M*(0, T;RY)
(i) the maps+— Ys is continuous

i)y >g, 0<t<T,
T
(iv) K is an increasing process such tKgt=0 and/ (% —§)dK; =0.
0

Remark2.1 We note that although the equati¢nIplooks like a forward SDE, it is indeed
a backward one because a terminal condition is givee=&t (Yo = §). We use this technique
of reversal time due to the set-up of our problem that is, dtsnection to the the form of
our obstacle problem for SPDE with nonlinear Neumann bogndandition.

In the sequelC denotes a positive constant which may vary from one line thero

2.2 Comparison theorem

Let us give this comparison theorem related of the gene@IBDSDE, which we will
need in the proof of our main result. The proof follows witle ttame computation as in
[L3), with slight modification due to the presence of the gnée with respect the increasing
processA. So we just repeat the main step.

Theorem 2.1. (Comparison theorem for generalized BDSDE) étZ) and (Y’,Z’) be
the unique solution of the non reflected generalized BDSREa@ated to(§, f, @ g) and
(€'.1',¢.0) respectively. 1€ <&, f(,¥.Z) < f'(t.Y/.Z) and @(t.Y/) < @ (t.Y), then
Y <Y/, Vte[0,T].

Proof. Letus se\Y =Y —Y',AZ=Z—Z"and(AY)" = (Y —Y’)* (with f* =sup{f,0}).
Using Itd’s formula, we getforall &€t < T

t
E((M)*)2+E/o IAZs*1v,vy) ds
t
<E((& —E’)+)2+2E/o (AY) " Livvy { (8. Ys,Zs) — T/(5,Ye, Z5) } dIs
t
2R /o (AY) " Lyovyy {9(SYs) — (S, Ye) } dAS

t
+E/O |9(s,Ys, Zs) —9(57Y§72§)|’21{Y5>Y5'}d3 (2.2)



wherelr denote the characteristic function of a givenlset F defined by
1 (@) = lifwel
Oifwer.
From(Hz)(b) we have

2(AY) {F(SYs,Zs) — F(SYLZY) < 2(AY)* {f(SYs,Zs) — F(SYL,Z)}

< (Z+eo)(AY) 2+ eclazi?
20 {o(s Yo) —d (s YD)} < 28" {@(sYs) —0(s YI)}
< B((AYs)")?

and
2
19(sYs,Zs) —9(s. Y4, Z9) | Lpvovy < ((AYs) ") Lpvovsy + O|AZs )P Ly,
. . o . 1-a
Plugging these inequalities oh (2.2) and choosmgT, we conclude that

E((av)")?<0

which leads t\Y;* =0 a.s. and s¥/ > Y; a.s. for allt <T. O

2.3 Existence and Uniqueness result
Our main goal in this section is to prove the following thaore

Theorem 2.2. Under the hypothese#11), (H2) and (H3z), there exists a unique solution
for the reflected generalized BDSDE f,9,9,S).

Our proof is based on a penalization method but is slighfffieidint from El Karoui et
al [[d], because of the presence of the two integral with retsipe increasing procegsand
the Brownian motiorB, and also because of the time reversal.

For eachn € N*, we set

fa(sy,2) = f(sy.2 +ny—S)~ (2.3)
and consider the generalized BDSDE
t t
YN = E+/ fn(s,Ys”,ZQ)ds+/ o(s, Yo dAs
0 0
t t
+ [ ats v znas - 20 aw (2.4)
obtained by the penalized method. We point out that the pusviersion of generalized
BDSDE is, in fact, the time reversal version of that considen Boufoussi et a[]1], due to

the set-up of our problem. We nonetheless use the same naraeseethey are similar in
nature. Consequently, it is well known (see Boufoussi eff#) that, there exist a unique
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(YN, Z") € S([0, T];R) x M2(0, T; RY) solution of the generalized BDSD(.4) such that
for eachn € N*,

i
i ( sup N+ [ 128)%08) <o
o<t<T 0

In order to prove Theorefn 2.2, we state the following lemrhas will be useful.

Lemma 2.1. Let us conside(Y",Z") € S([0,T];R) x M?(0,T;RY) solution of BDSDE
(B-4). Then for any p> 0, there exists C- 0 such that,

T T
supk ( sup @ 72+ [ e aaa+ [T e 20| s kIR <C
0 0

neN* o<t<T

where
t
KD = n/0 (Y'—S)-ds 0<t<T. (2.5)
Proof. From Itd’s formula, it follows that
2 t 2
¢RI+ [ e Z0)2ds
0
t t t
ge“AT|E|2+2/ e“ASYS”f(s,YS”,ZQ)ds+2/ e“Asstcp(s,Ys”)dAs—p/ s Yl 2dAs
0 0 0
t t t
+ [ Mg e 2|25+ 2 [ esdkD+2 [ @V g(s Y. Z0)dBy)
0 0 0

t
2 [z | ), (2.6)
0
t
where we have usedl e5(Y!'— S)dK < 0 and the fact that
0

t t t t
/ Y IKD — / (Y — )dKD + / ASAKD < / SASAKD.
0 0 0 0
Using (H2) and the elementary inequalitpB < ya? + $b?, vy > 0,

