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For zero-sum two-player continuous-time games with integral payoff and incomplete information on one side, one shows that the optimal strategy of the informed player can be computed through an auxiliary optimization problem over some martingale measures.

One also characterizes the optimal martingale measures and compute it explicitely in several examples.

Then the players choose their respective controls in order, for Player 1, to minimize the integral payoff T t 0 ℓ i (s, u(s), v(s))ds, and for Player 2 to maximize it. We assume that both players observe their opponent's control. Note however that Player 2 does not know which payoff he/she is actually maximizing.

Our game is a continuous time version of the famous repeated game with lack of information on one side studied by Aumann and Maschler (see [START_REF] Aumann | Repeated games with incomplete information[END_REF][START_REF] Sorin | A first course on zero-sum repeated games[END_REF]). The existence of a value for our game has been investigated in [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF] (in a more general framework): if Isaacs' condition holds:

H(t, p) = inf u∈U sup v∈V I i=1 p i ℓ i (t, u, v) = sup v∈V inf u∈U I i=1 p i ℓ i (t, u, v) ∀(t, p) ∈ [0, T ] × ∆(I) , (0.1) 
then the game has a value V = V(t 0 , p) given by V(t 0 , p) = inf

(α i )∈(Ar (t 0 )) I sup β∈Br(t 0 ) I i=1 p i E α i β T t 0 ℓ i (s, α i (s), β(s))ds (0.2) = sup β∈Br(t 0 ) inf (α i )∈(Ar (t 0 )) I I i=1 p i E α i β T t 0 ℓ i (s, α i (s), β(s))ds ,
for any (t 0 , p) ∈ [0, T ]×∆(I), where the α i ∈ A r (t 0 ) (for i = 1, . . . , I) are I random strategies for Player 1, β ∈ B r (t 0 ) is a random strategy for Player 2 and E α i β T t 0 ℓ i (s, α i (s), β(s))ds is the payoff associated with the pair of strategies (α i , β): these notions are explained in the next section. In [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF] we also show that the value function V can be characterized in terms of dual solutions of some Hamilton-Jacobi equations, which, following [START_REF] Cardaliaguet | A double obstacle problem arising in differential game theory[END_REF], is equivalent to saying that V is the unique viscosity solution of the following HJ equation: min w t + H(t, p) ; λ min ∂ 2 w ∂p 2 = 0 in [0, T ] × ∆(I) . (0.3)

In the above equation, λ min (A) denotes the minimal eigenvalue of A, for any symmetric matrix A. Note in particular that this equation says that V is convex with respect to p.

This paper is mainly devoted to the construction and the analysis of the optimal strategy for the informed player (Player 1). In particular we want to understand how he/she has to quantify the amount information he/she reveals at each time. Our key step towards this aim is the following equality:

V(t 0 , p 0 ) = min P∈M(t 0 ,p 0 )

E P T t 0 H(s, p(s))ds ∀(t 0 , p 0 ) ∈ [0, T ] × ∆(I) , (0.4) 
where M(t 0 , p 0 ) is the set of martingale measures P on the set D(t 0 ) of càdlàg processes p living in ∆(I) and such that p(t - 0 ) = p 0 and p(T ) belong to the extremal points of ∆(I). Equality (0.4) is reminiscent of a result of [START_REF] De Meyer | Price dynamics on a stock market with asymetric information[END_REF] in the discrete-time framework. It is directly related with the construction of the optimal strategy for the informed player. Indeed, let P be an optimal martingale measure in (0.4), p(t) = (p 1 (t), . . . , p I (t)) the coordonnate mapping on D(t 0 ) and {e 1 , . . . , e I } the canonical basis of IR I . Then the informed player, knowing that the index i has been chosen by nature, has just to play the random control t → argmin u j p j (t)ℓ j (t, u, v) with probability Pi , where Pi is the restriction of the law P to the event {p(T ) = e i }.

We give two proofs of (0.4). The first one relies on a time discretization of the value function taken from [START_REF] Souquière | Approximation and representation of the value for some differential games with imperfect information[END_REF] and the explicit construction of an approximated martingale measure in the discrete game. The second one is based on a dynamic programming for the righthand side of (0.4) and on the relation between this dynamic programming and the notion of viscosity solution of (0.3). We shall see in particular that the obstacle term λ min

∂ 2 w ∂p 2
≥ 0 is directly related with the minimization over the martingale measures P.

Since the optimal martingale in (0.4) plays a central role in our game, an analysis of this martingale is now in order. This is the aim of section 3. We show that, under such a martingale measure P, the canonical process p(t) has to live in the set H(t) ⊂ ∆(I) in which, heuristically, the Hamilton-Jacobi equation

∂V ∂t

+ H(t, p) = 0 holds. Moreover the process p(t) can only jump on the faces of the graph of V(t, •). Namely, for any t ∈ [t 0 , T ], there is a measurable selection ξ of ∂V(t, p(t -)), such that V(t, p(t)) -V(t, p(t -)) -ξ, p(t) -p(t -) = 0 P -a.s.

Conversely, under suitable regularity assumptions on V and on H, a martingale measure satisfying these two conditions turns out to be optimal in (0.4).

In section 4 we compute the optimal martingale measures for several examples of games.

These examples show that, under the optimal measure, the process p can have very different behavior. When I = 2 and under suitable regularity conditions, the optimal measure is purely discontinuous. For instance we describe a game in which this optimal measure is unique and has to be the law of an Azéma martingale. In higher dimension, uniqueness is lost in general. Moreover we give a class of examples in which, although there are optimal measures which are purely discontinuous, they are also optimal measures under which p is a continuous process. For instance we show a game in which p lives on an expending convex body moving with (reversed time) mean curvature motion. In this case case the law of p takes the form

dp t = (I -a t ⊗ a t )dB t ,
where (B t ) is a Brownian motion and the process a t lives in the unit sphere.

We complete the paper in section 5 by a list of open questions.

Notations and general results

In this part we introduce the main notations and assumptions needed in the paper. We also recall the main results of [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF][START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF]: existence of a value for the game with lack of information on one side, as well as the characterization of the value. We denote by {e i , i = 1, . . . , I} the canonical basis of IR I . For any map φ : ∆(I) → IR, Vexφ is the convex hull of φ. We also denote by S I the set of symetric matrices of size I × I.

Throughout the paper we assume the following conditions on the data: i) U and V are compact subsets of some finite dimensional spaces, ii) For i = 1, . . . , I, the payoff functions

ℓ i : U × V → IR are continuous. (1.5)
We also always assume that Isaac's condition holds and define the Hamiltonian of the game as:

H(t, p) := min u∈U max v∈V I i=1 p i ℓ i (t, u, v) = max v∈V min u∈U I i=1 p i ℓ i (t, u, v) (1.6)
for any (t, p) ∈ [0, T ] × ∆(I).

For any t 0 < T , the set of open-loop controls for Player I is defined by

U(t 0 ) = {u : [t 0 , T ] → U Lebesgue measurable} .
Open-loop controls for Player II are defined symmetrically and denoted V(t 0 ).

A pure strategy for Player I at time t 0 is a map α : V(t 0 ) → U(t 0 ) which is nonanticipative with delay, i.e., there is a partition 0

≤ t 0 < t 1 < • • • < t k = T such that, for any v 1 , v 2 ∈ V(t 0 ), if v 1 = v 2 a.e. on [t 0 , t i ] for some i ∈ {0, . . . , k -1}, then α(v 1 ) = α(v 2 ) a.e. on [t 0 , t i+1 ].
Let us fix E a set of probability spaces which is non trivial and stable by product. A random control for Player I at time t 0 is a pair ((Ω u , F u , P u ), u) where the probability space (Ω u , F u , P u ) belongs to E and where u :

Ω u → U(t 0 ) is Borel measurable from (Ω u , F u ) to
U(t 0 ) endowed with the L 1 -distance. We denote by U r (t 0 ) the set of random controls for Player I at time t 0 and abbreviate the notation ((Ω u , F u , P u ), u) into simply u.

In the same way, a random strategy for Player I is a pair ((Ω α , F α , P α ), α), where

(Ω α , F α , P α ) is a probability space in E and α : Ω α × V(t 0 ) → U(t 0 ) satisfies (i) α is measurable from Ω α × V(t 0 ) to U(t 0 )
, with Ω α endowed with the σ-field F α and U(t 0 ) and V(t 0 ) with the Borel σ-field associated with the L 1 -distance, (ii) there is a partition

t 0 < t 1 < • • • < t k = T such that, for any v 1 , v 2 ∈ V(t 0 ), if v 1 ≡ v 2
a.e. on [t 0 , t i ] for some i ∈ {0, . . . , k -1}, then α(ω, v 1 ) ≡ α(ω, v 2 ) a.e. on [t 0 , t i+1 ] for any ω ∈ Ω α .

We denote by A(t 0 ) the set of pure strategies and by A r (t 0 ) the set of random strategies for Player I. By abuse of notations, an element of A r (t 0 ) is simply noted α, instead of ((Ω α , F α , P α ), α), the underlying probability space being always denoted by (Ω α , F α , P α ).

Note that U r (t 0 ) ⊂ A r (t 0 ).

In order to take into account the fact that Player I knows the index i of the terminal payoff, an admissible strategy for Player I is actually a

I-uple α = (α 1 , . . . , α I ) ∈ (A r (t 0 )) I .
Pure and random controls and strategies for Player II are defined symmetrically; V r (t 0 ) denotes the set of random controls for Player II, while B(t 0 ) (resp. B r (t 0 )) denotes the set of pure strategies (resp. random strategies). Generic elements of B r (t 0 ) are denoted by β, with associated probability space (Ω β , F β , P β ).

Let us recall the Lemma 1.1 (Lemma 2.2 of [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF]) For any pair (α, β) ∈ A r (t 0 ) × B r (t 0 ) and any ω :

= (ω 1 , ω 2 ) ∈ Ω α × Ω β , there is a unique pair (u ω , v ω ) ∈ U(t 0 ) × V(t 0 ), such that α(ω 1 , v ω ) = u ω and β(ω 2 , u ω ) = v ω . (1.7) Furthermore the map ω → (u ω , v ω ) is measurable from Ω α × Ω β endowed with F α ⊗ F β into U(t 0 ) × V(t 0
) endowed with the Borel σ-field associated with the L 1 -distance.

