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Abstract

This paper is intended to give a probabilistic representation for stochastic viscosity
solution of semi-linear reflected stochastic partial differential equations with nonlinear
Neumann boundary condition. We use its connection with reflected generalized backward
doubly stochastic differential equations.
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1 Introduction

Backward stochastic differential equations (BSDEs, for short) were introduced by Pardoux and
Peng [I0] in 1990, and it was shown in various papers that stochastic differential equations
(SDEs) of this type give a probabilistic representation for solution (at least in the viscosity
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sence) of a large class of system of semi-linear parabolic partial differential equations (PDEs).
Thereafter a new class of BSDEs, called backward doubly stochastic (BDSDEs), was considered
by Pardoux and Peng [[dl]. The new kind of BSDEs seems suitable for giving a probabilistic
representation for a system of parabolic stochastic partial differential equations (SPDEs). We
refer to Pardoux and Peng |[L]]] for the link between SPDEs and BDSDEs in the particular case
where solutions of SPDEs are regular. The more general situation is much more delicate to
treat because of the difficulties of extending the notion of viscosity solutions to SPDEs.

The notion of viscosity solution for PDEs was introduced by Crandall, Ishii and Lions [j|
for certain first-order Hamilton-Jacobi equations. Today the theory has become an important
tool in many applied fields, especially in optimal control theory and numerous subjects related
to it.

The stochastic viscosity solution for semi-linear SPDEs was introduced for the first time
in Lions and Souganidis [f§]. They use the so-called "stochastic characteristic" to remove the
stochastic integrals from a SPDEs. On the other hand, two other ways of defining a stochastic
viscosity solution of SPDEs is considered by Buckdahn and Ma respectively in [B, B| and |f].
In the two first paper, they used the "Doss-Sussman" transformation to connect the stochastic
viscosity solution of SPDEs with the BDSDEs. In the second one, they introduced the stochastic
viscosity solution by using the notion of stochastic sub and super jets. Next, in order to give a
probabilistic representation for viscosity solution of SPDEs with nonlinear Neumann boundary
condition, Boufoussi et al. [[] introduced the so-called generalized BDSDEs. They refer the
first technique (Doss-Sussman transformation) of Buckdhan and Ma [, B

Based on the work of Boufoussi et al. [[l] and employing the penalized method from Ren
et al. [[J|, the aim of this paper, is to establish the existence result for semi-linear reflected
SPDEs with nonlinear Neumann boundary condition of the form:

p

min {u(t, z) — h(t,z), 2u(t, z) — [Lu(t,z) — f(t, z,u(t,z),0*(z)Vu(t, z))]
—g(t,z,u(t,z))0Bs} =0, (t,z)€[0,T] x O

u(0,2) =1(z), z€IR?

QU(t 2) + ot 2, ut,z)) = 0, = € 08,
\ On

where ¢ denotes the Wick product and, thus, indicates that the differential is to understand
in [t0’s sense. Here B is a standard Brownian motion, L is an infinitesimal generator of a
diffusion process X, © is a connected bounded domain and f, g, ¢, [, h are some measurable
functions. More precisely, we give some direct links between the stochastic viscosity solution



of the previous reflected SPDE and the solution of the following reflected generalized BDSDE:
t t t
Vi = ¢+ [ sevazyist [ ot v+ [ (s, db,
0 0 0
t

—/ZsldWs+Kt, 0<t<T.
0

¢ is the terminal value, A is a positive real-valued increasing process and | dW, denote the
classical backward [t6 integral with respect the Brownian motion W. Note that our work can
be considered as a generalization of two results. First the one given in [[[3], where the authors
treat deterministic reflected PDEs with nonlinear Neumann boundary conditionsi.e g = 0. The
second result appears in [[I] where the non reflected SPDE with nonlinear Neumann boundary
condition is considered.

The present paper is organized as follows. An existence and uniqueness result for solutions
to reflected generalized BDSDESs is shown in Section 2. Section 3 is devoted to give a definition
of a reflected stochastic solution to SPDEs and by the same occasion establishes its existence
result.

2 Reflected generalized backward doubly stochastic differ-
ential equation

2.1 Notation, assumptions and definition.

The scalar product of the space IR%(d > 2) will be denoted by < . > and the associated
Euclidian norm by ||.|.

In what follows let us fix a positive real number 7' > 0. First of all {W;,0 < t < T}
and {B;, 0 <t < T} are two mutually independent standard Brownian motions with values
respectively in IR? and IRY, defined respectively on the two probability spaces (Qq, F1,IPy) and
(Qo, Fo,1P5). Let F? = {]—"tB}tZO denote the natural filtration generated by B, augmented by
the IP;-null sets of F;; and let F? = .7-"0% On the other hand we consider the following family
of o-fields:

Flr=o{W, =W, t <s <T} VN,

where A3 denotes all the IP,— null sets in F,. Denote F}Y = {F}oci<r
Next we consider the product space (£, F,IP) where

Q:Q1XQ2, fzfl®f2 andIP:IP1®IP2.
For each ¢ € [0, T, we define
Fo=FF @ F).
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Let us remark that the collection F = {F;, ¢t € [0,T]} is neither increasing nor decreasing and
it does not constitute a filtration.

Further, we assume that, random variables, {(wq), w; € Qp and ((ws), we € Q5 are considered
as random variables on {2 via the following identification:

{(wi,wy) = &(wr); ((wr,w2) = C(wy).

