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Abstract

Rapidly rotating spherical kinematic dynamos at very low Ekman and Prandtl
numbers are computed using the combination of a quasi geostrophic (QG) model
for the velocity field and a classical spectral 3D code for the magnetic field. The
QG flow is computed in the equatorial plane of the sphere and corresponds
to Rossby wave instabilities of a geostrophic internal shear layer produced by
differential rotation. The induction equation is computed in the whole sphere
after the QG flow has been expanded along the rotation axis. Differential ro-
tation and Rossby-wave propagation are the key ingredients of this dynamo
which can be interpreted in terms of Parker-Ω dynamo. Taking into account
the quasi geostrophy of the velocity field enables us to increase time and space
resolution to compute the dynamics. For the first time, we report on numeri-
cal dynamos with very low Ekman numbers (10−8). Because the magnetic and
velocity fields are computed on different grids, we compute dynamos for very
low magnetic Prandtl numbers exhibiting a scale separation between magnetic
and velocity field. These dynamos are asymptotically close to rapidly rotating,
metallic planetary cores.

Keywords: kinematic dynamos, magnetic fields, geodynamo, geostrophy,
quasi-geostrophic model, scale separation

1. Introduction

The magnetic field of the Earth is produced by dynamo action in the metallic
liquid core of our rotating planet. Many efforts have been successfully made in
the last decade to describe the mechanisms of self induced magnetic fields either
with experimental models [1, 2, 3] or numerical simulations [4, 5, 6, 7]. Both
approaches have limitations. No experiment has been performed in rotation
(except for one attempt with a precessional cylinder [8]) while rotation is seen
as a key ingredient by geophysicists to explain the geometry and amplitude
of the geomagnetic field [9]. All numerical models [10, 11] have introduced
Coriolis forces in the Navier-Stokes equation and the quasi geostrophy (two
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dimensionality imposed by the Proudman-Taylor theorem [12]) of the flow plays
a role in the generation of the magnetic field. Thermal convective vortices
aligned with the rotation axis are associated to surface patches of magnetic field
[7] and spatio-temporal behaviors of magnetic and vorticity fields are similar.
This effect is a direct consequence of the prescribed magnetic Prandtl number
(Pm = ν/η, where ν is the kinematic viscosity and η the magnetic diffusivity)
in the simulations. The current computer capabilities limit the computations to
magnetic Prandtl number of the order of unity [10] while liquid metals exhibit
magnetic Prandtl numbers lower than 10−5, even in planetary core conditions
[13].

In this paper, we propose an approach aiming at computing very low mag-
netic Prandtl number dynamos taking advantage of the quasi-geostrophic be-
havior of the velocity field. For very low Ekman numbers (E = ν/ΩR2, where
Ω is the rotation rate of the spherical container, and R its radius), a quasi-
geostrophic (QG) approach describes the flow correctly in a rapidly rotating
sphere [14, 15]. The flow equations are integrated along the direction of the
rotation axis. Even though the numerical variable is a stream function in the
equatorial plane, the top and bottom boundary conditions are taken into ac-
count through the slope (β) and Ekman pumping effects. In the context of the
study of thermal convection in rapidly rotating spherical shells, Aubert et al.
[16] have successfully compared their QG results with 3D calculations [17] and
experimental measurements [18].

Low values of Pm may imply a separation in terms of length-scales and
frequencies, between the velocity and magnetic fields in a metallic dynamo.
This idea has already been applied to kinematic dynamo computations at low
Pm [19]. In this work, we compute the QG flow in the equatorial plane with a
fine spatio-temporal resolution and the velocity is extrapolated to a coarse 3D
spherical grid where the induction equation is solved.

In order to demonstrate the validity of this approach, we have decided to ap-
ply it to a simple case. Instead of a thermal convective flow for which heat trans-
port has to be modeled, we consider the instabilities of an internal geostrophic
shear layer. This layer, known as the Stewartson layer, is produced by a dif-
ferentially rotating inner core in a rotating sphere and consists of two nested
viscous shear layers [20, 21]. Above a critical Ro number (Ro = ∆Ω/RΩ, where
∆Ω is the differential rate of rotation of the inner core), the Stewartson layer
becomes unstable [22] and generates Rossby waves [23].

