
HAL Id: hal-00325959
https://hal.science/hal-00325959v1

Submitted on 28 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multiscale domain decomposition for the simulation of
a non smooth structure, involving a numerical

homogenization
Damien Iceta, Pierre Alart, David Dureisseix

To cite this version:
Damien Iceta, Pierre Alart, David Dureisseix. A multiscale domain decomposition for the simulation
of a non smooth structure, involving a numerical homogenization. 18th International Conference
on Domain Decomposition Methods - DD18, Jan 2008, Jerusalem, Israel. �10.1007/978-3-642-02677-
5_10�. �hal-00325959�

https://hal.science/hal-00325959v1
https://hal.archives-ouvertes.fr


A Multilevel Domain Decomposition Solver Suited to

Nonsmooth Mechanical Problems

Damien Iceta, Pierre Alart, and David Dureisseix
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1 Introduction

A particular class of mechanical systems concerns diffuse non smooth problems for

which unilateral conditions may occur within the whole studied domain. For in-

stance, when contact and friction occur as interactions between a large number of

bodies, such as for granular media, or with tensegrity structures, [14], when cable

slackening may occur on the whole structure.

When such large scale structures are studied, their numerical simulation may take

advantage of using domain decomposition (DD) solvers. We do not consider here an

outer loop for dealing with non linearities and non smoothness that lead to a series

of linear problems, each of them being solved with a classical DD solver as a black

box, but we focus on algorithms that allow us to tackle the non smoothness issue at

the subdomain level, with a single iterative loop. Such approaches have already be

designed for mechanical assemblings with a limited number of unilateral conditions,

[5, 6, 7], or for multicontact situations, [1, 2, 3, 4, 12, 15].

We consider in this article approaches suited to multicontact cases, that focus

on the non smooth interactions by solving them locally on the one hand, and by

solving the global equations on the other hand, iteratively. Among these, one may

consider the LArge Time INcrement (LATIN) approaches, [2, 12, 15], that embed

a multiscale aspect to derive an scalable DD method, and the Non Smooth Contact

Dynamics (NSCD) approaches, genuinely designed for granular media, [10, 13].

Herein, we proposed an approach based on the Gauss-Seidel (or more precisely

Jacobi for parallelization purposes) interpretation, [11], of the NSCD method, em-

bedding the same multiscale description used in the LATIN method, and we design

the solver in the case of a tensegrity grid steady-state simulation.

2 A Multiscale Description

With a given discretized structure (for instance, with finite element for an elastic

problem on a continuum domain, of directly on the equilibrium equations of a truss-



like elastic problem), there are at least two choices for a partitioning into substruc-

tures. On the one hand, one can split the nodes into different sets, leading to an

interface between two substructures composed by elements linking the nodes of the

two corresponding sets. On the other hand, one can split the elements into differ-

ent sets, leading to an interface defined as shared nodes. The interface behavior is

therefore either the behavior of the shared elements (that may be nonlinear), or the

behavior of the shared nodes. In this last case, unless if unilateral conditions occur at

the interface, [5, 7, 12], the behavior is linear, [3, 15].

This last case is chosen herein. Once the substructuring is performed and the

interfaces between each pair of connected substructures are defined, the multiscale

description is performed at the interface level. For the quasi-static or steady-state

problems we are concerned herein, two dual fields are involved on each interface:

the trace of the substructure displacement, and the forces acting on the interface

from the neighboring substructures. In the case of discrete structures, the interface is

a set of nodes, Figure 1, and the displacement field V on the interface is split into a

macro part (denoted with superscript M) and a micro part (denoted with a superscript

m): V = V M +V m. The macro part is chosen as the average translation, rotation and

extension in the average plane of the interface, [15]. Therefore, it can be defined

with a small number of parameters (9 values per interface in 3D case) stored in a

small vector w: V M = Pw, where P stores the basis vectors of macro space. The dual

field, i.e. the forces on interface, is split in a similar way: F = FM +Fm. The macro

part is also defined with the same small number of parameters, here, the dual macro

quantities f , and we chose the basis macro functions such as FM = P f and PT P is

the identity matrix.

Fig. 1. Element oriented partitioning (left) and perfect discrete interface between the substruc-

tures (right).