In the sequel, let {A;, 0 < t < T} be a continuous, increasing and F-adapted real valued
process such that Ay = 0. For any d > 1, we consider the following spaces of processes:

1. M?(0,T, IRd) denote the Banach space of all equivalence classes (with respect to the mea-
sure dP x dt) where each equivalence class contains an d-dimensional jointly measurable
stochastic process ¢;;t € [0, T, which satisfies :

T
) ol = [ fouldt < o
0
(i) ¢ is Fy— measurable | for any t € [0, 7.
2. 52([0,T],TR) is the set of one dimensional continuous stochastic processes which verify:
(i1) lellse = TB( sup |ef*) < oo
0<t<T
(iv) @4 is Fy— measurable , for any t € [0, 7.

Let us give the data (¢, f, g, ¢, S) which satisfy:

(H;) £ is a square integrable random variable which is Fr— mesurable such that for all © > 0
E (e"7|¢]?) < oo.

(Hy) f:Qx[0,T]xRxR*—=1R, g:Q2x[0,T] xIRxIR? = IR, and ¢ : 2 x [0,T] xR — IR,
are three functions such that:

(a) There exist F;—adapted processes {fi, ¢, g: : 0 < ¢t < T} with values in [1,400)
and with the property that for any (¢,y,2) € [0,7] x IR x IR?, and p > 0, the
following hypotheses are satisfied for some strictly positive finite constant K:

( f(t,y,2), ¢(t,y), and g(t, y, z) are F; — measurable processes,
|f(ty, 2)] < fi + Kyl + [|2]),
6t y)| < ¢ + Klyl,

l9(t,y, 2)| < g0+ K(Jyl + l|z[]),

T T T
IE (/ e f2dt +/ et At g2t +/ e“At¢§dAt) < 00.
( 0 0 0




(b) There exist constants ¢ > 0,3 < 0 and 0 < a < 1 such that for any (y1, z1), (2, 22) €
R x R,

(@) | f(t,y1, 21) — f(ty2, 22) 2 < e(Jyr — 2|® + |21 — 22?),
(“’) ‘g(tvylv Zl) - g(tvy% Z2)|2 < C|y1 - y2‘2 + Oé”Zl - Z2H27

(491) (Y1 — y2, &(t, y1) — O(t, y2)) < Blyr — y2|2-

(H3) The obstacle {S;,0 <t < T}, is a continuous F;—progressively measurable real-valued
process satisfying

E ( sup )sﬂ?) < oo,

0<t<T

We shall always assume that Sp < ¢ a.s.

One of our main goal in this paper is the study of the general case of reflected generalized
BDSDE,

t t t
Yo = ¢+ [ fls,Yo 2)ds + / 6(s, Y)dA, + / o(s,Ys, 7.) dB,
0 0 0
t
—/ZsldWs+Kt, 0<t<T (2.1)

0

First of all let us give a definition to the solution of this BDSDE.

Definition 2.1 By a solution of the reflected generalized BSDE (&, f, ¢, g,S) we mean a triplet
of processes (Y, Z, K) € S*([0, T); IR) x M?(0,T; IR) x S*([0,T); IR), which satisfies such
that the following holds IP— a.s

(1) the map s +— Y is continuous

(it) Vi > S, 0<t<T,

T
(731) K is an increasing process such that Ko =0 and / (Y, — S;) dK,; = 0.
0

Remark 2.1 We note that although the equation [R.1) looks like a forward SDE, it is indeed
a backward one because a terminal condition is given att =0 (Yo = &). We use this technique
of reversal time due to the set-up of our problem that is, its connection to the obstacle problem
for SPDE with nonlinear Neumann boundary condition.

In the sequel, C' denotes a positive constant which may vary from one line the other.
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2.2 Comparison theorem

Let us give this comparison theorem related of the generalized BDSDE, which we will need in
the proof of our main result. The proof follows with the same computation as in [[4], with
slight modification due to the presence of the integral with respect the increasing process A.
So we just repeat the main step.

Theorem 2.1 (Comparison theorem for generalized BDSDE) Let (Y,Z) and (Y',Z') be the
unique solution of the non reflected generalized BDSDE associated to (&, f, ¢, g) and (¢, f', ¢, g)
respectively. If € < €&, f(£,Y}, Z)) < f'(t,Y!, Z)) and 6(t,Y]) < 6/ (t,Y}), then Y; < Y/, ¥t €
[0, T7.

Proof. Let usset AY =Y —-Y'  AZ = Z—7"and (AY)" = (Y =Y")" (with f* = sup{f,0}).
Using [t0’s formula, we get for all 0 <t <T

t
E((AK)—F)z—'—E/ HAZS||21{Y5>YS’}dS
0
t
<(6—€)* 4 2E / (AY) Lpyiovsy {F(5, Yoo 20) — f(s, Y/, Z0)} ds
0
t
L oE / (AY,) Loy {6(5, Ys) — 6/(s, Y1)} dA,
0

t
_'_E/ Hg(su}/&ZS) _g(su}/;/?Z;)||2 1{Y5>Ys’}ds7 (22)
0
where 11 denote the characteristic function of a given set I' € F defined by

lifweTl
i@ =Y gifwer.
From (Hj)(b) we have

2(AY,) " {f(s,Ys, Z) = ['(s, Y], Z))}

Y S

IA

2(AY,) " {f(s, Y, Zo) — f(s,Y], Z))}

Y S

1
(= +e)(AY) ) +ecllAZ|%,

IN

2(AY,) " {g(s,Ys) — (s, YI)}
B((AY;))?

2(AY) " {o(s,Ys) — ¢/(s,Y))}

[VANRVAN

and
lg(s,Ys, Zs) = g(s, Y, ZD)| Liyvsvyy < c((AY) D) Lpysysy + al|AZP1pyvsysy.

Y S

Plugging these inequalities on (2.3) and choosing ¢ = 2_04’ we conclude that
c

E((AY)*)* <0
which leads to AY,t =0 a.s. andso Y/ > Y, as. forallt <7T. m
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2.3 Existence and Uniqueness result

Our main goal in this section is to prove the following theorem.

