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The moduli space N K of infinitesimal deformations of a nearly Kähler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1, 1) forms (c.f. [10]). Using the Hermitian Laplace operator and some representation theory, we compute the space N K on all 6-dimensional homogeneous nearly Kähler manifolds. It turns out that the nearly Kähler structure is rigid except for the flag manifold F (1, 2) = SU 3 /T 2 , which carries an 8-dimensional moduli space of infinitesimal nearly Kähler deformations, modeled on the Lie algebra su 3 of the isometry group.

Introduction

Nearly Kähler manifolds were introduced in the 70's by A. Gray [START_REF] Gray | The structure of nearly Kähler manifolds[END_REF] in the context of weak holonomy. More recently, 6-dimensional nearly Kähler manifolds turned out to be related to a multitude of topics among which we mention: Spin manifolds with Killing spinors (Grunewald), SU 3 -structures, geometries with torsion (Cleyton, Swann), stable forms (Hitchin), or super-symmetric models in theoretical physics (Friedrich, Ivanov).

Up to now, the only sources of compact examples are the naturally reductive 3symmetric spaces, classified by Gray and Wolf [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF], and the twistor spaces over positive quaternion-Kähler manifolds, equipped with the non-integrable almost complex structure. Based on previous work by R. Cleyton and A. Swann [START_REF] Cleyton | Einstein metrics via intrinsic or parallel torsion[END_REF], P.-A. Nagy has shown in 2002 that every simply connected nearly Kähler manifold is a Riemannian product of factors which are either of one of these two types, or 6-dimensional [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF]. Moreover, J.-B. Butruille has shown [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF] that every homogeneous 6-dimensional nearly Kähler manifold is a 3-symmetric space G/K, more precisely isometric with S 6 = G 2 /SU 3 , S 3 × S 3 = SU 2 × SU 2 × SU 2 /SU 2 , CP 3 = SO 5 /U 2 × S 1 or F (1, 2) = SU 3 /T 2 , all endowed with the metric defined by the Killing form of G.

A method of finding new examples is to take some homogeneous nearly Kähler manifold and try to deform its structure. In [START_REF] Moroianu | Deformations of Nearly Kähler Structures[END_REF] we have studied the deformation problem for 6-dimensional nearly Kähler manifolds (M 6 , g) and proved that if M is compact, and has normalized scalar curvature scal g = 30, then the space N K of infinitesimal deformations of the nearly Kähler structure is isomorphic to the eigenspace for the eigenvalue 12 of the restriction of the Laplace operator ∆ g to the space of co-closed primitive (1, 1)-forms Λ

(1,1) 0

M.

It is thus natural to investigate the Laplace operator on the known 3-symmetric examples (besides the sphere S 6 , whose space of nearly Kähler structures is well-understood, and isomorphic to SO 7 /G 2 ∼ = RP 7 , see [START_REF] Th | Nearly Kähler and nearly parallel G 2 -structures on spheres[END_REF] or [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF]Prop. 7.2]). Recall that the spectrum of the Laplace operator on symmetric spaces can be computed in terms of Casimir eigenvalues using the Peter-Weyl formalism. It turns out that a similar method can be applied in order to compute the spectrum of a modified Laplace operator ∆ (called the Hermitian Laplace operator) on 3-symmetric spaces. This operator is SU 3 -equivariant and coincides with the usual Laplace operator on co-closed primitive (1, 1)-forms. The space of infinitesimal nearly Kähler deformations is thus identified with the space of co-closed forms in Ω (1,1) 0 [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] 

:= {α ∈ C ∞ (Λ (1,1) 0 M) | ∆α = 12α}.
Our main result is that the nearly Kähler structure is rigid on S 3 × S 3 and CP 3 , and that the space of infinitesimal nearly Kähler deformations of the flag manifold F (1, 2) is eight-dimensional.

The paper is organized as follows. After some preliminaries on nearly Kähler manifolds, we give two general procedures for constructing elements in Ω (1,1) 0 [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] out of Killing vector fields or eigenfunctions of the Laplace operator for the eigenvalue 12 (Corollary 4.5 and Proposition 4.11). We show that these elements can not be co-closed, thus obtaining an upper bound for the dimension of the space of infinitesimal nearly Kähler deformations (Proposition 4.12). We then compute this upper bound explicitly on the 3-symmetric examples and find that it vanishes for S 3 × S 3 and CP 3 , which therefore have no infinitesimal nearly Kähler deformation. This upper bound is equal to 8 on the flag manifold F (1, 2) = SU 3 /T 2 and in the last section we construct an explicit isomorphism between the Lie algebra of the isometry group su 3 and the space of infinitesimal nearly Kähler deformations on F (1, 2).

In addition, our explicit computations (in Section 5) of the spectrum of the Hermitian Laplace operator on the 3-symmetric spaces, together with the results in [START_REF] Moroianu | Infinitesimal Einstein Deformations of Nearly Kähler Metrics[END_REF] show that every infinitesimal Einstein deformation on a 3-symmetric space is automatically an infinitesimal nearly Kähler deformation.

where ∇ denotes the Levi-Civita connection of g. The canonical Hermitian connection ∇, defined by

∇X Y := ∇ X Y -1 2 J(∇ X J)Y, ∀ X ∈ T M, ∀ Y ∈ C ∞ (M) (2) 
is a U m connection on M (i.e. ∇g = 0 and ∇J = 0) with torsion TX Y = -J(∇ X J)Y . A fundamental observation, which goes back to Gray, is the fact that ∇ T = 0 on every nearly Kähler manifold (see [START_REF] Belgun | Nearly Kähler 6-manifolds with reduced holonomy[END_REF]).

We denote the Kähler form of M by ω := g(J., .). The tensor Ψ + := ∇ω is totally skew-symmetric and of type (3, 0) + (0, 3) by [START_REF] Baum | Twistor and Killing Spinors on Riemannian Manifolds[END_REF]. From now on we assume that the dimension of M is 2m = 6 and that the nearly Kähler structure is strict, i.e. (M, g, J) is not Kähler. It is well-known that M is Einstein in this case. We will always normalize the scalar curvature of M to scal = 30, in which case we also have |Ψ + | 2 = 4 point-wise. The form Ψ + can be seen as the real part of a ∇-parallel complex volume form Ψ + +iΨ - on M, where Ψ -= * Ψ + is the Hodge dual of Ψ + . Thus M carries a SU 3 structure whose minimal connection (cf. [START_REF] Cleyton | Einstein metrics via intrinsic or parallel torsion[END_REF]) is exactly ∇. Notice that Hitchin has shown that a SU 3 structure (ω, Ψ + , Ψ -) is nearly Kähler if and only if the following exterior system holds:

dω = 3Ψ + dΨ -= -2ω ∧ ω. (3) 
Let A ∈ Λ 1 M ⊗EndM denote the tensor A X := J(∇ X J) = -Ψ + JX , where Ψ + Y denotes the endomorphism associated to Y Ψ + via the metric. Since for every unit vector X, A X defines a complex structure on the 4-dimensional space X ⊥ ∩ (JX) ⊥ , we easily get in a local orthonormal basis {e i } the formulas

|A X | 2 = 2|X| 2 , ∀ X ∈ T M. (4) 
A e i A e i (X) = -4X, ∀ X ∈ T M, (5) 
where here and henceforth, we use Einstein's summation convention on repeating subscripts. The following algebraic relations are satisfied for every SU 3 structure (ω, Ψ + ) on T M (notice that we identify vectors and 1-forms via the metric):

A X e i ∧ e i Ψ + = -2X ∧ ω, ∀ X ∈ T M. ( 6 
) X Ψ -= -JX Ψ + , ∀ X ∈ T M, (7) 
(X Ψ + ) ∧ Ψ + = X ∧ ω 2 , ∀ X ∈ T M. ( 8 
) (JX Ψ + ) ∧ ω = X ∧ Ψ + , ∀ X ∈ T M. (9) 
The Hodge operator satisfies * 2 = (-1) p on Λ p M and moreover * (X

