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Abstract. Partitioning strategies usually focus on interaction between subsys-
tems. They are good candidates to model couplings at different spatial or time
scales. A mechanism for the information transfer between subsystems and / or
between scales is therefore required. Herein, we propose examples of a subdo-
main gluing with different spatial scales, and of a poroelastic coupling featuring
different time scales. For the first part, the developed tools arise from a collab-
oration with P. Ladevèze (LMT-Cachan) and P. Alart (LMGC); for the second
one, with H. Bavestrello (Stanford University) and D. Néron (LMT-Cachan).
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Résumé. Les techniques de partitionnement, qui mettent en avant les interac-
tions entre sous-systèmes, sont de bons candidats pour modéliser les couplages,
en particulier en présence d’échelles spatiales ou temporelles différentes. Un
mécanisme de transfert d’informations entre ces sous-systèmes, ou ces modélisa-
tions, est alors nécessaire. Nous présentons ici des exemples, tout d’abord
pour un couplage entre échelles spatiales différentes, décrit dans le cadre d’une
décomposition de domaine, puis pour un couplage poroélastique avec la prise
en compte d’échelles temporelles différentes, Dans le premier cas, les outils
présentés ci-après sont le fruit d’une collaboration avec P. Ladevèze (LMT-
Cachan) et P. Alart (LMGC) ; dans le second cas, avec H. Bavestrello (Stanford
University) et D. Néron (LMT-Cachan).

This is an Accepted Manuscript of an article published by Taylor & Fran-
cis in European Journal of Computational Mechanics 17(5-6-7):807-818, 2008,
available online: http://www.tandfonline.com/10.3166/remn.17.807-818
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1



1 Introduction

Improvement of the fidelity and prediction ability of numerical models often
leads to an increase in simulation accuracy (and problem size), complexity of
the constitutive relations (number of internal variables), or to take into account
couplings between several physics (number of involved fields).

The simulation of such models requires the development of suited computa-
tional strategies. Amongst others, partitioning methods offer a large flexibility,
an improved code durability, and an easier maintenance and evolution (for in-
stance with code coupling). The partitioning can be geometric, for instance with
domain decomposition, or between physics, for instance for fluid / structure in-
teraction problems. These approaches focus on interactions between subsystems
and often lead to isolate their treatment from the behavior of the subsystems
themselves for which adequate techniques can be used in a modular fashion.

Usually, the reference coupled problem exhibits several scales (spatial or
temporal ones) in the solution. A partitioning technique may take this fact into
account for improving its efficiency or its practical implementation. Herein, we
discuss two examples falling into this category: (i) the coupling between subdo-
mains with different spatial scales, (ii) the coupling between different physics,
with different time scales.

2 Gluing spatial multiscale fields with domain
decomposition

The spatial geometric partitioning arising from a non overlapping domain de-
composition naturally induces interfaces (surfaces for 3D problems) between
subdomains [29, 17, 32], Figure 1 (a). If different spatial scales are present in
the searched solution field, a dedicated multiscale representation of the field
trace on the interfaces can be built. This can be used for several goals such as:
homogenization of a subdomain, convergence acceleration of the domain decom-
position algorithm, coupling different subdomains with different discretizations,
etc.

Figure 1: A bidimensional substructuring into subdomains and interfaces (a),
and typical solutions before convergence for: FETI-DP (b), micro-macro (c)

2.1 Modular treatment induced by substructuring

Indeed, a substructuring allows to use different treatments on different subdo-
mains. Their coupling has to be expressed on their common interface. This fea-
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ture has been used for different kinds of couplings, for instance with an explicit/-
implicit/ modal dynamical treatment of different structural parts [21, 19], dif-
ferent spatial discretizations [4], for modal synthesis [13, 38], or for different
physics as for aeroelasticity, [20].

In this section, we are more concerned with the purely structural problems
for which the fields on the interface are (for quasi-statics): the displacement field
V , the force field F . A representation on two scales may consists in splitting
additively these fields, on each interface independently, [26]: V = V m + VM

and F = Fm + FM . Superscript M denotes the macro part, while superscript
m denotes the complementary micro part. Note that an additional condition
on this splitting has to be prescribed to uniquely defined each contribution (a
kind of orthogonality between macro and micro spaces) and to make it worth.

2.2 Convergence acceleration using a coarse space

Today, the most efficient domain decomposition methods embed a coarse prob-
lem, global to the whole domain, to improve their convergence, and to make
them few sensitive to the increase of the number of subdomains (and therefore
to the increase in the discretized problem size). This property is known as the
numerical scalability [6].