Theorem 2.2 Under the hypotheses (Hy), (Hs) and (Hs), there ezists a unique solution for
the reflected generalized BDSDE (&, f, ¢,9,5).

Our proof is based on a penalization method but is slightly different from El Karoui et al
[[], because of the presence of the two integral with respect the increasing process A and the
Brownian motion B, and also because of the time reversal.

For each n € IN* we set
fa(s,y,2) = f(s,y,2) +n(y — S)~ (2.3)

and consider the generalized BDSDE
t t
o= e [ vnznds [ o vaa,
0 0

t t
+/ g(s,Ys",ZQ)st—/ Zm | dW, (2.4)
0 0

obtained by the penalized method. We point out that the previous version of generalized
BDSDE is, in fact, the time reversal version of that considered in Boufoussi et al [[[], due to
the set-up of our problem. We nonetheless use the same name because they are similar in
nature. Consequently, it is well known (see Boufoussi et al., [[I]) that, there exist a unique
(Y™, Z™) € S2([0, T]; IR) x M?(0,T;IR?) solution of the generalized BDSDE (B4) such that for
each n € IN*,

T
IE ( sup |V;"|? +/ HZg‘szs) < 00.
0<t<T 0

In order to prove Theorem R.J, we state the following lemmas that will be useful.

Lemma 2.1 Let us consider (Y™, Z") € S([0, T]; IR) x M*(0, T; IR?) solution of BDSDE (24).
Then there exists C' > 0 such that,

T T
wpm(wme+/Nme%+/H@Ww+mwﬁ<c
nelIN* 0<t<T 0 0

where

t
K} = n/ (Y'—Ss)"ds, 0<t<T. (2.5)
0



Proof. From Ito’s formula, it follows that

t
e [z ds
0

t t t
<|¢f 42 / Y7 (s, Y7, Z%)ds + 2 / Y7(s, Y7)dA, + / lg(s, Y, Z0)|ds
0 0 0

t

t t
+ 2/ S, dK™ + 2/ (Y2, g(s,Y", Z")dB,) — 2/ (Y2, Z0 | dW,),
0 0 0
t
where we have used / (Y — S5)dK? < 0 and the fact that
0

t t t t
/ YrdK" = / (Y — S)dK" + / S dK™ < / S.dK™.
0 0 0 0

Using (Hs) and the elementary inequality 2ab < va® + %62, Yy > 0,
1
2V f(s, Y Z0) < (em+ 7—)|Y5"|2 +2em || 221 + 20 £,
1
1
2/ 0(s,Y)) < (v —2|6DIYY ) + %ﬁ,

1
lg(s, Y, Z0)17 < (1+73)C\Ys”|2+Oé(1+73)||Z§LH2+(%+1)93-

11—«

6

Taking expectation in both sides of the inequality (B.f) and choosing v, =

1l -«
V3=

we obtain for all e > 0
o

t 1— t
A A e Y AR
0 0

t t t t
SCIE{|§|2+/ |YS"\2ds+/ ffds+/ ¢§dAs+/ gfds}
0 0 0 0

+ %IE ( sup (Sj)2) +elE (K7,

0<s<t

On the other hand, we get from (P.4)) that for all 0 <¢ < T,

(2.6)

y V2 = |ﬁ| and
C

(2.7)

t t t t
K :y;"—g—/ f(s,y;",zg)ds—/ qﬁ(s,YS")dAs—/ g(s,y;",zg)d35+/ 2| dw,. (2.8)
0 0 0 0

Then we have
2

t
E(K})* <5 {\5\2 +Y [+ ‘/ f(s, Y, Z0)ds
0

)

2
+

2

- -

t
/ Zm | dw,
0

t t
/ o(s, Y7)dA, / o(s, Y™, ZMVdB,
0 0

(2.9)



It follows by Holder inequality and the isometry equality, together with assumptions (Hz)(a)
that

t 2 t
/ f(s, Y, Z0yds| < 3T / (2 + K2[Y7P + K2 20 |7)ds,
0 0

2

t
E / o(s, Y2, Z1)dB,
0

t

<3 [ g2+ KAV + K722
0

and

2 t
IE gIE/ |Z"|?ds.
0

t
|z vaw,
0

2
Next, to estimate ‘fot o(s, YS")dAS‘ , let us assume first that Ap is a bounded real variable. For

any 4 > 0 given in assumptions (H;) or (Hs)(a), we have

t t
< (/ e_“ASdAS) (/ ehAs
0 0

2 t
= ‘/ e (o7 + K2[YTP)dA
K Jo

2

/0 (s, YA,

¢<s,1@">\2dAs)

t
< o/ (62 + |V [2)dA,,
0

t 1 1
( / e‘”ASdAS) < Z[1—erAT) < 2
0 H H

The general case then follows from Fatou’s lemma. Therefore, from (B.9) together with the
previous inequalities, we get

since

t t t t
E(K")? §CIE{|§|2+/ ffd8+/ gb?dAﬁ—/ g§d8+/ Y ds
0 0 0 0
t t
—I—IE(sup (Sj)2) —I—/ |Y8"|2dAs+/ ||Z;‘||2ds}. (2.10)
0<s<t 0 0

Recalling again (P77) and taking e small enough such that eC' < min{|3|, :5%}, we obtain

t t
IEWFHE/ |n"|2dAs+IE/ |22 ds
0 0

t t t t
SC]E{|§|2+/ |Ys"\2ds+/ ffds+/ <z>§dAs+/ g3d5+1E(sup (55)2)}
0 0 0 0 0<s<T