The Geodynamo group in Grenoble is develloping a spherical Couette liq-
uid sodium experiment [24] in order to study magnetostrophic regime. Quasi
geostrophic numerical dynamos at low magnetic Prandtl numbers will help to
better understand the experimental findings [25].

As we will show in this paper, such unstable flows can generate and sustain
a magnetic field. The QG-model allows us to compute dynamos at very low
Ekman (down to 10−8) and magnetic Prandtl numbers (as low as 3 10−3).
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Figure 1: Sketch of the split sphere geometry. The differential rotation produces an axisym-
metric Stewartson E1/4 shear layer which is cylindrical and aligned with the rotation axis
z.

2. The equations

2.1. Hydrodynamics

Let us consider a sphere of radius R filled with an incompressible liquid
metal of viscosity ν and magnetic diffusivity η. The sphere is rotating at Ω
along the z-axis of a cylindrical reference frame (es, eφ, ez). The sphere is split
at the colatitude ± sin−1(Rs/R) (Rs/R is set to 0.35). The two polar caps are
rotating differentially at Ω+∆Ω as shown in figure 1. Time, length and magnetic
field will be scaled using Ω−1, R, (µ0ρ)1/2RΩ respectively. For low Ekman and
Rossby numbers, the mainstream flow is quasi geostrophic [12]. Taking the curl
of the Navier-Stokes equation and averaging along the direction of the rotation
axis z (denoted by an overbar), we get the QG equation for the z-component of
the vorticity ω = ez · ∇×u, provided that us and uφ are independent of z [23].

∂ω

∂t
+ us

∂ω

∂s
+
uφ
s

∂ω

∂φ
− (2 + ω)

duz
dz

= [∇× (j×B)] · ez + E∆ω (1)

The Coriolis term needs the evaluation of duz

dz . We deduce that uz is a linear
function of z from the averaged mass conservation equation. Consequently, its
vertical derivative may be deduced from the non penetration boundary condition
(β effect) and the viscous boundary condition (the Ekman pumping effect) [23]:

duz
dz

= E1/2P (us, uφ, s) + β(s)us (2)
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where β(s) ≡ 1
L

dL
ds

∣∣
z=L

and L(s) =
√

1− s2 is the half height of a column of
fluid and

P (us, uφ, s) =
1

2(1− s2)3/4

[
−ω +

s

1− s2

(
∂us
∂φ
− 1

2
uφ

)
− 5s

2(1− s2)3/2
us

]
(3)

is the Ekman pumping boundary condition in a rigid sphere deduced from
Greenspan’s formula [23]. We would like to stress that this formula is applica-
ble as long as all relevant time scales are much longer than the rotation period,
which is a reasonable assumption for the small Rossby numbers considered in
this study.

The axisymmetric flow is computed directly from the Navier-Stokes equation
[26].

∂ 〈uφ〉
∂t

+

〈
us
∂uφ
∂s

〉
+
〈uφus〉
s

+2 〈us〉 =
〈

(j×B) · eφ
〉

+E

(
∆ 〈uφ〉 −

〈uφ〉
s2

)
(4)

where 〈 〉 stands for the φ-average operator. Rigid boundary conditions are
assumed for the velocity at s = 1. For s < Rs/R, the top and bottom azimuthal
velocity are imposed as uφ = sRo. The velocity field is computed using a
generalized stream function in the equatorial plane as in [23] which guarantees
3D mass conservation. The stream function is expanded in Fourier components
along the φ component. It may be interesting to introduce the Reynolds number
Re = RoE−1 directly related to the two controlling dimensionless numbers E
and Ro.

In this paper, as a first step, we will only consider kinematic dynamos and
the magnetic terms in (1, 4) will be neglected.

