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On a continuous time game with incomplete information

Pierre Cardaliaguet*and Catherine Rainerf
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Abstract

For zero-sum two-player continuous-time games with integral payoff and incomplete
information on one side, one shows that the optimal strategy of the informed player can
be computed through an auxiliary optimization problem over some martingale measures.
One also characterizes the optimal martingale measures and compute it explicitely in

several examples.
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In this paper we investigate a two-player zero-sum continuous time game in which the
players have an asymmetric information on the running payoff. The description of the game

involves
(i) an initial time to > 0 and a terminal time 7" > to,

(ii) I integral payoffs (where I >2): ¢; : [0,T] xU xV — R for i =1,...1 where U and

V' are compact subsets of some finite dimensional spaces,
(ili) a probability p = (p;)i=1,..r belonging to the set A(I) of probabilities on {1,...,I}.

The game is played in two steps: at time ¢, the index i is chosen at random among {1,...,1}

according to the probability p ; the choice of ¢ is communicated to Player 1 only.
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Then the players choose their respective controls in order, for Player 1, to minimize the
integral payoff fto (s,u(s),v(s))ds, and for Player 2 to maximize it. We assume that both
players observe their opponent’s control. Note however that Player 2 does not know which
payoff he/she is actually maximizing.

Our game is a continuous time version of the famous repeated game with lack of infor-
mation on one side studied by Aumann and Maschler (see [, [J]). The existence of a value
for our game has been investigated in [ff] (in a more general framework): if Isaacs’ condition

holds:

Ht,p:mfsup pili(t,u,v) = sup inf pili(t,u,v V(t,p) € 10,T] x A(I) ,
(t.0) UEVZ >UWEZ ) () € 10,T) x A(T)

(0.1)
then the game has a value V.= V (tg,p) given by

1

Vion = b Sk | [ tanses] 02

(i) €(Ar(t0))! BB, (to) 5=

- ap e ij@ [ <s,ai<s>,ﬁ<s>>ds},

BB, (to) (as)€
for any (to,p) € [0, T)xA(I), where the o; € A,(to) (fori =1,...,I) are I random strategies
for Player 1, 3 € B,(to) is a random strategy for Player 2 and E,,3 (fto s, (s), B(s ))ds)
is the payoff associated with the pair of strategies (c;, 3): these notions are explained in the
next section. In [f] we also show that the value function V can be characterized in terms
of dual solutions of some Hamilton-Jacobi equations, which, following [H], is equivalent to

saying that V is the unique viscosity solution of the following HJ equation:
. O’w .
min  wy + H(t,p) ; Amin el =0 in [0,7] x A() . (0.3)
P
In the above equation, Apin (A) denotes the minimal eigenvalue of A, for any symmetric

matrix A. Note in particular that this equation says that V is convex with respect to p.

This paper is mainly devoted to the construction and the analysis of the optimal strategy
for the informed player (Player 1). In particular we want to understand how he/she has to
quantify the amount information he/she reveals at each time. Our key step towards this
aim is the following equality:

T

V(to,po) = min Ep |:

peagin H(S,P(S))ds} Y(to,po) € [0,T] x AI) (0.4)

to
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where M(t, po) is the set of martingale measures P on the set D(t() of cadlag processes p
living in A(I) and such that p(t;,) = po and p(7T') belong to the extremal points of A(T).
Equality (D.4) is reminiscent of a result of [ff] in the discrete-time framework. It is directly
related with the construction of the optimal strategy for the informed player. Indeed, let
P be an optimal martingale measure in (0.4), p(t) = (p1(t),...,ps(t)) the coordonnate
mapping on D(ty) and {ey,...,er} the canonical basis of IR’. Then the informed player,
knowing that the index ¢ has been chosen by nature, has just to play the random control
t — argmin,, Zj p;(t)¢;(t,u,v) with probability P;, where P; is the restriction of the law
P to the event {p(T) = e;}.

We give two proofs of (D.4). The first one relies on a time discretization of the value func-
tion taken from [[4] and the explicit construction of an approximated martingale measure
in the discrete game. The second one is based on a dynamic programming for the right-
hand side of (0.4) and on the relation between this dynamic programming and the notion of
viscosity solution of (@) We shall see in particular that the obstacle term Apin (?;T‘Q”) >0
is directly related with the minimization over the martingale measures P.

Since the optimal martingale in (D.4) plays a central role in our game, an analysis of
this martingale is now in order. This is the aim of section 3. We show that, under such
a martingale measure P, the canonical process p(t) has to live in the set H(t) C A(I) in

which, heuristically, the Hamilton-Jacobi equation

A%
E‘FH(t,p)—O

holds. Moreover the process p(t) can only jump on the faces of the graph of V(¢,-). Namely,
for any t € [to, T, there is a measurable selection £ of OV (¢, p(t™)), such that

V(t,p(t)) = V(t,p(t7)) — (&p(t) —p(t7)) =0 P —as.
Conversely, under suitable regularity assumptions on V and on H, a martingale measure

satisfying these two conditions turns out to be optimal in ([.4).

In section 4 we compute the optimal martingale measures for several examples of games.
These examples show that, under the optimal measure, the process p can have very different
behavior. When I = 2 and under suitable regularity conditions, the optimal measure is
purely discontinuous. For instance we describe a game in which this optimal measure is
unique and has to be the law of an Azéma martingale. In higher dimension, uniqueness is
lost in general. Moreover we give a class of examples in which, although there are optimal

measures which are purely discontinuous, they are also optimal measures under which p is



a continuous process. For instance we show a game in which p lives on an expending convex
body moving with (reversed time) mean curvature motion. In this case case the law of p

takes the form

dpy = (I —a; ® a;)dBy

where (By) is a Brownian motion and the process a; lives in the unit sphere.

We complete the paper in section 5 by a list of open questions.

1 Notations and general results

In this part we introduce the main notations and assumptions needed in the paper. We also
recall the main results of [, H]: existence of a value for the game with lack of information

on one side, as well as the characterization of the value.

Notations : Throughout the paper, x.y and (z,y) denote the scalar product in the
space of vectors z,y € IRE (for some K > 1), and |-| the euclidean norm. The closed ball of
center z and radius r is denoted by B,(x). The set A(I) is the set of probabilities measures

on {1,...,I}, always identified with the simplex of R’:

I
p=(p1,...,pr) € A(I) & ZpizlandpiZOforizl,...I.
i=1

If p € A(I), we denote by Ta(p)(p) the tangent cone to A(I) at p:

Tan(p) = |J (AU —p) /X

A>0

We denote by {e;, i = 1,...,I} the canonical basis of IR’. For any map ¢ : A(I) — IR,

Vex¢ is the convex hull of ¢. We also denote by Sy the set of symetric matrices of size I x I.
Throughout the paper we assume the following conditions on the data:

{ i) U and V are compact subsets of some finite dimensional spaces, (1.5)
i

i) Fori=1,...,1, the payoff functions ¢; : U x V — IR are continuous.

We also always assume that Isaac’s condition holds and define the Hamiltonian of the game

as:

I
H(t,p) == (t, i 0i(t 1.6
(t,p) Lrélgr&aXsz u, v) r&agigggpz i(t,u,0) (1.6)



for any (t,p) € [0,T] x A(I).

For any ty < T, the set of open-loop controls for Player I is defined by
U(tg) = {u : [to, T] — U Lebesgue measurable} .

Open-loop controls for Player II are defined symmetrically and denoted V(ty).

A pure strategy for Player I at time t( is a map « : V(tg) — U(tp) which is nonanticipative
with delay, i.e., there is a partition 0 < t9 < t; < --- < tx = T such that, for any
v1,v9 € V(to), if v1 = v a.e. on [tg,t;] for some i € {0,...,k — 1}, then a(v1) = a(vy) a.e.
on [tg,tit1]-

Let us fix £ a set of probability spaces which is non trivial and stable by product. A
random control for Player I at time ¢g is a pair ((y, Fu, Py), u) where the probability space
(Q, Fu, Py) belongs to € and where u : Q,, — U(tg) is Borel measurable from (£, F,) to
U(tg) endowed with the L!—distance. We denote by U, (to) the set of random controls for
Player I at time to and abbreviate the notation ((£2,, Fy, Py), ) into simply u.

In the same way, a random strategy for Player I is a pair ((Q4,Fa,Pa), ), where

(Qa, Fa, Po) is a probability space in € and a: ,, x V(tg) — U(tg) satisfies

(i) « is measurable from Q, X V(ty) to U(tp), with Q, endowed with the o—field F, and
U(to) and V(to) with the Borel o—field associated with the L!—distance,

(i) there is a partition ¢y < t; < --- < tx = T such that, for any vy, vy € V(ty), if v1 = vy
a.e. on [to,t;] for some i € {0,...,k— 1}, then a(w,v1) = a(w,v2) a.e. on [ty, ti+1] for

any w € Q.

We denote by A(tg) the set of pure strategies and by A,(ty) the set of random strategies
for Player I. By abuse of notations, an element of A,(tg) is simply noted «, instead of
((Qas Fa, Po), a), the underlying probability space being always denoted by (Qq, Fu, Pq).
Note that U, (to) C Ar(to).

In order to take into account the fact that Player I knows the index ¢ of the terminal

payoff, an admissible strategy for Player I is actually a I—uple & = (az,...,a7) € (Aq(tg)).