Consequently, it follows from Gronwall’s lemma and (B:I0) that
t t
e{hrp+ [ vrfan [ 1zipes e}
0 0
T T T
<CE {|§|2 +/ fids +/ P2dA, +/ g2ds + sup (Sj)2} :
0 0 0 0<t<T
Finally, by application of Burkholder-Davis-Gundy inequality we obtain from (P.G)

T T T
IE{sup e+ | ||Z:||2ds+|K;|2} < OE{|5|2+ | s+ [ taa,
0 0 0

0<t<T

T
+/ gids + sup (St*)z},
0

0<t<T
which end the proof of this Lemma. m

Now we give a convergence result which is the key point on the proof of our main result.
We begin by supposing that ¢ is independent from (Y, 7). More precisely, we consider the
following equation

v - §+/Otf(S,YS,Zs)dSJr/0t¢(8712)dz48+/0t9(5)d38—/tZsldWs+Kt-

0

(2.11)
The penalized equation is given by
t t t
Vro= ek [ pevrzasn [ 07— sy ds [ (s, vaA,
0 0 0
t t
+/ g(s)dBs — / Z0 | dWs. (2.12)
0 0

Since the sequence of functions (y — n(y — S¢)”),>1 is nondecreasing, then thanks to the
comparison theorem P}, the sequence (Y™), _, is non-decreasing. Hence, Lemma .1 implies
that there exists a F;- progressively measurable process Y such that Y,"  Y; a.s. So the
following result holds.

Lemma 2.2 If g does not dependent on (Y, Z), then for each n € IN*,

ZE( sup ‘(Yt"—St)_f) — 0, as n — oo.

0<t<T

Proof. Since V" > Y we can w.l.o.g. replace S; by S; V Y2, i.e. we may assume that
IE(supg<i<p Sf) < 0o. We want to compare a.s. Y; and S; for all ¢ € [0, 7], while we do not
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know yet if Y is a.s. continuous. Indeed, let us introduce the following processes

(

T
5::§+/ g(s)dB,
0 T
< S, ::St+/ g (s)dB;

T
Y, = Yt”+/ g (s)dB,
t

Hence,

. B t t t t

Y, :§+/ f(s,Y;",ZQ)ds+n/ (Y, -5, ds+/ gb(s,YS")dAs—/ Z" | dW,. (2.13)
0 0 0 0

and we define Y, :=supY,.

From Theorem P-I], we have that a.s., Y, > }7;", 0<t<T,neIN* where {(?}n, Z"), 0<t< T}
is the unique solution of the BSDE

. t

t _ t t
Y/" = §T+/ f(s,YS",ZS")dstn/(SS—YS")ds%—/ QS(S,YS")dAS—/ Zy | dWs.
0 0 0 0

Let G = (Gt)o<i<r be a filtration defined by G, = F/, @ F’p. We consider v a G-stopping
time such that 0 < v <7T'. So we can write

Y = IE){e_"”?T%—/ e_"(”_s)f(s,Y;",Z?)dstn/ e =95 ds
0 0

+ / ’ e p(s, YIVdA, | gy} : (2.14)
0

First, with the help of Holder inequality and assumptions (Hs)(a), we have

2
14 1 14
B ([ o) < g ([ e zpa)
0 2n 0

C g n n
< B ([ e sizs),
n 0

which provide

v 2
IE (/ e F (s, Y Zg)ds) — Oasn — oo, (2.15)
0

since IE <f0T(f32 + Y2 + ||Zs"||2)ds> < C (see Lemma 2.1 and (Hy)(a)).
Next, to prove that

v 2
IE </ e "= g(s, Ys")dAs) — 0as n — oo, (2.16)
0

11



let us suppose that Ar is a bounded random variable. Using again Holder inequality and
assumption (Hs)(a), we get

v 2 T T
e—n(zx—s) n —2n(v—s) ny|2
]E(/O qb(s,Ys)dAs) < E [(/0 e dAs) (/O 16(s, Y™ dAs)]

T
< ]E{|AT| (/ (¢§+K2\Ys”|2)dAs) <
0

The result follows by Lebesgue dominated Theorem, since foy e =) (s, Y)dA, — 0 a.s5.as n —
00. The general case follows also by the approximation argument and Fatou’s lemma. On the
other hand it is easily seen that

e S+ n/ e MG ds — gyl{wo} + §T1{V:0} a.5.as N — 0. (2.17)
0

According to (B.19)-(R.17), the equality (R.14) provides

yr §,,1{l,>0} + ng{yzo} a.s.

v

and in L?(Q), as n — 0o, and Y, > S, a.s. which yields that Y, > S, a.s. From this and the
Section Theorem in Dellacherie and Meyer [f], it follows that the last inequality holds for all
t € [0,T]. Further (Y — S;)~ | 0, a.s. and from Dini’s theorem, the convergence is uniform
in t. Finally, as (Y;" — S;)” < (S, = Y?)" < |S,] + }Y;O‘, the dominated convergence theorem
ensures that

lim IE( sup | (" —S)"|?) =0.

n——+o0 <<
]
Proof of Theorem 2.2 Existence The proof of existence will be divided in two steps.
Step 1. g does not dependent on (Y, 7).