1
2stf(vasn7ZQ) < (Cyl+ ﬁ)‘st‘z +2CV1HZQHZ+ 2y1 fszv

1
2Y'9(sYg) < (y2_2|B|_u)|st|2+%q€a
1
lo(s Y&, Z9)* < (1+V3)C|Ys”|2+0((1+V3)H22||2+(%+1)9§-

Taking expectation in both sides of the inequalfty](2.6) emabsingy; = 16—00(’ Yo— U= B



andy; = 12_—0(0( we obtain for alle > 0
A yn|2 t As N2 l1-a t A || 7Nn|2
E(@ )+ [BE | N PdA+ = E [ ¢z ds
1 1 1 1
§CE{e“A¢|E|2+/ e“A-*|YS”|2dS+/ eIJASfSZdS—i—/ e“’*scpgdAer/ @%ggds}
0 0 0 0
+iE ( sup(e“ASS“g)2> + & (KM)?. (2.7)
€  \o«sc<t
On the other hand, we get frorh (2.4) that for aka@ < T,
1 1 1 1
Kt”:Yt”—E—/ f(s,vsn,zg)ds—/ q)(s,Ys”)dAs—/ g(s,YS”,ZQ)stJr/ Z0 | dW.
0 0 0 0
2.8)

Then we have

t 2
s < sa{ e e[ e s
0

t 2 t 2 t 2
+‘/0 oS V) +'/0 o(s Y, Z0)dB +'/0 z } (2.9)

It follows by Holder inequality and the isometry equaltiygether with assumptiori$i,)(a)
that

t 2 t
[ 1w zniay <3 [ et kAN k22 ds
0 0

2 t
- / o(s Y, Z0)dBy| < 3E /0 A [g2 + KYD R+ K2( 202 ds

and

2 t
< IE/ %20 %ds
0

1
E'/ZQ
0

Next, to estimateffé <p(s,Ys”)dAs|2, let us assume first th#r is a bounded real variable.
For anyp > 0 given in assumptionfH1) or (Hz)(a), we have

'/oth(S,Ys”) < (/ot e“AsdAs> (/OtéJAs‘(p(S’YSn),sz%

2 rt
- Ag K2Yn2
< 2N KNP )aA

since

=

([ <hemish
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The general case then follows from Fatou’s lemma.
Therefore, from(R.9) together with the previous inequalities, there exists astzont
independent oAr such that

t t t
E(Kt”)zgCE{e“AT|E|2+e“'°‘|Yt”|2+/ e“Asfs?ds+/ e“As<p§dAs+/ &Ag2ds
0 0 0
t 1 t
+/ e“/*s|vs”|2ds+1a<supeuf*s(g*)2>+/ e“AS|YS”|2dAs+/ e“ASHZQHst}.
0 0<s<t 0 0
(2.10)
Recalling agair{P-7) and takinge small enough such tha€ < min{1, |B|, 2%}, we obtain
1 1
Ee \Yt”\2+E/ s yvsnyZdAs+E/ (202 ds
0 0
t t t
gCE{éJATyzyZ+/ éJAsyvsnyst+/ e%fgds+/ ARdA
0 0 0
1
+/ e“A-*ggdsHE( sup e“AS(g*)Z>}
0 0<s<T

Consequently, it follows from Gronwall’'s lemma anid (2. 16att
t t
E{enns [[enngPan [ etz s )
0 0
T T T
SCE{G’JAT‘E‘Z-F/ euASfSZdS-i-/ e“Af’qﬁdAer/ e¥sg2ds+ sup e“’*(S*)Z}.
0 0 0 o<t<T
Finally, by application of Burkholder-Davis-Gundy inedjsawe obtain from(p.8)
T T T
IE{ sup e“A|Yt”|2+/ eIJAs||zg||2ds+|K$|2} < CE{e“AT|E|2+/ e“A-“'fszds+/ A Rd A
0 0 0

0<t<T

+ e“A5g ds+ sup e4(§")? },

0<t<T

which end the proof of this Lemma. O

Now we give a convergence result which is the key point on tbefff our main result.
We begin by supposing thatis independent frontY,Z). More precisely, we consider the
following equation

t t t t
Yo o= &t /0 f(s Ve, Zs)ds+ /o (s Yo dAs+ /0 o(s) dBs — /o Zs | W+ Ke.

