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Introduction

Lie antialgebras is a new class of algebras with origins in symplectic and contact geometry of Z 2 -graded space [START_REF] Ovsienko | Lie antialgebras[END_REF]. These algebras also have a very simple algebraic definition that consists in a (partial) skew-symmetrization of the associativity condition [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF]. The most interesting example of Lie antialgebra is the conformal Lie antialgebra which is related to conformal field theory (cf. [START_REF] Gieres | Conformally covariant operators on Riemann surfaces (with applications to conformal and integrable models)[END_REF][START_REF] Gargoubi | Supertransvectants and symplectic geometry[END_REF]).

This paper is a survey of the results obtained in [START_REF] Gargoubi | Supertransvectants and symplectic geometry[END_REF][START_REF] Ovsienko | Lie antialgebras[END_REF][START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF][START_REF] Morier-Genoud | Representations of asl 2[END_REF]. We pay a special attention to the notions of representations and cohomology of Lie antialgebras and discuss the relations to Lie superalgebras. We present the detailed explanation of the main definitions and examples, but we omit the technical proofs.

The definition

The following definition is equivalent to the original definition of [START_REF] Ovsienko | Lie antialgebras[END_REF].

Definition 1.1. A Lie antialgebra is a Z 2 -graded vector space a = a 0 ⊕ a 1 equipped with a bilinear product ]., .[ preserving the parity and satisfying the following properties:

1. supercommutativity, i.e., for homogeneous elements x, y ∈ a ]x, y[ = (-1) p(x)p(y) ]y, x[, (1.1) where p is the parity function: p| a 0 = 0 and p| a 1 = 1;

2. a 0 is a commutative associative subalgebra, one has:

]x 1 , ]x 2 , x 3 [[ = ]]x 1 , x 2 [ , x 3 [ for all x i ∈ a 0 ; (1.2)
3. for all x 1 , x 2 ∈ a 0 and y ∈ a 1 , one has:

]x 1 , ]x 2 , y[[ = 1 2 ]]x 1 , x 2 [ , y[ ; (1.3)
4. for all x ∈ a 0 and y 1 , y 2 ∈ a 1 the following Leibniz rule is satisfied: ]x, ]y 1 , y 2 [[ = ]]x, y 1 [ , y 2 [ + ]y 1 , ]x, y 2 [[ ; (1.4) 5. for all y i ∈ a 1 , one has the Jacobi-type identity:

]y 1 , ]y 2 , y 3 [[ + ]y 2 , ]y 3 , y 1 [[ + ]y 3 , ]y 1 , y 2 [[ = 0. (1.5)

Examples

Example 1.2. The first example of a Lie antialgebra (found in [START_REF] Gargoubi | Supertransvectants and symplectic geometry[END_REF]) is the simple infinitedimensional algebra with the basis {e n , n ∈ Z; ℓ m m ∈ Z + 1 2 } and the following relations:

]e n , e m [ = e n+m , ]e n , ℓ i [ = 1 2 ℓ n+i , ]ℓ i , ℓ j [ = 1 2 (i -j) e i+j . (1.6) 
This algebra is called the conformal Lie antialgebra, it is denoted by AK(1). The elements e n span the even part AK(1) 0 , while the elements ℓ m span the odd part AK(1) 1 .

The conformal Lie antialgebra AK( 1) is related to the classical conformal Neveu-Schwarz Lie superalgebra, K(1). Recall that K(1) has the basis x n , n ∈ Z ; ξ i , i ∈ Z + 1 2 subject to the following commutation relations

[x i , x j ] = (j -i) x i+j , [x i , ξ j ] = j -i 2 ξ i+j , [ξ i , ξ j ] = 2 x i+j .
(1.7)

The following result was obtained in [START_REF] Ovsienko | Lie antialgebras[END_REF].

Theorem 1. The conformal algebra K(1) is the algebra of symmetry of AK(1):

K(1) = Der (AK(1)) .
More precisely, the action of K(1) on AK(1) is given by

x n (e m ) = m e n+m , ξ i (e n ) = ℓ i+n . x n (ℓ i ) = i -n 2 ℓ n+i , ξ i (ℓ j ) = (j -i) e i+j , (1.8) 
this action preserves the operation (1.6).