Recall that Y;* ' Y; a.s. Then, Fatou’s lemma and Lemma P.1] ensure

E ( sup |Yt|2) < 400,

0<t<T

It then follows from Lemma P.T and Lebegue’s dominated convergence theorem that

T
IE(/ \K”—K\zds) — 0, as n — o0. (2.18)
0

12



Next, we will prove that the sequence of processes Z™ converges in M?(0, T IRd). To this end,
forn > p > 1, Itd’s formula gives,

ve-vef+ [z - z2as
= 2 [0 VOV 2 — Y2 20N 2 [ (V= Yot Y1) — ol YA
v2 [ (07 =Y. lolo, Y2 220 gt ¥ ZE0AB) + [ Lol Y2 20) = o, V2, 2 )
2 [0 vz - mvawy o [ 07 - va s - are)
0 0

From the same step as before, by using again assumptions (Hj), we see that there exists a
constant C' > 0, such that

t t
e{y - vel s [ -vetans [z - 2k
0 0

t
< CIE{ [ v =veras+ s (77— 507 K+ s mp—ss)‘K;ﬂ},
0

0<s<T 0<s<T

which, by Gronwall lemma, Holder inequality and Lemma P.T] respectively, implies

¢ 1/2
IE{M”—WI2+/ ||Z:—Z§||2ds} < c{lE(sup |<1:"—Ss>—\2)}
0

0<s<T

+C {IE < sup | (Y? —S,)~ |2) }1/2. (2.19)

0<s<T

Consequently, it follows from Lemma .9 that,
t
E{iv vl [z - ziPas) — 0w np— o
0
Finally, from Burkhélder-Davis-Gundy’s inequality, we obtain

T
JE(sup vr-ver [ ||Z:—Zf||2ds) 0, as np— oo,
0

0<s<T

and from (R.§) we can deduce

]E{ sup |K;“—K§|2) — 0, as n,p — o0,

0<s<T

13



which provides that the sequence of processes (Y, Z" K") is Cauchy in the Banach space
S2([0,T];IR) x M?(0,T;IR%) x S([0,T];IR). Consequently, there exists a triplet (Y, Z, K) €
S2([0, T]; IR) x M?(0, T;1R?) x S%([0,T];IR) such that

T
IE){ sup |YS"—Y8|2+/ 12" — Z,||” ds + sup |K — K8|2) — 0, as n — 0.
0

0<s<T <s<T

It remains to show that (Y, Z, K) solves the reflected BSDE (¢, f, ¢, g,S). In this fact, since
(Y™, K[")o<t<r tends to (Y, K¢)o<i<r uniformly in t in probability, the measure d,, converges
to dK weakly in probability, so that [ (Y — S,)dK? — [ (Vs — Ss)dK, in probability as

s

n — oo. On the other hand, in view of Lemma @ Y; > S; a.s., and thus fOT Yy — S5)dK > 0.
Moreover, fOT (Y" — S)dK" = —n fo )" |2ds < 0 and passing to the limit we get

fo 5 s)dKs < 0, which together with the above proved (ii) of the definition. Finally,
passing to the limit in (R.12) we proved that (Y, Z, K) verifies (R.1T)).

Step 2. The general case. In light of the above step, the BDSDE

S

t t t t
Yi—c+ / F(s,Ya, Z)ds + / 6(s, Y2)dA, + / o(s, Vs, Z,) dB, — / Z, | dW, + K,
0 0 0 0

has a unique solution (Y, Z, K). So, we can define the mapping

. S%[0,T];R) x M2(0,T;IRY) — S2([0,T];IR) x M2(0,T;IR%)
V,2) — (Y,Z2)=0(Y,2).

Now, let (Y, 2), (Y',Z"), (Y,Z) and (Y’,Z") € S?([0,T];IR) x M?(0, T; IR?) such that (Y, Z) =

U(Y,Z)and (Y, Z') = W(Y', Z"). Put Anp = n—n'forn =Y,Y,Z, Z. By virtue of Itd’s formula,
we have

t
IEe_“t\AYHz—l—]E/ e M ||AZ,||ds
0
t t
_9E / CHAY, { F(5, Y, Z2) — F(5,Y"s, Z'3)} ds + 2IF / cHAY, {6, Y2) — 6, V")) dA,
0 0

t t t
—|—2IE)/ e MAY d(AK,) + / e M Hg(s, Y,, Z,) — g(s,Y's, Z’QW ds — uIE/ e ™M |AY,| ds.
0 0 0
t
But since IE/ e " AY,d(Ks — K.) <0, then we obtain from (Hy)
0

t t t
IEe‘“t|AYt|2+|ﬁ|IE/ e‘”8|AY8|2dAS+,uIE/ e_’“|AY8|2d8+IE)/ 5| AZ,||2ds
0 0 0

t t
<2 / eAY{f(5, Y, Zo) — f(s,Y's, Z') Vs + / e (s, Ye, Z) — g, V", 2)| " ds
0 0
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By use again assumptions (Hy), there exists constants c¢(«) > 0, such that,
t t
(u—c(a))IE/ e‘”S|AY8|2ds—|—IE/ 5| AZ,||ds
0 0

' t
132 (o e
0 0

Choosing p such that p — c¢(a) = ¢ > 0, we obtain
t t
CE/ 1 |AY, [ ds + IE/ 1 AZ, |2ds
0 0

< 120‘ (EIE/Ot e—“s}AYS}stﬂE/Ote—“SHAZS)Hst)

Q@
< 1, then it follows that ¥ is a contraction and its unique fixed point solves our

Since
BDSDE.