Notations : Given any pair (α, β) ∈ A r (t 0 )×B r (t 0 ), the expectation E αβ is the integral over Ω α ×Ω β against the probability measure P α ⊗P β . In particular, if φ : [0, T ]×U ×V → IR is some bounded continuous map and t ∈ (t 0 , T ], we have

E αβ T t φ(s, α, β)ds := Ωα×Ω β T t φ(s, u ω (s), v ω (s)ds dP α ⊗ P β (ω) , (1.8) 
where (u ω , v ω ) is defined by (1.7). If one of the strategies is deterministic, we simply drop its subscript in the expectation.

As a particular case of Theorem 4.2 of [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF] we have:

Theorem 1.2 (Existence of the value [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF]) Assume that conditions (1.5) and (1.6) are satisfied. Then equality (0.2) holds and we denote by V(t 0 , p) the common value.

In order to give the characterization of V, we have to recall that the Fenchel conjugate w * of a map w : [0, T ] × ∆(I) → IR is defined by

w * (t, p) = max p∈∆(I) p.p -w(t, p) ∀(t, p) ∈ [0, T ] × IR I .
In particular V * denotes the conjugate of V. If now w is defined on the dual space [0, T ]×IR I , we also denote by w * its conjugate with respect to p given by w * (t, p) = max

p∈R I p.p -w(t, p) ∀(t, p) ∈ [0, T ] × ∆(I) .
Proposition 1.3 (Characterization of the value, [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF]) Under the assumptions of Theorem 1.2, the value function V is the unique function defined on [0, T ] × ∆(I) such that (i) V is Lipschitz continuous in all its variables, convex with respect to p and vanishes at t = T , (ii) for any p ∈ ∆(I), t → V(t, p) is a viscosity subsolution of the Hamilton-Jacobi equation

w t + H (t, p) = 0 in (0, T ) (1.9)
where H is defined by (1.6), (iii) For any smooth test function φ = φ(p) and any p ∈ IR I such that t → V * (t, p) -φ has a local maximum at some t and such that the derivative p := ∂V * ∂ p (t, p) exists, one has:

φ t (t, p) -H (t, p) ≥ 0 .
(1.10)

We say that V is the unique dual solution of the HJ equation (1.9) with terminal condition V(T, p) = 0.

Remark 1.4 In particular V does not depend on the class of probability space E chosen to define the random strategies. In view of the construction of the next chapter, we note that, given a family of probability measures, one can always built a set E containing this family and such that E is stable by product.

In [START_REF] Cardaliaguet | A double obstacle problem arising in differential game theory[END_REF] we prove that the following characterization of V also holds:

Proposition 1.5 (Equivalent characterization [START_REF] Cardaliaguet | A double obstacle problem arising in differential game theory[END_REF]) V is the unique Lipschitz continuous viscosity solution of the following obstacle problem

min w t + H(t, p) ; λ min ∂ 2 w ∂p 2 = 0 in (0, T ) × ∆(I) (1.11) 
which satisfies V(T, p) = 0 in ∆(I).

In the above proposition, we say that w is a subsolution of the terminal time Hamilton- Our main result is the following equality:

Theorem 2.1 V(t 0 , p 0 ) = inf P∈M(t 0 ,p 0 ) E P T t 0 H(s, p(s))ds ∀(t 0 , p 0 ) ∈ [0, T ] × ∆(I) .
(2.12)

We shall give two proofs of the result. The first one is based on a discretization procedure for V, while the second one uses a more direct approach of dynamic programming. Before this we show how to use the above theorem to get optimal strategies for the first player.

Construction of an optimal strategy

We explain here how to use Theorem 2.1 to built an optimal strategy for the informed Player. The construction of an optimal strategy for the non-informed Player, which uses completely different arguments (the so-called approchability procedure) is described in [START_REF] Souquière | [END_REF].

Lemma 2.2 For any (t 0 , p 0 ) there is at least one optimal martingale measure for problem (2.12).

Proof: Let be a sequence of measures (P n ) n∈IN ⊂ M(t 0 , p 0 ) satisfying

V(t 0 , p 0 ) = lim n→+∞ E Pn T t 0 H(s, p(s))ds . (2.13)
Since, under all P ∈ M(t 0 , p 0 ), the coordinate process p is a martingale with support in the same compact space ∆(I), (P n ) converges weakly (up to some subsequence) to some measure P that still belongs to M(t 0 , p 0 ) (see Meyer-Zheng [START_REF] Meyer | Tightness criteria for laws of semimartingales[END_REF]). Since H is bounded and continuous, passing to the limit in (2.13) gives

V(t 0 , p 0 ) = E P T t 0 H(s, p(s))ds .
Hence P is optimal.

Let (t 0 , p 0 ) ∈ [0, T ) × ∆(I) be fixed, P be optimal in the problem (2.12). Let us set E i = {p(T ) = e i } and define the probability measure Pi by: ∀A ∈ G, Pi (A) := P[A|E i ] =

P(A∩E i ) p i
, if p i > 0, and Pi (A) = P (A) for an arbitrary probability measure P ∈ M(t 0 , p 0 ) if

p i = 0.
We also set ū(t) = u * (t, p(t)) ∀t ∈ IR and denote by ūi the random control ūi = ((D(t 0 ), G, Pi ), ū) ∈ U r (t 0 ).

Theorem 2.3

The strategy consisting in playing the random control (ū i ) i=1,...,I ∈ (U r (t 0 )) I is optimal for V(t 0 , p 0 ). Namely

V(t 0 , p 0 ) = sup β∈Br(t 0 ) I i=1 p i E ūi T t 0 ℓ i (s, ūi (s), β(ū i )(s))ds Proof: Since sup β∈Br(t 0 ) I i=1 p i E ūi ,β T t 0 ℓ i (s, ūi (s), β(ū i )(s))ds = sup β∈B(t 0 ) I i=1 p i E ūi T t 0 ℓ i (s, ūi (s), β(ū i )(s))ds ,
it is enough to prove the equality

V(t 0 , p 0 ) = sup β∈B(t 0 ) I i=1 p i E ūi T t 0 ℓ i (s, ūi (s), β(ū i )(s))ds . (2.14)
Let us note that, since p(T ) ∈ {e 1 , . . . , e I } P a.s., we have

I i=1 1 E i e i = p(T ) P a.s. . (2.15) 
Let us fix a strategy β ∈ B(t 0 ) and set v = β(ū). Then 

I i=1 p i E ūi T t 0 ℓ i (s, ūi (s), β(ū i )(s))ds = I i=1 E P T t 0 ℓ i (s, ū(s), v(s))ds | E i P(E i ) = E P I i=1 1 E i T t 0 ℓ i (s, ū(s), v ( 

Proof of Theorem 2.1 by discretization

For simplicity of notations we shall prove Theorem 2.1 for t 0 = 0, the proof in the general case being similar.

Let us start with an approximation of the value function. This approximation is a particular case of [START_REF] Souquière | Approximation and representation of the value for some differential games with imperfect information[END_REF]. Let n ∈ IN * , τ = 1/n be the time-step and let us set t k = kT /n for k = 0, . . . , n. We define by backward induction

V τ (T, p) = 0 ∀p ∈ ∆(I) and, if V τ (t k+1 , •) is defined, then V τ (t k , p) = Vex (V τ (t k+1 , •) + τ H(t k , •)) (p)
where Vex(φ)(p) stands for the convex hull of the map φ = φ(p) with respect to p.

Lemma 2.4 ([14]

) V τ uniformly converges to V as τ → 0 in the following sense:

lim τ →0 + , t k →t, p ′ →p V τ (t k , p ′ ) = V(t, p) ∀(t, p) ∈ [0, T ] × ∆(I) .
For any k = 0, . . . , n and p ∈ ∆(I) there are

λ k = (λ k l ) ∈ ∆(I) and π k = (π k,l ) ∈ ∆(I) such that (i) I l=1 λ k l π k,l = p and (ii) V τ (t k , p) = I l=1 λ k l V τ (t k+1 , π k,l ) + τ H(t k , π k,l ) (2.16)
Without loss of generality we can choose the maps p → λ k (p) and p → π k (p) Borel measurable. For any i ∈ {1, . . . , I} we now define a process (p i k , k ∈ {0, . . . , n + 1}) on some arbitrary, big enough probability space (Ω, F, P ) with values in ∆(I): we start with p i 0 = p 0 and, if

p i k is defined for k ≤ n -1, • if the i-th coordinate of p i k satisfies (p i k ) i > 0, then the variable p i k+1 takes its values in {π k,l p i k , l ∈ {1, . . . , I} } with ∀l ∈ {1, . . . , I}, P [p i k+1 = π k,l p i k |p j 0 , . . . , p j k , j = 1, . . . , I] = λ k l (p i k )π k,l i (p i k ) (p i k ) i , • if (p i k ) i = 0, then we set p i k+1 = p i k .
For k = n + 1, we simply set p i n+1 = e i . Finally we set p k = p i k where i is the index chosen at random by nature (i.e. i is a random variable that is independent from the processes (p i k ), i ∈ {1, . . . , I} and takes the values 1, . . . , I with probability p 1 , . . . , p I respectively). The following Lemma is classical in the framework of repeated game theory with lack of information on one side (see [START_REF] Aumann | Repeated games with incomplete information[END_REF][START_REF] Sorin | A first course on zero-sum repeated games[END_REF]).

Lemma 2.5 If we denote by (F k , k = 0, . . . , n + 1) the filtration generated by (p k ), then

P [i = i|F k ] = (p k ) i ∀k ∈ {0, . . . , n + 1}, ∀i ∈ {1, . . . , I} .
In particular, the process (p k , k = 0, . . . , n + 1) is a martingale.

Proof: The result is obvious for k = n + 1. Let us prove by induction on k that, for all i ∈ {1, . . . , I},

P [i = i|F k ] = (p k ) i , (2.17) 
for k = 0, . . . , n. For k = 0, equality (2.17) is obvious. We now assume that (2.17) holds true up to some k and check that P [i = i | F k+1 ] = (p k+1 ) i . Since the variables p k take their values in a finite set, we can explicitely write

P [i = i | F k+1 ] = A∈A P [i = i|A] 1 A , (2.18) 
where the set A is also finite and contains only sets of the form

A = {p 1 = α 1 , . . . , p k = α k , p k+1 = π k,l (p k )} with α 1 , . . . , α k ∈ ∆(I) and l ∈ {1, . . . , I} with P [A > 0].