3 Preliminary: Linear Elastic Case

Substructure Behavior. If we consider a single substructure E, the actions of its

neighboring interfaces are the forces −FEΓ and the displacement on the boundary

VEΓ . The subscript EΓ is used to denote the assembly of the local interfaces of the

substructure E. The corresponding balance equation is



1

Fd
E −FE −CT

EΓ FEΓ = 0, (1)

where CEΓ is a boolean mapping matrix that selects the trace on the local interfaces,

Fd
E are the prescribed external forces, and FE are the internal forces. For an elastic

media, the internal forces can be expressed with the nodal displacement VE via the

stiffness matrix: FE = KEVE .

To prescribe the force equilibrium on each interface, the local forces FEΓ can

be derived from a single field on the global interface (the gathering of all local

interfaces) FΓ with a signed boolean matrix BE as for dual approaches, [8, 9]:

FEΓ = BEFΓ . The dual quantity, the trace of displacement on the local interfaces

is: VEΓ = CEΓ VE .

Interface Behavior. Once the equilibrium of forces on the interfaces is automat-

ically satisfied, their perfect behaviors lead to a displacement continuity:

∑
E

BT
EVEΓ = 0 (2)

Solution Algorithm. The balance equation (1) for the substructure E can be recast

as:

KEVE +CT
EΓ BEFΓ = Fd

E (3)

The first step to design the proposed approach is to condense the information on

the interfaces. For sake of simplicity, we consider here that the stiffness matrix KE

is invertible. If this is not the case, for floating substructures for instance, the same

procedure can be derived, provided that a suited generalized inverse is used. The

gluing condition (2), using (3) to eliminate the internal degrees of freedom, reads:

XFΓ = F̃d (4)

with F̃d = ∑E BT
ECEΓ K−1

E Fd
E and X = ∑E BT

ECEΓ K−1
E CEΓ

T BE

In order to solve this problem, we propose a stationary iterative method based on

the splitting of the global operator X into X = XD− (XD−X). Different choices can

be selected to split X (Jacobi, Gauss-Seidel...), that lead to different algorithms. In

each case, the iterate number i+1 consists in solving: XDF i+1
Γ = F̃d− (X−XD)F i

Γ ,

or when developping F̃d :

XD(F i+1
Γ −FΓ

i) = ∑
E

BT
ECEΓ V i

E (5)

with KEV i
E = Fd

E −CT
EΓ BEF i

Γ .

Splitting Choice. X is a dense operator coupling all the degrees of freedom on the

global interface. XD is similar to a preconditioner, or a search direction. Choosing

for instance a ‘lumped’ approximation on the local interfaces on each subdomain

leads to (XD)−1 = ∑E BT
E(CEΓ KECT

EΓ )BE . An even simpler version uses a constant

scalar stiffness d as: (XD)−1 = ∑E BT
EdIEΓ BE , where IEΓ is the identity matrix on the

boundary degrees of freedom of the subdomain E. In such a case, due to the fact that

the global interface is merely the gathering of all the local interfaces, ∑E BT
EBE =



2IEΓ and (XD)−1 = 2d IΓ . Applying (XD)−1 to a vector simply leads to explicit and

local computations on each interface independently.

Multiscale Approach. Up to this point, no multilevel feature is involved in the

previous algorithm. To do so, the micro-macro description of Section 2 should be

used. We propose here to enforce the continuity of the macro displacement and the

equilibrium of the macro forces at each iteration, while it is satisfied previously only

when the solution has converged. Therefore, for the interfaces connected to each sub-

structure E, the macro generalized forces are supposed to be extracted from a unique

macro vector defined on the global interface: fEΓ = cE fΓ , where cE is a signed

boolean matrix selecting the entries in fΓ . The dual quantity is the gap of macro

displacements on interfaces wΓ = ∑E cT
EwEΓ . The macro displacement continuity on

interfaces gives wΓ = 0, which reads:

∑
E

cT
EPT

EΓ CEΓ VE = 0 (6)

This constraint is therefore to be prescribed at each iteration for the displacement

field V i
E in (5), for which fΓ is the associated Lagrange multiplier. Therefore, the

displacement V i
E is now obtained by solving:

{
KEVE = Fd

E −CT
EΓ BEFΓ −CT

EΓ PEΓ cE fΓ

∑E cT
EPT

EΓ CEΓ VE = 0
(7)

The local condensation on fΓ for each substructure, and the assembly in (6) leads

to the macroscopic (coarse) problem:

LΓ fΓ = ∑
E

cT
EPT

EΓ CEΓ K−1
E (Fd

E −CT
EΓ BEFΓ ) (8)

with LΓ = ∑E cT
EPT

EΓ CEΓ K−1
E CT

EΓ PEΓ cE which is explicitly assembled to maintain

the globality of the coarse problem. The size of LΓ corresponds to the number of

macro degrees of freedom involved in the coarse problem.