(2.11)
The penalized equation is given by
Y o= E+/ (s,Yd,Z8) ds+n/( ds+/q)(s,Y”
+/O g(s)st—/O 70| dW, (2.12)

9



Since the sequence of functiofs— n(y— S)~ )n>1 is nondecreasing, then thanks to the
comparison theorerhn 2.1, the seque¢®) ., is non-decreasing. Hence, Lemfng 2.1 im-
plies that there exists @- progressively measurable procéssuch thaty;" Y a.s. So
the following result holds.

Lemma 2.2. If g does not dependent @i, Z), then for each re N*,

IE< sup \(Yt”—S)\z> — 0, as N— oo,

0<t<T

Proof. SinceY," > Y?, we can w.l.o.g. replacg by S VY, i.e. we may assume that
E(supi<t §) < 0. We want to compare a.% and§ for all t € [0, T], while we do not
know yet ifY is a.s. continuous. Indeed, let us introduce the followiracpsses

—z+/g

S = s+/ g(s)dBs
Yo =Y" +/ g(s)dBs
Hence,
vh_ T t n —-n t—n o\ t n tn
V=& [ fs¥Z)dsen [ (Vi-5) dst [ esY)dA- [ 201 dw. (219

and we define Y; := supY;.
n

From Theoren 21, we have thata¥. > Y;", 0<t < T, ne N*, Where{ ¥Zm, o<t < T}
is the unique solution of the BSDE

v < t n —-n s vh t n _ th
Vo= S [ e Zdstn [ @&-Wds+ [ (s dA- [ 20| aw

Let G = (Gt )o<t<T be afiltration defined by = fQ’}’ ® foEfT. We considern a G-stopping
time such that 6 v < T. So we can write

YN = { _”"ST+/ sYs”,Z”)ds+n/ nv-s5ds
+/ V=) (s, YM)d As | g\,} (2.14)
First, with the help of Holder inequality and assumpti¢kis)(a), we have
Y 2 1 v
E( / en<VS>f(s,Ys”,zg)ds> < —E ( / \f(s,Ys”722\2dS>
c T JA£2 L nyn2 njj2
< oE( [ @ NP ZE)7)ds)
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which provide
v 2
E ( / e V-9 f(s,YQ,ZQ)ds) — 0 ash — o, (2.15)
0

sinceE (fOT S (T2 4+ D2+ ||ZQ\|2)ds) < C (see Lemma 2.1 an(H;)(a)).
Next, to prove that

y 2
E (/ e”("s)(p(s,Ys”)dAs> —0ash— o, (2.16)
0

let first suppose that there exi€ls such that|At||. < Ci. Using again Holder inequality,
Lemma 2.1 and assumptighi,)(a), we get

v 2 T T
E </ e_”(v_s>(p(S,st)dAs> < E [(/ e—[2n(v—s)+uAs]dAS> </ éJAS|(p(S,YSn)|2dA5>:|
0 0 0
1 T
< Sa-evos( [ ergKPon)
M 0
< C

whereC is independent oft. The result follows by Lebesgue dominated Theorem, since
Jo e "V S¢(s Y dAs — 0as.asn — . On the other hand it is easily seen that

\Y
e ™S+ n/0 e "I98 ds— S 1jy-0) + Srljy—o aS.asn — oo. (2.17)

According to(R.19)-(2.17), the equality(R.14) provides
Y — S1ys0p+Srlp_q as.

and in LZ(Q), asn — o, andY, > S, a.s. which yields tha¥, > S, a.s. From this and
the Section Theorem in Dellacherie and Meygr [6], it follathat the last inequality holds
forallt € [0, T]. Further(Y\"—S)~ | 0, a.s. and from Dini’s theorem, the convergence is
uniform int. Finally, as(Y"— )~ < (S - Y°)" <|S|+]Y?|, the dominated convergence
theorem ensures that

im E( sup | (%" ~S) ) =0,

Nn—+®  oct<T

O

Proof of Theorerh 2] 2ExistenceThe proof of existence will be divided in two steps.
Stepl. g does not dependent @i, Z).
Recall thaty" ,Y; a.s. Then, Fatou’s lemma and Lemtha]2.1 ensure

E( sup e |Yt|2> < +oo,

0<t<T

11



It then follows from Lemm4 2|1 and Lebegue’s dominated cayesece theorem that
T 2
E(/ NARRA ds) — 0, asn— o, (2.18)
0

Next, we will prove that the sequence of procesgesonverges itM2(0,T;RY) To this
end, forn > p > 1, 1td’s formula provide

t
N ¥P[ [z - 22 as
t
- Z/t(YSn _Ysp)[f(vaSn7ZQ) - f(SYspvzsp)]ds—i_ 2/0 (st _Ysp)[(p(vasn) - q)(s7Ysp)]dAS
0
2 [ 002D 28] LA +2 [ (P — dk)
0 0