∧ Ψ + ) = JX Ψ + , ∀ X ∈ T M. ( 10 
) * (φ ∧ ω) = -φ, ∀ φ ∈ Λ (1,1) 0 M. (11) * (JX ∧ ω 2 ) = -2X, ∀ X ∈ T M. ( 12 
)
From now on we assume that (M, g) is compact 6-dimensional not isometric to the round sphere (S 6 , can). It is well-known that every Killing vector field ξ on M is an automorphism of the whole nearly Kähler structure (see [START_REF] Moroianu | Deformations of Nearly Kähler Structures[END_REF]). In particular,

L ξ ω = 0, L ξ Ψ + = 0, L ξ Ψ -= 0. ( 13 
)
Let now R and R denote the curvature tensors of ∇ and ∇. Then the formula (c.f. [START_REF] Baum | Twistor and Killing Spinors on Riemannian Manifolds[END_REF])

R W XY Z = RW XY Z -1 4 g(Y, W )g(X, Z) + 1 4 g(X, Y )g(Z, W ) + 3 4 g(Y, JW )g(JX, Z) -3 4 g(Y, JX)g(JW, Z) -1 2 g(X, JW )g(JY, Z) may be rewritten as R XY = -X ∧ Y + R CY XY and RXY = -3 4 (X ∧ Y + JX ∧ JY -2 3 ω(X, Y )J) + R CY XY
where R CY XY is a curvature tensor of Calabi-Yau type. We will recall the definition of the curvature endomorphism q(R) (c.f. [START_REF] Moroianu | Deformations of Nearly Kähler Structures[END_REF]). Let EM be the vector bundle associated to the bundle of orthonormal frames via a representation π : SO(n) → Aut(E). The Levi-Civita connection of M induces a connection on EM, whose curvature satisfies

R EM XY = π * (R XY ) = π * (R(X ∧ Y ))
, where we denote with π * the differential of π and identify the Lie algebra of SO(n), i.e. the skew-symmetric endomorphisms, with Λ 2 . In order to keep notations as simple as possible, we introduce the notation π * (A) = A * . The curvature endomorphism q(R) ∈ End(EM) is defined as

q(R) = 1 2 (e i ∧ e j ) * R(e i ∧ e j ) * (14) 
for any local orthonormal frame {e i }. In particular, q(R) = Ric on T M. By the same formula we may define for any curvature tensor S, or more generally any endomorphism S of Λ 2 T M, a bundle morphism q(S). In any point q : R → q(R) defines an equivariant map from the space of algebraic curvature tensors to the space of endomorphisms of E. Since a Calabi-Yau algebraic curvature tensor has vanishing Ricci curvature, q(R CY ) = 0 holds on T M. Let R 0 XY be defined by

R 0 XY = X ∧ Y + JX ∧ JY -2 3 ω(X, Y )J. Then a direct calculation gives q(R 0 ) = 1 2 (e i ∧ e j ) * (e i ∧ e j ) * + 1 2 (e i ∧ e j ) * (Je i ∧ Je j ) * -2 3 ω * ω * .
We apply this formula on T M. The first summand is exactly the SO(n)-Casimir, which acts as -5id. The third summand is easily seen to be 2 3 id, whereas the second summand acts as -id (c.f. [START_REF] Moroianu | Infinitesimal Einstein Deformations of Nearly Kähler Metrics[END_REF]). Altogether we obtain q(R 0 ) = - 16 3 id, which gives the following expression for q( R) acting on T M:

q( R)| T M = 4 id T M .
(15)

The Hermitian Laplace operator

In the next two sections (M 6 , g, J) will be a compact nearly Kähler manifold with scalar curvature normalized to scal g = 30. We denote as usual by ∆ the Laplace operator ∆ = d * d + dd * = ∇ * ∇ + q(R) on differential forms. We introduce the Hermitian Laplace operator ∆ = ∇ * ∇ + q( R), (16) which can be defined on any associated bundle EM. In [START_REF] Moroianu | Infinitesimal Einstein Deformations of Nearly Kähler Metrics[END_REF] we have computed the difference of the operators ∆ and ∆ on a primitive (1, 1)-form φ:

(∆ -∆)φ = (Jd * φ) Ψ + . ( 17 
)
In particular, ∆ and ∆ coincide on co-closed primitive (1, 1)-forms. We now compute the difference ∆ -∆ on 1-forms. Using the calculation in [START_REF] Moroianu | Infinitesimal Einstein Deformations of Nearly Kähler Metrics[END_REF] (or directly from (15)) we have q(R)q( R) = id on T M. It remains to compute the operator P = ∇ * ∇ -∇ * ∇ on T M. A direct calculation using [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF] gives for every 1-form θ

P (θ) = -1 4 A e i A e i θ -A e i ∇e i θ = θ -A e i ∇e i θ = θ + 1 2 A e i A e i θ -A e i ∇ e i θ = -θ -A e i ∇ e i θ.
In order to compute the last term, we introduce the metric adjoint α : [START_REF] Moroianu | Deformations of Nearly Kähler Structures[END_REF]). Keeping in mind that A is totally skew-symmetric, we compute for an arbitrary vector X ∈ T M A e i (∇ e i θ), X = A X e i , ∇ e i θ = A X , e i ∧ ∇ e i θ = A X , dθ = -Ψ + JX , dθ = -JX, α(dθ) = Jα(dθ), X , whence A e i (∇ e i θ) = Jα(dθ). Summarizing our calculations we have proved the following Proposition 3.1. Let (M 6 , g, J) be a nearly Kähler manifold with scalar curvature normalized to scal g = 30. Then for any 1-form θ it holds that

Λ 2 M → T M of the bundle homomorphism X ∈ T M → X Ψ + ∈ Λ 2 M. It is easy to check that α(X Ψ + ) = 2X (c.f.
(∆ -∆)θ = -Jα(dθ).
The next result is a formula for the commutator of J and α • d on 1-forms. Lemma 3.2. For all 1-forms θ, the following formula holds:

α(dθ) = 4Jθ + Jα(dJθ).
Proof. Differentiating the identity θ∧Ψ + = Jθ∧Ψ -gives dθ∧Ψ + = dJθ∧Ψ -+2Jθ∧ω 2 . With respect to the SU 3 -invariant decomposition Λ 2 M = Λ (1,1) M ⊕ Λ (2,0)+(0,2) M, we can write dθ = (dθ) (1,1) + 1 2 α(dθ) Ψ + and dJθ = (dJθ) (1,1) + 1 2 α(dJθ) Ψ + . Since the wedge product of forms of type (1, 1) and (3, 0) vanishes we derive the equation 8) and ( 9) we obtain

1 2 (α(dθ) Ψ + ) ∧ Ψ + = 1 2 (α(dJθ) Ψ + ) ∧ Ψ -+ 2Jθ ∧ ω 2 . Using (
1 2 α(dθ) ∧ ω 2 = 1 2 Jα(dJθ) ∧ ω 2 + 2Jθ ∧ ω 2 .
Taking the Hodge dual of this equation and using [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] gives Jα(dθ) = -α(dJθ) -4θ, which proves the lemma.

Finally we note two interesting consequences of Proposition 3.1 and Lemma 3.2.

Corollary 3.3. For any closed 1-form θ it holds that

(∆ -∆)θ = 0, (∆ -∆)Jθ = 4Jθ.
Proof. For a closed 1-form θ Lemma 3.1 directly implies that ∆ and ∆ coincide on θ.

For the second equation we use Proposition 3.1 together with Lemma 3.2 to conclude

(∆ -∆)Jθ = -Jα(dJθ) = 4Jθ -α(dθ) = 4Jθ
since θ is closed. This completes the proof of the corollary.

Special ∆-eigenforms on nearly Kähler manifolds

In this section we assume moreover that (M, g) is not isometric to the standard sphere (S 6 , can). In the first part of this section we will show how to construct ∆-eigenforms on M starting from Killing vector fields.

Let ξ be a non-trivial Killing vector field on (M, g), which in particular implies d * ξ = 0 and ∆ξ = 2Ric(ξ) = 10ξ. As an immediate consequence of the Cartan formula and ( 13) we obtain

dJξ = L ξ ω -ξ dω = -3ξ ψ + (18) 
so by ( 4), the square norm of dJξ (as a 2-form) is

|dJξ| 2 = 18|ξ| 2 . (19) 
In [START_REF] Moroianu | Unit Killing Vector Fields on Nearly Kähler Manifolds[END_REF] we showed already that the vector field Jξ is co-closed if ξ is a Killing vector field and has unit length. However it turns out that this also holds more generally.