Example 1.3. The most elementary non-trivial example of a Lie antialgebra is of dimension 1|2. It is spanned by the elements {ε; a, b} subject to the following relations:

]ε, ε[ = ε, ]ε, a[ = 1 2 a, ]ε, b[ = 1 2 b, ]a, b[ = 1 2 ε.
This is a simple Lie antialgebra denoted by asl [START_REF] Benamor | Extensions of representations of Lie superalgebras[END_REF]. Note that, for every i ∈ Z + 1 2 , the elements {e 0 ; ℓ i , ℓ -i } of AK(1) generates a subalgebra isomorphic to asl [START_REF] Benamor | Extensions of representations of Lie superalgebras[END_REF]. The Lie antialgebra asl(2) is related to the classical simple Lie superalgebra osp(1|2), namely Der(asl(2)) ∼ = osp(1|2).

The classification of simple finite-dimensional Lie antialgebras over K = C or R was obtained in [START_REF] Ovsienko | Lie antialgebras[END_REF]. The result is precisely the same as for commutative algebras.

Theorem 2. (i) asl(2, C) is the only complex simple finite-dimensional Lie antialgebra;

(ii) there are two real simple finite-dimensional Lie antialgebras: asl(2, R) and asl(2, C) (viewed as a 4|2-dimensional real Lie antialgebra).

A number of examples of finite-dimensional Lie antialgebras is given in [START_REF] Ovsienko | Lie antialgebras[END_REF], let us mention here one of them.

Example 1.4. Consider a family of Lie antialgebras of dimension 1|2 with basis {α; a, b} and the relations ]α,

α[ = 0, ]α, a[ = κ b, ]α, b[ = 0, ]a, b[ = 1 2 α
, where κ is a constant. If κ = 0, then we call it the Heisenberg antialgebra ah 1 , if κ = 0, then the defined Lie antialgebra is a non-trivial deformation of ah 1 .

Origins of Lie antialgebras

We present two different ways to obtain Lie antialgebras. The first one is geometric [START_REF] Ovsienko | Lie antialgebras[END_REF], the second one is purely algebraic [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF].

Lie antialgebras and symplectic geometry

Lie antialgebras first appeared in symplectic geometry.

Consider the space R 2|1 equipped with the standard symplectic form

ω = dp ∧ dq + 1 2 dτ ∧ dτ,
where p and q are even coordinates and τ is an odd coordinate, so that τ 2 = 0. The Poisson bivector field P = ω -1 is given by

P = ∂ ∂p ∧ ∂ ∂q + 1 2 ∂ ∂τ ∧ ∂ ∂τ .
The Lie supergroup of linear symplectic transformations is denoted by OSp(1|2) and the corresponding Lie superalgebra by osp(1|2).

The bivector field P is, of course, OSp(1|2)-invariant. A remarkable fact is that there exists another, odd, invariant bivector field:

Λ = ∂ ∂τ ∧ E + τ ∂ ∂p ∧ ∂ ∂q , (2.1) 
where

E = p ∂ ∂p + q ∂ ∂q + τ ∂ ∂τ
is the Euler vector field. To the best of our knowledge, the bivector field (2.1) was overlooked for years (see however [START_REF] Gieres | Conformally covariant operators on Riemann surfaces (with applications to conformal and integrable models)[END_REF][START_REF] Grozman | Invariant operators on supermanifolds and standard models[END_REF] for its non-explicit forms) and first explicitly written in [START_REF] Gargoubi | Supertransvectants and symplectic geometry[END_REF]. The following statement is proved in [START_REF] Ovsienko | Lie antialgebras[END_REF].

Theorem 3. Every OSp(1|2)-invariant bivector field on R 2 is a linear combination of P and Λ.

The bivector field (2.1) defines an odd bilinear operation on the space of functions on

R 2|1 ]F, G[ = (-1) p(F ) 2 Λ, dF ∧ dG . (2.2)
Since Λ is with linear coefficients, the space of linear functions with the bracket (2.2) form an algebra. It turns out that this algebra is isomorphic to asl(2, K).