From the same step as before, by using again assumgtity)s there exists a constant
C > 0, such that

t t
E{‘Ytn_Yth_{'/ |st_Ysp|2dAS+/ ||ZQ—ZspH2dS}
0 0
t
< cr{ [ - velZds s sup (- S) K+ sup (- S) K |,
0 0<s<T 0<s<T

which, by Gronwall lemma, Holder inequality and Lemfng 2vbiies

1 1
2
E{th_Ytp‘ +/0 ‘st_Ysp‘szS"‘/o HZQ—ZEHZdS}

1/2 1/2
< c{E<sup|<Ys”—ss>|2)} +c{E(sup|<vsp—ss>|2)} |
0<s<T 0<s<T

Finally, from Burkholder-Davis-Gundy’s inequality, wétain

t T
IE< sup |Y5”—Ysp|2+/0 |YS”—YSF’|2dAS+/0 HZQ—Z§||2ds> — 0, asn,p— oo,

0<s<T
which provides that the sequence of procesd5Z") is Cauchy in the Banach space

([0, T|;R) x M2(0,T;RY). Consequently, there exists a coup¥eZ) € ([0, T];R) x
M?(0,T;RY) such that

1 T
E{ sup Y& - Yo + / Y9 — Yo *dAs+ / HZQ—stst)eo, asn — o.
0<s<T 0 0

On the other hand, we rewritg (.8) as
t t t t
Kt”=Yt”—€—/o f(s,Ys”,Zs”)dS—/0 (P(Sstn)dAs—/o g(S)st+/0 Z3 | dws.  (2.19)
By the convergence of", Z" (for a subsequence), the fact tHatp are continuous and

12



® SUPyo|f (S Y, Zs)| < fo+ K {(supyso [Y)) + 1124}
® SURo|®(sYe)| < @+ K {(supo[¥a'])
o Efy [f(sY0,20) — f(sY,Z5)|°ds< CE [y ||20 — Zq||*ds
we get the existence of a procdésvhich verifies for altt € [0, T]
EK"—K[*—0

and such thaP-a.s. and for alt € [0, T],

1 1 1 t
Yt :E+/() f(S?YSaZS)dS+/() @S, Ys)dAs+ Kt‘i'/0 g(S)dBS_/O Zs | dW.

It remains to show thatY,Z,K) solves the reflected BSDE, f,,g,S). In this fact,
since(Y;", K" o<t<T tends to(%;, K )o<t<T in probability uniformly in t , the measuréK"
converges talK weakly in probability, so tha}"0 (Yo' — S)dK — j’o (Ys— S)dKs in prob-
ability asn — . On the other hand, in view of Lemn@Z\Q > S a.s., and thu% (Ys—
S)dKs > 0. Moreover fo (Yo' — S)dKE = —nfo (YD) — S)~[2ds < 0 and passing to the
limit we get [y (Ys — S)dKs < 0, which together with the above provéid) of the defini-
tion.

Step2. The general case. In light of the above step, and for(¥n¥) € ([0, T];R) x
M?2(0,T;RY), the BDSDE

t t t _ 1
Y= &4 /0 (s Yo, Zs)ds /o (s, Ye)dAs + /0 o(s Ye, Zs) dBs /0 Ze | AW+ K,

has a unique solutiofY,Z,K) € S?([0,T];R) x M?(0,T;RY). So, we can define the map-
ping

— ([0, T];R) x M?(0, T;RY)
—  (Y,2)=W¥(Y,2).

Y: ([0, T;R) x M(0,T;RY)
Y,z

~—

Now, let(Y,Z), (Y',Z'), (Y,Z) and(Y’,Z’) € S([0, T] R) x M2(0,T;RY) such tha(Y, Z) =
W(Y,Z) and (Y',Z') = W(Y",Z'). PutAn =n—n'forn=Y,Y,Z,Z. By virtue of Itd’s
formula, we have

t
EePA|AY 2+ E / &SP | A7) 2ds
0
t t
—2F / eSPAAY LT (S Ye, Zs) — T(5,Y's,Z's) } ds+2E / eSPAAY L g(s,Ys) — @(s,Y's) } dAs
0 0
t t _ _
+2E/ eu%BASAst(AKs) +/ ehstPAs Hg(S7Y57 Zs) —g(s,Y's, Z/s)szS
0 0

t t
—UE / eStPA |AY 2 ds— BE / etBA | AY 2 d A,
0 0

13



t
But sinceE/ e*STPAAYd(Ks — KL) < 0, then from(H ) there existsx < o’ < 1 such that
0