Proposition 4.1. Let ξ be a Killing vector field on M. Then d * Jξ = 0.

Proof. Let dv denote the volume form of (M, g). We start with computing the

L 2 -norm of d * Jξ. d * Jξ 2 L 2 = M d * Jξ, d * Jξ dv = M [ ∆Jξ, Jξ -d * dJξ, Jξ ]dv = M [ ∇ * ∇Jξ, Jξ + 5|Jξ| 2 -|dJξ| 2 ]dv = M [|∇Jξ| 2 + 5|ξ| 2 -|dJξ| 2 ]dv = M [|∇Jξ| 2 -13|ξ| 2 ]dv
Here we used the well-known Bochner formula for 1-forms, i.e. ∆θ = ∇ * ∇θ + Ric(θ), with Ric(θ) = 5θ in our case. Next we consider the decomposition of ∇Jξ into its symmetric and skew-symmetric parts 2∇Jξ = dJξ + L Jξ g, which together with (19) leads to

|∇Jξ| 2 = 1 4 (|dJξ| 2 + |L Jξ g| 2 ) = 9|ξ| 2 + 1 4 |L Jξ g| 2 . ( 20 
)
(Recall that the endomorphism square norm of a 2-form is twice its square norm as a form). In order to compute the last norm, we express L Jξ g as follows:

L Jξ g(X, Y ) = g(∇ X Jξ, Y ) + g(X, ∇ Y Jξ) = g(J∇ X ξ, Y ) + g(X, J∇ Y ξ) + Ψ + (X, ξ, Y ) + Ψ + (Y, ξ, X) = -g(∇ X ξ, JY ) -g(JX, ∇ Y ξ) = -dξ (1,1) (X, JY ), whence L Jξ g 2 L 2 = 2 dξ (1,1) 2 L 2 . ( 21 
)
On the other hand, as an application of Lemma 3.2 together with Equation (18) we get α(dξ) = 4Jξ + Jα(dJξ) = -2Jξ, so

dξ (2,0) = -Jξ Ψ + . (22) 
Moreover, ∆ξ = 10ξ since ξ is a Killing vector field, which yields

dξ (1,1) 2 L 2 = dξ 2 L 2 -dξ (2,0) 2 L 2 = 10 ξ 2 L 2 -2 ξ 2 L 2 = 8 ξ 2 L 2 .

This last equation, together with (20) and (21) gives ∇Jξ

2 L 2 = 13 ξ 2 L 2 .
Substituting this into the first equation proves that d * Jξ has vanishing L 2 -norm and thus that Jξ is co-closed. In particular, Jξ can never be a Killing vector field.

Proof. The first equation holds for every Killing vector field on an Einstein manifold with Ric = 5id. From (18) we know dJξ = -3ξ Ψ + . Hence the second assertion follows from:

d * dJξ = - * d * dJξ (10) = -3 * d(Jξ ∧ Ψ + ) = 9 * (ξ ∧ ω 2 ) (12) 
= 18Jξ.

Since the differential d commutes with the Laplace operator ∆, every Killing vector field ξ defines two ∆-eigenforms of degree 2: ∆dJξ = 18dJξ and ∆dξ = 10dξ

As a direct consequence of Proposition 4.2, together with formulas (18), ( 22), and Proposition 3.1 we get:

Corollary 4.3. Every Killing vector field on M satisfies ∆ξ = 12ξ, ∆Jξ = 12Jξ.

Our next goal is to show that the (1, 1)-part of dξ is a ∆ -eigenform. By (22) we have

dξ = φ -Jξ Ψ + , (23) 
for some (1, 1)-form φ. Using Proposition 4.1, we can write in a local orthonormal basis {e i }: dξ, ω = 1 2 dξ, e i ∧ Je i = ∇ e i ξ, Je i = d * Jξ = 0, thus showing that φ is primitive. The differential of φ can be computed from the Cartan formula:

dφ (23) = d(Jξ Ψ + + dξ) (7) = -d(ξ Ψ -) = -L ξ Ψ -+ ξ dΨ -(13) = -2ξ ω 2 = -4Jξ ∧ ω. ( 24 
)
From here we obtain

* dφ = -4 * (Jξ ∧ ω) = 4ξ ∧ ω, whence d * dφ = 4dξ ∧ ω -12ξ ∧ Ψ + (23) = 4φ ∧ ω -4(Jξ Ψ + ) ∧ ω -12ξ ∧ Ψ + (9) = 4φ ∧ ω -16ξ ∧ Ψ + .
Using ( 10) and ( 11), we thus get

d * dφ = - * d * dφ = 4φ + 16Jξ Ψ + .
On the other hand,

d * φ = - * d * φ (11) = * d(φ ∧ ω) (24) = X(-4Jξ ∧ ω 2 + 3φ ∧ Ψ + ) (12) 
= 8ξ

and finally dd * φ = 8dξ = 8φ -8Jξ Ψ + . The calculations above thus prove the following proposition Proposition 4.4. Let (M 6 , g, J) be a compact nearly Kähler manifold with scalar curvature scal g = 30, not isometric to the standard sphere. Let ξ be a Killing vector field on M and let φ be the (1, 1)-part of dξ. Then φ is primitive, i.e. φ = (dξ) Proof. From (17) and the proposition above we get ∆φ = ∆φ

-(∆ -∆)φ = 12φ + 8Jξ Ψ + -(Jd * φ) Ψ + = 12φ.
In the second part of this section we will present another way of obtaining primitive ∆-eigenforms of type (1, 1), starting from eigenfunctions of the Laplace operator. Let f be such an eigenfunction, i.e. ∆f = λf . We consider the primitive (1, 1)-form η := (dJdf )

(1,1) 0 . Lemma 4.6. The form η is explicitly given by

η = dJdf + 2df Ψ + + λ 3 f ω.
Proof. According to the decomposition of Λ 2 M into irreducible SU 3 -summands, we can write dJdf = η + γ Ψ + + hω for some vector field γ and function h. From Lemma 3.2 we get 2γ = α(dJdf ) = -4df .

In order to compute h, we write

6h dv = hω ∧ ω 2 = dJdf ∧ ω 2 = d(Jdf ∧ ω 2 ) (12) 
= 2d * df = 2λf dv.

We will now compute the Laplacian of the three summands of η separately. First, we have ∆df = λdf and Corollary 3.3 yields ∆df = λdf . Since ∆ commutes with J, we also have ∆Jdf = λJdf and from the second equation in Corollary 3.3 we obtain

∆Jdf = ∆Jdf + (∆ -∆)Jdf = (λ + 4)Jdf.
Hence, dJdf is a ∆-eigenform for the eigenvalue λ + 4.

Lemma 4.7. The co-differential of the (1, 1)-form η is given by

d * η = 2λ 3 -4 Jdf. Proof. Notice that d * (f ω) = -df ω and that d * Jdf = - * d * Jdf = -1 2 * d(df ∧ ω 2 ) = 0, since dω 2 = 0. Using this we obtain d * η = ∆Jdf + 2d * (df Ψ + ) -λ 3 df ω = (λ + 4)Jdf -2 * d(df ∧ Ψ -) -λ 3 Jdf = (λ + 4 -λ 3 )Jdf -4 * (df ∧ ω 2 ) (12) 
= ( 2λ 3 -4)Jdf.

In order to compute ∆ of the second summand of η we need three additional formulas Lemma 4.8.

∆(X Ψ + ) = ( ∆X) Ψ + . Proof. Recall that ∆ = ∇ * ∇ + q( R). Since Ψ + is ∇-parallel we immediately obtain ∇ * ∇(X Ψ + ) = -∇e i ∇e i (X Ψ + ) = -( ∇e i ∇e i X) Ψ + . The map A → A * Ψ + is a SU 3 -equivariant map from Λ 2 to Λ 3 . But since Λ 3 does not contain the representation Λ (1,1) 0
as an irreducible summand, it follows that A * Ψ + = 0 for any skew-symmetric endomorphism A corresponding to some primitive (1, 1)-form. Hence we conclude

q( R)(X Ψ + ) = ω i * R(ω i ) * (X Ψ + ) = (ω i * R(ω i ) * X) Ψ + = (q( R)X) Ψ + ,
where, since the holonomy of ∇ is included in SU 3 , the sum goes over some orthonormal basis {ω i } of Λ (1,1) 0 M. Combining these two formulas we obtain ∆(X Ψ + ) = ( ∆X) Ψ + . Lemma 4.9.