Pure and random controls and strategies for Player II are defined symmetrically; V;(¢o)
denotes the set of random controls for Player II, while B(tg) (resp. B, (to)) denotes the set
of pure strategies (resp. random strategies). Generic elements of B,.(tp) are denoted by (3,
with associated probability space (Qg, Fg, Pg).

Let us recall the



Lemma 1.1 (Lemma 2.2 of [B]) For any pair (o, 8) € A, (to) x B,(to) and any w =
(wi,w2) € Qo x Qg, there is a unique pair (uy,v,) € U(ty) x V(to), such that

a(wr, vy) = U, and [B(wa, uy) = vy, . (1.7)

Furthermore the map w — (uy,vy) is measurable from 1, x Qg endowed with F, ® Fg into

U(tg) x V(to) endowed with the Borel o—field associated with the L'— distance.

Notations : Given any pair (o, 3) € A, (to) X B, (to), the expectation E,g is the integral
over {2, x Qg against the probability measure P,®@P 3. In particular, if ¢ : [0, T]xUxV — R
is some bounded continuous map and t € (tg, 7], we have

T T
Bus | [ osaias] = [ ([ o) paapye), 08)
t Qa XQB t
where (ug,v,) is defined by (7). If one of the strategies is deterministic, we simply drop

its subscript in the expectation.

As a particular case of Theorem 4.2 of [[J] we have:

Theorem 1.2 (Existence of the value [{]) Assume that conditions ([.]) and (I.§) are
satisfied. Then equality holds and we denote by V (tg,p) the common value.

In order to give the characterization of V, we have to recall that the Fenchel conjugate
w* of a map w : [0,T] x A(I) — R is defined by

w*(t,p) = max p.p — w(t,p) Y(t,p) € [0,T] x R .
peA(I)

In particular V* denotes the conjugate of V. If now w is defined on the dual space [0, T xIRY,

we also denote by w* its conjugate with respect to p given by
w*(t,p) = z{}éﬁggp-ﬁ —w(t,p)  V(t,p) €[0,T] x A(I) .
Proposition 1.3 (Characterization of the value, [§]) Under the assumptions of The-
orem [1.3, the value function V is the unique function defined on [0,T] x A(I) such that
(i) V is Lipschitz continuous in all its variables, convexr with respect to p and vanishes at

t="T,

(ii) for any p € A(I), t — V(t,p) is a viscosity subsolution of the Hamilton-Jacobi equa-
tion
wy+ H (t,p) =01in (0,7) (1.9)
where H is defined by (1.4),



(iii) For any smooth test function ¢ = (p) and any p € R! such that t — V*(t,p) — ¢
has a local maximum at some t and such that the derivative p := %(t,ﬁ) exists, one

has:

¢e(t,p) — H (t,p) > 0. (1.10)

We say that V is the unique dual solution of the HJ equation ([[.9) with terminal condition
V(T,p)=0.

Remark 1.4 In particular V does not depend on the class of probability space £ chosen
to define the random strategies. In view of the construction of the next chapter, we note
that, given a family of probability measures, one can always built a set £ containing this

family and such that £ is stable by product.

In [fl] we prove that the following characterization of V also holds:

Proposition 1.5 (Equivalent characterization [H]) V is the unique Lipschitz continu-

ous viscosity solution of the following obstacle problem

9w

min {wt + H(t,p); Amin (3—]92> } = 0in (0,7) x A(I) (1.11)
which satisfies V(T,p) =0 in A(I).

In the above proposition, we say that w is a subsolution of the terminal time Hamilton-
Jacobi equation ([.11) if, for any smooth test function ¢ : (0,7) x A(I) — IR such that
w — ¢ has a local maximum at some point (t,p) € (0,7) x Int(A(l)), one has

32
max {¢t(tap) + H(tap) ; )‘min (p’ a—pf(tap)> } > 0
where, for any (p, A) € A(I) x Sy,
Amin(p, A) = min Az, 2)/|z|? .
( ) ZGTA(I)(Z’)\{O}< /1

We say that w is a supersolution of ([[.11]) if, for any test function ¢ : (0,7) x A(I) — IR

such that w — ¢ has a local minimum at some point (¢,p) € (0,7) x A(I), one has

0%¢
max{@(up) + H(t,p); Amin (p, 8—192@719))} <0.

Finally a solution of ([[.11]) is a sub- and a super-solution of ([.1T]).



2 Representation of the solution

Let us denote by D(tp) the set of cadlag functions from IR — A(I) which are constant on
(—00,tg) and on [T, +00), by ¢t — p(t) the coordinate mapping on D(ty) and by G = (G;)
the filtration generated by t — p(t).

Given py € A(I), we denote by M(tg,pg) the set of probability measures P on D(ty)
such that, under P, (p(t),t € [0,7T]) is a martingale and satisfies :

fort <to, p(t) =po and, for t > T, p(t) €{e;, i =1,...,I} P —as. .

Finally for any measure P on D(¢(), we denote by Ep|[...] the expectation with respect to
P.

Our main result is the following equality:

Theorem 2.1

T

V(to,po) = inf EP |:

P<M(to,po) H(*S?P(S))ds} V(to,po) € [0,T] x A(I) . (2.12)

to
We shall give two proofs of the result. The first one is based on a discretization procedure
for V, while the second one uses a more direct approach of dynamic programming. Before

this we show how to use the above theorem to get optimal strategies for the first player.

2.1 Construction of an optimal strategy

We explain here how to use Theorem P.J to built an optimal strategy for the informed
Player. The construction of an optimal strategy for the non-informed Player, which uses

completely different arguments (the so-called approchability procedure) is described in [[LF].

Lemma 2.2 For any (tg,po) there is at least one optimal martingale measure for problem

BE))
Proof: Let be a sequence of measures (P,,),en € M(to,po) satisfying
T
V(to,po) = lim Ep, [ H(s,p(s))ds} . (2.13)
n—-—+00 to

Since, under all P € M(ty,po), the coordinate process p is a martingale with support in
the same compact space A(I), (P,) converges weakly (up to some subsequence) to some
measure P that still belongs to M(to, po) (see Meyer-Zheng [[[1]). Since H is bounded and

continuous, passing to the limit in (R.13) gives

T

Vo) =Ep | [ (s p)ds].

to
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Hence P is optimal. |

Let (to,po) € [0,T) x A(I) be fixed, P be optimal in the problem (R.13). Let us set
E; = {p(T) = ¢;} and define the probability measure P; by: VA € G, P;(A) := P[A|E;] =
& if p; > 0, and P;(A) = P(A) for an arbitrary probability measure P € M(tg, po) if
pi = 0.
We also set
u(t) =u*(t,p(t)) vVt e R

and denote by 11; the random control @i; = ((D(to), G, P;), 1) € U (o).

Theorem 2.3 The strategy consisting in playing the random control (Q;)i=1,..1 € U, (to))!
is optimal for V (to,po). Namely

I

Vi) = s S piEa, | /:ms,u@-<s>,ﬁ<ui><s>>ds}

BBy (to) i=1

Proof: Since

I I
s> piBa s [ (s, mi(s), 5<ai><s>>ds] — ap Y piEs, [ s, (5), B )($))ds |
ﬁEBr(to) i=1 to ﬂeB(tO) i=1 to
it is enough to prove the equality
1 T
V(to,po) = sup Y piEqg, [ / (s, uy(s), ﬁ(ui)(s))ds] . (2.14)
BeB(to) ;—1 to
Let us note that, since p(T) € {e,...,er} P a.s., we have
I
Z 1g,e; =p(T) P as. . (2.15)
i=1

Let us fix a strategy 3 € B(to) and set v = f(a). Then

iilpiEUi [/tOT&(S,u@'(S),ﬁ } ZEP [/ (s,a(s),v(s))ds | E} P(E)

I T

=Ep [Z 1g, [ (s, a(s), v(s))ds]
i=1 to
T

= Bp (7). [ ). v(s) )|



(from (R.19) and where ¢ = (¢,...,¢1) )
T
~Bp | [ (o) (s, a(0) v(s1)s]
to
(by It6’s formula, since p(s) is a martingale under P and the process £(s, (s), v(s)) is (Gs)
adapted)
T T
<Ep [ rrgag(p(s),ﬁ(s,u*(s,p(s)),v)>ds] =Ep [ H(s,p(s))ds] = V(to,po) -
tg Y to

So we have proved that (R.14) holds. [ |

2.2 Proof of Theorem by discretization

For simplicity of notations we shall prove Theorem P.] for tq = 0, the proof in the general
case being similar.

Let us start with an approximation of the value function. This approximation is a
particular case of [[4]. Let n € IN*, 7 = 1/n be the time-step and let us set t; = kT /n for
k=0,...,n. We define by backward induction

V(T,p)=0 Vpe A(l)
and, if V7 (tg41,-) is defined, then
V7 (ty,p) = Vex (V7 (tk41,-) + TH(tx, ) (p)
where Vex(¢)(p) stands for the convex hull of the map ¢ = ¢(p) with respect to p.

Lemma 2.4 ([I4]) V7 uniformly converges to V as 7 — 0 in the following sense:

lim V7 (ty,p')=V(t,p)  V(t,p) €[0,T] x A(I) .