The full space of functions on R 2|1 is not a Lie antialgebra. We consider the space, F λ , of homogeneous functions of degree λ, i.e., satisfying the condition

E(F ) = λ F, λ ∈ R
(we allow singularities at p = 0). The bracket (2.2) defines a bilinear map ]., .[:

F λ ⊗ F µ → F λ+µ-1 ,
for instance, the space F 1 is a subalgebra. Choose the following "basis" which is dense in F 1 :

ℓ i = p q p i+ 1 2 , e n = τ q p n (2.
3)

and substitute it to the bracket (2.2).

Proposition 2.1. The functions (2.3) span the conformal Lie antialgebra AK(1).

Note that the even functions ℓ i in (2.3) span the odd part AK(1) 1 while the odd functions e n span AK(1) 0 . This is due to the fact that the bivector Λ is odd, and this is the reason of the term "antialgebra" that we use.

Algebraic definition

Given a vector space E and a bilinear map m : E × E → E, the "associator" (also called the Gerstenhaber product of m with itself, see [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF]) is a tri-linear map defined by

1 2 [m, m] (x 1 , x 2 , x 3 ) := m (m(x 1 , x 2 ), x 3 ) -m (x 1 , m(x 2 , x 3 )) . (2.4) 
The condition [m, m] = 0 is satisfied if and only if A = (E, m) is an associative algebra. Consider the case where E is split into a sum of two subspaces:

E = V ⊕ W
and the bilinear map m restricted to V and W satisfies the following conditions

m : V × V → V is symmetric, m : V × W → W, m | W ×V ≡ 0, m : W × W → V is skew-symmetric.
(2.5)

The following observation was done in [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF]. The construction is as follows. Let us use the notation: x i ∈ V and y j ∈ W , and consider the following terms

[m, m] (x 1 , x 2 , x 3 ) , [m, m] (x 1 , x 2 , y) , [m, m] (x, y 1 , y 2 ) , [m, m] (y 1 , y 2 , y 3 ) ,
of the Gerstenhaber product (i.e., the terms with y never standing to the left of x). Skewsymmetrize the equation [m, m] = 0 in y-variables, the above four terms then explicitly read:

m (m(x 1 , x 2 ), x 3 ) -m (x 1 , m(x 2 , x 3 )) = 0, (2.6) m (m(x 1 , x 2 ), y) -m (x 1 , m(x 2 , y)) = 0, (2.7) 1 2 m (m(x 1 , y 1 ), y 2 ) -1 2 m (m(x 1 , y 2 ), y 1 ) -m (x 1 , m(y 1 , y 2 )) = 0, (2.8) 
m (m(y 1 , y 2 ), y 3 ) + cycle = 0 (2.9) (note that m (y i , m(y j , y k )) in the last term vanish by assumption (2.5)).

Define the following operation on E:

]x 1 , x 2 [ := 2 m(x 1 , x 2 ), ]x, y[ = ]y, x[ := m(x, y), ]y 1 , y 2 [ := m(y 1 , y 2 ).
(2.10)

One then checks by a very simple computation that the identities (2.6)-(2.9) are equivalent to the identities (1.2)-(1.5) of Lie antialgebra.

Remark 2.2. The above construction suggests a generalization of the notion of Lie antialgebra, cf. [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF]. More precisely, one can relax the symmetry condition for the map m| V ×V in (2.5). In other words, one can assume in Definition 1.1 that the subalgebra a 0 in this case is associative but not necessarily commutative.

Relation to Lie superalgebras

There is a philosophical (or rather folklore) expression: "a Lie superalgebra is but a square root of a Lie algebra". We argue that a Lie antialgebra is but a "square root" of a Lie superalgebra.

More precisely, to an arbitrary Lie antialgebra, we associate a Lie superalgebra that plays an important rôle in the sequel. Given a Lie antialgebra a, consider the Z 2 -graded space g a = (g a ) 0 ⊕ (g a ) 1 , where 1. (g a ) 0 = a 1 ⊙ a 0 a 1 , is the symmetric tensor square S 2 a 1 over a 0 , i.e., consists of elements of the form (a ⊗ b + b ⊗ a)/ ∼ where a, b ∈ a 1 and where the equivalence is defined by ]α, a[⊗b

∼ a⊗]α, b[ for α ∈ a 0 ; 2. (g a ) 1 = a 1 .
The Lie bracket on g a is defined by

[a ⊙ b , c ⊙ d] = Sym (a,b),(c,d) (]a, ]b, c[[ ⊙ d -]c, ]d, a[[ ⊙ b) , [a ⊙ b , c] = ]a, ]b, c[[ + ]b, ]a, c[[ , [a , b] = (a ⊗ b + b ⊗ a) / ∼ , (2.11) 
where Sym (a,b),(c,d) is the symmetrisation in the pairs (a, b) and (c, d).