(∆ -∆)(df Ψ + ) = 6(df Ψ + ) -4λ 3 f ω -2η.
Proof. From Proposition 3.4 in [START_REF] Moroianu | Infinitesimal Einstein Deformations of Nearly Kähler Metrics[END_REF] we have

(∆ -∆)(df Ψ + ) = (∇ * ∇ -∇ * ∇)(df Ψ + ) + (q(R) -q( R))(df Ψ + ) = (∇ * ∇ -∇ * ∇)(df Ψ + ) + 4df Ψ + .
The first part of the right hand side reads

(∇ * ∇ -∇ * ∇)(df Ψ + ) = -1 4 A e i * A e i * df Ψ + -A e i * ∇e i (df Ψ + ). ( 25 
)
From (5) we get

A e i * A e i * df Ψ + = A e i * (A e i e k ∧ Ψ + (df, e k , •)) = A e i A e i e k ∧ Ψ + (df, e k , •) + A e i e k ∧ A e i Ψ + (df, e k , •) = -4e k ∧ e k Ψ + df + A e i e k ∧ A e i e j Ψ + (df, e k , e j ) = -8Ψ +
df , where we used the vanishing of the expression E = A e i e k ∧ A e i e j Ψ + (df, e k , e j ):

E = A Je i e k ∧ A Je i e j Ψ + (df, e k , e j ) = A e i Je k ∧ A e i Je j Ψ + (df, e k , e j ) = A e i e k ∧ A e i e j Ψ + (df, Je k , Je j ) = -E.
It remains to compute the second term in (25). We notice that by Schur's Lemma, every SU 3 -equivariant map from the space of symmetric tensors Sym 2 M to T M vanishes, so in particular (since ∇df is symmetric), one has A e i ∇ e i df = 0. We then compute

A e i * ∇e i Ψ + df = A e i * (( ∇e i df ) Ψ + ) = (A e i ∇e i df ) Ψ + + ( ∇e i df ) A e i * Ψ + (6) = (A e i ∇ e i df ) Ψ + -1 2 (A e i A e i df ) Ψ + -2( ∇e i df ) (e i ∧ ω) = 2Ψ + df + 2d * df ω + A e i df, e i ω + 2e i ∧ J ∇e i df = 2Ψ + df + 2λf ω + 2e i ∧ ∇e i Jdf = 2Ψ + df + 2λf ω + 2dJdf -e i ∧ A e i Jdf = 2Ψ + df + 2λf ω + 2dJdf + 2A Jdf = 4Ψ + df + 2λf ω + 2dJdf.
Plugging back what we obtained into (25) yields

(∇ * ∇ -∇ * ∇)(df Ψ + ) = -(2Ψ + df + 2λf ω + 2dJdf
), which together with Lemma 4.6 and the first equation prove the desired formula. Lemma 4.10.

∆f ω = (λ + 12)f ω -2(df Ψ + ). Proof. Since d * (f ω) = -df ω = -Jdf we have dd * (f ω) = -dJdf . For the second summand of ∆(f ω) we first compute d(f ω) = df ∧ω+3f Ψ + . Since d * Ψ + = 1 3 d * dω = 4ω, we get d * f Ψ + = -df Ψ + + f d * Ψ + = -df Ψ + + 4f ω. Moreover d * (df ∧ ω) = - * d(Jdf ∧ ω) = - * (dJdf ∧ ω -3Jdf ∧ Ψ + ) = - * ([η -2df Ψ + -λ 3 f ω] ∧ ω) + 3 * (Jdf ∧ Ψ + ) = η + 2 * ((df Ψ + ) ∧ ω) + 2λ 3 f ω -3df Ψ + = η + 2df Ψ + + 2λ 3 f ω -3df Ψ + . Recalling that η = dJdf + 2df Ψ + + λ 3 f ω, we obtain ∆f ω = -dJdf -3df Ψ + + 12f ω + η -df Ψ + + 2λ 3 f ω = (λ + 12)f ω -2df Ψ + .
Applying these three lemmas we conclude

∆(df Ψ + ) = ∆(df Ψ + ) + (∆ -∆)(df Ψ + ) = (λ + 6)(df Ψ + ) -4λ 3 f ω -2η and thus ∆η = (λ + 4)dJdf + (2λ + 12)(df Ψ + ) -8λ 3 f ω -4η + λ 3 (λ + 12)f ω -2λ 3 (df Ψ + ) = λη + 4 -2λ 3 (df Ψ +
). Finally we have once again to apply the formula for the difference of ∆ and ∆ on primitive (1, 1)-forms. We obtain ∆η = ∆η -Jd * η Ψ + = ∆η + 2λ 3 -4 (df Ψ + ) = λη. Summarizing our calculations we obtain the following result. Let Ω 0 (12) ⊂ C ∞ (M) be the ∆-eigenspace for the eigenvalue 12 (notice that ∆ = ∆ on functions) and let Ω (1,1) 0 [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] denote the space of primitive (1, 1)-eigenforms of ∆ corresponding to the eigenvalue 12. Summarizing Corollary 4.5 and Proposition 4.11, we have constructed a linear mapping

Φ : i(M) → Ω (1,1) 0 (12), Φ(ξ) := dξ (1,1) 0
from the space of Killing vector fields into Ω

(1,1) 0

(12) and a linear mapping

Ψ : Ω 0 (12) → Ω (1,1) 0 (12), Ψ(f ) := (dJdf ) (1,1) 0 
.

Let moreover N K ⊂ Ω

(1,1) 0 [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] denote the space of nearly Kähler deformations, which by [START_REF] Moroianu | Deformations of Nearly Kähler Structures[END_REF] is just the space of co-closed forms in Ω (1,1) 0 [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF]. Proposition 4.12. The linear mappings Φ and Ψ defined above are injective and the sum Im(Φ) + Im(Ψ) + N K ⊂ Ω (1,1) 0 [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] is a direct sum. In particular,

dim(N K) ≤ dim(Ω (1,1) 0 (12)) -dim(i(M)) -dim(Ω 0 (12)). ( 26 
)
Proof. It is enough to show that if ξ ∈ i(M), f ∈ Ω 0 (12) and α ∈ N K satisfy dξ (1,1) 0

+ (dJdf )

(1,1) 0 Let M = G/K be a homogeneous space with compact Lie groups K ⊂ G and let π : K → Aut(E) be a representation of K. We denote by EM := G × π E be the associated vector bundle over M. The Peter-Weyl theorem and the Frobenius reciprocity yield the following isomorphism of G-representations:

+ α = 0, (27) 
L 2 (EM) ∼ = γ∈ Ĝ V γ ⊗ Hom K (V γ , E), (29) 
where Ĝ is the set of (non-isomorphic) irreducible G-representations. If not otherwise stated we will consider only complex representations. Recall that the space of smooth sections C ∞ (EM) can be identified with the space C ∞ (G; E) K of K-invariant E-valued functions, i.e. functions f : G → E with f (gk) = π(k) -1 f (g). This space is made into a G-representation by the left-regular representation ℓ, defined by by (ℓ(g)f )(a) = f (g -1 a). Let v ∈ V γ and A ∈ Hom K (V γ , E) then the invariant E-valued function corresponding to v ⊗ A is defined by g → A(g -1 v). In particular, each summand in the Hilbert space direct sum (29) is a subset of C ∞ (EM) ⊂ L 2 (EM).

Let g be the Lie algebra of G. We denote by B the Killing form of g, B(X, Y ) := tr(ad X •ad Y ). The Killing form is non-degenerated and negative definite if G is compact and semi-simple, which will be the case in all examples below.