For such a

A ∈ A, let us write

P [i = i|A] = P [{i = i} ∩ A]/( I j=1 P [{i = j} ∩ A]) . (2.19)
and, for j such that (α k ) j > 0, using the independence between i and the processes (p j k ),

P [{i = j} ∩ A] = P [i = j, p j 1 = α 1 , . . . , p j k = α k , p j k+1 = π k,l (p j k )] = P [i = j]P [p j k+1 = π k,l (p j k )|p j 1 = α 1 , . . . , p j k = α k ]P [p j 1 = α 1 , . . . , p j k = α k ] = P [i = j, p j 1 = α 1 , . . . , p j k = α k ] λ k l (α k )π k,l j (α k ) (α k ) j .
(2.20)

Now, by the induction assumption,

P [i = j, p j 1 = α 1 , . . . , p j k = α k ] = P [i = j, p 1 = α 1 , . . . , p k = α k ] = (α k ) j P [p 1 = α 1 , . . . , p k = α k ] . (2.21)
Thus, putting together (2.19),(2.20) and (2.21), we find out that

P [i = i|A] = π k,l i (α k ).
But, on A, α k = p k , therefore, comming back to (2.18), we get

P [i = i | F k+1 ] = A∈A π k,l i (p k )1 A = I l=1 π k,l i (p k )1 {p k+1 =π k,l i (p k )} = (p k+1 ) i . Lemma 2.6 V τ (0, p 0 ) = E τ n-1 r=0 H(t r , p r+1 ) .
Proof: Let us show by (backward) induction on k that

E τ n-1 r=0 H(t r , p r+1 ) = E V τ (t k , p k ) + τ k-1 r=0 H(t r , p r+1 ) .
Note that setting k = 0 gives the Lemma.

For k = n, the result is obvious since V τ (T, p) = 0. Let us assume that the result holds true for k + 1 and show that it still holds true for k. By the induction assumption we have

E τ n-1 r=0 H(t r , p r+1 ) = E V τ (t k+1 , p k+1 ) + τ k r=0 H(t r , p r+1 ) .
We note that, for all suitable function f ,

E[f (p k+1 )|σ{i, p k }] = i 1 {i=i} l λ k l (p i k )π k,l i (p i k ) (p i k ) i f (π k,l (p i k )) = i 1 {i=i} l λ k l (p k )π k,l i (p k ) (p k ) i f (π k,l (p k ))
Thus, by Lemma 2.5,

E[f (p k+1 )|σ{p k }] = i (p k ) i l λ k l (p k )π k,l i (p k ) (p k ) i f (π k,l (p k )) = l λ k l (p k )f (π k,l (p k )).
In particular, by the definition of λ k and π k in (2.16), we deduce that

E[V τ (t k+1 , p k+1 ) + τ H(t k , p k+1 )|p k ] = V τ (t k , p k ). So E τ n-1 r=0 H(t r , p r+1 ) = E V τ (t k , p k ) + τ k-1 r=0 H(t r , p r+1 ) ,
which completes the proof.

We are now ready to show the inequality

V(0, p 0 ) ≥ inf P∈M(0,p 0 ) E P T 0 H(s, p(s))ds . (2.22)
Let W (0, p 0 ) denote the right-hand side of this inequality. Let us fix ǫ > 0 and let τ = 1/n > 0 sufficiently small so that

|V(0, p 0 ) -V τ (0, p 0 )| ≤ ǫ and |H(t, p) -H(s, p)| ≤ ǫ ∀|s -t| ≤ τ, ∀p ∈ ∆(I) .
Let (p k ) be the martingale defined above. We built with this discrete time martingale a continuous one by setting:

p(t) = p 0 if t < 0, p(t) = p k+1 if t ∈ [t k , t k+1 ) for k = 0, . . . , n-1
and p(t) = p n+1 if t ≥ T . The law of (p(t)) defines a martingale measure P ∈ M(0, p 0 ).

Then V(0, p 0 ) ≥ V τ (0, p 0 ) -ǫ ≥ E τ n-1 r=0 H(t r , p r+1 ) -ǫ ≥ E T 0 H(s, p(s))ds -2ǫ ≥ E P T 0 H(s, p(s))ds -2ǫ ≥ W (0, p 0 ) -2ǫ
This proves (2.22).

Next we show

V(0, p 0 ) ≤ inf P∈M(0,p 0 ) E P T 0 H(s, p(s))ds . (2.23)
For this let us fix a martingale measure P ∈ M(0, p 0 ). For n ∈ IN * large, we discretize the canonical process p in the usual way:

p n (t) = p(t k ) if t ∈ [t k , t k+1
) for k = 0, . . . , n -1 and

t k = kT /n. Then p n (t) converges to p(t) P ⊗ L 1 -a.s. Therefore lim n→+∞ E P 1 n n-1 r=0 H(t r , p n (t r+1 )) = E P T 0 H(s, p(s))ds .
To complete the proof of (2.23) it is enough to show that

E P 1 n n-1 r=0 H(t r , p n (t r+1 )) ≥ V τ (0, p 0 ) (2.24)
where τ = 1/n. As for Lemma 2.6, the proof of (2.24) is achieved by showing by induction on k ∈ {0, . . . , n} that

E P 1 n n-1 r=0 H(t r , p n (t r+1 )) ≥ E P V τ (t k , p(t k )) + τ k-1 r=0 H(t r , p n (t r+1 )) (2.25)
For k = n the result is obvious since V τ (T, •) = 0. Assume that the result holds for k + 1.

We note that, since

V τ (t k+1 , p) + τ H(t k , p) ≥ V τ (t k , p) ∀p ∈ ∆(I)
from the construction of V τ (t k , •) and since V τ (t k , •) is convex and p n is a martingale under P, we have

E P [V τ (t k+1 , p n (t k+1 )) + τ H(t k , p(t k+1 )) | G k ] ≥ E P [V τ (t k , p n (t k+1 )) | G k ] ≥ V τ (t k , E P [p n (t k+1 ) | G k ]) = V τ (t k , p n (t k )) So E P 1 n n-1 r=0 H(t r , p n (t r+1 )) ≥ E P V τ (t k+1 , p(t k+1 )) + τ k r=0 H(t r , p n (t r+1 )) ≥ E P V τ (t k , p(t k )) + τ k-1 r=0 H(t r , p n (t r+1 )) ,
which completes the proof of (2.25).

Proof of Theorem 2.1 by dynamic programming principle

The idea is to show that the map

W (t 0 , p 0 ) = inf P∈M(t 0 ,p 0 ) E P T t 0 H(s, p(s))ds ∀(t 0 , p 0 ) ∈ [0, T ] × ∆(I) (2.26)
is a solution of equation (1.11) such that W (T, p) = 0. Since, in view of Proposition 1.5 this equation has a unique solution and V is also solution, we get the desired result:

W = V.
Arguing as in the proof of Lemma 2.2, we first note that there is at least an optimal martingale measure in the minimization problem (2.26).

Lemma 2.7 W is convex with respect to p 0 and Lipschitz continuous in all variables.

Proof: Let p 0 , p 1 ∈ ∆(I), P 0 ∈ M(t 0 , p 0 ) and P 1 ∈ M(t 0 , p 1 ) be optimal martingale measures for the game starting from (t 0 , p 0 ) and (t 0 , p 1 ):

E P j T t 0 H(s, p(s))ds = W (t 0 , p j )
for j = 0, 1. For any λ ∈ [0, 1], let p λ = (1 -λ)p 0 + λp 1 and p λ be the process on D(t 0 ) defined by

p λ (t) = p λ , if t < t 0 p(t), if t ≥ t 0 .
We define finally a probability measure P λ ∈ M(t 0 , p 0 ) by : For all measurable function Φ :

D(t 0 ) → IR + , E P λ [Φ(p)] = (1 -λ)E P 0 [Φ(p λ )] + λE P 1 [Φ(p λ )].
Then P λ clearly belongs to M(t 0 , p λ ) and

W (t 0 , p λ ) ≤ E P λ T t 0 H(t, p(t))ds = (1 -λ)W (t 0 , p 0 ) + λW (t 0 , p 1 ) .
This proves that W is convex with respect to p 0 .

We now prove that W is Lipschitz continuous. Since W is convex with respect to p 0 , we need only to prove that W is Lipschitz continuous at the extremal points (t 0 , e i ), t 0 ∈ [0, T ], i ∈ {1, . . . , I}: namely we have to show that there is some K ≥ 0 such that

|W (t ′ 0 , p 0 )-W (t 0 , e i )| ≤ K(|p 0 -e i |+|t ′ 0 -t 0 |) ∀t ′ 0 , t 0 ∈ [0, T ], p 0 ∈ ∆(I), i ∈ {1, . . . , I} .
Let t ′ 0 , t 0 ∈ [0, T ], p 0 ∈ ∆(I) and i ∈ {1, . . . , I}. One easily checks that M(t 0 , e i ) consists in the single probability measure under which (p(s), t ≤ s ≤ T ) is constant and equal to e i .

Consequently

W (t 0 , e i ) =
T t H(s, e i )ds .

Let P be the optimal probability measure for problem (2.26) with starting point (t ′ 0 , p 0 ). We can write

|W (t ′ 0 , p 0 ) -W (t 0 , e i )| = |E P T t ′ 0 H(s, p(s))ds - T t 0 H(s, e i )ds| ≤ C|t 0 -t ′ 0 | + E P T t 0 |H(s, p(s)) -H(s, e i )|ds , where C is an upper bound of the map (t, p) → |H(t, p)| on [0, T ] × ∆(I).
Now let κ be a Lipschitz constant for H. Then

E P T t 0 |H(s, p(s)) -H(s, e i )|ds ≤ κE P T t 0 |p(s) -e i |ds ≤ I j=1 E P T t 0 |p j (s) -δ ij |ds = I j =i E P T t 0 p j (s)ds + E P T t 0 (1 -p i (s))ds = (T -t 0 ) I j=1 |p j 0 -δ ij | ,
where, for the last line, we used the fact that, under P and for all j ∈ {1, . . . , I}, p j is a martingale. Finally

I j=1 |p j 0 -δ ij | ≤ √ I|p 0 -e i |,
which completes the proof.