Theorem 5. The space g a endowed with the bracket (2.11) is a Lie superalgebra.

For example, g asl(2) = osp(1|2) and g AK(1) = K(1) coincide with the respective algebras of derivations. (in general this is not the case).

Representations of Lie antialgebras

The notion of representation of a Lie antialgebras is one of the most important. It helps to better understand their nature and will hopefully be useful for applications.

Definition and main example

Consider a Z 2 -graded vector space V = V 0 ⊕ V 1 and the following "anticommutator" on End(V ):

]X, Y [ := X • Y + (-1) p(X)p(Y ) Y • X, (3.1) 
where p is the parity function on End(V ) and X, Y ∈ End(V ) are homogeneous (purely even or purely odd) elements. The sign rule in (3.1) is opposite to that of the usual commutator. Let us stress that the full space End(V ) is not a Lie antialgebra.

A representation of the Lie antialgebra a is an even linear map χ :

a → End(V ) such that ]χ x , χ y [ = χ ]x,y[ , (3.2) 
for all x, y ∈ a, cf. [START_REF] Ovsienko | Lie antialgebras[END_REF].

Theorem 6. Every representation of a Lie antialgebra a extends to a representation of the corresponding Lie superalgebra g a .

The representation of the even elements of (g a ) is given by the operator

X a⊙b := [X a , X b ] = χ a • χ b + χ b • χ a , a, b ∈ a 1 ,
which is the usual commutator of χ a and χ b , the odd elements are represented by χ itself.

Remark 3.1. The anticommutator (3.1) coincides for odd X, Y with so-called twisted adjoint action, see [START_REF] Arnaudon | On Casimir's ghost[END_REF]. One can say that Lie antialgebra structure arises from this twisted adjoint action extended to the even part of End(V ).

Example 3.2. Consider a 1|1-dimensional space (i.g., C 1|1 , R 1|1 or S 1|1 ) with coordinates (x, ξ). Fix an odd vector field

D = ∂ ∂ξ + ξ ∂ ∂x ,
sometimes called the "SUSY-structure". It turns out that the map from AK(1) to the space of vector fields proportional to D

χ(ℓ i ) = x i+ 1 2 D, χ(e n ) = ξ x n D. (3.3)
is a representation. The corresponding representation of the conformal Lie superalgebra K(1) is given by the contact vector fields:

X h = h(x, ξ) ∂ ∂x + 2 D (h(x, ξ)) D,
where h(x, ξ) = h 0 (x) + ξ h 1 (x) is a (polynomial) function.

Representations of asl 2

Representations of the Lie antialgebra asl(2) were studied in [START_REF] Morier-Genoud | Representations of asl 2[END_REF]. One of the most interesting results of this work is a close relation to so-called ghost Casimir element of the universal enveloping algebra U (osp(1|2)), see [START_REF] Arnaudon | On Casimir's ghost[END_REF][START_REF] Gorelik | On the ghost centre of Lie superalgebras[END_REF]. A representation of asl(2) in a Z 2 -graded space V = V 0 ⊕ V 1 is given by one even operator E ∈ End(V ) 0 and two odd operators A, B ∈ End(V ) 1 satisfying the relations

AB -BA = E AE + EA = A BE + EB = B E 2 = E. (3.4)
These relations almost coincide with the canonical Heisenberg relation AB -BA = Id, except that E = Id in our situation. It is, indeed, shown in [START_REF] Morier-Genoud | Representations of asl 2[END_REF] that, up to equivalence,

E | V 0 = 0, E | V 1 = Id
and deduced that asl(2) has no non-trivial finite-dimensional representations.