If π : G → Aut(E) is a G-representation, the Casimir operator of (G, π) acts on E by the formula Cas G π = (π * X i ) 2 , ( 30 
)
where {X i } is a (-B)-orthonormal basis of g and π * : g → End(E) denotes the differential of the representation π. If G is simple, the adjoint representation ad on the complexification g C is irreducible, so, by Schur's Lemma, its Casimir operator acts as a scalar. Taking the trace in (30) for π = ad yields the useful formula Cas G ad = -1.

Let V γ be an irreducible G-representation of highest weight γ. By Freudenthal's formula the Casimir operator acts on V γ by scalar multiplication with ρ 2ρ + γ 2 , where ρ denotes the half-sum of the positive roots and • is the norm induced by -B on the dual of the Lie algebra of the maximal torus of G. Notice that these scalars are always non-positive. Indeed ρ 2ρ + γ 2 =γ, γ + 2ρ B and γ, ρ ≥ 0, since γ is a dominant weight, i.e. it is in the the closure of the fixed Weyl chamber, whereas ρ is the half-sum of positive weights and thus by definition has a non-negative scalar product with γ.

5.2.

The homogeneous Laplace operator. We denote by ∇ the canonical homogeneous connection on M = G/K. It coincides with the Levi-Civita connection only in the case that G/K is a symmetric space. A crucial observation is that the canonical homogeneous connection coincides with the canonical Hermitian connection on naturally reductive 3-symmetric spaces (see below). We define the curvature endomorphism q( R) ∈ End(EM) as in ( 14) and introduce as in (16) the second order operator ∆π = ∇ * ∇ + q( R) acting on sections of the associated bundle EM := G × π E. Lemma 5.2. Let G be a compact semi-simple Lie group, K ⊂ G a compact subgroup, and let M = G/K the naturally reductive homogeneous space equipped with the Riemannian metric induced by -B. For every K-representation π on E, let EM := G× π E be the associated vector bundle over M. Then the endomorphism q( R) acts fibre-wise on EM as q( R) = -Cas K π . Moreover the differential operator ∆ acts on the space of sections of EM, considered as G-representation via the left-regular representation, as ∆ = -Cas G ℓ .

Proof. Consider the Ad(K)-invariant decomposition g = k ⊕p. For any vector X ∈ g we write X = X k + X p , with X k ∈ k and X p ∈ p. The canonical homogeneous connection is the left-invariant connection in the principal K-fibre bundle G → G/K corresponding to the projection X → X k . It follows that one can do for the canonical homogeneous connection on G/K the same identifications as for the Levi Civita connection on Riemannian symmetric spaces.

In particular, the covariant derivative of a section φ ∈ Γ(EM) with respect to some X ∈ p translates into the derivative X( φ) of the the corresponding function φ ∈ C ∞ (G; E) K , which is minus the differential of the left-regular representation X( φ) = -ℓ * (X) φ. Hence, if {e µ } is an orthonormal basis in p, the rough Laplacian ∇ * ∇ translates into the sum -ℓ * (e µ )ℓ * (e µ ) = (-Cas G ℓ + Cas K ℓ ). Since ∆ = ∇ * ∇ + q( R) it remains to show that q( R) = -Cas K ℓ = -Cas K π in order to complete the proof of the lemma. We claim that the differential i * : k → so(p) ∼ = Λ 2 p of the isotropy representation i :

K → SO(p) is given by i * (A) = -1 2 e µ ∧ [A, e µ ] for any A ∈ k. Indeed ( 1 2 e µ ∧ [A, e µ ]) * X = -1 2 B(e µ , X)[A, e µ ] + 1 2 B([A, e µ ], X)e µ = -[A, X].
Next we recall that for X, Y ∈ p the curvature RX,Y of the canonical connection acts by -π * ([X, Y ] k ) on every associated vector bundle EM, defined by the representation π.

Hence the curvature operator R can be written for any

X, Y ∈ p as R(X ∧ Y ) = 1 2 e µ ∧ RX,Y e µ = -1 2 e µ ∧ [[X, Y ] k , e µ ] = i * ([X, Y ] k ). Let P SO(p) = G × i SO(p)
be the bundle of orthonormal frames of M = G/K. Then any SO(p)-representation π defines a K-representation by π = π • i. Moreover any vector bundle EM associated to P SO(p) via π can be written as a vector bundle associated via π to the K-principle bundle G → G/K, i.e.

EM = P SO(p) × π E = G × π E
Let {f α } be an orthonormal basis of k. Then by the definition of q( R) we have

q( R) = 1 2 π * (e µ ∧ e ν ) π * ( R(e µ ∧ e ν )) = 1 2 π * (e µ ∧ e ν ) π * ([e µ , e ν ] k ) = -1 2 B([e µ , e ν ], f α )π * (e µ ∧ e ν ) π * (f α ) = -1 2 B(e ν , [f α , e µ ])π * (e µ ∧ e ν ) π * (f α ) = 1 2 π * (e µ ∧ [f α , e µ ]) π * (f α ) = -π * (f α ) π * (f α ) = -Cas K π . We have shown that q( R) ∈ End(EM) acts fibre-wise as -Cas K π . Let Z ∈ k and f ∈ C ∞ (G; E) K , then the K-invariance of f implies π * (Z)f = -Z(f ) = ℓ * (Z)f and also Cas K π = Cas K ℓ ,
which concludes the proof of the lemma.

It follows from this lemma that the spectrum of ∆ on sections of EM is the set of numbers λ γ = ρ + γ 2ρ 2 , where γ is the highest weight of an irreducible Grepresentation V γ such that Hom K (V γ , E) = 0, i.e. such that the decomposition of V γ , considered as K-representation, contains components of the K-representation E.

5.3.

Nearly Kähler deformations and Laplace eigenvalues. Let (M, g, J) be a compact simply connected 6-dimensional nearly Kähler manifold not isometric to the round sphere, with scalar curvature normalized to scal g = 30. Recall the following result from [START_REF] Moroianu | Deformations of Nearly Kähler Structures[END_REF]:

Theorem 5.3. The Laplace operator ∆ coincides with the Hermitian Laplace operator ∆ on co-closed primitive (1, 1)-forms. The space N K of infinitesimal deformations of the nearly Kähler structure of M is isomorphic to the eigenspace for the eigenvalue 12 of the restriction of ∆ (or ∆) to the space of co-closed primitive (1, 1)-forms on M.

Assume from now on that M is a 6-dimensional naturally reductive 3-symmetric space G/K in the list of Gray and Wolf, i.e. SU 2 × SU 2 × SU 2 /SU 2 , SO 5 /U 2 or SU 3 /T 2 . As was noticed before, the canonical homogeneous and the canonical Hermitian connection coincide, since for the later can be shown that is torsion and its curvature are parallel, a property, which by the Ambrose-Singer-Theorem characterizes the canonical homogeneous connection (c.f. [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF]). In order to determine the space N K on M we thus need to apply the previous calculations to compute the ∆-eigenspace for the eigenvalue 12 on primitive (1, 1)-forms and decide which of these eigenforms are co-closed.

According to Lemma 5.2 and the decomposition (29) we have to carry out three steps: first to determine the K-representation Λ 1,1 0 p defining the bundle Λ 1,1 0 T M, then to compute the Casimir eigenvalues with the Freudenthal formula, which gives all possible ∆-eigenvalues and finally to check whether the G-representation V γ realizing the eigenvalue 12 satisfies Hom K (V γ , Λ 1,1 0 p) = {0} and thus really appears as eigenspace. Before going on, we make the following useful observation Lemma 5.4. Let (G/K, g) be a 6-dimensional homogeneous strict nearly Kähler manifold of scalar curvature scal g = 30. Then the homogeneous metric g is induced from - 1 12 B, where B is the Killing form of G.

Proof. Let G/K be a 6-dimensional homogeneous strict nearly Kähler manifold. Then the metric is induced from a multiple of the Killing form, i.e. G/K is a normal homogeneous space with Ad(K)-invariant decomposition g = k ⊕ p. The scalar curvature of the metric h induced by -B may be computed as (c.f. [START_REF] Besse | Einstein manifolds[END_REF])

scal h = 3 2 -3Cas K λ
where λ : K → so(p) is the isotropy representation. From Lemma 5.2 we know that Cas K λ = -q( R), which on the tangent bundle was computed in Lemma 15 as q( R) = 2scal h 15 id. Hence we obtain the equation scal h = 3 2 + 2 5 scal h and it follows scal h = 5 2 , i.e. the metric g corresponding to - 1 12 B has scalar curvature scal g = 30.