Lemma 2.8 The following dynamic programming holds: for any G-stopping time θ taking its values in [t 0 , T ],

W (t 0 , p 0 ) = inf P∈M(t 0 ,p 0 ) E P θ t 0 H(s, p(s))ds + W (θ, p(θ)) .
(2.27)

Proof: Let us introduce the subset M f (t 0 , p 0 ) of M(t 0 , p 0 ) consisting in the martingale measures P on D(t 0 ) starting from p 0 at time t 0 and for which there is a finite set S ⊂ ∆(I) such that any p ∈ Spt(P) satisfies p(t) ∈ S for t ∈ [t 0 , T ] P-a.s.

It is known that M f (t 0 , p 0 )
is dense in M(t 0 , p 0 ) for the weak* convergence of measures. In particular it holds that

W (t 0 , p 0 ) = inf P∈M f (t 0 ,p 0 ) E P T t 0 H(s, p(s))ds ∀(t 0 , p 0 ) ∈ [0, T ] × ∆(I),
and, since the map P → E P θ t 0 H(s, p(s))ds + W (θ, p(θ)) is continuous for the weak* topology, the lemma is proved as soon we have shown that

W (t 0 , p 0 ) = inf P∈M f (t 0 ,p 0 ) E P θ t 0 H(s, p(s))ds + W (θ, p(θ)) .
(2.28)

We shall prove (2.28) for stopping times taking a finite number of values, then we generalize the result to all stopping times by passing to the limit.

Let θ be a G-stopping time of the form

θ = L l=1 1 A l τ l = L l=1 1 {θ=τ l } τ l , (2.29) 
with t 0 ≤ τ 1 < . . . < τ L ≤ T and, for all l ∈ {1, . . . , L}, A l ∈ G τ l . Let P ∈ M f (t 0 , p 0 ) be ǫ-optimal for W (t 0 , p 0 ) and S = {p 1 , . . . , p K } be such that P[p(θ) ∈ S] = 1. We have

E P T θ H(s, p(s))ds = E P   j,l E P T τ l H(s, p(s))ds A l ∩ {p(τ l ) = p j } 1 A l ∩{p(τ l )=p j }   .
(2.30) But, since P| A l ∩{p(τ l )=p j } ∈ M(τ l , p j ), we have, for all l and j,

E P T τ l H(s, p(s))ds A l ∩ {p(τ l ) = p j } ≥ W (τ l , p j ) . (2.31) Therefore W (t 0 , p 0 ) + ǫ ≥ E P T t 0 H(s, p(s))ds ≥ E P θ t 0 H(s, p(s))ds + l,j W (τ l , p j )1 A l ∩{p(τ l )=p j } = E P θ t 0 H(s, p(s))ds + W (θ, p(θ)) .
(2.32)

To prove the converse inequality, let P 0 ∈ M f (t 0 , p 0 ) be ǫ-optimal in the right-hand side of (2.28) and let S = {p 1 , . . . , p K } be such that P 0 [p(θ) ∈ S] = 1. For any τ l ∈ [t 0 , T ] and p j ∈ S, let P l,j be ǫ-optimal for W (τ l , p j ). We define a measure P ∈ M(t 0 , p 0 ) in the following way : For any function f : IR → ∆(I) and l ∈ {1, . . . , I}, we define a process

p f,l (t) = f (t), if t < τ l p(t), if t ≥ τ l .
Then we set, for all measurable function Φ :

D(t 0 ) → IR + , E P[Φ(p)] = E P 0   l,j 1 A l ∩{p(τ l )=p j } E P j,l [Φ(p f,l )] f =p   .
Then P ∈ M(t 0 , p 0 ) and we have

W (t 0 , p 0 ) ≤ E P T t 0 H(s, p(s))ds = E P 0 θ t 0 H(s, p(s))ds + l,j 1 A l ∩{p(τ l )=p j } E P l,j [ T τ l H(s, p(s))ds] ≤ E P 0 θ t 0 H(s, p(s))ds + l,j 1 A l ∩{p(τ l )=p j } (W (τ l , p j ) + ǫ) = E P 0 θ t 0 H(s, p(s))ds + W (θ, p(θ)) + ǫ ≤ inf P∈M f (t 0 ,p 0 ) E P θ t 0 H(s, p(s))ds + W (θ, p(θ)) + 2ǫ . (2.33)
This allows us to conclude that (2.28) holds for stopping times taking a finite number of values, and it remains now to show that (2.28) holds for all stopping times. But this last part of the proof is standard: we just have to notice that, if θ stands now for a general G-stopping time with θ ∈ [t 0 , T ], we can always find a sequence (θ n ) n≥0 of stopping times of the form (2.29) such that θ n ց θ as n → ∞ and that, for all P ∈ M(t 0 , p 0 ), we have

E P θn t 0 H(s, p(s))ds + W (θ n , p(θ n )) → n→∞ E P θ t 0 H(s, p(s))ds + W (θ, p(θ)) .
Lemma 2.9 W is a solution of (1.11).

Remark 2.10 The proof of Lemma 2.9 is interesting because it shows that the martingale minimization problem gives rise to the penalization term λ min p, ∂ 2 φ ∂p 2 in (1.11).

Proof: Let us first show that W is a supersolution of (1.11). Let φ = φ(t, p) be a smooth function such that φ ≤ W with an equality at (t 0 , p 0 ) ∈ [0, T ) × ∆(I). We want to prove that min φ t (t 0 , p 0 ) + H(t 0 , p 0 ) ; λ min p 0 , ∂ 2 φ ∂p 2 (t 0 , p 0 ) ≤ 0 .

For this we assume that λ min p 0 , ∂ 2 φ ∂p 2 (t 0 , p 0 ) > 0 and it remains to show that φ t (t 0 , p 0 ) + H(t 0 , p 0 ) ≤ 0 .

(2.34)

We claim that there are r, δ > 0 such that

W (t, p) ≥ φ(t, p 0 ) + ∂φ ∂p (t, p 0 ), p -p 0 + δ|p -p 0 | 2 ∀t ∈ [t 0 , t 0 + r], ∀p ∈ ∆(I) . (2.35)
Proof of (2.35) : From our assumption, there are η > 0 and δ > 0 such that

∂ 2 φ ∂p 2 (t, p)z, z ≥ 4δ|z| 2 ∀z ∈ T ∆(I) (p 0 ), ∀(t, p) ∈ B η (t 0 , p 0 ) ,
where T ∆(I) (p 0 ) is the tangent cone to ∆(I) at p 0 :

T ∆(I) (p 0 ) = h>0 (∆(I) -p 0 )/h
Hence for (t, p) ∈ B η (t 0 , p 0 ) we have

W (t, p) ≥ φ(t, p) ≥ φ(t, p 0 ) + ∂φ ∂p (t, p 0 ), p -p 0 + 2δ|p -p 0 | 2 .
(2.36)

We also note that, for any p ∈ ∆(I)\Int(B η (p 0 )), we have

W (t 0 , p) ≥ φ(t 0 , p 0 ) + ∂φ ∂p (t 0 , p 0 ), p -p 0 + 2δη 2 (2.37) because, if we set p 1 = p 0 + p-p 0 |p-p 0 | η and if p1 ∈ ∂ - p W (t 0 , p 1 ), we have W (t 0 , p) ≥ W (t 0 , p 1 ) + p1 , p -p 1 ≥ φ(t 0 , p 0 ) + ∂φ ∂p (t 0 , p 0 ), p 1 -p 0 + 2δη 2 + p1 , p -p 1 ≥ φ(t 0 , p 0 ) + ∂φ ∂p (t 0 , p 0 ), p -p 0 + 2δη 2 + p1 -∂φ ∂p (t 0 , p 0 ), p -p 1 where p1 - ∂φ ∂p (t 0 , p 0 ), p -p 1 ≥ 0 because w is convex, p1 ∈ ∂ - p W (t 0 , p 1 )
, ∂W ∂p (t, p 0 ) ∈ ∂ - p W (t 0 , p 0 ) and p -p 1 = γ(p 1 -p 0 ) for some γ > 0. Let us now argue by contradiction and assume that our claim (2.35) is false.

Then there are t n → t 0 and p n → p ∈ ∆(I) such that

W (t n , p n ) < φ(t n , p 0 ) + ∂φ ∂p (t n , p 0 ), p n -p 0 + δ|p n -p 0 | 2
Note that p n / ∈ B η (p 0 ) because of (2.36). Letting n → +∞, we get that p ∈ ∆(I)\Int(B η (p 0 ))

and

W (t 0 , p) ≤ φ(t 0 , p) + ∂φ ∂p (t 0 , p 0 ), p -p 0 + δη 2 .
This contradicts (2.37). So (2.35) holds true for some r > 0 sufficiently small.

Fix ǫ > 0 and t ∈ (t 0 , T ). Because of the dynamic programming (Lemma 2.8), there exists P t ∈ M(t 0 , p 0 ) such that

E P t t t 0 H(s, p(s))ds + W (t, p(t)) ≤ W (t 0 , p 0 ) + ǫ(t -t 0 ) (2.38)
Using the above inequality, (2.35) and the equality φ(t 0 , p 0 ) = W (t 0 , p 0 ) we get

E P t t t 0 H(s, p(s))ds + φ(t, p 0 ) -φ(t 0 , p 0 ) + δ|p(t) -p 0 | 2 ≤ ǫ(t -t 0 ) (2.39) 
because E P t ∂φ ∂p (t, p 0 ), p(t) -p 0 = 0 since P t is a martingale measure. We note that (2.39) implies in particular that there is a constant C > 0 such that

E P t |p(t) -p 0 | 2 ≤ C(t -t 0 ) ∀t ∈ [t 0 , t 0 + r]
because H is bounded and φ is smooth. Since (p(s)) is a martingale under P t this also implies that

E P t |p(s) -p 0 | 2 ≤ C(t -t 0 ) ∀s, t with t 0 ≤ s ≤ t ≤ t 0 + r .
Therefore, since H is κ-Lipschitz continuous with respect to p, we have

E P t t t 0 H(s, p(s))ds - t t 0 H(s, p 0 )ds ≤ κ t t 0 E P t |p(s) -p 0 | 2 1 2 ds ≤ Cκ(t -t 0 ) 3 2 .
Plugging this inequality into (2.39) gives, for t -t 0 sufficiently small t t 0 H(s, p 0 )ds + φ(t, p 0 ) -φ(t 0 , p 0 ) ≤ 2ǫ(t -t 0 ) .