7__’0+7 tk: _’t7 p/_’p

For any k = 0,...,n and p € A(I) there are \* = (\F) € A(I) and % = (7%!) € A1)
such that
I

I
(@) Y ANt =p and (i) V(tk,p) = Y NS (VT(tkH, ) + T H (t, W))
=1 =1

(2.16)

Without loss of generality we can choose the maps p — M\ (p) and p — 7¥(p) Borel mea-
surable. For any i € {1,...,I} we now define a process (pi,k € {0,...,n + 1}) on some
arbitrary, big enough probability space (€2, F, P) with values in A(I):

we start with p}) = py and, if p}'g is defined for k <n — 1,

10



e if the i-th coordinate of p}'g satisfies (p}g), > 0, then the variable pi, 1 takes its values
in {7%! (pi), 1€ {1,...,I} } with

. . ) . Ak p@' 7T]-C’lp
vie {1"""[}’ P[p%C-Fl :TrkJ (p%C) |p‘(7]’>p?<;’] = 1’71] = %,
k)i

e if (p}); = 0, then we set p}%_H = pi.

For k =n+ 1, we simply set p’@rl =e; .

Finally we set pp = p}Q where i is the index chosen at random by nature (i.e. i is a random
variable that is independent from the processes (p};),i € {1,...,I} and takes the values
1,...,I with probability p1,...,pr respectively). The following Lemma is classical in the

framework of repeated game theory with lack of information on one side (see [fll, L.d]).

Lemma 2.5 If we denote by (Fx,k =0,...,n+ 1) the filtration generated by (px), then
Pli=ilF] = (pr)i Vke{0,...,n+ 1}, Vie{l,...,I}.

In particular, the process (pg,k =0,...,n+ 1) is a martingale.

Proof: The result is obvious for ¥ = n + 1. Let us prove by induction on k that, for all
ie{l,...,I},

Pli=ilFg] = (Px)i (2.17)
for k = 0,...,n. For k = 0, equality (R.17) is obvious. We now assume that (R.17) holds
true up to some k and check that P[i =1 | Fgi1] = (Pr+1)i- Since the variables py take

their values in a finite set, we can explicitely write

Pli=i| Frp] = ) Pli=iA] 14, (2.18)
AecA
where the set A is also finite and contains only sets of the form A = {p; = a1,...,px =

g, Prs1 = ™ pr)} with a1,...,04 € A(I) and [ € {1,...,I} with P[A > 0]. For such a
A € A, let us write

I
Pli=ilA]=P[{i=inA)/(Y_ P{i=j}nA). (2.19)
j=1
and, for j such that (aj); > 0, using the independence between i and the processes (pi),
- P[i - j]P[pgﬁ-l = Wk’l(p?c)‘p]l =aq, ... 7p?§ = ak]P[pjl = o1,... ,p?€ = ak]

= P[i:],p{:(Xlu?pi;:ak] (ak)j

(2.20)

11



Now, by the induction assumption,

P[i:jap{:a17"'7pk:ak]: P[i:j7p1:a17---7pk:ak]

(2.21)
= (og)jPlp1=0a1,...,Pr = ay .
Thus, putting together (2.19),(R-20) and (R.21]), we find out that
Pli = i A] = 7 ().
But, on A, a; = py, therefore, comming back to (R.1§), we get
Pli=i| Frpa] = Yacam ' (Pr)la
I k,l
= -1 (pk)l{pkﬂiﬂf’l(pk)}
= (Pr+1)i-
|

Lemma 2.6

V7(0,po) = E

TiH(tra pr—l—l)] .

r=0

Proof: Let us show by (backward) induction on k that

n—1 k—1
E|r> H(t,pr1)| =F VT(tk,pmwzH(tr,pm)] :
r=0 r=0

Note that setting £ = 0 gives the Lemma.
For k = n, the result is obvious since V7 (T, p) = 0. Let us assume that the result holds

true for k 4+ 1 and show that it still holds true for k£. By the induction assumption we have

n—1 k
E|r) H(t,pry1)| =E VT<tk+1,pk+1>+TZH<tr,pm>] .
r=0 r=0

We note that, for all suitable function f,

Bl (pre)lo{i et = 50 1y 3o ALOE R0 ekl )
= Xt X R ()
Thus, by Lemma .5,
_ A N (p )Wf’l(Pk) k,l _ k el
E[f(Prs1)lo{pr}] = D _(Pr)i D ) FE*Hpr)) =D A (k) f (7 (pr))-

k
i 7 (pk i



In particular, by the definition of A* and 7* in (R.1§), we deduce that

E[V™ (tit1, Pkt+1) + 7H (tk, Prt1)|Pr) = V7 (tk, Pr)-

So
n—1 k—1
E|r> H(te,pri1)| = E [V (tk,pr) +7 Y H(tr,pm)] :
r=0 r=0
which completes the proof. |

We are now ready to show the inequality
T
V (0, > inf E H(s, ds ) . 2.22
©O.m) >, intBe ([ Hesp(e)is ) 222

Let W (0,pp) denote the right-hand side of this inequality. Let us fix € > 0 and let 7 =
1/n > 0 sufficiently small so that

[V(0,p0) — V7 (0,p0)| < e

and

|H(t,p) — H(s,p)| < e Vis—t| <7, ¥pe A(l).

Let (px) be the martingale defined above. We built with this discrete time martingale a
continuous one by setting: p(t) = poift <0, p(t) = pry1 if t € [tg, tgy1) for k=0,...,n—1
and p(t) = ppt1 if ¢ > T. The law of (p(t)) defines a martingale measure P € M(0, pg).

Then
V(Oap(]) > VT(Oap(]) — €

> B |75 Hlrprsn)| —

> FE fOT H(s,f)(s))ds] — 2¢

> Ep UOT H(s,p(s))ds} — 2¢

> W(0,po) — 2¢

This proves (£.23).
Next we show
T
V(0,p0) < Pel\i/{l(f),po)EP </0 H(s,p(s))ds) . (2.23)

For this let us fix a martingale measure P € M(0, pg). For n € IN* large, we discretize the
canonical process p in the usual way: p"(t) = p(tx) if t € [tg, txy1) for kK =0,...,n—1 and
tr, = kT /n. Then p"(t) converges to p(t) P ® L'—a.s. Therefore

i S " = ! s,p(s))ds
lim Ep E;}H(tr,p (tr11))| = Ep [/O H(s,p( ))d} .

n—-+o00
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To complete the proof of (2.23) it is enough to show that

n—1

LS, p"(trﬂ))] > V7 (0, 0) (2:24)
r=0

Ep

where 7 = 1/n. As for Lemma .4, the proof of (R.24) is achieved by showing by induction
on k € {0,...,n} that

n—1 b1
1 n . .
Ep E;H(trup (tr+1))| > Ep |V (tk,p(tk))—FT;H(tr,p (tr41)) (2.25)

For k = n the result is obvious since V7 (7',-) = 0. Assume that the result holds for £ + 1.

We note that, since
V7 (tpi1,p) + TH(tg,p) > V7 (tr,p)  Vp e A(I)

from the construction of V7 (¢, -) and since V7 ({, -) is convex and p” is a martingale under

P, we have

Ep [V (41, P"(te+1)) + TH (b, P(tr+1)) | Gi] = Ep [V7 (tr, D" (tk41)) | Gil
> V7 (tg, Ep [P"(tk41) | Gkl) = V7 (tk, p" ()

So

Vv

Ep [% P H(tT’apn(tr-f—l))} > Ep |V (tg1,P(tre1)) + 750, H(tr,p"(trﬂ))}
Ep [V7 (1, p(ty)) + 7 48 H(tr D" (b41))]

v

which completes the proof of (R.2§).

2.3 Proof of Theorem by dynamic programming principle

The idea is to show that the map
T

W(to,p()) = inf EP |:

PEM(to,po) H(s,p(s))ds} V(to,po) € [0,T] x A(I) (2.26)

to

is a solution of equation ([.I]) such that W (T, p) = 0. Since, in view of Proposition [[.5 this

equation has a unique solution and V is also solution, we get the desired result: W = V.
Arguing as in the proof of Lemma P.3, we first note that there is at least an optimal

martingale measure in the minimization problem (P.26).
Lemma 2.7 W is convex with respect to pg and Lipschitz continuous in all variables.

14



Proof: Let po,p1 € A(I), Py € M(tg,po) and P; € M(tp,p1) be optimal martingale

measures for the game starting from (¢o, pp) and (¢g, p1):
T

-
to

for j = 0,1. For any A € [0,1], let px = (1 — A)pg + Ap1 and py be the process on D(¢g)

defined by
P, if t <ty
pA(t) = .
p(t), ift>to.

H(s,p(s))ds} = W(to,pj)

We define finally a probability measure Py € M(tg,po) by : For all measurable function
P . D(to) — IR+,

Ep, [2(p)] = (1 = A)Epy[®(pa)] + AEp, [(pa)].

Then P, clearly belongs to M(tp,p)) and

T

W(to,pr) < Bp, [ H(t,p@))ds] — (1= )W (to, po) + AW (topr)

to

This proves that W is convex with respect to py.
We now prove that W is Lipschitz continuous. Since W is convex with respect to pg,
we need only to prove that W is Lipschitz continuous at the extremal points (g, ¢;), to €

, A, 1€ 11, ..., 1} namely we have to show that there is some > 0 such that
[0,7], i€ {1 I} ly h h hat th i K>0 h th
|W(t/0?p0)_W(t0’62)| < K(|p0_el|+|t,0_t0|) \v/t/O?tO € [OaT]’ Do € A(I)? (XS {15 cee >I} .