2.2. Induction equation

The velocity field computed with equations (1, 4) in the equatorial plane is
extrapolated to a spherical grid (on Gauss collocation points) in the physical
space. This is a straightforward process because us and uφ are independent
of z and uz is a linear function of z. Then, the velocity field is expressed in
spherical coordinates (er, eθ, eφ) to compute the non linear induction term. The
dimensionless equation of evolution of the magnetic field is:

∂B

∂t
= ∇× (u×B) + P−1

m E∆B (5)

Changing the magnetic Prandtl number Pm changes directly the magnetic Reynolds
number Rm = RePm = RoE−1Pm which is more commonly used in dynamo
modeling. The induction equation is solved using spherical harmonics where the
magnetic boundary conditions are easy to implement [9]. The induction part of
the code has been checked using kinematic dynamo results [27] and the dynamo
benchmark [28].
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2.3. Numerical implementation

A finite difference scheme is used on an irregular radial grid (denser near
the Stewartson layer) as well as on a regular radial grid (for the most turbulent
cases). A semi implicit Crank-Nicholson scheme is used for linear terms in time
whereas an Adams-Bashforth procedure is implemented for non linear terms.
For low Pm, cylindrical and spherical radial grid steps may differ by a factor 20,
and time steps for the induction equation may be much longer than the velocity
time steps (as much as 20 times).

For a run at E = 10−8, the stream function is computed on a cylindrical
mesh made of 600 radial points and expanded in Fourier series up to degree
m = 170 in the azimuthal direction while the magnetic field is expanded in
spherical harmonics (Lmax = 79,Mmax = 32) with an irregular radial grid of
150 points for Pm = 10−2.5.

To compute the induction equation (5), the velocity field (us, uφ,
duz

dz ) is
truncated in the Fourier space and computed back in physical space on a fine

2D equatorial grid. Knowing duz

dz , z-extrapolation is straightforward, and the
velocity field is computed at each magnetic grid point using linear interpolation
in the s-direction.

Convergence tests have been performed and are reported in §4.3.

3. Hydrodynamics

For low Rossby numbers, the split at the spherical boundary produces an
internal shear layer in the fluid on a cylinder of radius Rs aligned with the
rotation axis. This geostrophic viscous layer consists of two nested layers of
different width as revealed by the asymptotic study of Stewartson [20] and
illustrated later by a numerical study of Dormy et al. [21]; an E1/4 thick layer
accommodates the jump in the geostrophic azimuthal velocity and a narrower
layer of size E1/3, non-geostrophic, corresponds to an axial jet ensuring mass
conservation.

In a previous study [23], we have presented the QG model, which can only
reproduce only the E1/4 layer, and we have studied the linear perturbations of
this geostrophic internal viscous layer. It becomes unstable when the Rossby
number exceeds a critical value Roc which varies as βE1/2 [23]. At the onset, the
instability is a Rossby wave, an azimuthal necklace of cyclones and anticyclones
of size E1/4 which propagates in the prograde direction as shown in figure 2ab.
Super rotation (Ro > 0) generates a spiraling flow outside the shear layer while
the flow is mainly located inside the shear layer for Ro < 0. For supercritical
Ro, the flow exhibits larger vortices (fig. 2cd) which are time dependent but
still drifting as Rossby waves. The flow stays mainly concentrated in the shear
layer. Figure 3 shows the kinetic energy spectra E(k) of this QG turbulent flow.
It is very steep: E(k) ∼ k−5, which is the slope predicted by Rhines [29] for
turbulence in presence of Rossby waves [30]. This steep spectrum suggests that
the small scales of the flow may be neglected in the induction equation.
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Figure 2: z-vorticity maps in the equatorial plane. (a) and (b): E = 10−6, Ro = 0.0096
and Ro = −0.0111 respectively. It shows the flow at the onset of hydrodynamic instabilities
for both signs of the Rossby number. (c) and (d): E = 10−8, Ro = 0.02 and Ro = −0.02
respectively. It shows a typical view of the ”turbulent” regime for Rossby numbers about 30
times critical. The color bar gives the local vorticity scale for (c) and (d) only.
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Figure 3: Spectra of the kinetic energy, and both toroidal and poloidal magnetic energy for
E = 10−8, Ro = 0.02 (30 times critical) and Pm = 5 10−3 (equivalent to Re = 2 106). The
amplitude of the energy is arbitrary (linear calculation).