Let us first discuss this property for the FETI-DP method [15]. This ap-
proach first selects the so called ‘corner’ nodes, shared between several sub-
domains, Figure 1 (b), and avoiding any floating subdomain (with rigid body
motions) if clamped. The total displacement field is prescribed to be continuous
at each of these nodes, leading to a coarse problem whose degrees of freedom
are the ‘corner’ displacement unknowns. Lagrange multipliers are used to glue
the displacements on interfaces (on interface nodes other than ‘corner’ ones),
and are solved iteratively. This approach proved to be numerically scalable for
2D and plate problems, but not for 3D massive problems. To recover numer-
ical scalability in this case, an augmentation of the algorithm is proposed [16]
which is close to a splitting into macro and micro quantities on the interfaces.
The residual at a given iteration is a displacement gap on the interface; the
proposed augmentation is the requirement to get a null average of the gap on
each interface independently, Figure 2. If one selects the macro space on an
interface as this average value, the augmentation is interpreted as the macro

displacement continuity at each iteration: VM = VM
′

(on a local interface be-
tween two substructures, superscript M denotes the macro part on a first side
of the interface, i.e. for the first substructure, and superscript M ′ denotes the
macro part on the second side of the interface, i.e. for the other substructure).
This constraint is prescribed by using a Lagrange multiplier which can itself
be interpreted as the macro force (i.e. the resultant of gluing forces on the

interface): λ = FM = −FM
′
. This multiplier is an additional unknown that

increases the coarse problem size. Nevertheless, the extensibility is recovered
and the resulting algorithm is more efficient with respect to the CPU usage.

2.3 Multilevel domain decomposition and homogenization

Other multilevel representations can be used. One can choose the macro part
of an interface field as the generalized averages of this field [26]: for instance,
the already mentioned classical average (i.e. the constant part of the field)
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FETI−DP interface

FETI−DP interface

residual

average augmented residual

Figure 2: FETI-DP residual evolution on an interface

which corresponds to translations for the displacement, and to the resultant for
the force. The linear part of the interface fields then corresponds to rotations,
extensions and distortion in the plane of the interface for the displacement V
and to torques and membrane forces for the forces F . The degree of these
generalized averages is limited to 1 (i.e. the linear part), Figure 3, which is
usually a good compromise between convergence rate and cost.

As before, the continuity of macro displacements on each interface VM =

VM
′
, and equilibrium of macro forces FM +FM

′
= 0, are enforced at each iter-

ation. To get a unique splitting into macro and micro parts, the ‘orthogonality’∫
ΓEE′

FM · V mdS = 0 =

∫
ΓEE′

Fm · VMdS (1)

is used, and the macro part of the unknowns constitutes the degrees of freedom
of the coarse problem, Figure 1 (c).

With this micro-macro representation, the macroscopic behaviour of a sub-
domain (the homogenized behaviour of the corresponding elementary represen-
tative volume) is the relationship between a macro force distribution on all of
its interfaces, and the macro part of the corresponding displacement trace on
the same interfaces. Using this homogenized stiffness on the left hand side of
the coarse space leads to a multilevel domain decomposition with an improved
convergence rate.

This approach has been used in particular for heterogeneous continuum me-
dia [27], multi-cracked structures [36, 28], non smooth discrete media [35], and
composite structures modelled up to a micro scale [31, 39].

interface

interface field

degree 0 macro part

interface

degree 1 macro part

Figure 3: Micro-macro field evolution on an interface

2.4 Structural zooming

The previous micro-macro description can also lead to a gluing technique be-
tween subdomains described with different refinement levels corresponding to
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different spatial scales. The scale coupling is therefore performed on interfaces.
The direct application is a structural zooming technique, allowing for the fine
discretization of interest areas only (i.e. of particular subdomains only). With a
LATIN solver, such an application is developed in [22, 23]. For plate problems,
with a FETI-DP like solver, it is presented in [1].

Let us also mention that couplings between different discretizations or dif-
ferent models in subareas can also be performed with overlapping subdomain
approaches. For instance, the Arlequin framework [2, 3] and the approach de-
tailed in next Section, can be seen as belonging to this category.