Let ty,to € [0,T], po € A(I) and i € {1,...,I}. One easily checks that M(to, e;) consists in
the single probability measure under which (p(s),t < s < T') is constant and equal to e;.
Consequently
T
W (to, ;) :/ H(s,e;)ds .
t
Let P be the optimal probability measure for problem (R.24) with starting point (t(, po).
We can write
/ T T
W (to,po) = Wto,ex)l = [Ep [, H(s,p(s))ds — [, H(s, ei)ds|
< Clto—t| + Ep [ |H(s.p(s)) — H(s,e)lds .
where C' is an upper bound of the map (¢,p) — |H(t,p)| on [0,T] x A([).
Now let k be a Lipschitz constant for H. Then

Ep [} [H(s,p(s)) — H(s,e)lds < wEp [, |p(s) — eilds
< SIoEe [ Ips(s) —d;lds
= Yi.iEp [, pi(s)ds + Ep [, (1-pi(s))ds
= (T'—t) Z§=1 ph — dijl

15



where, for the last line, we used the fact that, under P and for all j € {1,...,I}, p; is a

martingale. Finally
1
Z P} — 6551 < VIlpo — eil,
j=1

which completes the proof. |

Lemma 2.8 The following dynamic programming holds: for any G-stopping time 0 taking
its values in [to, T,
0

W (to,po) = inf Ep H(s,p(s))ds+W(0,p(0))| . (2.27)
PGM(to,po) to

Proof: Let us introduce the subset M/ (tg, pg) of M(tg,po) consisting in the martingale
measures P on D(t() starting from pg at time ¢y and for which there is a finite set S C A(I)
such that any p € Spt(P) satisfies p(t) € S for t € [tg, T] P-a.s. It is known that M/ (tg, po)
is dense in M(tg, pg) for the weak™ convergence of measures. In particular it holds that

T

W (to, po) = inf  Ep [

H(s,p<s>>ds] Y(to.po) € [0.7] x A(D),
PeM/ (to,po)

to

and, since the map P — Ep <fti H(s,p(s))ds + W(H,p(ﬂ))) is continuous for the weak*
topology, the lemma is proved as soon we have shown that
0

W (to,po) = inf  Ep [

peM/ H(s,p(s))ds + W (0, p@))} : (2.28)
€M/ (to,po)

to
We shall prove (R.2§) for stopping times taking a finite number of values, then we generalize
the result to all stopping times by passing to the limit.

Let 6 be a G-stopping time of the form

L L
0= Z 14,7 = Z L{p—r} 71, (2.29)
=1 =1

withtg <7 <...<7, <T and, foralll € {1,...,L}, A € G,,. Let P € M/ (tg, pg) be
e—optimal for W (tg,po) and S = {p',...,p"} be such that P[p(#) € S] = 1. We have

A n{p(n) =p’ }} La,n{p(n)=p7}

(2.30)

Ep [/GTH(S,p(S))dS] = Ep %Ep [/TZTH(s,p(s))ds

But, since P|4,n{p(r)=pi} € M(71,p’), we have, for all [ and j,
T
B | [ Hlp(e)ds] A0 (o) = )| > W) (2.31)
T
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Therefore

W(to,po) +€> Ep ftf H(s,p(s))ds]
> Ep | [ H(s,p(s))ds + 30 Wm0 Lan(p(r)=pi) (2.32)
= Ep ft(: H(s,p(s))ds + W (0, p(@))] .

To prove the converse inequality, let Py € M/ (tg,pg) be e—optimal in the right-hand
side of (.29) and let S = {p',...,p} be such that Py[p(d) € S] = 1. For any 7; € [to,T]
and p’ € S, let P;; be e—optimal for W (7, p’). We define a measure P € M(to,po) in the
following way : For any function f: IR — A(I) and [ € {1,..., I}, we define a process

B f@), ift<m
pilt) = { p(t), ift>.

Then we set, for all measurable function ® : D(¢g) — R4,

Ep[®(P)] =Ep, | > Lanip()=p EP,, [2(P10)]/=p

g
Then P € M(tg, pg) and we have
W(to,) < Ep | [y H(s,p(s))ds]
— Ep, | fy) H(s,0(9))ds + X5 Lanipm=p) Ery, [ H(s,p(s))ds]|
< Ee, | fi) Hs,p(5))ds + 1y Laagp(my—pry W (7,07) + )| (2.33)
= Ep, | [y H(s,p(s))ds + W (0,p(0)) + ¢
< infpens 1o po) EP [fto p(s))ds + W (0, (9))}+2e.

This allows us to conclude that (P-2§) holds for stopping times taking a finite number of
values, and it remains now to show that (R.28) holds for all stopping times. But this last
part of the proof is standard: we just have to notice that, if § stands now for a general
G-stopping time with 6 € [ty,T], we can always find a sequence (6,,),>0 of stopping times
of the form (R.29) such that 6,, \, # as n — oo and that, for all P € M(tg, pg), we have

On 0

H(s,p(s))ds + W (bn, p(é’n))] —n—oo Ep [ H{(s,p(s))ds + W(6,p(0))

to

e |

to

Lemma 2.9 W is a solution of ([[.11).
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Remark 2.10 The proof of Lemma P.9 is interesting because it shows that the martingale

e . . . . . ) 9%\ -
minimization problem gives rise to the penalization term A, ( p, op7 ) I (IL.11)).

Proof: Let us first show that W is a supersolution of ([.11]). Let ¢ = ¢(¢,p) be a smooth
function such that ¢ < W with an equality at (to,po) € [0,T) x A(I). We want to prove
that

. 0?
min {¢t(to,p0) + H(t0,p0) ; Amin (po, ﬁ(%mo))} < 0.
For this we assume that Apin (po, %(to, po)) > 0 and it remains to show that
¢i(to, po) + H(to,po) < 0. (2.34)
We claim that there are r,d > 0 such that
0
W (t,p) = ¢(t,po) + <a—ﬁ(t,po),p —po) +0lp—pol>  VtE[to,to+ 7], Vp e A(I) . (2.35)
Proof of (£.33) : From our assumption, there are > 0 and § > 0 such that
> o 2
<8—pg(7f,P)Z,Z> > 46]2| Vz € Ta)(po), V(t,p) € By(to,po) ,

where Ta()(po) is the tangent cone to A(I) at po:

Tary(po) = U (A(I) = po)/h
h>0

Hence for (t,p) € By(to,po) we have

W (t,p) > ¢(t,p) > &(t,po) + <g—j§(t,po),p — po) + 25|p — po|* - (2.36)

We also note that, for any p € A(I)\Int(B,(po)), we have

W (to,p) = (ko po) + <g—ﬁ<to,m>,p — po) + 287 (2.37)

because, if we set p; = pg + \Z:ng and if p; € 9, W (to,p1), we have

W(t07p) 2 W(t07p1) + <]§17p _p1>
= ¢(to,po) + <g—ﬁ(7foapo),p1 — po) + 260 + (p1,p — p1)
>

$(to, po) + (55 (t0:p0),p — po) + 200* + (b1 — G2 (to, po), p — p1)

where

. 09
_ _ >
(D1 o (to,po),p —p1) >0

18



because w is convex, p1 € 9, W (to,p1), %—IZ(t,po) € 0, W(to,po) and p —p1 = y(p1 — po) for
some v > 0. Let us now argue by contradiction and assume that our claim () is false.

Then there are t, — to and p, — p € A(I) such that

0
W (tn, pn) < ¢(tn,po) + <8—i(tn,po),pn — po) + 8|pn — po?

Note that p, ¢ B, (po) because of (2.36)). Lettingn — +oo, we get that p € A(1)\Int(B,(po))

and 5
W (to,p) < é(to,p) + <a—jj(t07po)7p — po) + on* .

This contradicts (R.37). So (R.35) holds true for some r > 0 sufficiently small.

Fix € > 0 and t € (tp,T). Because of the dynamic programming (Lemma P.§), there
exists P! € M(tg, po) such that

t

Ep: [ H (s p(s))ds + W(t,p@))} < W to, po) + (¢ — o) (2.38)

to

Using the above inequality, (B.35) and the equality ¢(to,po) = W (to, po) we get

Ep: [ t H(s,p(s))ds + ¢(t,po) — ¢(to, po) + d|p(t) — polz} < e(t—to) (2.39)
because 5
o [ (55 t.0).p(0) - ol =0

since P! is a martingale measure. We note that (£.39) implies in particular that there is a

constant C' > 0 such that
Ep: [ [p(t) —po]>] < C(t—to)  Vte [to,to +7]

because H is bounded and ¢ is smooth. Since (p(s)) is a martingale under P! this also

implies that
Ep: [ [p(s) —po|* ] < C(t—ty) Vs,twithtg<s<t<to+r.

Therefore, since H is k—Lipschitz continuous with respect to p, we have

t t

H(s,p(s))ds} — [ H(s,po)ds

to

N

< li/t (Ep: [ [p(s) — pol? ])% ds < Ck(t —to)

to

e |

to
Plugging this inequality into (B.39) gives, for ¢ — ¢ sufficiently small

t

H(s,po)ds + ¢(t,po) — ¢(to, po) < 2e(t —to) .
to
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Dividing this last inequality by (¢t — o) and letting t — ¢ gives (2.34).

Next we prove that W is a subsolution of ([.11)). This part relies on more classical
arguments. Let ¢ = ¢(¢,p) be a smooth function such that ¢ > W with an equality at
(to,po) where pg € Int(A(I)). We want to prove that

. 82
mm{qbt(to,po) + H(to, p0) : Min (po, ﬁfu(),po))} > 0.