1
EePA|AY 2+ o / 5tBAs | AZ(|[2ds
0

1_ !/ t t
< (LT e on)E [ e Benvas pe | @ tay A,
0 0

t _ t —
+cE / e'StPAs|AY,2ds+ aE / st |AZ | %ds
0 0

/ !/

+1— o’ and choosingu such thapi—y = O;—C, we obtain

Next, denotey =

EE/OteIJSJrBAs ’AstzdS—i-‘B’E/oteu%BAs’AYs‘ZdAs_’_E/oteuS+[3AsHAZsH2dS

< % <EE/0te“S+BAS‘A?slzds"‘E/ote“erﬁAsHAZ_S)HZdS>7

< % <C_[E/OteHS+BAs|A\?S|2ds+|B|E/Oteps+p,As |A?S|2dAS+E/Ote“s+l3AsHAZ_S)H2dS>
wherec = g_

.« , . , .
Now, since —; < 1, then it follows thatW is a strict contraction oz?([0,T],R) x
M 2((0,T);RY) equipped with the norm

t t t
(Y, 2)P =& | &P ¥ ds+ |BlE | e PpePdactE [ Pz ds
0 0 0

and it has a unique fixed point, which is the unique solutionwfBDSDE.
UniquenessdLet us define

{(AY,0Z,0K), 0<t < T} ={(%—Y,Z ~Z{,Ki —K{), 0<t < T}
where{(%;,Z,K;), 0<t <T} and {(Y/,Z,K{), 0<t < T} denote two solutions of the
reflected BDSDE associated to the dédaf,g,,S).

It follows again by Itd's formula that for every €t <T
t
A%+ [z 2as
t t
— 2 [ A(F(s Y62~ (Y. Z))ds+ [ [l0(sYs2) ~ (s Y. 29| %ds
t t
+2 [ AV Ye) — s ) A+ [ (A% (0(5 Ye.Z) — 05 Y4, Z4)) By
1 1
2 / (s, AZAW) + 2 / AYSd(Ks).
0 0

Since

)
| avdiaks) <o
0

14



and by using similar computation as in the proof of existem@have
2 T T T
m{lov+ [ ovidas [ jozafas) < oz [ iavids
0 0 0
from which, we deduce th#ty; = 0 and furthei’AZ; = 0. On the other hand since

t t
AK, — AYt—/O (f(s,YS,ZS)—f(s,YS,ZS))ds—/O (0(s,Ye) — @(s.Y2)) dAG
t t
—/0 (g(S,YS,ZS)—g(S,Yé,Zg))dBS—F/O AZSldV\éa

we haveAK; = 0. The proof is complete now. O

3 Connection to stochastic viscosity solution for reflecteBPDEs
with nonlinear Neumann boundary condition

In this section we will investigate the reflected generaiB®SDESs studied in the previous
section in order to give a probabilistic interpretation tloe stochastic viscosity solution of
a class of nonlinear reflected SPDEs with nonlinear Neumanndary condition.

3.1 Notion of stochastic viscosity solution for reflected SPEs with nonlinear
Neumann boundary condition

With the same notations as in Section 2,A8t= { 7,B}o<t<T be the filtartion generated by
B, whereB is a one dimensional Brownian motion. ByO?T we denote all thé&B-stopping
timest such 0< 1 < T, a.s. # 2 is the set of alFB-stopping times that are almost surely
finite. For generic Euclidean spadeésandE; we introduce the following vector spaces of
functions:

1. The symbolck"([0,T] x E;E;) stands for the space of & -valued functions de-
fined on[0,T] x E which arek-times continuously differentiable ihand n-times
continuously differentiable irx, and Ct')"”([O,T] x E;E;) denotes the subspace of
c*"([0,T] x E;Ey) in which all functions have uniformly bounded partial deriv
tives.

2. For any subs-field ¢ C 78, c¢*"(G,[0,T] x E;E;) (resp. Cl')"”(g,[o,T] x E;Eq))
denotes the space of al"([0, T] x E; Ey) (resp. ¢, ([0, T] x E; E;)-valued random
variable that are; ® 3 ([0, T] x E)-measurable;

3. ckN(FB,[0,T] x E;Ey1) (respci"(FB, [0, T] x E;Ey)) is the space of all random fields
@€ c*(F7,[0,T] x E;Eq (resp. c*"(#1,[0,T] x E;Ey), such that for fixeck € E,
the mappingt,w;) — a(t,wy, X) is FB-progressively measurable.

4. For any subs-field g C 7B and a real numbep > 0, LP(G;E) to be allE-valued
G -measurable random varialesuch thatf|&|P < co.
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Furthermore, regardless their dimensions we denote hy> and|.| the inner product and
norm inE andEy, respectively. Foft,x,y) € [0, T] x R x R, we denotdy = (-, ..., 32-),
Dyx= (04x,)j—1, Dy = 5 Dt = &. The meaning oDy andDyy is then self-explanatory.

Let © be an open connected bounded domaiR8fd > 1). We suppose thad is
smooth domain, which is such that for a functigre ¢2(R?), © and its boundarg® are
characterized b® = {{ > 0}, 90 = {{ = 0} and, for anyx € 00, OP(x) is the unit normal
vector pointing towards the interior &.