According to Theorem 6, every representation of asl( 2) is naturally a representation of the Lie superalgebra osp(1|2). The generators of this algebra are: A, B together with

E = A 2 , F = -B 2 , H = -(AB + BA).
The following result determines the class of representations of osp(1|2) that also support an asl(2)-action.

Theorem 7. There is a one-to-one correspondence between representations of asl(2) and representations of osp(1|2) such that

Γ 2 = 1 4 Id, (3.5) 
where Γ is the action of the ghost Casimir element.

Recall that the ghost Casimir element Γ ∈ U (osp(1|2)) is an invariants of the twisted adjoint action, its action in an arbitrary representation is given by

Γ = AB -BA -1 2 Id.
The above theorem can be deduced follows from the last relation (3.4). Another result of [START_REF] Morier-Genoud | Representations of asl 2[END_REF] is a classification of an interesting class of irreducible infinite-dimensional representations of asl(2) called the weighted representations. This class of representations is related to the Harish-Chandra modules over osp(1|2), see [START_REF] Benamor | Extensions of representations of Lie superalgebras[END_REF]. The following result is particularly nice. Many examples of representations of asl(2) are given by formula (3.3) with n = 0.

Cohomology of Lie antialgebras

Cohomology theory of Lie antialgebras was developed in [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF]. It is based on the classical ideas of Gerstenhaber [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF] and Nijenhuis-Richardson [START_REF] Nijenhuis | Deformations of Lie algebra structures[END_REF] and uses graded Lie algebras as the main tool.

The notion of module

Surprisingly, the notion of module over a Lie antialgebra [START_REF] Ovsienko | Lie antialgebras[END_REF] is completely different from that of representation. Definition 4.1. Given a Lie antialgebra a, a vector space B is called an a-module if the space a ⊕ B is equipped with a Lie antialgebra structure satisfying the following properties:

1. the subspace a ⊂ a ⊕ B is a subalgebra isomorphic to the initial Lie antialgebra, while B ⊂ a ⊕ B is an abelian (trivial) subalgebra; The Lie antialgebra structure on a ⊕ B is given by

(a, b), (a ′ , b ′ ) = ]a, a ′ [, ρ a b ′ + (-1) σ(a ′ )σ(b) ρ a ′ b .
It is called a semi-direct product and is denoted by a ⋉ B. The dual space a * is an a-module, the map ρ being given by ρ a = (-1) p(a) ad * a .

Note that neither ad nor ad * is a representation.

Combinatorial formula of the coboundary map

Given a Lie antialgebra a and an a-module B, for all p, q = 0, 1, 2, . . . we define the space, C p,q (a; B), of multi-linear maps

ϕ : (a 0 ⊗ • • • ⊗ a 0 ) p ⊗ (a 1 ∧ • • • ∧ a 1 ) q → B, (4.1) 
skew-symmetric on a 1 and arbitrary on a 0 . Such a map is called a (p, q)-cochain. We also consider the following space:

C k (a; B) = q+p=k C (q,p) (a; B)
that we call the space of k-cochains.

The coboundary operator δ k : C k (a; B) → C k+1 (a; B) is defined as a sum of three operators:

δ k = δ k 1,0 + δ k 0,1 + δ k -1,2 , (4.2) 
where δ k i,j : C p,q (a; B) → C p+i,q+j (a; B) for p + q = k. The operators δ k 1,0 , δ k 0,1 and δ k -1,2 are given by the following explicit formulae. If q = 0, then δ 1,0 is the standard Hochschild differential. If q = 0, then (δ k 1,0 ϕ)(x 1 , . . . , x p+1 ; y 1 , . . . , y q ) = m (x 1 , ϕ(x 2 , . . . , x p+1 ; y 1 , . . . , y q )) + p i=1 (-1) i ϕ(x 1 , . . . , x i-1 , m(x i , x i+1 ), x i+2 , . . . , x p+1 ; y 1 , . . . , y q ) + 1 q q j=1 (-1) p+j ϕ(x 1 , . . . , x p ; m(x p+1 , y j ), y 1 , . . . , y j , . . . , q ). where

C k =      1 q+1 , if ϕ is with values in W and p = 0, 2 q+1 , if ϕ is with values in W and p = 0, 1, if ϕ is with values in V . (δ k -1,2 f )(x 1 , . . . , x p-1 ; y 1 , . . . , y q+2 ) = 1≤i<j≤q+2 
(-1) p+i+j+1 ϕ(x 1 , . . . , x p-1 , m(y i , y j ) ; y 1 , . . . , y i , . . . , y j , . . . , y q+2 ).