We note that Anin <p0, g%f(to,po)) > 0 because W is convex with respect to p and pg €
Int(A(I)). So it remains to show that

ée(to, po) + H(to,po) > 0.

Fix ¢ > 0 and ¢t € (to,T). Because of the dynamic programming (Lemma P.§), for any
P € M(tg, po) we have:

t
B | [ Hes.p(s)ds + Wit p(0)]| = Wito.m) (2.40)
to
Let us choose P = ¢,,,. Then we get from the definition of ¢:
t
H (s, po)ds + ¢(t,po) — ¢(to,po) > 0.

to

Dividing by (¢t — t9) and letting ¢ — ¢y gives the desired inequality since € is arbitrary. W

Proof of Theorem P.1]: We have shown that W is Lipschitz continuous (Lemma P.7), that
it is a viscosity solution of equation ([L.1I]) such that W (T,p) = 0 (Lemma R.9). Since,
from [[], this equation has a unique Lipschitz continuous viscosity solution and since, from
Proposition [[.J, V is another Lipschitz continuous viscosity solution of (L.IJ), we get the
desired result: W = V. O

As a consequence of Lemma P.§ and of the above proof, we have:

Corollary 2.11 Let (tg,po) be an initial position and P be an optimal martingale measure
in ([2.13). Let 0 >ty be a stopping time. Then
6

Vi(to,po) = Ep [ H (s, p(s))ds + V(6. p(0))

to
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3 Analysis of the optimal martingale measure

The section is devoted to the study of the optimal martingale measure in the optimization
problem (R.12). For doing so we first investigate the properties of the value function V
as well as its conjugate V*. Then we define the set H C [0,7] x A(I) where—at least
heuristically— V satisfies the Hamilton-Jacobi equation. We then show that, if P is an
optimal martingale measure, then the process p remains on H and has jumps only on
the flat parts of the graph of V(¢,-). These two conditions turn out to be sufficient to
characterize the optimal martingale measure under regularity assumptions on the value

function.

3.1 Some properties of V*

We already know that V is a dual solution of the Hamilton-Jacobi equation ([.9). In fact

we have the following sharper result:

Proposition 3.1 V* is the solution of the Hamilton-Jacobi equation

ot > O0p

9w _H(t,%)=0 in(0,T) x R! (3.41)
w(T, p) = max{p;} in IR! ‘
Remark 3.2 Compared to equation ([[.I(), where p appears as a parameter, p is a genuine

variable in the above equation.

Proof: We first show that V* is a subsolution of (B-4])). Indeed, let ¢ be a C! test function
such that ¢ > V* with an equality at (¢,p). Since V*(t,-) is convex and ¢ is C', this implies
that V* is differentiable with respect to p at (t,p) with p = Z¥_(t,p) = g—g(t,ﬁ). Since

op
s — V*(s,p) — ¢(s,p) has a maximum at ¢, the definition of dual solution gives
o, . o, . o9,
—(t —H(t = —(t —H(t,—=(t >0.
g (bD) = H(tp) = 50(.p) = H(t, 55(6,5)) =

So V* is a subsolution of (B.41)).

Let W be the solution of (B.41)). Since V* is a subsolution of this equation, we have
W > V* from the standard comparison principle [ff]. In order to show the reverse inequality
we are going to check that W* is a dual supersolution of the Hamilton-Jacobi equation ([L.9).
Since H is positively homogeneous, independent of p and since W (T, -) is convex, W(t,-) is
convex with respect to p for any ¢ € [0,7] (see [L0]). From the usual representation formula

for solutions of (B.41) (see [{]), we have
T
W(t,p) = inf sup max {ﬁi—/t Ei(s,ﬁ(u)(s),u(s))ds} .

BEB(t) uetd(t)
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We have

T
W*(t,p) = sup sup min {p-ﬁ—ﬁﬂr inf / &(s,ﬁ(U)(S),U(S))dS}
BeB(t) peR! €1 uel(t) Jy

If p € A(I), for any 3 € B(t) an optimum of the map
T
p—min {po—pi nt [ (s, 500()u(s)s
icl well(t) Jy

is given by

T
pi = Hlf)/t li(s,B(u)(s),u(s))ds .

u€U(t

Hence
I

T
W*(t,p) = sup Di inf/fiS,ﬁUS,usds’
o 565(15); weld(t) Jy (s, B(u)(s),u(s))

which is Lipschitz continuous in p. If p ¢ A(I), a similar argument shows that W*(¢,p) =
+00. So the map Z = W* is Lipschitz continuous in all variables, convex in p, such that
Z* = W is a subsolution of the dual equation (B.41]), which shows that Z is a supersolution in
the dual sense of Hamilton-Jacobi equation ([[.g). Since V is a dual solution, the comparison
principle for dual solutions given in [[j] implies that V < Z, i.e., W = Z* < V*. This shows
that V* = W is the solution of (B.41)). |

Proposition 3.3 If OV*(t,p) = {p}, then V* is differentiable at (t,p) and

A

W(taﬁ) = H(t,p) :

Proof: Since (s,p’) — 9V (s,p’) is upper semicontinuous, for any € > 0 one can find > 0
such that
OV(s, ') C Be(p)  Y(s,p') € O = (t —n,t +n) x By(p) -

Hence V* satisfies 5

v * /
—(s,9") — H(t
T (s,9") (t,p)

< ke,

for almost all (s,p’) € O, where k is a Lipschitz constant of H. Thus

V*(Saﬁl) - V*(Sl’ﬁ/) _/ H(O’,p)dd’ < k€|5/ - S| V(S,ﬁl), (S/aﬁ) €0.

Let now (15, 24) — (7, 2) in R x IR as h — 0F. If p,, € OV*(t + hry, p + hzy), then py, — p
as h — 0 and
VH(t + hn, p+ hap) — VE(LP) < V(D +hay) + [/ H(o,p)do — V*(t,p) + ehlm|

h <pp,zn >+ ftHhTh H(o,p)do + eh|ry|
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Hence

1
lim sup + (V*(t + hry + ha) — V¥(6,9)) < (p,2) + H(t,p)7 +el7]
h—0t

In the same way one can prove that

1
lgn(i)rif - (V*(t + hrp,p+ hzp) = V*(t,p)) > <p,z>+H(t,p)T — €|T]|

Since € is arbitrary, we finally have the equality:

1
lim E (V*(t + hTh,ﬁ + hZh) - V*(taﬁ)) =<p,z > +H(t’p)7— )

h—0t

which shows that V* is differentiable with %(t,ﬁ) = H(t,p). [ |

3.2 The non revealing set 'H

The aim of this section is the analysis of the set H defined by:

H = {(t,p) €0, 7) x A(I) | liminf

h—0%t,p'—p

V(t+hyp)-V(Etp)
Y = —H(t,p)} .
We also set
H(t) ={pe A() ]| (t,p) € H} vVt e [0,T) .

In fact H is roughly speaking the set of points where the Hamilton-Jacobi equation ([.9) is
satisfied. Indeed, if V is C!, then it is exactly so:

H = {(t,p) €[0,T) x A(I) | %—Z—FH(i,p) :0} :

Lemma 3.4 We have for any (t,p) € [0,T) x A(I),

t+h
V(t,p) < V(t+h,p)+ H(r,p)dr Vh €0, T —t]. (3.42)
t

In particular,
V(' +h,p) -V, p
- (t"+ h,p") = V(t',p)
h—07%,t'—t,p'—p h

> —H(t,p) . (3.43)

Remark 3.5 We have therefore:

H= {(t,p) €0,T) x A(I)| liminf

h—0%,p'—p

V(t+h,p’f)L—V(t,p') < _H(t’p)} _
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Proof: From the definition of dual solution, for any p € A([), the map ¢t — V(¢,p) is a
subsolution of HJ equation ([L.Y). Let ¢t < T and p € A(I) be fixed. The solution w of ([L.9)
with terminal condition V(¢ + h,p) at time ¢t + h is given by the relation
t+h
w(s) = H(r,p)dr +V(t + h,p) Vs <t+h.

s

Since V(+,p) is a solution of ([[.9) with the same terminal condition, we get

t+h
V<s,p>§w<s>:/ H(rp)dr +V(t+hp) Vs <t+h.

Applying the above formula to s = ¢t we get (B.42). We then get (B.4J) thanks to the
continuity of H. [ ]

Lemma 3.6 The set H is a Borel subset of [0, T|xA(I) and H(t) is closed for any t € [0,T].

Proof: Indeed, H = (1, (),, Hnk Where

Hok = {(t,p) € 0,7] x A(I) | inf ViE+hp) = Vitp)

1
< —H(t,p)+ —
he(0,1/n], [p'—p|<1/n h < —H{t.p) k}

which are Borel subsets of [0,7] x A([) since V and H are continuous. Moreover H(t) is

clearly closed for any t € [0,7] because H is continuous. O

In the proof of Lemma P.] we have already noticed that

T
Vite) = [ His.cps.
t

where {e1,...,er} is the standard basis of IR!. This implies that e; € H(t) for any i =
1,...,I. In particular, H(t¢) is nonempty for any ¢ € [0, T]. More precisely we have:

Lemma 3.7 Let (t,p) € [0,T) x A(I) and p € OV (t,p). If V*(t,-) is differentiable at p,
then (t,p) belongs to H.