Recently, in rotating turbulence experiments [31], it has been shown that for
Rossby numbers up to 0.1 (regardless of how far above criticality) the velocity
fluctuations recorded by hot-film probes are strongly correlated along the rota-
tion axis direction, suggesting that a QG-model may describe such flows quite
well.

4. Dynamo action

For a given Ekman number (E = 10−6 to 10−8) and a given Rossby number
Ro from critical to a few times critical, we find the critical magnetic Prandtl
number Pm of the onset of dynamo action by trial and error tests. As the flow
is time dependent, we detect dynamo criticality on long term time variations of
the magnetic energy.

4.1. Overview of results

Unlike most kinematic dynamo models [32], a critical magnetic Prandtl num-
ber was found for every pair of dimensionless numbers (E,Ro) we have com-
puted. In figure 4, the calculated critical magnetic Prandtl number P cm is plot-
ted as a function of the Reynolds number Re = Ro/E. As expected, we found
that an increase of the forcing (Ro) for a given E reduces the critical magnetic
Prandtl number. A decrease of the critical magnetic Prandtl number is also ob-
served as we lower the Ekman number. These two effects may be summarised by
the use of the magnetic Reynolds number Rm. The data points in figure 4 are
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Figure 4: Dynamo onset for different parameters: Critical magnetic Prandtl number P c
m

versus the absolute Reynolds number Re = |Ro|E−1. Dipole and quadrupole thresholds are
respectively denoted by circles and squares while solid and open symbols represent positive
and negative differential rotation. All the points lie around the Rm = 104 line.

roughly compatible with the line Rm = 104. However, the flow generates large
deviations from this simple law of about a factor 3, which is quite small if you
compare it to the variations of a few orders of magnitude of the dimensionless
parameters E and Ro. We thus want to emphasize that the critical Rm remains
roughly constant and seems to be independent of E and Pm.

The lowest critical magnetic Prandtl number (0.003) has been found for E =
10−8 and Ro = 0.02. The critical magnetic Prandtl number is not independent
of the sign of the differential rotation (sign of Ro). This is expected because
the flow is quite different in the two cases as shown in figure 2. A negative
differential rotation seems to lead to slightly lower dynamo thresholds.

Antisymmetric axial velocities (uz(z) = −uz(−z)) and symmetric orthoax-
ial velocities (us,φ(z) = us,φ(−z)) generate two independent families of growing
magnetic field in kinematic dynamos known as the dipole and quadrupole fam-
ilies [33]. The geometry of the two families are shown in figure 5a and 5b: the
dipole family is dominated by an axial dipole, whereas the quadrupole family
exhibits a strong axial quadrupole. Each family has a different critical magnetic
Prandtl number. As shown in figure 4, we found that the dipole family has
always a larger critical magnetic Reynolds number than the quadrupole family.
This result is quite different from the conclusion of the work of Sarson and Busse
[34]. Using Kumar and Roberts kinematic dynamos, they found that prograde
spiraling of columns and prograde zonal flows favor dipole magnetic fields.
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a b
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Figure 5: Growing magnetic field in kinematic dynamos for E = 10−8. (a) and (b) are
meridional cuts of the sphere showing the axisymmetric part of the magnetic field. The solid
lines are the poloidal field lines and the color map represents the azimuthal field. (a) shows
a quadrupole field obtained at Ro = 0.02 and Pm = 0.005. (b) shows a dipole field obtained
at Ro = −0.02 and Pm = 0.003 (the quadrupole family has been filtered out to compute
the dipole family). (c) is a spherical map of the radial magnetic field at the surface of the
core, corresponding to case (b), the dashed line being the rotation axis. The corresponding
vorticity fields are shown in figure 2cd.