Uniqueness Let us define
(A, AZ,AKY), 0<t ST} ={(Yi — Y/, % — ZL. K, — K}), 0< t < T}

where {(Y;, Zy, K;), 0 <t < T} and {(Y/, Z], K;), 0 <t < T} denote two solutions of the re-
flected BDSDE associated to the data (&, f, g, #,S). Let us first note that

T
/ AY,d(AK,) < 0. (2.20)
0
Moreover, [t6 formula yields that for every 0 <t <T
t
NI NINATE
0
t t
. / AY,(f(s, Yo, Z.) — f(5,Y7, Z0))ds + / lg(s, Yo, Z.) — g(s, Y., Z)2ds
0 0
t t
1 / AY,(6(s, Y,) — o(s, Y!))dA, + / (AY,, (g(5, Yo Z) — g(s, Y7, Z2))dBy)
0 0
t t
2 / (AY,, AZ,dW,) + 2 / AY,d(AK,).
0

0

Then, by using similar computation as in the proof of existence and (P-2() we have
T T T
E{lavt+ [ lavias s [1azipas) < cE [ javpas
0 0 0
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from which, we deduce that AY; = 0 and further AZ; = 0. On the other hand since
t t
BKy = A= [ (f(5. Y Z) = £6Y1 Z0)ds— [ (6(5,Y0) = 65, YD) dA,
0 0

t t
- [ vz~ gs Vi Z) ab+ [ Az aw,
0 0

we have AK; = 0. The proof is complete now. m

3 Connection to stochastic viscosity solution for reflected
SPDEs with nonlinear Neumann boundary condition

In this section we will investigate the reflected generalized BDSDEs studied in the previous
section in order to give a probabilistic interpretation for the stochastic viscosity solution of a
class of nonlinear reflected SPDEs with nonlinear Neumann boundary condition.

3.1 Notion of stochastic viscosity solution for reflected SPDEs with
nonlinear Neumann boundary condition

With the same notations as in Section 2, let F? = {FP}o<;<7 be the filtartion generated by B,
where B is a one dimensional Brownian motion. By MgT we denote all the FZ-stopping times
7such 0 < 7 < T, as. MZ is the set of all FP-stopping times that are almost surely finite.
For generic Euclidean spaces F and F; we introduce the following vector spaces of functions:

1. The symbol C**([0,T] x E; E) stands for the space of all Ej-valued functions defined
on [0,7] x E which are k-times continuously differentiable in ¢ and n-times continuously
differentiable in , and C}""([0, T] x E; E;) denotes the subspace of C¥"([0, T] x E; E;) in
which all functions have uniformly bounded partial derivatives.

2. For any sub-o-field G C FE, C**(G,[0,T] x E; Ey) (resp. C;"(G,[0,T] x E; Ey)) denotes
the space of all C**([0,T] x E; Ey) (resp. CY™([0,T] x E; Ey)-valued random variable
that are G ® B([0, 7] x E)-measurable;

3. CF™(FB [0,T] x E; Ey) (resp.Cy™(FB,[0,T] x E; Ey)) is the space of all random fields
¢ € CF"(Fr,[0,T] x E; E; (vesp. C*"(Fr,[0,T] x E; Ey), such that for fixed z € E, the
mapping (t,w;) — a(t,w, z) is FP-progressively measurable.

4. For any sub-o-field G C FP and a real number p > 0, LP(G; E) to be all E-valued
G-measurable random variable £ such that [E|£|P < oco.

16



Furthermore, regardless their dimensions we denote by < .,. > and |.| the inner product and

norm in E and Ej, respectively. For (t,z,y) € [0,T] x IR? x IR, we denote D, = (6%1, s %),
D,, = (831_%_)%:1, D, = a%v D; = £. The meaning of D,, and D,, is then self-explanatory.

Let © be an open connected bounded domain of IR? (d > 1). We suppose that © is smooth
domain, which is such that for a function ¢ € C2(IR%), © and its boundary 9O are characterized
by © = {¢ > 0}, 00 = {¢» = 0} and, for any x € 90, Vi)(z) is the unit normal vector pointing
towards the interior of ©.

In this section, we consider the continuous coefficients f and ¢,

f o U x0,T]x6xRxR— R
¢ U x[0,T]xOxR—IR

with the property that for all x € ©, f(.,x,.,.) and g(.,x,.) are Lipschitz continuous in x and
satisfy the conditions (H'y) and (Hj), uniformly in z, where, for some constant K > 0, the
condition (H'y) is:

(H’){ [f(t, 2, 2)] < K(1+ || + |yl + [|2]),
Vo 2 y)l < K(L+ o] + [yl).

Furthermore, we shall make use of the following assumptions:

(Hj) The function ¢ : R — R%? and b : R? — R? are uniformly Lipschitz continuous ,
with common Lipschitz constant K > 0.

(H4) The functions [ : © — IR and h : [0,T] x © — IR are continuous such that, for some

K >0,
l(z)] < K(1+|[z])
h(t,z)] < K(1+|z])
h(0,z) < I(x), T € 6.

5 e function g € ;7 , X O x ; .
H;) The functi Cy?([0,T] x © x IR; IR

17



Let us consider the related obstacle problem for SPDEs with nonlinear Neumann boundary
condition:

y min {u(t, x) — h(t, z), _8Ugft, x) (Lu(t, ) + f(t, 2, u(t, ), 0" () Doult, z))|dt
OPpUsdghl) —g(t, v, u(t,2))0Bs} =0, (t,r) €[0,T] x©
u0,2) =l(x), =€©
\ %(t,x) + ot z,ult, ) =0, (t,.z)€[0,T]x 90,

where

1 < 92 d 5

L= 3 Yol )+ Dbl Ve €®
and
d
% = ; gi(x)ai, V€ 00.