Proof: From Proposition B.3, V* is differentiable at (¢,p) because V*(t,-) is differentiable
at p. Let h > 0 be small and p, € OV*(t + h,p). Then

h - h
because V(¢ + hpn) = pup — V(¢ + b 5) and V*(t,5) > pnp — V(t,py). Hence

V(t + haph) _ V(taph) < _aV*
h - ot

lim sup
h—0t, p'—p

(tv ﬁ) < _H(tv p)
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since V* is differentiable at (¢, p) and from the definition of dual solution. We complete the
proof thanks to Lemma B.4 u

The next Lemma explains that, for any (,p) € [0,T] x IR, the convex hull of dV*(¢, )N
H(t) is exactly equal to IV*(t, p):

Lemma 3.8 For any (t,p) € [0,T] x A(I) and any p € OV (t,p), there are (M) € A(I),
pl € H(t) NOV*(t,p) for j=1,...,1 such that

I I
S Npi=p and > NV(t,p)=V(tp).
j=1

j=1

Proof: Let p € OV (¢t,p) and, for € > 0 small, p. = p + €£. Since V* is Lipschitz continuous,
there are p, — p. at which V*(t, -) is differentiable. If we set p,, = aa—\g(tn,ﬁn), then Lemma
B.7 states that the points p,, belong to H(t). Letting n — oo, we can find a subsequence
of the (p,) which converges to some p. € OV*(t,p.) N H(t).

We now let € — 0 to find some pg € OV*(t,p) N H(t). Moreover we have pe.§ > p.§

because

. .1 . .
hm+<pe—p7§>: hm+g(ps—p,p+6§—p> >0

N e—0 e—0

(pe —p, &)

thanks to the monotony of the subdifferential. In particular,

p& < pef < sup pé  VEeRY,
p/eav*(t,ﬁ)rﬂi(t)

which proves that p belongs to the convex envelope of OV*(t,p) N H(t). The Lemma now
follows easily from the fact that V(¢,-) is affine on 9V*(¢, p). |

3.3 Analysis of the optimal martingale measures

We are now ready to study the optimal martingale measures in the optimization problem

(B-19). The main result of this section is the following:
Theorem 3.9 Let P be an optimal martingale measure in (2.13). Then
(s,p(s)) e H Vs € [to, T], P a.s. (3.44)

and, for any s € (to, T, there is some measurable selection & of OV (s,p(s™)) such that

V(s,p(s)) = V(s,p(s7)) —(£,p(s) —p(s7)) =0 Pas.. (3.45)
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Remark 3.10 The two conditions turn out to be necessary under suitable regularity con-

ditions on the value function V and the martingale measure P. See Theorem below.

Proof: For any €, > 0, let us set
co=1{tp) €[0,T = 0] | V(t+h,p') = V(t,p') > h(—H(t,p) +¢) ¥(h,p) € [0,] x Bs(p)} -

Then H 5 is closed and

U #es = (0.7] x AD)\K .
€,0>0

Hence we have to prove that (¢, p(t)) ¢ HC s for any ¢ € [ty, T] P—a.s. Let us note for later

use that

t+h
V(t + h’p) - V(tap) > - H(Sap)ds + %h Vh e [Oa 5]5 V(t,p) € H(E:,(S ’ (346)
t

provided ¢ > 0 is small enough. Let us introduce the stopping time
0 =inf{s >t (s,p(s)) € H 5}

(with the convention that 0 = T'if (s, p(s)) ¢ H¢ s for any s > t). Let A= {0 <T}. Let us
assume that P(A) > 0. From (B:46) we have on A:
0+h €
V(0,p(0)) < V(0 +h,p0)) + H(s,p(0))ds — 5h  Vhe[0,0].
0

Hence, for any h € [0, 4],

Ep [V(0,p(0))] <Ep

(0+h)AT €
V((0 + k) AT, p(6)) +/6 H(s,p(e))ds] — ShP (4] .

iJFrom the dynamic programming principle Corollary and the fact that P is optimal

we also have

Ep [V(0,p(0))] = Ep

(0+h)AT
V({(@+h) AT, p(0)) + /0 H(s, p(s))ds] .

So, for any h € (0, 4], we have

1 (0+h)AT €
Lep [ [ s po) - H<s,p<s>>ds] <-tpla.

which is impossible since p is right-continuous and P[A4] > 0. So we have proved that § = T
P—a.s., which means that (¢t,p(t)) ¢ HE s for any t € [to, T P-as.
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‘We now check that () holds. Let s > tg, h > 0 and &, be a G,_j measurable selection
of V(s — h,p(s — h)). Then we have from the dynamic programming (Corollary R.11))

Ep |V(s,p(s)) = V(s — h,p(s — h)) — /ih H(r, p(T))dT:| =0.

Hence
Ep [V(s,p(s)) = V(s — h,p(s — h)) = {&n, p(s) — p(s — h))]
< Ep [(¢n,P(s) = p(s = h))] + hl[Hlloo = [ H|
since p is a martingale. Since (§) is bounded in L*°, we can find a subsequence, again
denoted (&), which weakly converges to some ¢ in L? as h — 0. Note that £ € OV (s, p(s7))
because &, € AV (s — h, p(s — h)) and p is has a left limit. So we can let h — 0 in (B.47) to
get

(3.47)

Ep [V(s,p(s)) = V(s,p(s7)) — (&p(s) = p(s7))] < 0,

where V(s,p(s)) — V(s,p(s7)) — ({,p(s) — p(s7)) > 0 a.s. So (B.43) holds. O

3.4 A verification Theorem

If the value function V is sufficiently smooth, then the conditions given in Theorem B.g are

7

“almost sufficient” in order to ensure a martingale measure to be optimal.

Theorem 3.11 Let (to,po) € [0,T] x A(I). Let us assume that V is of class C? and that
P belongs to M(tg, po) and is such that

(i) p(t) € H(t) for almost all t € [ty, T] P—a.s.,
(ii) P—a.s.,
_ ov _ _
V(t,p(t)) = V(t,p(t)) - <a—p(7f,p(7f ),p(t) —p(t7)) =0 Vte[t,T],
(iii) P is a purely discontinuous martingale measure.
Then P is optimal in problem ([2.13).

Remark : The additional assumption that P is purely discontinuous can be justified

in some particular cases. See Proposition [£.4 below.

Proof: Since V is of class C'2, the set H is given by

ov

= {p) € 0.11x 80 | L 00) = ~Hp)}

27



We now use It6’s formula and the fact that P is purely discontinuous to get

0=Ep [V(T,p(T)] = V(to,po) + Ep |1l (s, p(s))ds

+3 51, V(s,p(5)) = V(s,p(57)) = (Ge(s,p(s7)), p(s) — p(s7))

T
= V(to,po) — Ep [ H(s, p(S))dS] :
to
The proof of Theorem is now complete thanks to Theorem P.1. O
4 Examples

4.1 The autonomous case

If the payoffs ¢; = £;(u,v) are independent of time, it is proved in [[4] that
V(t,p) = (T — t)VexH (p) V(t,p) € [0,T] x A(I) . (4.48)

Note that this equality is exactly what Aumann-Maschler formula states for repeated games

with incomplete information on one side (see [I]). In view of ([.4§) we have
H = [0,T] x {p € A) | VexH(p) = H(p)} .

Let us now fix (to,p) € [0,7] x A(I). Let (\x) € A(I) and any p* € A(I) (k=1,...,1})
such that

I I
S apf=p and > NH(pi) = VexH(p) .
k=1 k=1

We consider the probability measure P € M(tg, p) under which, for all k € {1,...,I}, with
probability A, p is contant and equal to pg on [tg,T') .

Proposition 4.1 The measure measure P is optimal for the minimization problem (B.13).

Proof: Indeed

T 1
o | [ Hp(e)ds] = (7= 0 S MH () = (7 = Vet () = Vi)
t k=1
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4.2 Examples when [ =2

In this section we assume that I = 2. We first show that, under suitable regularity properties
of V and H, there is a purely discontinuous martingale which remains in H and jumps only
on the flat parts of the graph of V. Then we give an example where one can explicitly
compute the set H and the optimal martingale measures.

In this section we denote by p € [0,1] instead of (p,1 — p) (for p € [0,1]) a generic
element of A(I). The function V = V(¢,p) will be defined on [0,77] x [0, 1].

Proposition 4.2 Let us assume that V is of class C! and that the set-valued map t — H(t)
enjoys the following regularity property: there is some non decreasing map K : [0,T] —

[0,4+00) such that
Vs,t €[0,T) with s <t, Vp € H(s), Ip' € H(t) with |[p' —p| < K(t) — K(s) .  (4.49)

Then, for any initial position (tg,po) there is martingale measure P € M(tg, po) under
which the process p satisfies conditions (i), (ii) and (iii) of Theorem [3.1].

An example of value function satisfying condition ([.49) is given in Example [£.4 below.

Remark 4.3 It is not known if there always exists an optimal martingale measure which
is purely discontinuous without an additional assumption like (f.49). In fact in the case
I = 2 we have no example of a martingale measure which satisfies (i) and (ii) of Theorem
but not (iii). For I > 3, we give an example below.