In both families, the strongest magnetic fields are produced in the Stewart-
son shear layer deep inside the sphere. The typical spectra given in figure 3 show
that the computed magnetic fields are dominated by the toroidal axisymmetric
component, which is about 100 times stronger than the non-axisymmetric fea-
tures. At the surface of the sphere (figure 5c), the radial magnetic field is also
mostly axisymmetrical, and the non-axisymmetric part is clearly associated to
the geostrophic vortices produced in the Stewartson shear layer. An important
fact is that decreasing E and Pm leaves the geometry of the growing magnetic
field almost unchanged. This suggests that the details of dynamo action stay
unaltered, because the flow itself remains also quite similar.

Figure 6 compares the details of the magnetic field and the velocity field.
We can see that due to the very low value of Pm, the magnetic field does
not follow the velocity field perfectly, even though the main features of the
flow are still present in the magnetic field. As a consequence of the Rossby-
wave propagation, there is a systematic shift in the azimuthal direction between
magnetic and velocity fields. We should also mention here that the small scale
structures of the flow are found to be unimportant for the dynamo action (see
also §4.3).

The geometry of the magnetic field may be understood in term of Parker-Ω
effects [33, 9]. A very large toroidal magnetic field compatible with the azimuthal
flow is converted to a poloidal magnetic field by the columnar flow through a
Parker effect (also known as giant alpha effect). Any non azimuthal component
of the magnetic field is transformed into an azimuthal component by the strong
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Figure 6: Closeup of the radial magnetic field (color map) and the radial velocity field (con-
tours) for E = 10−8, Ro = −0.02, Pm = 0.005, in the equatorial plane. Red and blue are
respectively outward and inward magnetic field, whereas solid and dashed lines are respec-
tively positive (outward) and negative (inward) radial velocity field contours. The dotted line
circle is the split radius (r = 0.35).
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differential rotation in the Stewartson layer by Ω effect.
The Ekman pumping may be important for the dynamo process: although

the β-effect produces axial velocities, they are out of phase with the axial vortic-
ity at the onset of thermal convection in a rapidly rotating annulus and cannot
contribute to the mean helicity, whereas axial velocities due to Ekman pumping
are in phase with the axial vorticity. However, the Ekman pumping flow is of
order E1/2, so that a dynamo process based on the Ekman pumping becomes
very weak when lowering the Ekman number. In addition, when the Ekman
pumping flow is artificially removed in our dynamo simulations, we still observe
dynamo action with nearly the same threshold. Similar results have been ob-
tained theoretically by Busse [35], who derived a geodynamo model based on
thermal convection in which the dynamo process due to Ekman pumping van-
ishes at small E, while a β-effect mechanism takes over. We may thus conclude
that the β-effect alone may produce an efficient Parker effect, without requiring
an Ekman pumping flow.

Furthermore, we have not been able to find a critical magnetic Prandtl
number with a steady flow (either a time averaged flow or a flow with its time
evolution stopped at a given time). This implies that the time evolution of the
flow is a key ingredient for dynamo action in these quasi-geostrophic dynamos.
The propagation of Rossby waves is required so as to put in phase the non
axisymmetric magnetic fields and velocities in order to produce an axisymmetric
poloidal magnetic field. This type of Parker effect was proposed in the model
of Braginsky [36].

Currently, many dynamo experiments are designed with the help of numer-
ical simulations (kinematic dynamos). Even when the flow is highly turbulent
(Re > 106), mean flow approaches are used for simplicity to find the dynamo
onset [1, 37, 38, 39]. This method would fail in the case of Stewartson dynamos
for which time dependence is required.