3 Field transfer between non matching discretiza-
tions for multiphysics problems

We are concerned herein with multiphysics problems which are strongly coupled
in the body. In such cases, the different physics interact at the constitutive
relations level. One of the simplest cases is saturated poroelasticity [30, 8]; the
macroscopic constitutive relations are:

σ = Dε− bp1 q =
1

Q
ṗ+ bTr ε̇ W = HZ (2)

The structure-related fields are: the stress field σ and the strain field ε.
The fluid-related fields are: the accumulation rate of fluid q and the opposite
of Darcy velocity W , the pore pressure field p and its gradient Z. Finally,
D is Hooke tensor, b and Q are Biot coefficient and modulus, and H is the
permeability.

The admissibility of the different fields concerns the conservation of momen-
tum and mass. They lead to two decoupled systems of equations, one for the
structure part, the other one for the fluid part. The corresponding variational
formulations are:

• for the structure: U ∈ U , ε =
1

2
(GradU + GradUT ), and

∀U? ∈ U0,

∫
Ω

Tr[σε(U?)]dΩ =

∫
∂2Ω

F d · U
?dS (3)

• for the fluid: p ∈ P, Z = grad p, and

∀p? ∈ P0,

∫
Ω

(qp? +W · grad p?)dΩ =

∫
∂4Ω

wdp
?dS (4)

U (respectively P) is the set of finite energy displacement (respectively pore
pressure) fields, satisfying to the boundary condition U |∂1Ω= Ud (respectively
p |∂3Ω= pd). ∂1Ω is a first part of the boundary ∂Ω; F d is a prescribed external
force on the complementary part ∂2Ω. ∂3Ω is another part of the boundary and
wd is a prescribed fluid flux on the complementary part ∂4Ω. U0 and P0 are the
corresponding sets with homogeneous boundary conditions.

These equations are two linear and decoupled problems for the structure and
the fluid parts of the unknowns.
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Several solving strategies can be used for the reference problem (2)-(4) (to-
gether with an appropriate initial condition). A partitioning strategy will avoid
a coupled treatment of both the structure and the fluid [20], for instance, an
iterative strategy that will solve on one hand the local but coupled constitutive
equations (2), and on the other hand the decoupled but global admissibility
conditions (3),(4). The LATIN (LArge Time INcrement) approach [25] dedi-
cated to multiphysics problems can be used in such a way; more details on this
approach can be found in [11, 10]. There are also connections with the NSCD
(Non Smooth Contact Dynamic) approach, for which the interactions took place
between rigid grains; indeed, this approach also focuses on the contact / friction
interactions, while the admissibility equations are the non smooth dynamics of
the grains [33, 24].

An advantage of the partitioning approaches lies in their modularity. We will
illustrate this point while considering the management of different discretiza-
tions for each physics.

3.1 Using spatial non matching meshes

Let us consider the case of a porous ceramic filter. The fluid to filter goes
through the multi-perforated block of Figure 4 (upper right), and a pressure
increase (up to a stabilized value) is prescribed for the inflow, while the outflow
relative pressure is null.

Figure 4: Principal strain field (upper left), pore pressure field (upper mid-
dle), inflow and outflow (upper right), and structure, fluid and interface meshes
(lower)

The problem is modeled with the assumption of 2D plane strain and the
symmetries are used to limit the study to a quarter of the section on Figure 4.
The reported principal strain field and pore pressure field are obtained at the
last time step of the transient simulation. This case exemplifies the interest to
provide different meshes for each physics, as those of Figure 4 (bottom), since
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Figure 5: Modifications of transfer operations when adding a new physics; (a):
without an interface mesh, (b): with such a mesh

the gradients in the solution are not obtained at the same place for the different
physics. A tool to transfer the fields from one discretization to an other, during
the iterations of the solving procedure, is therefore required.

Such a tool has been firstly designed for thermo-viscoelasticity coupled prob-
lems, solved with a partitioning strategy relying on a fixed point method [9].
It is re-used here for poroelasticity. The field to transfer (stress, strain...) is
usually available at integration points of a first mesh Ω1. The first step consists
in its extrapolation to the nodes of each finite element independently; the re-
sulting field, denoted with E1 can be interpolated, and is a priori discontinuous
throughout the element edges. To project E1 into a field E2 defined on a second
mesh Ω2, a discontinuous mortar-like technique is used: generalized averages of
the field are preserved, with respect to discontinuous test functions F ?2 on the
target mesh Ω2:

∀F ?2 ,
∫

Ω2

E2 · F ?2 dΩ =

∫
Ω1

E1 · F ?2 dΩ (5)

As test functions, we propose to use the restriction to each element of the finite
element basis functions, with an interpolation degree selected according to the
field to be transferred; for instance, if a quadratic interpolation of displacement
is used, a linear test function is used for strain and stress; if a linear interpo-
lation of pore pressure is used, the same linear test functions are used for the
pressure and the fluid accumulation rate, etc. Finally, the projected field E2 is
interpolated to the integration points of Ω2, for each element independently.