As in the work of Buckdahn-Ma |, B, our next goal is to define the notion of stochastic viscosity
to OPY#91) So_ we shall recall some of their notation. Let n € C(F?,[0,T] x IR? x R) be the
solution to the equation

t
ntzy) = y+ / (g(s, 0, n(s,,y)), 0dB),
0

where the stochastic integrals have to be interpreted in Stratonowich sense. We have the
following relation with the standard It6 integral:

t

t 1 t
[Hatsszntsan.edsy = 5 [0 D) s wnts s+ [ lolsan(s,a)db.
0 0 0

Under the assumption (Hjz) the mapping y — 7(s, z,y) defines a diffeomorphism for all ¢, z, a.s.
Hence if we denote by (s, z,y) its y-inverse, one can show that (cf. Buckdahn and Ma [B])

e(t,z,y) =y — /Ot(Dya(s, z,y)g(s, x,y), odBy). (3.1)

To simplify the notation in the sequel we denote

Apg(o(t, ) = Lo(t, ) + f(t, 2, o(t, x),0" Dap(t, ) — %(% Dyg)(t, z, o(t, x))
and VU (t,z) = n(t, x, p(t, )).
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Definition 3.1 A random field v € C (FB, [0,T] x @) is called a stochastic viscosity subso-
lution of the stochastic obstacle problem OPY*9MD if 4 (0. 2) < 1(x), for all x € ©, and if
for any stopping time T € /\/lgT, any state variable ¢ € L° (ff,@), and any random field
¢ € CY2(FB, [0,T] x RY), with the property that for P-almost all w € {0 <7 <T} the in-
equality
u(t,wr) =W (tw ) <0=u(r(w),f(w) -V (r(w),{w))

is fulfilled for all (t,z) in some neighborhood V (w, T (w),& (w)) of (T (w),& (w)), the following
conditions are satisfied:

(a) on the event {0 <1 < T} N{{ e O} the inequality
min {u(7,§) — h(7,§), Apy (V(7,€)) — Dy¥ (7,§) Dep (1,€)} < 0 (3.2)
holds, P-almost surely;
(b) on the event {0 < 7 <T}N{{ € IO} the inequality
min [min {u(7, §) = h(7,€), Ayg (V(7,€)) — Dy ¥ (7,8) Dy (1,8)}

_g—: (7-7 5) - ¢(T,§,¢(T, 5)) <0 (33)

holds, P-almost surely.

A random fieldu € C (FB, [0,T] x @) is called a stochastic viscosity supersolution of the stochas-
tic obstacle problem OPY9hD if 4, (0, x) > 1 (x), for all x € ©, and if for any stopping time
T € ME ., any state variable & € L° (F2,0), and any random field o € C+* (FE, [0,T] x RY),
with the property that for P-almost all w € {0 < 7 < T} the inequality

u(t,w,x) =V (twr) > 0=u(r(w),f(w) = ¥(r(w),{w))
is fulfilled for all (t,x) in some neighborhood V (w,T (w), & (w)) of (T (w), & (w)), the following

conditions are satisfied:

(a) on the event {0 <1 < T} N{{ e O} the inequality
min {u(7, &) = h(7,€), Agg (Y (7,€)) — DyW (7,€) Dep (1,)} = 0 (3.4)

holds, P-almost surely;
(b) on the event {0 < 7 <T}N{{ € IO} the inequality
max [min {u(7, &) — h(7,8), Apg (V(7,€)) = Dy (7,8) Dep (1,€)}

_g—: (Ta 5) - ¢ (7-7 €> w (Ta 5)) >0 (35)

holds, P-almost surely.
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Finally, a random field u € C (FB, 0,77 x @) is called a stochastic viscosity solution of the

stochastic obstacle problem OPY*9hD it it is both a stochastic viscosity subsolution and a
supersolution.

Remark 3.1 Observe that if f, ¢ are deterministic and g = 0 the definition B.| coincides with
the definition of (deterministic) viscosity solution of PDE OPY*%") given by Ren et al [T3.

3.2 Existence of stochastic viscosity solutions for SPDE with nonlin-
ear Neumann boundary condition

The main objective of this subsection is to show how the stochastic obstacle problem QP :¢:9::0
is related to reflected generalized BDSDE (]]) introduced in Section 1. For this end we recall
some known results on reflected diffusions. We consider

s —AY" is increasing

t t t
Xb* =g+ / b (XE7) dr + / o (XP)d | W, + / Vi (X)) dALE, Vs el0,t],

t
At — / (i cooy A" (3.6)

We note here that due to the direction of the It6 integral, (B-§) should be viewed as going from
t to 0 (i.e., X5* should be understood as the terminal value of the solution X** ). It is then
clear (see [{]) that under conditions (Hj) on the coefficients b and o, (B-f) has a unique strong
F"-adapted solution. We refer to Pardoux and Zhang |[Z|: Propositions 3.1 and 3.2, for the
following regularity results.

Proposition 3.1 There ezists a constant C > 0 such that for all z, 2’ € © the following
inequality holds:

t,x tx’
Xt Xt

2
IE{sup }§C|x—x'\2,
0<s<t

E(sup
0<s<t

Moreover, for all p > 1, there ezists a constant C, such that for all (t,z) € Ry X o,

t,x t,x’
AL AL

2
) < COlz —2')%.

E([Ay") < Cp(1+)
and for each p, 0 < s < t, there exists a constant C(u,t) such that for all v € O,

E (e“f‘?””> < C(p,t).
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On the other hand, let us consider the following reflected generalized BDSDE:

Y” = 1(Xy") + / (r, X0", Y0, Z07) dr + / g (r, X, Y,5*) dB,
0
. / r, X0T YY) dAY + K —/ (Zp*, L dW,), 0<t<s<T, (3.7)
0
T
h( XYy <Y Vi<s<Tand / (Yrtx — h(r, Xﬁx)) dK!'* =0,
0

where the coefficients [, f, g, ¢ and h satisfy the hypotheses (H';), (Hs), (H4) and (Hj).

Proposition 3.2 Let the ordered triplet (Y}*, Zt*, K) be a solution of the BDSDE (B1).
Then the random field (s, t,x) — Y*, (s,t,2) € [0,T] x [0,T] x © is almost surely continuous.