In this section, we consider the continuous coefficidndésd g,

f @ Qx[0T|xOxRxRI—R
@ @ Qx[0T]xOxR—R

with the property that for alk € ©, f(.,x,.,.) and@(.,x,.) are Lipschitz continuous irand
satisfy the conditiongH’;) and(H2), uniformly in x, where, for some constakt > 0O, the
condition(H’y) is:

(Hll){ [f(t,xY:2)] < KL+ X+ Y[+ ]2]),
|0, x,Y)| < K(L+[X/+]y]).

Furthermore, we shall make use of the following assumptions

(H3) The functiono : R — R9*4 andb: RY — RY are uniformly Lipschitz continuous,
with common Lipschitz constamt > 0.

(H4) The functiond : © — R andh: [0, T] x ©® — R are continuous such that, for some

K>0,
) < K(@+[x)
Ih(t, )| < K(1+[x)
h(0,x) < I(x), x€0.

(Hs) The functiong € c*%([0,T] x © x R;R).

Let us consider the related obstacle problem for SPDE withlimear Neumann boundary
condition:

QLX) 1L+ F(t, % u(t, ), 0" (GODsut, )]t

min{u(t,x) —h(t,x), —

(togh) ~g(t, X U(t,0)0Bs} =0, (t,X) € [0,T]x©
oPproIdh

u(0,x) =1(x), x€®©
ou

%(t,x)%—(p(t,x,u(t,x)) =0, (t,x) €[0,T] x 00,
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where

02 d 0
(o(x)o (X))i’jm+i;bi(x)a_xi’ Vxe 0,

and

o oy, 0
— =Y —(X)=— o.
on i aXi (X) aXi ’ vxeo

As in the work of Buckdahn-M&]4] 3], our next goal is to defihe notion of stochastic
viscosity too2 (®9" 5o, we shall recall some of their notation. Ire€ ¢ (F8,[0,T] x
RY x R) be the solution to the equation

I’](t,X,y) = y—l—/ot<g(S7X,T](S,X,y)),OdBS>,

where the stochastic integrals have to be interpreted m@towich sense. We have the
following relation with the standard Itd integral:

t 1t t
[ tasxnisxy).oity = 3 [ (@@ sxn(sxydst [ (glsxn(sxy).dey).

Under the assumptiofHs) the mappingy — n(s,x,y) defines a diffeomorphism for all
t,x, a.s. Hence if we denote bg(s,X,y) its y-inverse, one can show that (cf. Buckdahn and

Ma [B])
t
S(t,X,y) = y—/O (DyS(S,X,y)g(S,X,y),OdBS>. (31)

To simplify the notation in the sequel we denote

A g(B(t.X)) =LO(X) + F(EX B(t.X), "D (6 X)) — 5(3,Dy0) (6 B(t.X)
and¥(t,x) = n(t,x ¢(t,x)).

Definition 3.1. A random fieldu € ¢ (FB,[0,T] x ©) is called a stochastic viscosity sub-
solution of the stochastic obstacle problena ("®%M) if 4(0,x) <1 (x), for all x € ©, and
if for any stopping timer € a/, any state variablg € L° (#°,0), and any random field
0 € c2 (78, [0,T] xRY), with the property that fof?-almost allw € {0 <1< T} the
inequality

u(t,w,x) — ¥ (t,w,x) <0=u(t1(w),&{(w)) — ¥ (t1(w),&(w))

is fulfilled for all (t,x) in some neighborhood (w,T(w),& (w)) of (T1(w),& (w)), the fol-
lowing conditions are satisfied:

(@) onthe even{O < 1 < T}N{& € ©} the inequality

min{u(t,&) — h(1,&),Atg(W(1,§)) —DyW(1,§) D9 (1,§)} <O (3.2)

holds,P-almost surely;
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(b) onthe even{0 < 1 < T} N{& € 00} the inequality

min [min{u(t,&) —h(t,&), At g (W(1,§)) — DyW(1,§) D16 (1,€) } ,

S8 e E W) <0 33)

holds,P-almost surely.

A random fieldu € ¢ (FB, [0,T] x 6) is called a stochastic viscosity supersolution of the
stochastic obstacle problem ("®%M) if y(0,x) > 1(x), for all x € ©, and if for any
stopping timet € a&;, any state variabl€ € L°(#2,0), and any random fielg) €
c12 (78, [0,T] xRY), with the property that fof?-almost allw € {0< 1< T} the in-
equality

u(t, w,x) = W(t,wx) = 0=u(t(w),&(w)) — ¥ (1(w),§(w))
is fulfilled for all (t,x) in some neighborhood (w,T(w),& (w)) of (T1(w),& (w)), the fol-
lowing conditions are satisfied:

(@) onthe even{0 < 1 < T} N{E € ©} the inequality
min{u(t,&) — h(t,&),Arg(W(1,8)) —DyW(1,§) D (1,§)} >0 (3.4)
holds,P-almost surely;
(b) onthe even{0 < 1 < T} N{ € 00} the inequality

max[min {u(t,&) —h(1,&),A1 g (W(1,§)) — Dy (1,&) Did (1,€) }

ey -orewry) >0 @9

holds,P-almost surely.