Dividing this last inequality by (t -t 0 ) and letting t → t 0 gives (2.34).

Next we prove that W is a subsolution of (1.11). This part relies on more classical arguments. Let φ = φ(t, p) be a smooth function such that φ ≥ W with an equality at (t 0 , p 0 ) where p 0 ∈ Int(∆(I)). We want to prove that min φ t (t 0 , p 0 ) + H(t 0 , p 0 ) ; λ min p 0 , ∂ 2 φ ∂p 2 (t 0 , p 0 ) ≥ 0 .

We note that λ min p 0 , ∂ 2 φ ∂p 2 (t 0 , p 0 ) ≥ 0 because W is convex with respect to p and p 0 ∈ Int(∆(I)). So it remains to show that φ t (t 0 , p 0 ) + H(t 0 , p 0 ) ≥ 0 .

Fix ǫ > 0 and t ∈ (t 0 , T ). Because of the dynamic programming (Lemma 2.8), for any P ∈ M(t 0 , p 0 ) we have:

E P t t 0 H(s, p(s))ds + W (t, p(t)) ≥ W (t 0 , p 0 ) . (2.40) 
Let us choose P = δ p 0 . Then we get from the definition of φ:

t t 0
H(s, p 0 )ds + φ(t, p 0 ) -φ(t 0 , p 0 ) ≥ 0 .

Dividing by (t -t 0 ) and letting t → t 0 gives the desired inequality since ǫ is arbitrary.

Proof of Theorem 2.1 : We have shown that W is Lipschitz continuous (Lemma 2.7), that it is a viscosity solution of equation (1.11) such that W (T, p) = 0 (Lemma 2.9). Since, from [START_REF] Cardaliaguet | A double obstacle problem arising in differential game theory[END_REF], this equation has a unique Lipschitz continuous viscosity solution and since, from Proposition 1.5, V is another Lipschitz continuous viscosity solution of (1.11), we get the desired result:

W = V. 2 
As a consequence of Lemma 2.8 and of the above proof, we have:

Corollary 2.11 Let (t 0 , p 0 ) be an initial position and P be an optimal martingale measure in (2.12). Let θ ≥ t 0 be a stopping time. Then

V(t 0 , p 0 ) = E P θ t 0
H(s, p(s))ds + V(θ, p(θ)) .

Analysis of the optimal martingale measure

The section is devoted to the study of the optimal martingale measure in the optimization problem (2.12). For doing so we first investigate the properties of the value function V as well as its conjugate V * . Then we define the set H ⊂ [0, T ] × ∆(I) where-at least heuristically-V satisfies the Hamilton-Jacobi equation. We then show that, if P is an optimal martingale measure, then the process p remains on H and has jumps only on the flat parts of the graph of V(t, •). These two conditions turn out to be sufficient to characterize the optimal martingale measure under regularity assumptions on the value function.

Some properties of V *

We already know that V is a dual solution of the Hamilton-Jacobi equation (1.9). In fact we have the following sharper result: So V * is a subsolution of (3.41).

Proposition 3.1 V * is the solution of the Hamilton-Jacobi equation ∂w ∂t -H(t, ∂w ∂ p ) = 0 in (0, T ) × IR I w(T, p) = max{p i } in IR I (3.
Let W be the solution of (3.41). Since V * is a subsolution of this equation, we have W ≥ V * from the standard comparison principle [START_REF] Crandall | User's guide to viscosity solutions of second order Partial Differential Equations[END_REF]. In order to show the reverse inequality we are going to check that W * is a dual supersolution of the Hamilton-Jacobi equation (1.9).

Since H is positively homogeneous, independent of p and since W (T, •) is convex, W (t, •) is convex with respect to p for any t ∈ [0, T ] (see [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF]). From the usual representation formula for solutions of (3.41) (see [START_REF] Evans | Differential games and representation formulas for solutions of Hamilton-Jacobi Equations[END_REF]), we have

W (t, p) = inf β∈B(t) sup u∈U (t) max pi - T t ℓ i (s, β(u)(s), u(s))ds .
We have Z * = W is a subsolution of the dual equation (3.41), which shows that Z is a supersolution in the dual sense of Hamilton-Jacobi equation (1.9). Since V is a dual solution, the comparison principle for dual solutions given in [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF] implies that V ≤ Z, i.e., W = Z * ≤ V * . This shows that V * = W is the solution of (3.41). 

W
V * (s, p′ ) -V * (s ′ , p′ ) - s ′ s H(σ, p)dσ ≤ kǫ|s ′ -s| ∀(s, p′ ), (s ′ , p) ∈ O . Let now (τ h , z h ) → (τ, z) in IR × IR I as h → 0 + . If p h ∈ ∂V * (t + hτ h , p + hz h ), then p h → p
as h → 0 and

V * (t + hτ h , p + hz h ) -V * (t, p) ≤ V * (t, p + hz h ) + t+hτ h t H(σ, p)dσ -V * (t, p) + ǫh|τ h | ≤ h < p h , z h > + t+hτ h t H(σ, p)dσ + ǫh|τ h | Hence lim sup h→0 + 1 h (V * (t + hτ h , p + hz h ) -V * (t, p)) ≤ p, z + H(t, p)τ + ǫ|τ |
In the same way one can prove that lim inf

h→0 + 1 h (V * (t + hτ h , p + hz h ) -V * (t, p)) ≥ < p, z > +H(t, p)τ -ǫ|τ |
Since ǫ is arbitrary, we finally have the equality:

lim h→0 + 1 h (V * (t + hτ h , p + hz h ) -V * (t, p)) =< p, z > +H(t, p)τ ,
which shows that V * is differentiable with ∂V * ∂t (t, p) = H(t, p).

The non revealing set H

The aim of this section is the analysis of the set H defined by:

H = (t, p) ∈ [0, T ) × ∆(I) | lim inf h→0 + , p ′ →p V(t + h, p ′ ) -V(t, p ′ ) h = -H(t, p) .
We also set

H(t) = {p ∈ ∆(I) | (t, p) ∈ H} ∀t ∈ [0, T ) .
In fact H is roughly speaking the set of points where the Hamilton-Jacobi equation (1.9) is satisfied. Indeed, if V is C 1 , then it is exactly so:

H = (t, p) ∈ [0, T ) × ∆(I) | ∂V ∂t + H(t, p) = 0 . Lemma 3.4 We have for any (t, p) ∈ [0, T ) × ∆(I), V(t, p) ≤ V(t + h, p) + t+h t H(τ, p)dτ ∀h ∈ [0, T -t] . (3.42)
In particular,

lim inf h→0 + , t ′ →t, p ′ →p V(t ′ + h, p ′ ) -V(t ′ , p ′ ) h ≥ -H(t, p) . (3.43) Remark 3.5
We have therefore:

H = (t, p) ∈ [0, T ) × ∆(I) | lim inf h→0 + , p ′ →p V(t + h, p ′ ) -V(t, p ′ ) h ≤ -H(t, p) .
Proof: From the definition of dual solution, for any p ∈ ∆(I), the map t → V(t, p) is a subsolution of HJ equation (1.9). Let t < T and p ∈ ∆(I) be fixed. The solution w of (1.9)

with terminal condition V(t + h, p) at time t + h is given by the relation

w(s) = t+h s H(τ, p)dτ + V(t + h, p) ∀s ≤ t + h .
Since V(•, p) is a solution of (1.9) with the same terminal condition, we get

V(s, p) ≤ w(s) = t+h s H(τ, p)dτ + V(t + h, p) ∀s ≤ t + h .
Applying the above formula to s = t we get (3.42). We then get (3.43) 

H nk = (t, p) ∈ [0, T ] × ∆(I) | inf h∈(0,1/n], |p ′ -p|≤1/n V(t + h, p ′ ) -V(t, p ′ ) h ≤ -H(t, p) + 1 k which are Borel subsets of [0, T ] × ∆(I) since V
V(t + h, p h ) -V(t, p h ) h ≤ - V * (t + h, p) -V * (t, p) h because V(t + h, p h ) = p h .p -V * (t + h, p) and V * (t, p) ≥ p h .p -V(t, p h ). Hence lim sup h→0 + , p ′ →p V(t + h, p h ) -V(t, p h ) h ≤ - ∂V * ∂t (t, p) ≤ -H(t, p)
since V * is differentiable at (t, p) and from the definition of dual solution. We complete the proof thanks to Lemma 3.4

The next Lemma explains that, for any (t, p) ∈ [0, T ]×IR 

Analysis of the optimal martingale measures

We are now ready to study the optimal martingale measures in the optimization problem (2.12). The main result of this section is the following: Theorem 3.9 Let P be an optimal martingale measure in (2.12). Then and, for any s ∈ (t 0 , T ], there is some measurable selection ξ of ∂V(s, p(s -)) such that V(s, p(s)) -V(s, p(s -)) -ξ, p(s) -p(s -) = 0 P a.s. . (3.45) Remark 3.10 The two conditions turn out to be necessary under suitable regularity conditions on the value function V and the martingale measure P. See Theorem 3.11 below.

Proof: For any ǫ, δ > 0, let us set

H c ǫ,δ = (t, p) ∈ [0, T -δ] | V(t + h, p ′ ) -V(t, p ′ ) ≥ h(-H(t, p) + ǫ) ∀(h, p ′ ) ∈ [0, δ] × B δ (p) .
Then H c ǫ,δ is closed and ǫ,δ>0

H c ǫ,δ = ([0, T ] × ∆(I))\H .
Hence we have to prove that (t, p(t)) / ∈ H c ǫ,δ for any t ∈ [t 0 , T ] P-a.s. Let us note for later use that

V(t + h, p) -V(t, p) ≥ - t+h t H(s, p)ds + ǫ 2 h ∀h ∈ [0, δ], ∀(t, p) ∈ H c ǫ,δ , (3.46) 
provided δ > 0 is small enough. Let us introduce the stopping time

θ = inf{s ≥ t | (s, p(s)) ∈ H c ǫ,δ } (with the convention that θ = T if (s, p(s)) / ∈ H c ǫ,δ for any s ≥ t). Let A = {θ < T }.
Let us assume that P(A) > 0. From (3.46) we have on A:

V(θ, p(θ)) ≤ V(θ + h, p(θ)) + θ+h θ H(s, p(θ))ds - ǫ 2 h ∀h ∈ [0, δ] .
Hence, for any h ∈ [0, δ],

E P [V(θ, p(θ))] ≤ E P V((θ + h) ∧ T, p(θ)) + (θ+h)∧T θ H(s, p(θ))ds - ǫ 2 h P [A] .
¿From the dynamic programming principle Corollary 2.11 and the fact that P is optimal we also have

E P [V(θ, p(θ))] = E P V((θ + h) ∧ T, p(θ)) + (θ+h)∧T θ H(s, p(s))ds .
So, for any h ∈ (0, δ], we have

1 h E P (θ+h)∧T θ (H(s, p(θ)) -H(s, p(s))ds ≤ - ǫ 2 P [A] ,
which is impossible since p is right-continuous and P[A] > 0. So we have proved that θ = T P-a.s., which means that (t, p(t)) / ∈ H c ǫ,δ for any t ∈ [t 0 , T ] P-a.s.