Proof: Without loss of generality we assume that tg = 0. From Lemma B.§, for any s < ¢,
and any p € H(s), there are p1,py € H(t) such that p € (p1,p2) and V(t,-) is affine on
[p1,p2]. If we choose p; as large as possible and po as small as possible (recall that we can
do this since H(t) is closed), then we have from our assumption ([.49) that

min{|p — p1| 5 [p — p2|} < K(t) — K(s) .
Let A € [0, 1] be such that Ap; + (1 — A\)pa = p. Note for later use that
Alpr = pl+ (1 = N)|p2 — p| < 2(K(t) — K(s)) (4.50)

and that the maps p1 = p1(t,p), p2 = p2(t,p) and A = A(¢,p) Borel measurable.
Let us now introduce a large integer n and a time step 7 = T'/n > 0. We set t; = 7k for

i1=0,...,n. As in section @ we define by induction the process (pZ)k:,Lm,n such that

29



(i) P = po;

(ii) for any k > 0, p} € H(tr),

(iii) knowing p}, pj, is equal to pi(tx, pT) with probability A(ty, pT) and pa(ty, py) with
probability (1 — A(tk, pY)).

We first note that p™ is a martingale. From (}1.50) we have

E [Ipi1 — Pl | PE] < 2(K(tk)) — K (tita)) -

Therefore the process p™ has bounded total variations:

n—1

> P - pZ\] < 2(K(T) — K(0)) . (4.51)
k=0

E

We now interpolate the process p” as in section P.d in order to get a martingale measure
P" € M(0, po). Following [[L1], letting n — 400, we can find a subsequence, again denoted
p", such that the law of the process p" converges to some P € M(0,pg) and such that
p"(t) converges in law to p(t) for any ¢ belonging to some subset of full measure 7 of [0, 7.
Because of ([E51)), p has finite total variations under P and therefore is purely discontinuous.
We now check that p satisfies conditions (i) and (ii). Let 77 be the set of t € 7 at which
the map K is continuous. Then 7; is of full measure in [0,7]. For any t € 7; let k,, be such
that k,7 — ¢ and t € [k,7, (k, + 1)7). From assumption ([£.49),

d(p, H(t)) < K(t) — K(tr,)  Vp € Spt(p"(1)),

(where d(p, H(t)) is the distance of p to the set H(t)) because p"(t) = pj and py € H(tx)

P—a.s.. Letting n — 400 implies that Spt(p(¢t)) C H(t) P—a.s. since p"(t) converges in
law to p(¢) and K is continuous at t.

For proving that p satisfies (ii), let us first note that

oV
V(tk+1,Pr+1) — V(tkt1,Pr) — (a—p(tmbpz), Pii1 —Pr) =0 Vke{0,...,n—1}.

Hence

E [V(tkt1,Pps1)] = E [V(tes1, P})] Vk e {0,...,n—1} (4.52)

because (p})r is a martingale. Let s,t € 7 be such that s < t and ki,ks be such that
S € [tk17tk1+1)7 t e [tk27tk2+1). Then

V(t’ pn(t)) - V(S’ pn(s)) < V(tkw p?kQ) - V(tkl?pgcl) + 2C(t — gy +5— tk?l)
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where C' = H%—YHOO and where

ko—1
V(tk27pg€2) - V(tkl ) p?kl) = Zlikl V(tl+17 pg-H) - V(tla pZ) >
< S (Vtpg,) = Vit ph) )+ Clls, — t)

Combining (f.52) with the above inequality gives
E[V(t,p"(t) = V(s,p"(s)] < C(t —s+7).
Letting n — +oo leads to

Ep [ V(t,p(t)) = V(s,p(s)) | < C(t - s)

;From the right-continuity of the process p(t), this inequality also holds for any ¢. Since p

is a martingale we get

Ep [V(t, B(1) = V(s.p(s) — (5 (t.p(5)). p(1) - p<s>>>} <Ot —s)

for any t € (0,T], s € T, s < t. Letting now s — ¢t~ with s € 7 gives

ov

Ep [V(f,P(t)) - V(t,p(t")) - (a—p(t,p(t_)),P(t) - P(f_)>)] <0 Vte(0,T].

Since V(t,-) is convex this last inequality finally implies that

V(E() ~ V(E () — (5] (.p(3)).p(0) ~ p() =0

for any t € (0,T] P a.s.

Our aim is to identify H under the following assumption on H:

Example 4.4 We assume that there exist hy,ho : [0,T] — [0,1] continuous, hy < ha, hy

decreasing and ho increasing, such that

VexH (t,p) = H(t,p) < pe0,h1(t)] U [ha(t),1] (4.53)
and
0’H .
a—p2(t,p) >0 V(t,p) with p € [0,h1(t)) U (ha(t),1] . (4.54)
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For instance, if we assume that U = [-1,1], V = [0,27] and
O (t,u,v) = u+ aft) cos(v), la(t,u,v) = —u+ at) sin(v) V(u,v) e U xV

where the smooth map « : [0,7] — IR is decreasing and such that «(t) > 2 for any ¢ € [0, 7],
then

H(t,p) = —[2p — 1| + a(t)v/p* + (1 — p)?

satisfies (I53) and (I54) with 7y (£) = 1/2—1/(202(t) —4)7, ho(t) = 1/2+1/(202(t) — 4)2.

Proposition 4.5 Under the assumptions of Example [[.4,
T
V(t,p) :/ VexH (s,p)ds V(t,p) € [0,T] x A()
t

and

H=1{(t,p) € [0,T] x [0,1] | p € [0, h1(t)] U [h2(t), 1]} . (4.55)

In particular, V is of class C*2.

Remark 4.6 The above representation for V does not hold true in general. For instance
let H(t,p) = A(t)p(1 — p) where X : [0,7] — IR is Lipschitz continuous. We set A(t) =
ftT A(s)ds. If

A>0on [0,b), A\ <0on (b,T], A(a) =0

for some 0 < a < b < T, then one easily checks that

- 0 ift€0,q],
V(t,p) = { At)p(1 —p) ifte[bT].

In particular
T
V(t.p) # / VexH(s,p)ds = A®)p(1 —p)  V(tp) € (a,b) x (0,1) .

Note also that in this example the dynamics is smooth, the value function V is smooth with

respect to the variable p, but V just Lipschitz continuous with respect to the time variable.

Proof of Proposition l.F: Let w : [0,7] x [0,1] — IR be defined by

T
w(t, p) :/t VexH (s,p)ds  Y(t,p) € [0,T] x A(I) .
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We note that w(T,p) =0, w(t,0) = V(¢,0) and w(t,1) = V(¢,1). One easily checks that w

is a solution of the HJ equation

min{wt+H(t,p), ?;Tgv} =0
w(T,p) =0

Indeed, if p € (h1(t), ha(t)), then

2w
%(i,p) = 0 and w(t,p) = H(t,h(t)) < H(t,p) .

Ifpe (O, h1 (t)] U [hg(t), 1), then

0w

a—pg(tap) >0 and wt(tap) = H(tap)
(where the first equality holds in the viscosity sense since w is convex with respect to p).
Therefore w = V and H is the set of points (¢,p) at which H = VexH, i.e., given by ([1.55).

Proposition 4.7 Under the assumptions of Example [[.4, there is a unique optimal mar-
tingale measure P. Under this martingale measure, the process p is purely discontinuous

and satisfies:

p(t™) =po Vt € [to,t*] P — a.s., where t* =inf {t >ty | po € [h1(t), ha(t)]}

and

p(t) € {h1(t), ha(t)} Vte [t",T) P — a.s.
In particular,

hg (t) — h1 (8)

P[p(t) = m(t) [ p(s) = m(s)] = 37—

ViF<s<t<T. (4.56)

Remark 4.8 Set T = i, hl(t) = % — \/7;, hQ(t) == %—F \/E, t e [O,T], t() =0 and Do = %
Since there is only one martingale measure that charges the graphs of hy and hs, the process
p under P is, up to a constant, the Azéma martingale with parameter 2 (see Emery [§]):

under P, (X (t) := p(t) — 3, t € [0,T]) satisfies the structure equation
d[X]; = dt —2X(t—)dX(t), t € [0,T], X(0)=0.
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Proof of Proposition .7: We do the proof in the case t* < T and py ¢ [hi(to), ha(to)], the

proof of the other cases being similar. Under these assumptions, t* > ty. Let us fix P some

optimal martingale measure. We need below the following result:
Claim : Let 6 > to be a stopping time and let us assume that p(0~) ¢ [h1(0), ha(6)] on
some set A € Fy with positive probability. Let 8’ be the stopping time

0 = inf{t > 0| p(t) € [h1(t), ha(t)] }

(by convention, @’ = T if there is no such a t). Then, on A, P—a.s., ' > 6 and p(t) = p(6™)
for t € [0,0'].

Proof of the claim : Since p(60~) ¢ [h1(0), h2(0)] on A, V(0,-) is strictly convex in a
neighborhood of p(6~). Applying the equality obtained in Theorem B.9:

oV

V(t,p(t)) = V(t,p(t7)) — <8—p(t7 p(t)),p(t) —p(t)) =0 (4.57)

at t = 6, we get that p(d) = p(f~) P—a.s. on A. Since p is right-continuous, ' > 6
on A. Using (1.57) again on [0, 60'[ shows that p is continuous on [6,0'[, that p(8'~) €
{h1(0"), ho(0")} (since p is not allowed to jump until it reaches the graphs of hy and hs) and
that, on A, we have 0/ = lim\ o 0., with, for 8, = inf{t > 0,p(t) € [hi(t) — €, ha(t) + €]},
with 6. = T if there is no such ¢.