4.2. Oscillating solution

As in many αΩ dynamos [33], we sometimes obtain a time oscillating solution
for the Stewartson dynamo. Dipole solutions for E = 10−6 do exhibit such a
behavior. The growth rate of one of these dynamos is plotted on figure 7,
showing three time scales: the smallest one is the time scale of the velocity
fluctuations. The intermediate time scale is the time needed for the growth
rate to go from its minimum to its maximum value. The large time scale is the
period of oscillation, unrelated to any time scale of the flow, and corresponds
to a fraction of the magnetic diffusion time. The oscillation period shortens as
the forcing is increased above the dynamo threshold.

In the context of kinematic dynamos, this behavior corresponds to a complex
eigenvalue in the framework of linear stability [33, 9, 27]. Since our flow is time-
dependent, the kinematic dynamo is not an eigenvalue-type problem. However,
if the flow changes are much faster than any magnetic field variations, it is a
good approximation. Hence, we consider here a toy model with two coupled
magnetic modes B1 and B2. Let us assume that the induction equation can be
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Reversal

Figure 7: Magnetic field reversal observed at E = 10−6, Ro = −0.08 and Pm = 0.1. The
graph shows the evolution of the growth rate of the magnetic energy as a function of time (in
magnetic diffusion time units). Each snapshot shows the geometry of the magnetic field at
different times in the same way as fig.5.
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approximated by the following system:

dB1

dt
= λ1B1 +K12B2 (6)

dB2

dt
= λ2B2 −K21B1 (7)

with real coeficient λ1, λ2,K12,K21. For a low coupling (K12K21 < (λ1−λ2)2/2)
the eigenvalues of this system are real, so that the growing solution will be the
combination of B1 and B2 corresponding to the highest eigenvalue. This is
the case for the quadrupole family at Ro < 0. However, when the coupling
K12K21 is sufficiently strong, the eigenvalues are complex conjugate with a
real part λr = (λ1 + λ2)/2. As a result the growing magnetic field oscillates
periodically between B1 and B2 with a frequency increasing whith the strength
of the coupling. The parameters λ1, λ2,K12,K21 can be adjusted in order to
recover the curve shown in figure 7 (without the small oscillations) when plotting
the growth rate of the energy of such a system as a function of time. The
intermediate time scale (time for the growth rate to go from its minimum to its
maximum) is very close to the phase shift between B1 and B2, and one of the
two modes is dominant near the minimum of the growth rate cycle, while the
other one is dominant near the maximum, with growth rates close to λ1 and λ2.

The reversal process at work in our simulations is a smooth periodic evolution
of the magnetic field, but at the surface it takes the form of a sudden sign
reversal. In fact, a reversed poloidal magnetic field is slowly growing inside
the Stewartson layer, pushing away the initial poloidal magnetic field until it
reaches the outer boundary. Then, the reversed dipole magnetic field suddenly
appears at the surface and ultimately the poloidal field reverses at the center.
During the oscillation, the axisymmetric toroidal magnetic field patches in the
Stewartson layer migrate toward the equator as reversed polarity toroidal fields
are formed at high latitudes. This migration could be understood in terms of
Parker dynamo waves [40, 33].

4.3. Impact of truncation

To check if such strong truncations that completely neglect the small scales
of the flow for the induction processes are valid, we tested several of our trun-
cated calculations by increasing Mmax and reducing the time step. We saw no
significant differences. Some of these runs, that demonstrate the convergence of
our results, are shown in table 1. Furthermore, there is no significant difference
between the temporal evolution of the growth rate in the time series shown in
figure 8.

These tests clearly show that the scale-separation hypothesis in both space
and time is, as expected, valid for such small values of Pm.