We now check that (3.45) holds. Let s > t 0 , h > 0 and ξ h be a G s-h measurable selection of ∂V(s -h, p(s -h)). Then we have from the dynamic programming (Corollary 2.11)

E P V(s, p(s)) -V(s -h, p(s -h)) - s s-h H(τ, p(τ ))dτ = 0 . Hence E P [V(s, p(s)) -V(s -h, p(s -h)) -ξ h , p(s) -p(s -h) ] ≤ E P [ ξ h , p(s) -p(s -h) ] + h H ∞ = h H ∞ (3.47)
since p is a martingale. Since (ξ h ) is bounded in L ∞ , we can find a subsequence, again denoted (ξ h ), which weakly converges to some ξ in L 2 as h → 0. Note that ξ ∈ ∂V(s, p(s -))

because ξ h ∈ ∂V(s -h, p(s -h)) and p is has a left limit. So we can let h → 0 in (3.47) to get

E P V(s, p(s)) -V(s, p(s -)) -ξ, p(s) -p(s -) ≤ 0 ,
where V(s, p(s)) -V(s, p(s -)) -ξ, p(s) -p(s -) ≥ 0 a.s. So (3.45) holds. 2

A verification Theorem

If the value function V is sufficiently smooth, then the conditions given in Theorem 3.9 are "almost sufficient" in order to ensure a martingale measure to be optimal.

Theorem 3.11 Let (t 0 , p 0 ) ∈ [0, T ] × ∆(I). Let us assume that V is of class C 1,2 and that P belongs to M(t 0 , p 0 ) and is such that (i) p(t) ∈ H(t) for almost all t ∈ [t 0 , T ] P-a.s.,

(ii) P-a.s.,

V(t, p(t)) -V(t, p(t -)) - ∂V ∂p (t, p(t -)), p(t) -p(t -) = 0 ∀t ∈ [t 0 , T ] ,
(iii) P is a purely discontinuous martingale measure.

Then P is optimal in problem (2.12).

Remark : The additional assumption that P is purely discontinuous can be justified in some particular cases. See Proposition 4.2 below.

Proof: Since V is of class C 1,2 , the set H is given by

H = (t, p) ∈ [0, T ] × ∆(I) | ∂V ∂t (t, p) = -H(t, p) .
We now use Itô's formula and the fact that P is purely discontinuous to get

0 = E P [V(T, p(T ))] = V(t 0 , p 0 ) + E P T t 0 ∂V ∂t (s, p(s))ds + s≥t 0 V(s, p(s)) -V(s, p(s -)) -∂V ∂p (s, p(s -)), p(s) -p(s -) = V(t 0 , p 0 ) -E P T t 0 H(s, p(s))ds .
The proof of Theorem 3.11 is now complete thanks to Theorem 2.1. 2

Examples

The autonomous case

If the payoffs ℓ i = ℓ i (u, v) are independent of time, it is proved in [START_REF] Souquière | Approximation and representation of the value for some differential games with imperfect information[END_REF] that

V(t, p) = (T -t)VexH(p) ∀(t, p) ∈ [0, T ] × ∆(I) . (4.48) 
Note that this equality is exactly what Aumann-Maschler formula states for repeated games with incomplete information on one side (see [START_REF] Aumann | Repeated games with incomplete information[END_REF]). In view of (4.48) we have We consider the probability measure P ∈ M(t 0 , p) under which, for all k ∈ {1, . . . , I}, with probability λ k , p is contant and equal to p k on [t 0 , T ) .

H = [0, T ] × {p ∈ ∆(I) | VexH(p) = H(p)} .
Proposition 4.1 The measure measure P is optimal for the minimization problem (2.12).

Proof: Indeed 

E P T t H(p(s))ds = (T -t) I k=1 λ k H(p k ) = (T -t)VexH(p) = V(t, p) .

Examples when I = 2

In this section we assume that I = 2. We first show that, under suitable regularity properties of V and H, there is a purely discontinuous martingale which remains in H and jumps only on the flat parts of the graph of V. Then we give an example where one can explicitly compute the set H and the optimal martingale measures.

In this section we denote by p ∈ [0, 1] instead of (p, 1 -p) (for p ∈ [0, 1]) a generic element of ∆(I). The function = V(t, p) will be defined on [0, T ] × [0, 1].

Proposition 4.2 Let us assume that V is of class C 1 and that the set-valued map t → H(t)

enjoys the following regularity property: there is some non decreasing map

K : [0, T ] → [0, +∞) such that ∀s, t ∈ [0, T ) with s ≤ t, ∀p ∈ H(s), ∃p ′ ∈ H(t) with |p ′ -p| ≤ K(t) -K(s) . (4.49) 
Then, for any initial position (t 0 , p 0 ) there is martingale measure P ∈ M(t 0 , p 0 ) under which the process p satisfies conditions (i), (ii) and (iii) of Theorem 3.11.

An example of value function satisfying condition (4.49) is given in Example 4.4 below.

Remark 4.3 It is not known if there always exists an optimal martingale measure which is purely discontinuous without an additional assumption like (4.49). In fact in the case I = 2 we have no example of a martingale measure which satisfies (i) and (ii) of Theorem 3.11 but not (iii). For I ≥ 3, we give an example below.

Proof: Without loss of generality we assume that t 0 = 0. From Lemma 3.8, for any s ≤ t, and any p ∈ H(s), there are p 1 , p 2 ∈ H(t) such that p ∈ (p 1 , p 2 ) and V(t, •) is affine on [p 1 , p 2 ]. If we choose p 1 as large as possible and p 2 as small as possible (recall that we can do this since H(t) is closed), then we have from our assumption (4.49) that min{|p -

p 1 | ; |p -p 2 |} ≤ K(t) -K(s) .
Let λ ∈ [0, 1] be such that λp 1 + (1 -λ)p 2 = p. Note for later use that

λ|p 1 -p| + (1 -λ)|p 2 -p| ≤ 2(K(t) -K(s)) (4.50)
and that the maps p 1 = p 1 (t, p), p 2 = p 2 (t, p) and λ = λ(t, p) Borel measurable.

Let us now introduce a large integer n and a time step τ = T /n > 0. We set t k = τ k for i = 0, . . . , n. As in section 2.2 we define by induction the process (p n k ) k=-1,...,n such that (i) p n -1 = p 0 , (ii) for any k ≥ 0, p n k ∈ H(t k ), (iii) knowing p n k , p n k+1 is equal to p 1 (t k , p n 1 ) with probability λ(t k , p n 1 ) and p 2 (t k , p n 1 ) with probability (1 -λ(t k , p n 1 )). We first note that p n is a martingale. From (4.50) we have

E |p n k+1 -p n k | | p n k ≤ 2(K(t k )) -K(t k+1 )) .
Therefore the process p n has bounded total variations:

E n-1 k=0 |p n k+1 -p n k | ≤ 2(K(T ) -K(0)) . ( 4 

.51)

We now interpolate the process p n as in section 2.2 in order to get a martingale measure P n ∈ M(0, p 0 ). Following [START_REF] Meyer | Tightness criteria for laws of semimartingales[END_REF], letting n → +∞, we can find a subsequence, again denoted p n , such that the law of the process p n converges to some P ∈ M (0, p 0 ) and such that p n (t) converges in law to p(t) for any t belonging to some subset of full measure T of [0, T ].

Because of (4.51), p has finite total variations under P and therefore is purely discontinuous.

We now check that p satisfies conditions (i) and (ii). Let T 1 be the set of t ∈ T at which the map K is continuous. Then T 

V(t k+1 , p n k+1 ) -V(t k+1 , p n k ) - ∂V ∂p (t k+1 , p n k ), p n k+1 -p n k = 0 ∀k ∈ {0, . . . , n -1} . Hence E V(t k+1 , p n k+1 ) = E [V(t k+1 , p n k )] ∀k ∈ {0, . . . , n -1} (4.52) because (p n k ) k is a martingale. Let s, t ∈ T be such that s < t and k 1 , k 2 be such that s ∈ [t k 1 , t k 1 +1 ), t ∈ [t k 2 , t k 2 +1 ). Then V(t, p n (t)) -V(s, p n (s)) ≤ V(t k 2 , p n t k 2 ) -V(t k 1 , p n t k 1 ) + 2C(t -t k 2 + s -t k 1 )
where C = ∂V ∂t ∞ and where

V(t k 2 , p n t k 2 ) -V(t k 1 , p n t k 1 ) = k 2 -1 l=k 1 V(t l+1 , p n t l+1 ) -V(t l , p n t l ) ≤ k 2 -1 l=k 1 V(t l+1 , p n t l+1 ) -V(t l+1 , p n t l ) + C(t k 2 -t k 1 )
Combining (4.52) with the above inequality gives

E [V(t, p n (t)) -V(s, p n (s))] ≤ C(t -s + τ ) .
Letting n → +∞ leads to

E P [ V(t, p(t)) -V(s, p(s)) ] ≤ C(t -s)
¿From the right-continuity of the process p(t), this inequality also holds for any t. Since p is a martingale we get

E P V(t, p(t)) -V(s, p(s) - ∂V ∂p (t, p(s)), p(t) -p(s) ) ≤ C(t -s)
for any t ∈ (0, T ], s ∈ T , s < t. Letting now s → t -with s ∈ T gives For instance, if we assume that U = [-1, 1], V = [0, 2π] and