(note that, to simplify the expression, we use the bilinear map m instead of the Lie antialgebra product ]., .[, see formula (2.10)).

The following statement is a main result of [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF].

Theorem 9. The operator (4.2) satisfies the equation δ k+1 • δ k = 0.

Unfortunately, the above formula is quite complicated. Some of the terms are similar to the Hochschild differential of associative algebras, while some other terms are rather similar to the Chevalley-Eilenberg differential of Lie algebras.

The space ker(δ k ) is called the space of k-cocycles and the space im(δ k-1 ) the space of kcoboundaries. We define the cohomology of a Lie antialgebra a with coefficients in an a-module B in a usual way:

H k (a; B) = ker(δ k )/im(δ k-1 ).
It has two subspaces, H k ev (a; B) and H k odd (a; B), of even and odd cohomology. In the case, where B is a trivial module, the coboundary map δ k simplifies. One has δ 0,1 = 0 and the following relations

δ 1,0 2 = 0, δ -1,2 2 = 0, δ 1,0 • δ -1,2 + δ -1,2 • δ 1,0 = 0.
One therefore obtains a structure of bicomplex with two commuting differentials.

Lower degree cohomology, examples

As in the usual Lie case, the cohomology classes of lower degree have an algebraic interpretation. It is conjectured in [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF] that the cohomology with trivial coefficients of a Lie antialgebra a alway vanishes provided the subalgebra a 0 contains the unity.

In the infinite-dimensional case, only a few examples of non-trivial cohomology classes are known [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF]. We understand the above cocycle as analog of the famous Gelfand-Fuchs cocycle related to the Virasoro algebra. Another non-trivial cohomology class similar to the Godbillon-Vey class is also constructed in [START_REF] Lecomte | Ovsienko Lie antialgebras II: Cohomology and graded Lie algebras[END_REF].

It would be interesting to investigate applications of Lie antialgebra cohomology in geometry and topology.

Theorem 4 .

 4 The Lie antialgebra structure is a result of skew-symmetrization of the equation [m, m] = 0 in the elements of W .

Theorem 8 .

 8 The Lie antialgebra asl(2) has exactly one highest weight representation and exactly one lowest weight representation.

2 .

 2 the natural projection a ⊕ B → a is a homomorphism of Lie antialgebras. It follows that for a ∈ a and b ∈ B, one has ]a, b[∈ B, so that one defines a linear map ρ : a → End(B) defined by ρ a (b) =]a, b[, a ∈ a, b ∈ B.

Example 4 . 2 .

 42 (a) The Lie antialgebra a itself is an a-module with ρ = ad. (b)

(- 1 )

 1 ϕ)(x 1 , . . . , x p ; y 1 , . . . , y q+1 ) = C k q+1 j=1 p+j m (ϕ(x 1 , . . . , x p ; y 1 , . . . , y j , . . . , y q+1 ), y j )(4.4) 

Proposition 4 . 3 .. 6 ) 4 . 4 .

 43644 The space H 1 ev (a, B) describes extensions of the a-module structure on B. Indeed, let c : a → B be a 1-cocycle on a with values in B, consider the space B = B ⊕ K. Define the following linear map ρ : a → End( B) byρ a (b, λ) = (ρ a b + λ c(a), 0) . (4PropositionThe space H 2 ev (a, B) classifies the extensions of a with coefficients in B; trivial modules correspond to central extensions.Almost no information is available about the cohomology of concrete Lie antialgebras. The following example concerns the simplest possible case.

Example 4 . 5 .

 45 Cohomology of asl(2) with trivial coefficients is trivial.

Theorem 10 .

 10 The linear map γ : AK(1) → AK(1) * given byγ(e n ) = -n e * -n , γ(ℓ i ) = ℓ 2 -1 4 ℓ * -n ,is a non-trivial 1-cocycle on AK(1).
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