Finally, a random fieldi € ¢ (F®,[0,T] x ©) is called a stochastic viscosity solution of

the stochastic obstacle problep (99" if it is both a stochastic viscosity subsolution
and a supersolution.

Remark3.1 Observe that iff, @ are deterministic ang= 0, the flown becomeg)(t,x,y) =
Y,V (t,x,y) and W(t,x) = ¢(t,x). Thus, definition[ 3] coincides with the definition of
(deterministic) viscosity solution of PD&2 (%) given by Ren et al in[[13].

3.2 Existence of stochastic viscosity solutions for SPDE thinonlinear Neu-
mann boundary condition

The main objective of this subsection is to show how the sistib obstacle problem
o (F®3h) is related to reflected generalized BDSIET) introduced in Section 1. For
this end we recall some known results on reflected diffusidvis consider

s—ALX is increasing
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XL x+/ b (X\) dr+/ X1) diV\/r+/ O (XX) dAX, Wse (0],
AS’X:/s I{)(}'Xea@}dAY7X' (36)

We note here that due to the direction of the Itd integf@l) should be viewed as going
fromtto O (i.e.,X(t,’X should be understood as the terminal value of the solutioh). It
is then clear (sed][9]) that under conditioft$3) on the coefficientd anda, (B.8) has a
unique strond~V-adapted solution. We refer to Pardoux and Zhgny [12]( Ritipas 3.1
and 3.2), and Stominskj [IL4],for the following regularigsults.

Proposition 3.1. There exists a constant € 0 such that for all for all t<t; <t, <T and
X1,X% € O, the following inequalities hold:

[ sup |X& — X§2’X2|4] <C{l—tu*+|x—%|*}

th<s<T

and
E{ sup \Atslvxl—Atg’Xﬂﬂ <C{l—t*+xa—%|*}.
t

2<s<T

Moreover, for all p> 1, there exists a constant,Guch that for all(t,x) € R x ©,
E (|AY| ) < Cp(1+tP)

and for each pp < s < t, there exists a constant((3,t) such that for all xc ©,
E (eHAts‘x) < C(t).

Now, we consider the following reflected generalized BDSRE(t,x) € [0,T] x ©
Yi*=1(%5") + /0 f (r, XY, ZE) dr + /0 g (r, X%, Y1) dBy
+ /0 Scp(r,x}vX,Y}vX) dAX+Kg* — /0 s<z§vX, L dw), 3.7)

.
Yst’xzh(s,xgx)suchthat/ (X =h(r, X)) dK* =0, 0<s<t.
0

where the coefficients f, g, ¢ andh satisfy the hypothese$i’s), (H2), (H4) and(Hs).

Proposition 3.2. Let the ordered tripletYs™, Zt*, K&*) be a solution of the BDSDEB.7).
Then the random fielts,t,x) — Y&, (s,t,x) € [0,T] x [0,T] x © is almost surely continu-
ous.

Proof. If we denote byE”s the conditional expectation with respectitg then we can show
that there exists a consta@t> 0 such that for allt,x), (t’,X) € [0,T] x © the following
inequality holds
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2
t,X t/ X
Ys - Ys

! 2 T 1\ v v 2
< CE” [é*kT 106 =106+ [ &% (X2 — 1 (X ¥ 28) Far

T —_ T 1 1 2 /
+/ gHke |(P(r,xrt’x,Yrt’X) |2d\A]r +/ i ‘(P(r,xrt’x,Yrt’x) _ (p<r,Xrt X ert X > ‘ dpi,x’
0 0
T
+ / g <h(r, XEX) — h(r, XX )) dAKr} ,
0

whereAK := KX — K'Y A= A% — A'X andk £ |A| + A"X where|A| is the total variation
of the proces#\.. Using the assumptior($1’;) and(H;), we get

2
t,x t' X
Ys - Ys ‘

2 T ,
<CE”’ [e“kT +/ etk ‘X:’X—Xrt’x/ dr
0

‘ 2

(X5 109 ™)
+ e fam o [T (i) i) ) ank

+ sup & (1+ X2 + \Yst’x\z) ‘At’X—At’X‘T} .

0<s<T

/o , 2
It follows using Propositiop 3] 1 th%Ath —AUX ‘T — 0 P-a.s., and/se [0,t], ‘Xé’x - é’%‘ —

0 P-a.s. agt,x) — (t',X). Thus, the continuity follows from the continuity of the fttions
| andh. O

Let now define
u(t,x) =%, (t,x)€[0,T] x®. (3.8)

Theorem 3.1.u € C(FB,[0,T] x ©) is a stochastic viscosity solution of obstacle problem
O?(fv(pghvl) .