E P V(t, p(t)) -V(t, p(t -)) - ∂V ∂p (t, p(t -)), p(t) -p(t -) ) ≤ 0 ∀t ∈ (0, T ] . Since V(t,
ℓ 1 (t, u, v) = u + α(t) cos(v), ℓ 2 (t, u, v) = -u + α(t) sin(v) ∀(u, v) ∈ U × V
where the smooth map α : [0, T ] → IR is decreasing and such that α(t) > 2 for any t ∈ [0, T ],

then and

H(t, p) = -|2p -1| + α(t) p 2 + (1 -p)
H = {(t, p) ∈ [0, T ] × [0, 1] | p ∈ [0, h 1 (t)] ∪ [h 2 (t), 1]} . (4.55)
In particular, V is of class C 1,2 . for some 0 < a < b < T , then one easily checks that

V(t, p) = 0 if t ∈ [0, a] , Λ(t)p(1 -p) if t ∈ [b, T ] .
In particular

V(t, p) = T t VexH(s, p)ds = Λ(b)p(1 -p) ∀(t, p) ∈ (a, b) × (0, 1) .
Note also that in this example the dynamics is smooth, the value function V is smooth with respect to the variable p, but V just Lipschitz continuous with respect to the time variable. We note that w(T, p) = 0, w(t, 0) = V(t, 0) and w(t, 1) = V(t, 1). In particular,

P [p(t) = h 1 (t) | p(s) = h 1 (s)] = h 2 (t) -h 1 (s) h 2 (t) -h 1 (t) ∀t * ≤ s ≤ t < T . (4.56) Remark 4.8 Set T = 1 4 , h 1 (t) = 1 2 - √ t, h 2 (t) = 1 2 + √ t, t ∈ [0, T ], t 0 = 0 and p 0 = 1 2 .
Since there is only one martingale measure that charges the graphs of h 1 and h 2 , the process p under P is, up to a constant, the Azéma martingale with parameter 2 (see Emery [START_REF] Emery | On the Azéma martingale[END_REF]): under P, (X(t) := p(t) -1 2 , t ∈ [0, T ]) satisfies the structure equation

d[X] t = dt -2X(t-)dX(t), t ∈ [0, T ], X(0) = 0.
Proof of Proposition 4.7: We do the proof in the case t * < T and p 0 / ∈ [h 1 (t 0 ), h 2 (t 0 )], the proof of the other cases being similar. Under these assumptions, t * > t 0 . Let us fix P some optimal martingale measure. We need below the following result:

Claim : Let θ ≥ t 0 be a stopping time and let us assume that p(θ -) / ∈ [h 1 (θ), h 2 (θ)] on some set A ∈ F θ with positive probability. Let θ ′ be the stopping time

θ ′ = inf{t ≥ θ | p(t) ∈ [h 1 (t), h 2 (t)] }
(by convention, θ ′ = T if there is no such a t). Then, on A, P-a.s., θ ′ > θ and p(t

) = p(θ -) for t ∈ [[θ, θ ′ [[. Proof of the claim : Since p(θ -) / ∈ [h 1 (θ), h 2 (θ)] on A, V(θ, •) is strictly convex in a
neighborhood of p(θ -). Applying the equality obtained in Theorem 3.9: 

V(t, p(t)) -V(t
′ = lim ǫց0 θ ′ ǫ , with, for θ ′ ǫ = inf{t ≥ θ, p(t) ∈ [h 1 (t) -ǫ, h 2 (t) + ǫ]}, with θ ′ ǫ = T if there is no such t.
Let us now apply Itô's formula between θ and θ ′ :

E P V(θ ′ , p(θ ′ )) = E P V(θ, p(θ)) + θ ′ θ V t (s, p(s))ds + 1 2 θ ′ θ ∂ 2 V ∂p 2 (s, p(s -))d < p c > s , (4.58) 
where p c is the continuous part of p under P. Since p(s) ∈ H(s) for almost all s P -a.s.,

E P θ ′ θ V t (s, p(s))ds = -E P θ ′ θ H(s, p(s))ds . (4.59) 
¿From our assumption on V, we also have

∂ 2 V ∂p 2 (s, p(s -)) > 0 ∀s ∈ [[θ, θ ′ [[ P -a.s., (4.60) 
because

∂ 2 V ∂p 2 (s, p) = t * (p) s ∂ 2 H ∂p 2 (τ, p)dτ (where t * (p) = inf{s ≥ 0 | (s, p) / ∈ H}),
which is positive as soon as t * (p) > s. Since, from Corollary 2.11, we have Let us now prove that p(t) = p 0 on [t 0 , t * ). For this we introduce the stopping time 

E P V(θ ′ , p(θ ′ )) = E P V(θ, p(θ)) - θ ′ θ H(s, p ( 
θ = inf{t ≥ t 0 | p(t) ∈ [h 1 (t), h 2 (t)] } . Since p(t - 0 ) = p 0 / ∈ [h 1 (t 0 ), h 2 (t 0 )],
θ ǫ = inf{t ≥ t * |p(t) ∈ [0, h 1 (t) -ǫ] ∪ [h 2 (t) + ǫ, 1]},
(we set θ ǫ = T if there is no such a t).

Suppose now that there exists some ǫ > 0 such that P[θ ǫ < T ] > 0. Without loss of generality we can suppose that the set

A := {h 2 (θ ǫ ) + ǫ ≤ p(θ ǫ ) ≤ 1} ∩ {θ ǫ < T } satisfies P [A] > 0.
By definition of θ ǫ , and since h 2 is increasing, we have 

p(t) < p(θ ǫ ) on [[t * , θ ǫ [[∩([0, T ] × A). ( 4 
< P [A ∩ {h 2 (θ ǫ ) < p(θ ǫ)}] ≤ P [A ∩ {θ ǫ < (θ ǫ) ′ }],
we obtain a contradiction to (4.61). Equality (4.56) is then a straightforward application of the fact that p is a martingale which lives the union of the graphs of h 1 and h 2 . Finally, p is purely discontinuous since it has finite total variations. 2

Examples in higher dimensions

Example 4.4 can be extended to higher space dimensions. The interesting feature for I ≥ 3 is that there are several optimal martingale measures in general. They can be purely discontinuous, as in the two-dimensional case, but they can also be continuous. and

H = {(t, p) ∈ [0, T ] × ∆(I) | p / ∈ K(t)} .
In particular, V is of class C 1,2 .

Next we investigate the optimal martingale measures.

Proposition 4.11 Under the assumptions of Example 4.9, any optimal martingale measure P has the following structure: p(t -) = p 0 ∀t ∈ [t 0 , t * ] and p(t) ∈ ∂K(t) ∀t ≥ t * , P -a.s.,

where t * = sup{t ≥ t 0 | p 0 / ∈ K(t)}. Moreover, there is an optimal martingale measure under which p is purely discontinuous. If, in addition, the family (K(t)) t∈[0,T ] has a positive minimal curvature and if p 0 / ∈ K(t 0 ), then there is also an optimal martingale measure under which p is continuous.

Remark 4.12 An interesting case is when the evolving set t → ∂K(T -t) is moving according to its mean curvature (in ∆(I)). Indeed, in this case, there is an explicit formula for the martingale. If p 0 ∈ ∂K(t 0 ), then there is a optimal martingale measure under which the process satisfies dp(t) = √ 2 (I -ν(t, p(t)) ⊗ ν(t, p(t))) dW t where I is the identity matrix of size (I -1), (W t ) is an (I -1)-dimensional Browian motion living in the hyperplane spanned by ∆(I) and ν(t, p) denotes the unit outward normal to K(t) at p ∈ ∂K(t) (see [START_REF] Buckdahn | A representation formula for the mean curvature motion[END_REF] , [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF]).

Proof: The proof of the structure condition on the optimal martigale measures follows the same lines as the proof of Proposition 4.7 and the existence of the purely discontinuous martingale measure can be established as in Proposition 4.2 because the set H satisfies (4.49).

Let us now check that there is a continuous optimal martingale measure. As usual we start our construction by building a discrete time process p n . Let us fix n large, τ = T /n the time-step and t k = kτ for k = 0, . . . , n. For simplicity of notations we only build a process for an initial position such that t 0 = 0 and p 0 ∈ ∂K(0). Let Z be the set of z = (z i ) ∈ IR I such that i z i = 0. Note that Z = T ∆(I) (p) for any p ∈ Int(∆(I)). Let f : Z → Z be a

Borel measurable process such that |f (z)| = 1 and f (z), z = 0 for any z ∈ Z. We denote by π(t, p) a Borel measurable selection of the projection of p onto the boundary of K(t).

We now start the construction of p n . We set p n -1 = p 0 . If p n k ∈ ∂K(t k ) is build, then we set

q 1 = p n k + λ 1 f (π(t k , p n k ) -p n k ) and q 2 = p n k -λ 2 f (π(t k , p n k ) -p n k )
where λ 1 > 0 and λ 2 > 0 are such that q 1 , q 2 ∈ ∂K(t k+1 ). Then we set p n k+1 to be equal to q 1 with probability λ 2 /(λ 1 + λ 2 ) and q 2 with probability λ 1 /(λ 1 + λ 2 ). The process p n is then a martingale such that p n k ∈ ∂K(t k ) for any k = 0, . . . n. We now show that, for any α > 2, there is some constant C α such that

E |p n k 2 -p n k 1 | α ≤ C α |t k 2 -t k 1 | α/2 . ( 4 

.62)

Indeed from the Burkholder-Davis-Gundy inequality we have where L is a Lipschitz constant of the map t → K(t) in the Hausdorff distance. Therefore

E |p n k 2 -p n k 1 | α ≤ c α E (< p n > k 2 -< p n > k 1 ) α/2 ≤ c α E      k 2 -
E      k 2 -1 k=k 1 |p n k+1 -p n k | 2   α/2    ≤ (2RL) α/2 (t k 2 -t k 1 ) α/2 .
This proves (4.62).

We now set p n (t) = p n k for t ∈ [t k , t k+1 ) and let P n be the law of p n on D(0). From Kolmogorov criterium we can extract a subsequence of (P n ) which converges to some continuous martingale measure P. Since p n (t k ) ∈ ∂K(t k ) for any k = 0, . . . , n, we have p(t) ∈ ∂K(t) for any t ∈ [0, T ]. Using Itô's formula and the fact that 

Conclusion

In this paper we have investigated a continuous-time game with finite horizon and imperfect information on one side. We have proved that the optimal behaviour of the informed player is directly related to the optimal revelation of his/her knowledge. This leads to an optimization problem in which the unknown is a martingale measure. We have analysed this problem and found some necessary and some sufficient optimality conditions for the optimal martingale measure.