Proof. If we denote by E” the conditional expectation with respect to Fy, then we can show
that there exists a constant C' > 0 such that for all (¢,z), (#,2') € [0,7] x O the following
inequality holds

2
t'
- Y

2
dr

< CE” [ XE) = 1(XE™) £ X0 e, 7y — f (X0 Y, 20

T
+ / ehhr
0

T
+ / et (h(r, XI) = h(r, X17)) dAKT} ,
0

9 T
+ / etk
0

¢ (7,7 Xﬁ,x’ Y*Tt,gc) o ¢ <7’, Xﬁl’m/, Y;t,ac)

2 t' 2’
A"

T
o (X )P+ [ e
0

where AK = Kt* — Kt A = A% — AV and k £ ‘Z‘ + A" where ‘Z‘ is the total variation
of the process A. Using the assumptions (H';) and (Hy), we get

9 T
+ / etk
0

2 / / T / /
dA 4 / et (h(r, XI) = h(r, X! ) dAK,
0

|

The continuity follows from standard arguments using Proposition and the continuity of
the functions [ and h. =

2
Yt,x _ Yt’,x’
s s

/ ’ / / 2
[(Xo™) = 1(Xg™") Xt = X0 dr

S CE]'—S |:€Nk5T

T
+ / ehhr
0

4 sup eukT <1 + ‘th‘ + ‘th ) ‘At,m - At/’wl

0<s<T

Xt,x . Xt’,x’
r

T
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Let now define

u(t,z) =YY", (t,x) €0,T] x ©. (3.8)

Theorem 3.1 u € C(FB[0,T] x ©) is a stochastic viscosity solution of obstacle problem
O’P(f7¢7g7h7l)-

Proof. For each (t,2) € [0,T] x ©,n > 1, let {"Y " "Zt* 0 < s <t} denote the solution of
the generalized BDSDE

YT = UXGT) + / Flr, Xpo, Y 20 ) dr + / ("Y1 — h(r, X)) dr
0

/ ¢ Xt:cnyt x) At,x/ g(’f’, Xﬁ,x’n Y;t,:c)dBr _/ nzﬁ,x l dWr
0

0

It is know from Boufoussi et al [[] that
un(t,r) ="Y, ", (t,x) €[0,T] x O,
is the stochastic viscosity solution of the parabolic SPDE:

( 78%8(;’ z) + [Lun (t,2) + fu(t, 2, un(t, ), 0*Dyuy(t, )] + g(t, z, u,(t, 2)) OB, = 0,

(t,x) €[0,T] x O,
(3.9)
un(0,2) =l(z), x €O,

D (1.0) 4 gty unlt ) =0, (t,0) € [0,T] x 06,

where f,(t,z,y,2) = f(t,z,y,z) + n(y — h(t,z))”. However, from the results of the previous
section, for each (t,z) € [0,T] x IRY,

un(t,z) Tu(t,z) a.s. as n — oo.

Since u,, and u are continuous, it follows from Dini’s theorem that the above convergence is
uniform on any compacts. We now show that w is a stochastic viscosity subsolution of obstacle
problem of OPY9mD et (r,¢) € MG x L°(FF;0) and ¢ € CV* (FZ, [0,T] x ©) be such
that, for u(7,&) > h(7,£), IP-a.s. and for IP— almost all w € {0 <7 < T}, we have

u(w,t,x) — ¥ (w, t,z) <0 =u(w,7(w),{(w)) — V(w,7(w),&(w)) (3.10)

for all (¢,z) in some neighborhood V (w, 7 (w),& (w)) of (7 (w),& (w)). From the assumption
that u(t,#) > h(t,z) and the uniformly convergence of uy, there exists (7k,&x)r=0 C MGy X
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LY(FEB;0) an (r,&)-approximation sequence (e.g. Definition 2.1 [fl]) such that w,, (1, &) >
h(tk, &), IP-a.s. Moreover, in virtue of (B.10), we get

Up, (W, t,2) — V(w, t,2) <0 = up, (W, Th(w), &(w)) — V(w, Ti(w), &(w)) (3.11)

for all (¢, 2) in some neighborhood V (w, 7, (w), & (w)) C V (w, 7 (w), & (w)) for k large enough.
To have &, in L°(FZ;©), we must and do take 7, > 7 on {7 < T} and 75, | 7; what is possible

Tk
from the definition of (7, £)-approximation sequence (e.g. |[fl]). On the other hand, since w,, is
a viscosity solution of SPDE (B.9) and according to (B.IT]), we get the following:

(a) On the event {0 < 7, < T} N {& € ©} the inequality

Afpa (U (7, &) — Dy W (7k, &) Dip Tk, Ex) < 0
holds, P-a.s.

(b) On the event{0 < 7, < T} N {& € 0O} the inequality
min [Ay, o (¥ (7k,&)) — Dy¥ (7h, &) Dop (Th, &k

—g—:(%&) — Gy (Th> Sk, Y (70, &k)) | <0

holds, P-a.s.
Therefore, taking the limit as & — oo in the above inequality yields:

(a) On the event {0 <7 < T} N{£ € O} the inequality

Aﬁg (\I] (T7 5)) - Dy\I] (7—7 g) DtQO (Tv 5) S 0
holds, P-a.s.

(b) On the event{0 < 7 < T} N{{ € 00} the inequality
min [Aﬁg (\I] (T7 g)) - Dy\];l (7—7 g) Dt(p (Tv 5) )

ov
_8—71(7—7 g) - ¢(T7£7 \II<T7 g)) <0

holds, P-a.s.

This proved that u is a stochastic viscosity subsolution of OP#%9™"! By the same argument
as above one can show that u given by (B.§) is also a stochastic viscosity supersolution of
OPFH*9Ml Qo we conclude that u is a stochastic viscosity of OP/9"! that end the proof. m
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