With a given approximation of the solution (F i
Γ ,V i

E , f i
Γ ), one iteration provides

the update (F i+1
Γ ,V i+1

E , f i+1
Γ ):

• During the ‘local stage’, F i+1
Γ is computed using (5), locally on each interface:

F i+1
Γ = (XD)−1 ∑

E

BT
ECEΓ V i

E +FΓ
i (9)

• During the ‘coarse step’, the macro problem is solved to get f i+1
Γ

LΓ f i+1
Γ = ∑

E

cT
EPT

EΓ CEΓ K−1
E (Fd

E −CT
EΓ BEF i+1

Γ ) (10)

• During the ‘global step’ per subdomain E independently, V i+1
E is updated by

solving:

KEV i+1
E = Fd

E −CT
EΓ BEF i+1

Γ −CT
EΓ PEΓ cE f i+1

Γ (11)



4 Nonsmooth Case: a Tensegrity Grid

Tensegrity Structures. Tensegrity systems are reticulated spatial structures consti-

tuted with rectilinear elements such as ‘cables’ or ‘bars’, [14]. Bars are subjected to

compression loading, while cables are subjected to traction loading. Joining elements

are perfect articulations called ‘nodes’. These systems allow for selfstressed states,

i.e. stress states that satisfy the equilibrium without external loading. These stress

states are mandatory to ensure the overall structure rigidity. The reference problem

is herein related to the static behavior of such a structure, with a small perturbation

assumption.

Model of a Tensegrity Structure. In the case of a tensegrity structure, the equilib-

rium (1) remains identical, but the internal forces arise from the internal tension (or

compression) rE in the elements (or the links) that constitute the structure: the cables

(with a superscript c) or the bars (with a superscript b)

FE = HErE = Hc
Erc

E +Hb
Erb

E (12)

where HE is a mapping from the link set to the node set.

Additionally, the trace of nodal displacement VEΓ = CEΓ VE remains identical,

but we add the length variation of the links, eE as the dual quantity of the strength

rE :

eb
E = Hb

E

T
VE and ec

E = Hc
E

TVE (13)

The interface behavior (2) holds again, but the constitutive relations of the links

are a linear elastic behavior for the bars,

rb
E + rb

E

0
= kb(e

b
E + eb

E

0
), (14)

and a nonsmooth complementary condition for the cables, [15],

0≤ τc
E ⊥ λ c

E ≥ 0 (15)

where τc
E = rc

E + rc
E

0 and λ c
E = −ec

E + k−1
c rc

E = −(ec
E + ec

E
0) + k−1

c (rc
E + rc

E
0). The

superscript 0 denotes the prestress or prestrain that have to be initially prescribed for

the structure to exhibit stiffness.

Multiscale Solver. With (12), (13), (14) and (15), the equilibrium reads:

KEVE +CT
EΓ BEFΓ +Hc

Ekcλ c
E = F̃d

E , (16)

with the stiffness matrix of the underlying truss KE = Hb
EkbHb

E

T
+Hc

EkcHc
E

T , and the

given right hand side F̃d
E = Fd

E −Hb
Ekbeb

E

0
.

As for the linear case, the first step consists in condensing the problem on the

local interface quantities, but keeping the variable λ c
E traducing the nonsmooth inter-

action as an unknown, using (16) and (2):

XFΓ +∑
E

BT
ECEΓ K−1

E Hc
Ekcλ c

E = ∑
E

BT
ECEΓ K−1

E F̃d
E , (17)



with X = ∑E BT
ECEΓ K−1

E CEΓ
T BE .

