On the Concept of Time-Frequency

Distributions Based on Complex-Lag Moments
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Work context: Analysis of Signals with complex Time-Frequency
behaviour

Signals issued from diverse physical phenomena:

@ Very challenging to analyse in Time-Frequency (TF) domain

e Signals composed of several TF components characterized by
various non-linear contents
= inner interferences due to the TF non-linearity
= cross terms due to the multi-component structures
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1. Time-Frequency Distribution Based on Complex-Lag
Arguments

Concept of complex-lag distributions

@ A way for inner interferences reduction with respect of Wigner
distribution.

s(t) = Aed®)

WVD(t,w) = 8 [s(t + §)s*(¢ — 3)]
WVD(t,w) =6 (0= ¢ (1)) %o §r [79m 7))

with Spread Factor Qu(t,7) = ¢(3)(t)2§—33! + ¢ (t) 212! +...

4



Lj. Stankovic, 2002: Consideration of lags on imaginary axis

CTD(t,w) =5, [s(t+ J)s*(t — Ds I (t+57)s7 (t — §7)]

OTD(t,w) = 6 (0 — ¢ (1)) % - [7%)]

with Spread Factor Qq(t,7) = ¢(5)(t)4§55! + ¢(9)(t)4§7*;! 4
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C. Cornu and all., 2007. “Time-frequency distributions with generalized
complex lag argument”

o Cauchy’s integral formula = computation of the K™ order
derivative of ¢ at instant ¢ as

K! %
¢(K)(t) = % f{y(zib(t))f@rl dz
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GCDE[s)(t,w) = 3r [GOME[s](t,7)]
(o= e00) s o]

where | GCME [s](t, 7) = TVt s <t +wNp ’{/T?ﬁ’)

with wy p = eJ2mp/N

+00 4 (Np+K) T%'H K! %+1
and Q(t,7) = N 3.1 ¢ ) Gprmn (%)

“Inner interferences reduction” property of GCD

Increasing parameter N (N < number of complex lags) leads to a
reduction of Spread Factor and so attenuation of inner interferences.



Ilustration

e Spread Factors in some Time-Frequency Distributions

Distribution | Spread factor

STFT<GCD] | Q(t,7) = P ()5 + ¢P ()T +.
WVD&GCD] | Q(t,7) = ¢O (1) o + 6O (1) 51 +
CTD&GCD] | Q(t,7) = 6O (1) i + 6 (1) g +
GCD} Qt,7) = ¢ (1) o + 0" () elorg

e Example for a test signal s(¢) = ¢J(6eos(mt)+3 cos(3mt)+3 cos(5mt))
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GCD < Time-Phase Derivative Representation

» 10° Phirdi?

o GCD offers representations for derivatives of any order K of the
instantaneous phase law of the signal.

o Example for a 4™ order polynomial phase signal

d*Phivdt?
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The theoretical derivatives (top) are correctly represented by
GCDs of corresponding order (bottom)



2. Complex-Lag Moment for Multi-Component Signals

Consideration of Cross Terms

@ The GCM has a complicate non-linear form

e Multi-component case = high level of cross terms very difficult to
calculate, as follows:

for S(t) = Sl(t) + 52(t) — ejd’l(t) + ej¢>2(t)

GCM]{,( [s1 + so] (L, 7)

N—-K
N-1 K K “N.p
= pl:[o st +wnyp TW + 5| t+wny TW

_ I (O HQu(tT) 4 oid (DT +iQa(tr) 4
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IFL=dPhi/ct c10° d?Phi/dt?
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Case of a two-component signal: cross terms have strong energetic level
and corrupt the visibility of auto-terms
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Reduction of Cross Terms: “Multi-lag sets” principle

o Auto-terms don’t depend of number of lags N
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e First step: Compute GCMs for several lags sets N;
= auto terms keep the same structures
= cross terms depend of N and are consequently differently
located

@ Second step: Sum the different GCMs
mlsGCM{N} [s] (t,7)

P
= > GCMf [s](t,7)
=1

= pzem H)7T+iQu(t,7) +ZCT¢1 N;, K)
i=1

Highlighting of auto-terms / Decreasing of cross-terms
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ml=GCD (3 lag sefs) mlsGCD (5 lag sets) . _mlsGCD (8 lag sets)
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Case of a two-component signal: cross terms level reduction using
mlsGCD
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3. Results

GCD and mlIsGCD can perform in many applications dealing with
complex TF modulations.
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Ex.2: Application to Transient signals

o Infinite derivability of transient signals phase law

e Extraction, via derivability property, of transient impulses
corrupted by both noise and coherent perturbations

a. Spectrogram b. 3rd order GCD
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Noise reduction by milsGCD

Transient impulses extraction
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4. Conclusion

We achieved...
Distribution able to:

@ focus on arbitrary derivate of phase laws

@ in multi-component context

@ with highly concentrated and cross-terms reduced representations

Prospects

e Signal-dependent choice of lag sets

@ 2D extension of complex lag concept

17



Thank you for your Attention!!!
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