Our analysis raises several intriguing questions:

• We have seen that, under suitable regularity conditions, and, in particular, when I = 2, there are optimal martingale measures which are purely discontinuous. Does there always exist an optimal martingale measure which is purely discontinuous ?

• In our 2-dimensional examples, the optimal martingale measure is unique. Is this always the case when I = 2 ?

• In the case of a continuous time game in which both players have some private information, existence and characterization of the value are established in [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF]. The equivalent of the martingale characterization (Theorem 2.1) in this framework is an open question.

Notations:

  Throughout the paper, x.y and x, y denote the scalar product in the space of vectors x, y ∈ IR K (for some K ≥ 1), and | • | the euclidean norm. The closed ball of center x and radius r is denoted by B r (x). The set ∆(I) is the set of probabilities measures on {1, . . . , I}, always identified with the simplex of R I : p = (p 1 , . . . , p I ) ∈ ∆(I) ⇔ I i=1 p i = 1 and p i ≥ 0 for i = 1, . . . I . If p ∈ ∆(I), we denote by T ∆(I) (p) the tangent cone to ∆(I) at p: T ∆(I) (p) = λ>0 (∆(I) -p) /λ .

(

  s, p(s)) ∈ H ∀s ∈ [t 0 , T ], P a.s.(3.44) 

  Let us now fix (t 0 , p) ∈ [0, T ] × ∆(I). Let (λ k ) ∈ ∆(I) and any p k ∈ ∆(I) (k = 1, . . . , I}) such that I k=1 λ k p k = p and I k=1 λ k H(p k ) = VexH(p) .

2

 2 

Remark 4 . 6

 46 The above representation for V does not hold true in general. For instance let H(t, p) = λ(t)p(1 -p) where λ : [0, T ] → IR is Lipschitz continuous. We set Λ(t) = T t λ(s)ds. If λ > 0 on [0, b), λ < 0 on (b, T ], Λ(a) = 0

Proof of Proposition 4 . 5 :

 45 Let w : [0, T ] × [0, 1] → IR be defined by w(t, p) = T t VexH(s, p)ds ∀(t, p) ∈ [0, T ] × ∆(I) .

  .61) ¿From (4.57) again applied on A at time θ ǫ we get, P-a.s., p(θ - ǫ ) = p(θ ǫ ) and therefore θ ǫ < θ ǫ , for all 0 < ǫ < ǫ. But, still by (4.57) and the claim, on A, p is constant on the time interval [[θ ǫ, (θ ǫ) ′ [[. Choosing now ǫ close enough to ǫ to get 0

V 0 V 0 H

 00 t (s, p) = -H(s, p) and∂ 2 V ∂p 2 (s, p) = 0 ∀p ∈ ∂K(t), ∀t ∈ [0, T ] ,we have 0 = E P [V(T, p(T ))] = E P V(0, p 0 ) + T t (s, p(s))ds = V(0, p 0 )-E P T (s, p(s))ds .ThereforeV(0, p 0 ) = E P T 0 H(s, p(s))ds ,which shows that P is optimal.

  Proof: Let p ∈ ∂V(t, p) and, for ǫ > 0 small, pǫ = p + ǫξ. Since V * is Lipschitz continuous, there are pn → pǫ at which V * (t, •) is differentiable. If we set p n = ∂V * ∂ p (t n , pn ), then Lemma 3.7 states that the points p n belong to H(t). Letting n → +∞, we can find a subsequence of the (p n ) which converges to some p ǫ ∈ ∂V * (t, pǫ ) ∩ H(t). now let ǫ → 0 to find some p ξ ∈ ∂V * (t, p) ∩ H(t). Moreover we have p ξ .ξ ≥ p.ξ

	I	I		
	λ j p j = p	and	λ j V(t, p j ) = V(t, p) .
	j=1	j=1		
	We because			
	p ξ -p, ξ = lim ǫ→0+	p ǫ -p, ξ = lim ǫ→0 +	1 ǫ	p

I 

, the convex hull of ∂V * (t, p)∩ H(t) is exactly equal to ∂V * (t, p): Lemma 3.8 For any (t, p) ∈ [0, T ] × ∆(I) and any p ∈ ∂V(t, p), there are (λ j ) ∈ ∆(I), p j ∈ H(t) ∩ ∂V * (t, p) for j = 1, . . . , I such that ǫ -p, p + ǫξ -p ≥ 0 thanks to the monotony of the subdifferential. In particular,

p.ξ ≤ p ξ .ξ ≤ sup p ′ ∈∂V * (t,p)∩H(t) p ′ .ξ ∀ξ ∈ IR N ,

which proves that p belongs to the convex envelope of ∂V * (t, p) ∩ H(t). The Lemma now follows easily from the fact that V(t, •) is affine on ∂V * (t, p).

  1 is of full measure in [0, T ]. For any t ∈ T 1 let k n be such that k n τ → t and t ∈ [k n τ, (k n + 1)τ ). From assumption (4.49), Letting n → +∞ implies that Spt(p(t)) ⊂ H(t) P-a.s. since p n (t) converges in law to p(t) and K is continuous at t.

	d(p, H(t)) ≤ K(t) -K(t kn )	∀p ∈ Spt(p n (t)) ,
	(where d(p, H(t)) is the distance of p to the set H(t)) because p n (t) = p n kn and p n kn ∈ H(t k ) P-a.s.. For proving that p satisfies (ii), let us first note that

  We assume that there existh 1 , h 2 : [0, T ] → [0, 1] continuous, h 1 ≤ h 2 , h 1

		•) is convex this last inequality finally implies that
		V(t, p(t)) -V(t, p(t -)) -	∂V ∂p	(t, p(s)), p(t) -p(s) = 0
	for any t ∈ (0, T ] P a.s.		
					2
	Our aim is to identify H under the following assumption on H:
	Example 4.4 decreasing and h 2 increasing, such that	
		VexH(t, p) = H(t, p) ⇔ p ∈ [0, h 1 (t)] ∪ [h 2 (t), 1]	(4.53)
	and	∂ 2 H ∂p 2 (t, p) > 0	∀(t, p) with p ∈ [0, h 1 (t)) ∪ (h 2 (t), 1] .	(4.54)

  One easily checks that w (where the first equality holds in the viscosity sense since w is convex with respect to p).Therefore w = V and H is the set of points (t, p) at which H = VexH, i.e., given by (4.55). Under the assumptions of Example 4.4, there is a unique optimal mar-

	is a solution of the HJ equation		
	 	min w t + H(t, p) , ∂ 2 w ∂p 2	= 0
		w(T, p) = 0	
	Indeed, if p ∈ (h 1 (t), h 2 (t)), then	
	∂ 2 w ∂p 2 (t, p) = 0 and w t (t, p) = H(t, h(t)) < H(t, p) .
	If p ∈ (0, h 1 (t)] ∪ [h 2 (t), 1), then	
	∂ 2 w ∂p 2 (t, p) ≥ 0 and w t (t, p) = H(t, p)
	Proposition 4.7		

tingale measure P. Under this martingale measure, the process p is purely discontinuous and satisfies:

p(t -) = p 0 ∀t ∈ [t 0 , t

* ] P -a.s., where t * = inf {t ≥ t 0 | p 0 ∈ [h 1 (t), h 2 (t)]} and p(t) ∈ {h 1 (t), h 2 (t)} ∀t ∈ [t * , T ) P -a.s.

  s))ds , combining the above equality with (4.58), (4.59), (4.60) gives that d < p c > s = 0 P -a.s. on [[θ, θ ′ ]]. This implies that, for all ǫ > 0, the restriction on A of the martingale (p (t∨θ)∧θ ′ ǫ ) t∈[0,T ] is simultaniously continuous and purely discontinuous on [0, T ], thus it is constant. Therefore p restricted to A is constant, equal to p(θ -) on [[θ, θ ′ [[, and the claim is proved.

  applying the claim to the stopping time t 0 we have thatθ > t 0 and p(t) = p 0 for t ∈ [[t 0 , θ[[ P-a.s. Since p(t) = p 0 / ∈ [h 1 (t), h 2 (t)] for t ∈ [[t 0 , θ[[, we have θ ≤ t * . Since p(θ) ∈ H(θ), we also have θ ≥ t * . Therefore θ = t * and p(t) = p 0 on [t 0 , t

* ).

We now prove that p(t) ∈ {h 1 (t), h 2 (t)} for t ∈ [t * , T ) P-a.s. Let us introduce, for any ǫ > 0, the stopping time

  Example 4.9 We assume that there exists a smoothly evolving and increasing familly of smooth open convex subsets (K(t)) t∈[0,T ] of ∆(I), whose closure in contained in the interior

	of ∆(I), such that, for any t ∈ [0, T ],
		VexH(t, p) = H(t, p) ⇔ p / ∈ K(t) ,	H(t, •) is affine on K(t)
	and	∂ 2 H ∂p 2 (t, p) is definite positive for p / ∈ K(t).
	Following the proof of Proposition 4.5 we get:
	Proposition 4.10 Under the assumptions of Example 4.9,
		V(t, p) =

T t VexH(s, p)ds ∀(t, p) ∈ [0, T ] × ∆(I)

  Let us now estimate |pn k+1 -p n k | 2 .From the condition of positive minimal curvature, there is a constant R > 0 such thatK(t) ⊂ B R (p -Rν(t, p)) ∩ ∆(I) ∀p ∈ ∂K(t), ∀t ∈ [0, T ] ,where ν(t, p) is the outward unit normal to K(t) at p. Then, since p n k+1 ∈ ∂K(t k+1 ), we have Since by definition of f , f (π(t, p n k ) -p n k ) ⊥ π(t, p n k ) -p n k , we have

	where	ν(t k+1 , π(p n k )) =	π(p n k ) -p n k |π(p n k ) -p n k |	.
		|p n k+1 -p n k | 2 + (R -|π(p n k ) -p n k |) 2 ≤ R 2 ,
	which implies that			
		|p n k+1 -p n k | 2 ≤ 2RL(t k+1 -t k )
		1			 α/2	
		k=k 1	|p n k+1 -p n k | 2		 
		|p n k+1 -(π(t, p n k ) -Rν(t k+1 , π(t, p n k )))| ≤ R ,