Additionally, one must keep the local nonsmooth relationship traducing the be-

havior of the cables: condensing the equilibrium (1) on cable quantities, while keep-

ing the constitutive equation (15) leads to the Linear Complementary Problem (LCP)

with (λE ,τE) as unknowns (and parametrized by FΓ ):

{
WEλ c

E − τc
E =−Hc

E
T K−1

E F̃d
E +Hc

E
T K−1

E CT
EΓ BEFΓ − rc

E
0

0≤ τc
E ⊥ λ c

E ≥ 0
(18)

where WE = kc IE − kcHc
E

T K−1
E Hc

Ekc (IE is the identity matrix), is the linear part of

the relationship, [15].

As for the linear case, the left hand side X is split, and so is the (local per subdo-

main) operator WE : WE = W D
E − (W D

E −WE). The proposed algorithm iterates both

on interface forces FΓ and on the nonsmooth pair of variables (λE ,τE). Knowing

quantities with a superscript i, one iteration will give the update, with superscript

i+1, such as:

{
W D

E λ i+1
E − τ i+1

E = W D
E λ i

E − kcλ i
E − kcHc

E
TV i

E − rc
E

0

0≤ τ i+1
E ⊥ λ i+1

E ≥ 0
(19)

for the nonsmooth part, and (5), that remains unchanged, for the interface part, where

V i
E satisfies KEV i

E = F̃d
E −CT

EΓ BEF i
Γ −Hc

Ekcλ i
E .

Splitting Choice. WE is a global operator on each subdomain. Choosing a di-

agonal W D
E leads to independant LCP on each cable; for instance, one can select

W D
E = kc IE . Other choices are obviously possible.

This constitutes the monolevel algorithm, whose multilevel version is obtained

with a similar procedure as already done for the linear case. With a given approxi-

mation of the solution (F i
Γ ,V i

E ,λ i
E ,τ i

E , f i
Γ ), one iteration provides the update:

• During ‘local stage’, F i+1
Γ is computed locally on each interface:

F i+1
Γ = (XD)−1 ∑

E

BT
ECEΓ V i

E +F i
Γ (20)

and (λ i+1
E ,τ i+1

E ) is computed locally on each subdomain E by solving the nons-

mooth but local problem:

{
W D

E λ i+1
E − τ i+1

E = W D
E λ i

E − τ i
E

0≤ τ i+1
E ⊥ λ i+1

E ≥ 0
(21)

• During the ‘coarse step’, the macro multiplier f i+1
Γ is obtained by solving the

coarse problem:

LΓ f i+1
Γ = ∑

E

cT
EPT

EΓ CEΓ K−1
E (Fd

E −CT
EΓ BEF i+1

Γ −Hc
Ekcλ i+1

E ) (22)



• During the ‘global step’ per subdomain E independently, V i+1
E is updated by

solving:

KEV i+1
E = F̃d

E −CT
EΓ BEF i+1

Γ −CT
EΓ PEΓ cE f i+1

Γ −Hc
Ekcλ i+1

E (23)

At to this point, the algorithm is on its way to be tested and compared with

previous algorithm based on a LArge Time INcrement approach, [15].

5 Conclusions

The proposed method constitutes a first attempt to combine a multilevel Domain

Decomposition technique with a Non Smooth Gauss-Seidel (NSGS) type algorithm.

The NSGS algorithm is classically associated with the Non Smooth Contact Dynam-

ics approach and provides a robust solver for the simulation of dense granular media

involving not only unilateral contact but also frictional contact or more general local-

ized interactions. The multilevel DD technique ensures the scalability of the solver

to deal with large-scale mechanical systems. Moreover the multiscale approach may

allow replacing the fine description of some subdomains by their homogenized be-

havior under additional assumptions. The simulation cost of large-scale systems as

granular media may be drastically decreased. For that the previous solver may be ex-

tended to dynamical problems without conceptual difficulty. Nevertheless the mean-

ing of the homogenized coarse problem has to be investigated. From a computational

viewpoint the chosen formulation, close to the FETI approach, suggests to replace

the stationary iterative method by a conjugate gradient algorithm. The projected con-

jugate gradient method developed in [16] for granular media in sub domains would

be usefully combined with the conjugate gradient algorithm of the standard FETI

method for solving the interface problem in linear problems. Such a combination

may provide a more efficient solver even if the non smoothness does not preserve

the conjugating property from one iteration to the following one. A large range of

numerical tests have to be performed to validate this strategy.
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