The Hermitian Laplace Operator on Nearly Kähler Manifolds
Résumé
The moduli space NK of infinitesimal deformations of a nearly Kähler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1,1) forms. Using the Hermitian Laplace operator and some representation theory, we compute the space NK on all 6-dimensional homogeneous nearly Kähler manifolds. It turns out that the nearly Kähler structure is rigid except for the flag manifold F(1,2)=SU_3/T^2, which carries an 8-dimensional moduli space of infinitesimal nearly Kähler deformations, modeled on the Lie algebra su_3 of the isometry group.
Origine | Fichiers produits par l'(les) auteur(s) |
---|