5.4. The ∆-spectrum on S 3 × S 3 . Let K = SU 2 with Lie algebra k = su 2 and G = K × K × K with Lie algebra g = k ⊕ k ⊕ k. We consider the 6-dimensional manifold M = G/K, where K is diagonally embedded. The tangent space at o = eK can be identified with

p = {(X, Y, Z) ∈ k ⊕ k ⊕ k | X + Y + Z = 0}.
Let B be the Killing form of k and define B 0 = - 1 12 B. Then it follows from Lemma 5.4 that the invariant scalar product

B 0 ((X, Y, Z), (X, Y, Z)) = B 0 (X, X) + B 0 (Y, Y ) + B 0 (Z, Z)
defines a normal metric, which is the homogeneous nearly Kähler metric g of scalar curvature scal g = 30.

The canonical almost complex structure on the 3-symmetric space M, corresponding to the 3rd order G-automorphism σ, with σ(k

1 , k 2 , k 3 ) = (k 2 , k 3 , k 1 ), is defined as J(X, Y, Z) = 2 √ 3 (Z, X, Y ) + 1 √ 3 (X, Y, Z).
The (1, 0)-subspace p 1,0 of p C defined by J is isomorphic to the complexified adjoint representation of SU 2 on su C 2 . Let E = C 2 denote the standard representation of SU 2 (notice that E ∼ = Ē because every SU 2 ∼ = Sp 1 representation is quaternionic). Let {ε 1 , ε 2 } denote the canonical basis of R 2 . Then the positive roots of SO 5 are

α 1 = ε 1 , α 2 = ε 2 , α 3 = ε 1 + ε 2 , α 4 = ε 1 -ε 2 , with ρ = 3 2 ε 1 + 1 2 ε 2 .
Let g α ⊂ g C be the root space corresponding to the root α. Then

m C = g α 1 ⊕ g -α 1 ⊕ g α 2 ⊕ g -α 2 , n C = g α 3 ⊕ g -α 3 .
The invariant almost complex structure J may be defined by specifying the (1, 0)subspace p 1,0 of p C :

p 1,0 = {X -iJX | X ∈ p} = g α 1 ⊕ g α 2 ⊕ g -α 3 ,
It follows that J is not integrable, since the restricted root system {α 1 , α 2 , -α 3 } is not closed under addition (cf. [START_REF] Borel | Characteristic classes and homogeneous spaces I[END_REF]). We note that replacing -α 3 by α 3 yields an integrable almost complex structure. This corresponds to the well-known fact that on the twistor space the non integrable almost complex structure J is transformed into the the integrable one by replacing J with -J on the vertical tangent space.

Let C k denote the U 1 -representation on C defined by (z, v) → z k v, for v ∈ C and z ∈ U 1 ∼ = C * . Then, since U 2 = (SU 2 × U 1 )/Z 2 , any irreducible U 2 -representation is of the form E a,b = Sym a E ⊗ C b , with a ∈ N, b ∈ Z and a ≡ b mod 2. As usual let E = C 2 denote the standard representation of SU 2 .
With this notation we obtain the following decomposition of p 1,0 considered as U 2representation

p 1,0 ∼ = E 0,-2 ⊕ E 1,1 with E 0,-2 ∼ = g -α 3 and E 1,1 ∼ = g α 1 ⊕ g α 2 . ( 32 
)
Since p 0,1 is obtained from p 1,0 by conjugation we have p 0,1 ∼ = E 0,2 ⊕ E 1,-1 . The defining U 2 -representation of Λ (1,1) T M is p 1,0 ⊗ p 0,1 , which obviously decomposes into 5 irreducible summands, among which, two are isomorphic to the trivial representation E 0,0 . Considering only primitive (1, 1)-forms we still have to delete one of the trivial summands and obtain Lemma 5.8. The U 2 -representation defining the bundle Λ

(1,1) 0

T M has the following decomposition into irreducible summands

Λ (1,1) 0 p = E 0,0 ⊕ E 1,3 ⊕ E 1,-3 ⊕ E 2,0 . Let V a,b be an irreducible SO 5 -representation of highest weight γ = (a, b) with a, b ∈ N and a ≥ b ≥ 0, e.g. V 1,0 = Λ 1 and V 1,1 = Λ 2 .
The scalar product induced by the Killing form B on the dual t * ∼ = R 2 of the maximal torus of SO 5 is - 1 6 times the Euclidean scalar product. By the Freudenthal formula we thus get

Cas V a,b = γ, γ + 2ρ B = -1 6 (a(a + 3) + b(b + 1)). ( 33 
)
Notice that we have V 1,1 = so C 5 and Cas V 1,1 = -1, which is consistent with Cas G ad = -1. It follows (c.f. Remark 5.1) that all possible ∆-eigenvalues with respect to the metric induced by B 0 are of the form 2(a(a + 3) + b(b + 1)). The eigenvalue 12 is realized if and only if (a, b) = (1, 1). We still have to decide whether the SO 5 -representation V 1,1 actually appears in the decomposition (29) of L 2 (Λ 1,1 0 T M). However this follows from Lemma 5.9. The SO 5 -representation V 1,1 restricted to U 2 ⊂ SO 5 has the following decomposition as U 2 -representation:

V 1,1 ∼ = (E 0,0 ⊕ E 2,0 ) ⊕ (E 0,-2 ⊕ E 1,1 ⊕ E 0,2 ⊕ E 1,-1 )
and in particular

dim Hom U 2 (V 1,1 , Λ 1,1 0 p C ) = 2 and dim Hom U 2 (V 1,1 , C) = 1.
Proof. We know already that V 1,1 = so C 5 is the complexified adjoint representation and that so C 5 = u C 2 ⊕ (p 1,0 ⊕ p 0,1 ). The decomposition of the last two summands is contained in (32). Hence it remains to explicit the adjoint representation of U 2 on u C 2 . It is clear that its restriction to U 1 acts trivially, whereas its restriction to SU 2 decomposes into

C ⊕ su C 2 , i.e. u C 2 ∼ = E 0,0 ⊕ E 2,0 .
The eigenspace of ∆ on primitive (1, 1)-forms for the eigenvalue 12 is thus isomorphic to the sum of two copies of V 1,1 , i.e. the eigenvalue 12 has multiplicity 2 • 10 = 20.

It is now easy to calculate the smallest eigenvalue and the corresponding eigenspace of the Laplace operator ∆ on non-constant functions. We do this for ∆, which coincides with ∆ on functions. Then we have to replace Λ (1,1) 0 p in the calculations above with the trivial representation C and to look for SO 5 -representations V a,b containing the zero weight. It follows from Lemma 5.9 and (33) that the ∆-eigenspace on functions Ω 0 (12) is isomorphic to V 1,1 and is thus 10-dimensional. Since the dimension of the isometry group of the nearly Kähler manifold SO(5)/U 2 is 10, the inequality (26) shows that dim(N K) ≤ dim(Λ (1,1) 0 [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF])dim(i(M))dim(Λ 0 (12)) = 20 -10 -10 = 0, so there are no infinitesimal nearly Kähler deformations in this case neither.

Finally, we remark like before that there are also no other infinitesimal Einstein deformations, since by (33), the eigenvalues 2 and 6 do not occur in the spectrum of ∆ on Λ

(1,1) 0 M. Summarizing, we have obtained the following:

Theorem 5.10. The homogeneous nearly Kähler structure on CP 3 = SO 5 /U 2 does not admit any infinitesimal nearly Kähler or Einstein deformations.