5. Conclusion

In summary, we have computed a quasi-geostrophic dynamo based on a
Stewartson shear layer flow. The scale separation approach works because the
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E Ro Pm NU
R mU

max NB
R mB

max lBmax dtU dtB gr
10−6 0.04 0.3 400 64 100 64 64 0.1 0.1 45.72
10−6 0.04 0.3 400 64 100 16 59 0.1 0.6 45.68
10−6 −0.08 0.1 400 64 200 42 79 0.05 0.2 30
10−6 −0.08 0.1 400 64 100 21 59 0.05 0.3 31

Table 1: Effect of the truncation of the magnetic field model on the growth rate. NR is the
number of radial grid-points; mmax is the number of azimuthal Fourier mode; lmax the highest
order of the spherical harmonics; dt is the time stepping (based on the rotation rate); gr is
the growth rate of the magnetic energy. A superscript .U or .B denotes a quantity relative to
the velocity field or to the magnetic field models.
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Figure 8: Growth rate of the magnetic energy at E = 10−6, Ro = −0.08, Pm = 0.1 and two
different resolutions (given in table 1). The dashed line is the less resolved calculation (in
both space and time domains), and the continuous line is the high resolution one.
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small scales of the flow in our rotating sphere are negligible (very steep kinetic
energy spectrum E(k) ∼ k−5). Our preliminary results may be interpreted
in terms of a Parker-Ω dynamo. The Ω effect is generated by the shear of
the Stewartson layer itself whereas the Parker effect is produced by vortices
associated with the Rossby waves due to the instability of the shear layer. These
understandings are very encouraging for our on-going experimental modeling of
the geodynamo. As described in Cardin et al. [24], we are building a spherical
Couette experiment using liquid sodium which may validate and enlarge our
present numerical findings.

For the first time, we have computed a spherical dynamo with a very low
magnetic Prandtl number (< 10−2) and a very low Ekman number (10−8) (cor-
responding to a very high Reynolds number Re > 106). The critical magnetic
Reynolds number seems to be quite independent of the Ekman and magnetic
Prandtl numbers. Even though our dimensionless parameters stay far away
from parameters of planetary cores, our calculations use dimensionless numbers
which are in the correct asymptotic regime for the modeling of the geodynamo.
The key ingredients of our approach is to take into account a specific property
of the rotating fluid, quasigeostrophy, which allows us to use a 2D model to
compute the flow evolution, and the separation of scales between the magnetic
field and the velocity field, allowing us to use a coarse 3D mesh for the magnetic
field.

Concerning the dependence on Pm, our results are compatible with the re-
sults of Ponty et al. for turbulent Taylor Green flow [41] while they contradict
those of Shekochihin et al showing an inhibition of dynamo action as Pm is de-
creased [42]. In the geophysical context, the study of Christensen and coworkers
suggested that by decreasing the Ekman number, the magnetic Prandtl number
could be decreased as well without loosing dynamo action. This suggestion was
based on 3D simulations, varying the Ekman number by a factor three [7]. By
varying both parameters by a factor 100 (see fig. 4), the present study clearly
confirms this idea, which has very important geophysical implications, showing
a possible link between the regime of existing numerical models and the regime
of interest for the Earth.

We also showed that in the case studied in this paper, the mean flow or the
static flow fails to produce a dynamo while the fully resolved time-dependent
flow is successful. Indeed, time evolution of the flow and β effect are key ingre-
dients for dynamo action in our models, while Ekman pumping can be neglected
without losing the dynamo effect.

The next step will be to add the Lorentz force in the QG equation to compute
saturated dynamos. One of the difficulty is to compute the action of the large-
scale magnetic field on the small scale motions of the fluid. Preliminary results
are encouraging and exhibit saturated dynamos very close to the kinematic
dynamos described here. A comparison with 3D calculations would also be very
interesting and 3D preliminary results of J. Wicht (private communication) seem
to confirm our results.

A quasi geostrophic approach might also be used to build thermal convective
dynamos. A zonal geostrophic flow is produced by the Reynolds stresses associ-
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ated to the thermal columns [18, 43] but its amplitude is much lower compared
to the differential rotation imposed in the Stewartson problem. Would it be
enough to start a Stewartson dynamo type? for what forcing? Would it work
for very low Ekman and magnetic Prandtl numbers?
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