Proof. For eacht,x) € [0,T] x ©,n> 1, let{"Ya* "Z&*, 0 < s<t} denote the solution of
the generalized BDSDE

S S
N = 1067+ [ XY TZdr O (X))
S S S
+/ (p(r7xrt,x7nYrt,X)dA¢,X/ g(r’X:,X’nYrt,X)da_/ nZIt‘,deW.
0 0 0
It is know from Boufoussi et al]1] that
un(t,x) = "%, (t,x) € [0, T] x B,
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is the stochastic viscosity solution of the parabolic SPDE:

aun(g:,X) + [Lun(t,X) + fa(t, X, Un(t,X), 0" Dyun(t,X))] 4 g(t, X, Un(t, X)) OB, = O,

(t,x) € [0, T] x ©,
(3.9)
Un(0,X) =1(x), X€ O,

%t %)+ Q(t.X.Un(t.¥)) =0, (t,%) € [0,T] x 3O,
where fo(t,x,y,2) = f(t,X,y,2) + n(y—h(t,x)) .
However, from the results of the previous section, for ok < [0, T] x RY,

un(t,X) Tu(t,x) as. asn— co.

Sinceu, andu are continuous, it follows from Dini's theorem that the abmonver-
gence is uniform on any compacts.

We now show thati is a stochastic viscosity subsolution of obstacle problema! - ®9M)
Let (1,8) € Mgy x LO(#.5; ©) satisfyingu(t,&) > h(t,£), P-a.s. andp € 2 (#2, [0, T] x ©)
such that fofP-almost allw € {0 < 1 < T}, we have

u(w,t,X) — W(w,t,x) < 0=u(w,T(w),&(w)) — P(w,T(w),&(w)) (3.10)

for all (t,x) in some neighborhood (w,T(w),& (w)) of (T(w),& (w)).

According the classical Lemma 6.1 ifi [5], there exists saqaeof random variables
(Ti, €k )k=0 such thatTy, &) — (1,€), P-a.s., andb € ¢ 12 (7.2, [0,T] x ©) satisfyingpyx —
¢, P-a.s., such that

Un (00, 1,X) — Wi (00,1,X) < 0= Up, (0, Ty (w), &k () — Wi (w, Tk(w), Ek(w))

for all (t,x) in some neighborhood’ (w, Tk (W), &k (W) C ¥ (w,T(w),& (w)) for k large
enough.
On other hand, fok enough large, let us define

Tk = inf{t, up, (t,X) — Wk(t,x) = 0}, x € O.

It easily seen thafty)x = (Tkk N (Tk)k is a sequence of stopping time satisfigd— T.
Moreover, denoting by&x)k the subsequence ¢€x)x associated t@T)x, it follows that
(T, &) € Mg x LO(#;©) and

Un, (00,1,X) — Wi(,1,X) < 0= Up, (0, Tk(w), Ex(w)) — LI—'k(w,fk(w),ék(w)) (3.11)

for all (t,x) in some neighborhood’ (w, Tk (W), &k (w)) C ¥ (w,T(w),& (w)) for k large
enough.
Thus, sincau, is a viscosity solution of SPDEB.9) and according t¢B.13), we get:
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(@) OntheeverfO< Ty < T}N {Ek € ©} the inequality

Aty g <‘Pk (fkagk)) — DyW <fk,gk) Dtk (fkagk) <0
holds,P-a.s.

(b) On the everl0 < Ty < T} N {&x € 30} the inequality

min |:Afnk7g <q-’k (fk,gk)) — DyLPk <fk,gk) Dt(l)k (fk, E_k) s
—%(fk,gk) - (P(fkaghq"k(fkagk))] <0
holds,P-a.s.

From the assumption thaft, &) > h(t,§) and the uniform convergence w, it follows
that fork large enoughuy, (Tk, &x) > h(Tk,&k).
Therefore, taking the limit als — o in the above inequality yields:

(@) Onthe evenfO <1 < T}N{§ € ©} the inequality

Af,g (LIJ(T7E)) - quJ (LE) Dt¢ (T7E) < 0
holds,P-a.s.

(b) Onthe everdD <1 < T} N{E € 00} the inequality

min [Af‘g (lP (T, E)) - Dyl'IJ (T, E) D¢ (T, E) s

ov
_%(LE) - (p(‘[vgn LIJ(LE)) < 0

holds,P-a.s.

This proved thati is a stochastic viscosity subsolution @ F®%"' |

By the same argument as above one can showutbaten by (B.9) is also a stochastic
viscosity supersolution af 7 F-®9N!

We conclude thati is a stochastic viscosity af2 "®9™ which end the proof. O
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