5.6. The ∆-spectrum on the flag manifold F (1, 2). In this section we consider the flag manifold M = SU 3 /T 2 , where T 2 ⊂ SU 3 is the maximal torus. Let g = su 3 and let k = t, the Lie algebra of T 2 . We have the decomposition

g = k ⊕ p and p = m ⊕ n.
Denoting by E ij , S ij are "real and imaginary" part of the projection of the vector X ij ∈ gl 3 (equal to 1 on ith row and jth column and 0 elsewhere) onto su 3 :

E ij = X ij -X ji S ij = i(X ij + X ji ),
the subspaces m and n are explicitly given by m = span{E 

-representations V k,l . The highest weight of V k,l is γ = kε 1 -lε 3 and ρ = ε 1 -ε 3 , thus Cas V k,l = γ, γ + 2ρ B = -1 6 (k(k + 2) + l(l + 2)). ( 35 
)
Here we use again the Freudenthal formula and the fact that the Killing form B induces -1 6 times the Euclidean scalar product on t * ⊂ R 3 (easy calculation). Notice that we have

V 1,1 = su C 3 and Cas V 1,1 = -1
, which is consistent with Cas G ad = -1 as in the previous cases.

It follows that all possible ∆-eigenvalues (with respect to the metric B 0 ) are of the form 2(k(k + 2) + l(l + 2)). Obviously the eigenvalue 12 can only be obtained for k = l = 1. Moreover, the restriction of the SU 3 -representation V 1,1 contains the zero weight space. In fact, from (34), the zero weight appears in V k,l if and only if there exist a, b, c, a

′ , b ′ , c ′ ≥ 0, a+b+c = k, a ′ +b ′ +c ′ = l such that (a-a ′ )ε 1 +(b-b ′ )ε 2 +(c-c ′ )ε 3 = 0, which is equivalent to k = l. We see that dim Hom T 2 (V 1,1 , Λ (1,1) 0 p) = 2 • 2 = 4.
Hence the eigenspace of ∆ on primitive (1, 1)-forms for the eigenvalue 12 is isomorphic to the sum of four copies of V 1,1 , i.e. the eigenvalue 12 has multiplicity 4 • 8 = 32.

Computing the the smallest eigenvalue and the corresponding eigenspace of the Laplace operator ∆ on non-constant functions we find V 0,0 for the eigenvalue 0 and V 1,1 for the eigenvalue 12. All other possible representations give a larger eigenvalue. Hence, the ∆-eigenspace on functions Ω 0 (12) is isomorphic to two copies of V 1,1 , i.e. the eigenvalue 12 has multiplicity 8 • 2 = 16.

Since the dimension of the isometry group of the nearly Kähler manifold SU 3 /T 2 is 8, we obtain from (26)

dim(N K) ≤ dim(Ω (1,1) 0 (12)) -dim(i(M)) -dim(Ω 0 (12)) = 8. (36) 
In the next section we will show by an explicit construction that actually the equality holds, so the flag manifold has an 8-dimensional space of infinitesimal nearly Kähler deformations.

Before describing this construction we note that there are no infinitesimal Einstein deformations other than the nearly Kähler deformations. It follows from (35) that the eigenvalue 2 does not occur in the spectrum of ∆ on Λ (1,1) 0 M. The eigenvalue 6 could be realized on the SU 3 -representations

V = V 1,0 or V = V 0,1 . However it is easy to check that Hom T 2 (V, Λ (1,1) 0 p) = {0}.
Corollary 5.12. Every infinitesimal Einstein deformation of the homogeneous nearly Kähler metric on F (1, 2) = SU 3 /T 2 is an infinitesimal nearly Kähler deformation.

The infinitesimal nearly Kähler deformations on SU 3 /T 2

In this section we describe by explicit computation the space of infinitesimal nearly Kähler deformations of the flag manifold F (1, 2) = SU 3 /T We consider the bi-invariant metric g on SU 3 induced by -B/12, where B denotes the Killing form of su 3 . It is easy to check that |e i | 2 =1 and |h ih j | 2 = 1 with respect to g. We extend this metric to U 3 in the obvious way which makes the frame {e i , √ 2h j } orthonormal. This defines a metric, also denoted by g, on the manifold M = F (1, 2). From now on we identify vectors and 1-forms using this metric and use the notation e ij = e i ∧ e j , etc.

An easy explicit commutator calculation yields the exterior derivative of the leftinvariant 1-forms e i on U 3 : de 1 = -2e 2 ∧ (h 1h 2 ) + e 35 + e 46 , de 2 = 2e 1 ∧ (h 1h 2 ) + e 45e 36 , de 3 = 2e 4 ∧ (h 3h 1 )e 15 + e 26 , de 4 = -2e 3 ∧ (h 3h 1 )e 25e 16 , de 5 = -2e 6 ∧ (h 2h 3 ) + e 13 + e 24 , de 6 = 2e 5 ∧ (h 2h 3 ) + e 14e 23 .

(37) Let J denote the almost complex structure on M = F (1, 2) whose Kähler form is ω = e 12e 34 + e 56 (It is easy to check that ω, which a priori is a left-invariant 2-form on U 3 , projects to M because L h i ω = 0). J induces an orientation on M with volume form -e 123456 . Let Ψ + + iΨ -denote the associated complex volume form on M defined by the ad The pair (g, J) thus defines a nearly Kähler structure on M (a fact which we already knew).

We fix now an element ξ ∈ su 3 ⊂ u 3 , and denote by X the right-invariant vector field on U 3 defined by ξ. Consider the functions x i = g(X, e i ), v i = g(X, h i ).

(39)

The functions v i are projectable to M and clearly v 1 + v 2 + v 3 = 0. Let us introduce the vector fields on U 3 a 1 = x 6 e 5x 5 e 6 , a 2 = x 3 e 4x 4 e 3 , a 3 = x 2 e 1x 1 e 2 .

One can check that they project to M. Of course, one has Ja 1 = x 5 e 5 + x 6 e 6 , Ja 2 = x 3 e 3 + x 4 e 4 , Ja 3 = x 1 e 1 + x 2 e 2 .

The commutator relations in SU 3 yield

dv 1 = a 2 -a 3 , dv 2 = a 3 -a 1 , dv 3 = a 1 -a 2 . (40) 
Using (37) and some straightforward computations we obtain d(Ja 1 ) = (-a 1 + a 2 + a 3 ) Ψ + + 4(v 2v 3 )e 56 , d(Ja 2 ) = (a 1a 2 + a 3 ) Ψ + + 4(v 1v 3 )e 34 , d(Ja 3 ) = (a 1 + a 2a 3 ) Ψ + + 4(v 1v 2 )e 12 .

(41)

We claim that the 2-form ϕ = v 1 e 56v 2 e 34 + v 3 e 12 (42) on M is of type (1,1), primitive, co-closed, and satisfies ∆ϕ = 12ϕ. The first two assertions are obvious (recall that v 1 + v 2 + v 3 = 0). In order to prove that ϕ is coclosed, it is enough to prove that dϕ ∧ ω = 0. Using (38) and ( 40 Taking into account the inequality (36), we deduce at once the following Corollary 6.1. The space of infinitesimal nearly Kähler deformations of the nearly Kähler structure on F (1, 2) is isomorphic to the Lie algebra of SU 3 . More precisely, every right-invariant vector field X on SU 3 defines an element ϕ ∈ N K via the formulas (39) and (42).

Proposition 4 . 2 .

 42 Let ξ be a Killing vector field on M. Then ∆ξ = 10ξ, and ∆Jξ = 18Jξ.

  d * φ = 8ξ and ∆φ = 12φ + 8Jξ Ψ + . Corollary 4.5. The primitive (1, 1)-form ϕ satisfies ∆φ = 12φ.

Proposition 4 . 11 .and d * η = 2λ 3 - 4

 41134 Let f be an ∆-eigenfunction with ∆f = λf Then the primitive (1, 1)-form η := (dJdf ) Jdf.

5 .

 5 then ξ = 0 and f = 0. We apply d * to (27). Using Propositions 4.4 and 4.11 to express the co-differentials of the first two terms we get 8ξ + 8Jdf = 0. (28) Since Jξ is co-closed (Proposition 4.1), formula (28) implies 0 = d * Jξ = d * df = 12f , i.e. f = 0. Plugging back into (28) yields ξ = 0 too. The homogeneous Laplace operator on reductive homogeneous spaces 5.1. The Peter-Weyl formalism.

Remark 5 . 1 .

 51 Notice that the Casimir operator is divided by k if one use the scalar product -kB instead of -B.

Lemma 5 . 5 .