Let us now apply Itd’s formula between 6 and 6':

o 1 (% 92V _ .
Ef’ [V(el’p(e/))] = Ef’ V(a’p(e)) + P Vt(S,p(S))dS + 5 p a—])Q(Sap(S ))d <p >s|,
(4.58)
where p€ is the continuous part of p under P. Since p(s) € H(s) for almost all s P—a.s.,
0’ 0’
Ep i Vi(s,p(s))ds| = —Ep ; H(s,p(s))ds | . (4.59)
JFrom our assumption on V, we also have
0?’V _
—(s,p(s7)) >0 Vs € [0,0'] P — as., (4.60)
Op?
because
2V t*(p) 2H
G =[Sl (where tp) = inf{s > 0] (s.p) ¢ 1)),
which is positive as soon as t*(p) > s. Since, from Corollary R.11], we have
0/
:El3 [V(6I7p(61))] = EP V(07p(9)) - P H(87 p(S))dS] )
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combining the above equality with ({.55), (£.59), (60) gives that d < p¢ >,= 0 P—a.s. on
[0,6]. This implies that, for all € > 0, the restriction on A of the martingale (P (g)re: )te[o,7]

is simultaniously continuous and purely discontinuous on [0, 7], thus it is constant. There-

fore p restricted to A is constant, equal to p(6~) on [6,6'[, and the claim is proved.

Let us now prove that p(t) = po on [tg,t*). For this we introduce the stopping time
0= inf{t > to ’ p(t) S [hl(t), hg(t)] } .

Since p(t, ) = po ¢ [h1(to), ha(to)], applying the claim to the stopping time ¢y we have that
6§ > to and p(t) = po for t € [tg, 0] P—a.s. Since p(t) = po ¢ [h1(t), ha(t)] for t € [to, 0], we
have 6 < t*. Since p(f) € H(0), we also have § > t*. Therefore § = t* and p(t) = pp on
[to, t").

We now prove that p(t) € {hy(t), ha(t)} for t € [t*,T) P—a.s. Let us introduce, for any
€ > 0, the stopping time

0 = inf{t > t*|p(t) € [0, h1(t) — €] U [ha(t) + €, 1]},
(we set 8. = T if there is no such a t).
Suppose now that there exists some € > 0 such that P[f. < T] > 0. Without loss of
generality we can suppose that the set A := {ha(0:) + € < p(f) < 1} N{h. < T} satisfies

P[A] > 0. By definition of 6., and since hs is increasing, we have
p(t) < p(fe) on [t*,0.[N([0,T] x A). (4.61)

;From ([.57) again applied on A at time 6, we get, P-a.s., p(6-) = p(f.) and therefore
0z < 0., for all 0 < € < e. But, still by ([.57) and the claim, on A, p is constant on the time
interval [0z, (9z)'[. Choosing now € close enough to € to get 0 < P[A N {h2(0.) < p(fe)}] <
P[AN {6 < (6:)'}], we obtain a contradiction to ([L.61]).

Equality (4.50) is then a straightforward application of the fact that p is a martingale
which lives the union of the graphs of h1 and hs. Finally, p is purely discontinuous since it

has finite total variations. O

4.3 Examples in higher dimensions

Example [.4 can be extended to higher space dimensions. The interesting feature for I > 3

is that there are several optimal martingale measures in general. They can be purely
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discontinuous, as in the two-dimensional case, but they can also be continuous.

Example 4.9 We assume that there exists a smoothly evolving and increasing familly of
smooth open convex subsets (K (t))iejo,r) of A(I), whose closure in contained in the interior
of A(I), such that, for any t € [0,T],

VexH (t,p) = H(t,p) < p¢ K(t) , H(t,-) is affine on K(t)
and
0*H < defin ive f Ty
8—p2(t,p) is definite positive for p ¢ K(t).

Following the proof of Proposition [L.5 we get:

Proposition 4.10 Under the assumptions of Ezample [].9,
T
Vitw) = [ VexH(spds  V(t.p) € 0,7)x A()
t
and
H=A{(tp) €0, T] xA)|p¢ K()} .

In particular, V is of class C*2.
Next we investigate the optimal martingale measures.

Proposition 4.11 Under the assumptions of Example[}.9, any optimal martingale measure

P has the following structure:

p(t™) =po Vit € [to, "] and p(t) € 0K (t) vVt >t*, P —a.s.,

where t* = sup{t > to | po ¢ K(t)}. Moreover, there is an optimal martingale measure
under which p is purely discontinuous. If, in addition, the family (K (t))ic(o,r) has a positive
minimal curvature and if po ¢ K (to), then there is also an optimal martingale measure under

which p is continuous.

Remark 4.12 An interesting case is when the evolving set t — 0K (T — t) is moving
according to its mean curvature (in A(7)). Indeed, in this case, there is an explicit formula
for the martingale. If py € 0K (ty), then there is a optimal martingale measure under which

the process satisfies
dp(t) = V2 (I — v(t,p(t)) @ v(t, p(t))) AW,

where [ is the identity matrix of size (I —1), (W;) is an ( —1)—dimensional Browian motion

living in the hyperplane spanned by A(I) and v(t,p) denotes the unit outward normal to

K(t) at p € OK(t) (see [B] , [L2).
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Proof: The proof of the structure condition on the optimal martigale measures follows the
same lines as the proof of Proposition [l.7 and the existence of the purely discontinuous
martingale measure can be established as in Proposition £.9 because the set H satisfies
(1),

Let us now check that there is a continuous optimal martingale measure. As usual we
start our construction by building a discrete time process p". Let us fix n large, 7 = T'/n the
time-step and t; = k7 for k = 0,...,n. For simplicity of notations we only build a process
for an initial position such that to = 0 and py € K (0). Let Z be the set of z = (2;) € R!
such that ), z; = 0. Note that Z = Tx(p)(p) for any p € Int(A(I)). Let f: Z — Z be a
Borel measurable process such that |f(z)| =1 and (f(z),z) = 0 for any z € Z. We denote
by 7(t,p) a Borel measurable selection of the projection of p onto the boundary of K(t).

We now start the construction of p”. We set p™; = po. If p} € 0K(t;) is build, then

we set

q1 = pg + AL f(m(te, Pr) — Pr) and g2 = py; — Ao f (7(tk, P) — Pk)
where A\; > 0 and A2 > 0 are such that q1,q2 € 0K (ty41). Then we set pi, | to be equal to
q1 with probability A2/(A1 + A2) and go with probability A;/(A; + A2). The process p™ is
then a martingale such that pj € 0K (t;) for any k =0,...n.

We now show that, for any a > 2, there is some constant C,, such that
E [’pZQ - le‘a] < Coz‘tlm - tkl’a/Q . (462)

Indeed from the Burkholder-Davis-Gundy inequality we have

E [|p;, — i, |*] < cE [(< P >h, — < P > )2

ko1 a/2

< c BB Z |PZ+1 - pZ|2
k=k1

Let us now estimate |p}, ; — pZ|2. From the condition of positive minimal curvature, there

is a constant R > 0 such that
K(t) € Br(p— Ru(t,p)) NA(I)  Vp e OK(t), Vt € [0,T],

where v(t,p) is the outward unit normal to K(t) at p. Then, since p,; € 0K (tx11), we

have

’pZJrl - (W(t,pg) - Ry(thrl?ﬂ-(tv pZ)))’ <R,
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where

m(Pr) — Pj
V(tge1, m(PY)) = ———
(B (0E) |7 (P}) — P
Since by definition of f, f(n(¢t,p}) — py) L n(t,p}) — P}, we have

PRy — PRI+ (R~ |m(p) — PRI)? < R?,
which implies that
Pt — PRI? < 2RL(trs1 — tr)

where L is a Lipschitz constant of the map ¢ — K(t) in the Hausdorff distance. Therefore

2
ko—1 o/

E|| > Ipi—pil < (2RL)™*(ty, — t,)*/? .
k=k1
This proves ({.63).

We now set p"(t) = pj. for t € [ty, tr+1) and let P™ be the law of p™ on D(0). From Kol-
mogorov criterium we can extract a subsequence of (P™) which converges to some continuous
martingale measure P. Since p™(t;) € 0K (t) for any k = 0,...,n, we have p(t) € 0K (t)
for any ¢ € [0,7]. Using It6’s formula and the fact that

2
A%
Vi(s,p) = —H(s,p) and %?(s,p) =0 Vp e 0K (t), Vt € [0,T7],

we have

0= Ep [V(T,p(T))] = Ep |V0.m) + Vi p(s)ds| = V(0.0)-Ep | [ " Hs p(s)ds
herefore

! V(0,p0) = Ep [/OT H(s,p(s))ds} ,

which shows that P is optimal. |

5 Conclusion

In this paper we have investigated a continuous-time game with finite horizon and imperfect
information on one side. We have proved that the optimal behaviour of the informed
player is directly related to the optimal revelation of his/her knowledge. This leads to an
optimization problem in which the unknown is a martingale measure. We have analysed
this problem and found some necessary and some sufficient optimality conditions for the
optimal martingale measure.

Our analysis raises several intriguing questions:
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e We have seen that, under suitable regularity conditions, and, in particular, when

I = 2, there are optimal martingale measures which are purely discontinuous. Does

there always exist an optimal martingale measure which is purely discontinuous ?

e In our 2-dimensional examples, the optimal martingale measure is unique. Is this

always the case when [ =2 7

e In the case of a continuous time game in which both players have some private in-

formation, existence and characterization of the value are established in [f]. The

equivalent of the martingale characterization (Theorem P.J)) in this framework is an

open question.
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