 55 The SU 2 -representation defining the bundle Λ (1,1) 0 T M splits into the irreducible summands Sym 4 E and Sym 2 E.

  T 3 -invariant form (e 2 + iJe 2 ) ∧ (e 4 + iJe 4 ) ∧ (e 6 + iJe 6 ). Explicitly, Ψ + = e 136 + e 246 + e 235e 145 , Ψ -= e 236e 146e 135e 245 . Using (37) we readily obtain d(e 12 ) = -d(e 34 ) = d(e 56 ) = Ψ + , (38) so dω = 3Ψ + , and dΨ -= -2ω 2 .

  ) we compute:dϕ ∧ ω = [(a 2a 3 ) ∧ e 56 -(a 3a 1 ) ∧ e 34 + (a 1a 2 ) ∧ e 12 ] ∧ (e 12e 34 + e 56 ) = (a 1a 2 ) ∧ e 1256 -(a 3a 2 ) ∧ e 1234 + (a 1a 2 ) ∧ e 3456 = 0.Finally, using (41), we get∆ϕ = d * dϕ = - * d * [(a 2a 3 ) ∧ e 56 -(a 3a 1 ) ∧ e 34 + (a 1a 2 ) ∧ e 12 ] = - *d[Ja 2 ∧ e 12 + Ja 3 ∧ e 34 + Ja 3 ∧ e 56 -Ja 1 ∧ e 12 -Ja 1 ∧ e 34 -Ja 2 ∧ e 56 ] = - * [d(Ja 2 ) ∧ (e 12e 56 ) + d(Ja 3 ) ∧ (e 34 + e 56 )d(Ja 1 ) ∧ (e 12 + e 34 )] = - * [(a 1 + a 2 + a 3 ) Ψ + ∧ (e 12e 56 + e 34 + e 56e 12e 34 ) -2(a 2 Ψ + ) ∧ (e 12e 56 ) -2(a 3 Ψ + ) ∧ (e 34 + e 56 ) + 2(a 1 Ψ + ) ∧ (e 12 + e 34 ) +4(v 1v 3 )e 34 ∧ (e 12e 56 ) + 4(v 1v 2 )e 12 ∧ (e 34 + e 56 ) -4(v 2v 3 )e 56 ∧ (e 12 + e 34 )] = - * [4(2v 1v 2v 3 )e 1234 + 4(v 1 + v 3 -2v 2 )e 1256 + 4(2v 3v 1v 2 )e 3456 ] = - * [12v 1 e 1234 -12v 2 e 1256 + 12v 3 e 3456 ] = 12ϕ.

  It remains to compute the Casimir operator of the irreducible SU 3

[START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] 

, S 12 , E 13 , S 13 } = span{e 1 , e 2 , e 3 , e 4 },

  2 . The Lie algebra u 3 is spanned by {h 1 , h 2 , h 3 , e 1 , . . . , e 6 }, whereh 1 = iE 11 , h 2 =iE 22 , h 3 = iE 33 , e 1 = E 12 -E 21 , e 3 = E 13 -E 31 , e 5 = E 23 -E 32 , e 2 = i(E 12 + E 21 ), e 4 = i(E 13 + E 31 ), e 6 = i(E 23 + E 32 ).
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Proof. The defining SU 2 -representation of Λ (1,1) T M is p 1,0 ⊗ p 0,1 ∼ = Sym 2 E ⊗ Sym 2 E ∼ = Sym 4 E ⊕ Sym 2 E ⊕ Sym 0 E from the Clebsch-Gordan formula. Since we are interested in primitive (1, 1)-forms, we still have to delete the trivial summand Sym 0 E ∼ = C.

Since G = SU 2 × SU 2 × SU 2 , every irreducible G-representation is isomorphic to one of the representations V a,b,c = Sym a E ⊗ Sym b E ⊗ Sym c E. The Casimir operator of the SU 2 -representation Sym k E (with respect to B) is - 1 8 k(k + 2) and the Casimir operator of G is the sum of the three SU 2 -Casimir operators. Hence all possible ∆-eigenvalues with respect to the metric B 0 are of the form

for non-negative integers a, b, c. It is easy to check that the eigenvalue 12 is obtained only for (a, b, c) equal to (2, 0, 0), (0, 2, 0) or (0, 0, 2). The restrictions to SU 2 (diagonally embedded in G) of the three corresponding G-representations are all equal to the SU 2representation Sym 2 E, thus dim Hom SU 2 (V 2,0,0 , Λ

(1,1) 0 p) = 1, and similarly for the two other summands. Hence the eigenspace of ∆ on primitive (1, 1)-forms for the eigenvalue 12 is isomorphic to V 2,0,0 ⊕ V 0,2,0 ⊕ V 0,0,2 and its dimension, i.e. the multiplicity of the eigenvalue 12, is equal to 9.

Since the isometry group of the nearly Kähler manifold

We thus have obtained the following Theorem 5.6. The homogeneous nearly Kähler structure on S 3 × S 3 does not admit any infinitesimal nearly Kähler deformations.

Finally we remark that there are also no infinitesimal Einstein deformations neither. In [START_REF] Moroianu | Infinitesimal Einstein Deformations of Nearly Kähler Metrics[END_REF] we showed that the space of infinitesimal Einstein deformations of a nearly Kähler metric g, with normalized scalar curvature scal g = 30, is isomorphic to the direct sum of ∆-eigenspaces of primitive co-closed (1, 1)-forms for the eigenvalues 2, 6 and 12. It is clear from (31) that neither 2 nor 6 can be realized as ∆-eigenvalues.

Corollary 5.7. The homogeneous nearly Kähler metric on S 3 × S 3 does not admit any infinitesimal Einstein deformations.

5.5.

The ∆-spectrum on CP 3 . In this section we consider the complex projective space CP 3 = SO 5 /U 2 , where U 2 is embedded by U 2 ⊂ SO 4 ⊂ SO 5 . Let G = SO 5 with Lie algebra g and K = U 2 with Lie algebra k. We denote the Killing form of G with B. Then we have the B-orthogonal decomposition g = k ⊕ p, where p can be identified with the tangent space in o = eK. The space p splits as p = m ⊕ n, where m resp. n can be identified with the horizontal resp. vertical tangent space at o of the twistor space fibration SO 5 /U 2 → SO 5 /SO 4 = S 4 . We know from Lemma 5.4 that B 0 = - 1 12 B defines the homogeneous nearly Kähler metric g of scalar curvature scal g = 30. n = span{E 23 , S 23 } = span{e 5 , e 6 }.

The dual of the Lie algebra t of the maximal torus T 2 can be identified with

If {ε i } denotes the canonical basis in R 3 then the set of positive roots is given as

Let B denote the Killing form of SU 3 . By Lemma 5.4, B 0 = - 1 12 B defines the homogeneous nearly Kähler metric g of scalar curvature scal g = 30.

The almost complex structure J is explicitly defined on p by J(e 1 ) = e 2 , J(e 3 ) = -e 4 , J(e 5 ) = e 6 .

Alternatively we may define the (1, 0)-subspace of p C :

where g α is the root space for α. It follows that J is not integrable, since the restricted root system {α 12 , α 31 , α 23 } is not closed under addition (c.f. [START_REF] Borel | Characteristic classes and homogeneous spaces I[END_REF]).

Let E = C 3 be the standard representation of SU 3 with conjugate representation Ē. Any irreducible representations of SU 3 is isomorphic to one of the representations

where the right hand side denotes the kernel of the contraction map 

Since the weights of Sym l Ē are just minus the weights of Sym l E, we see that the weights of

From the given definition of the almost complex structure J it is clear that the T 2representation on p 1,0 splits in three one-dimensional T 2 -representations with the weights α 12 , α 31 , α 23 .

Since the weights of a tensor product representation are the sums of weights of each factor and since ε 1 + ε 2 + ε 3 = 0 on the Lie algebra of the maximal torus of SU 3 , we immediately obtain Corollary 5.11. The weights of the T 2 -representation on Λ 1,1 p ∼ = p 1,0 ⊗ p 0,1 are ±3ε 1 , ±3ε 2 , ±3ε 3 , and 0.