The backward transfer from Ω2 to Ω1 is the dual operation, i.e. the trans-
posed projector with respect to the energy norm

∫
Ω
F · EdΩ. This formulation

is symmetric: the same couple of dual projector is obtained if one begins with
transferring fields from Ω2 to Ω1.

The solver used herein for the poroelastic problem is the LATIN method
[25]. Basically, it solves iteratively on one hand the admissible conditions (3)
and (4) separately on the different meshes of Figure 4, and on the other hand,
the coupled constitutive relations (2). We chose here to use a third mesh at each
integration point of which the last problem is solved independently. This mesh
is called the ‘interface’ mesh, Figure 4. The use of such a mesh allows more
flexibility when adding new coupled physics. This is illustrated on Figure 5
when a third physics is added; S stands for solid, F for fluid, T for thermal
problem, for instance, and I for the interface dedicated discretization.

7



3.2 Using non-matching time discretizations

For the time multiscale aspect, the same poroelastic problem will serve as an
illustration. In order to focus on the time evolution of the solution, let us
consider a pure strain monodimensional consolidation problem. The constitutive
relations (2) read:

σ = Eε− bp q =
1

Q
ṗ+ bε̇ W = HZ (6)

where E is Young modulus. The admissibility equations (3),(4) lead to

∂σ

∂x
= 0 q =

∂W

∂x
Z =

∂p

∂x
(7)

where x ∈ [0, L] is the spatial coordinate. With a prescribed traction σd(t) at
x = L, the problem reads:[

−E b
b 1/Q

]
︸ ︷︷ ︸

M

d

dt

[
ε
p

]
−
[
0 0
0 H

]
︸ ︷︷ ︸
A

∂2

∂x2

[
ε
p

]
=

[
−σ̇d

0

]
(8)

If λi and Vi are the generalized eigenvalues and eigenvectors of AVi = λiM iVi
(with a regular M), the corresponding homogeneous system leads to decoupled
scalar equations ẏi − λi∂2yi/∂x

2 = 0. For λi > 0, the solution is

yi = e−t/τi

(
Ai cos

x
√
λiτi

+Bi sin
x
√
λiτi

)
(9)

To exhibit the characteristic times τi, boundary conditions are required. If the
observation scale is the same for all the physics, and if L is the characteristic
spatial length of the phenomenon that one wishes to capture, null boundary
conditions for x = 0 and x = L lead to Ai = 0 and the first non zero root of
sin(L/

√
λiτi) = 0 is τi = (1/λi)(L/π)2. For the proposed example, one obtains

λ1 = 0 for the structure (since no viscosity is involved, the characteristic time
for the structure is given by the external load, not by the physics). For the fluid,
one gets:

τ2 =
1

H

( 1

Q
+
b2

E

)(L
π

)2

(10)

For the problems treated in [34], a ratio of 4 between the characteristic times
are obtained (0.167 s for the loading on the solid, τ2 = 0.043 s for the fluid). For
aeroelasticity problems, a ratio of 10 to 20 is often obtained. Therefore, using
different time discretizations is of interest, for instance to get a solution with
an iso-quality for each of the physics (i.e. the same discretization error for the
pressure, with respect to the exact pressure, and for the strain, with respect to
the exact strain).

Several strategies are available to deal with a problem coupling different time
grids. For instance, with an incremental approach, a time marching strategy
similar to [37, 14, 7, 18] is possible.
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When relying on the LATIN method as a solver, the situation is different
since it is not an incremental approach [25]. Indeed, at each iteration, the
solution is provided on the whole domain and on the whole studied time interval.
If each physics has its own time discretization, this coupling also occurs on the
‘interface’ between the physics when solving the coupled constitutive relations.
Therefore, this ‘interface’ is also equipped with its own time discretization, and
a transfer operator between different time grids is also required.

The same tool as for the spatial transfer can be re-used, provided that the
time representation allows discontinuities between time slabs (similar to spa-
tial discontinuity through finite element edges), and that the time integration
scheme relies on a variational formulation. This is the case for the time discon-
tinuous Galerkin approach [12, 5]. This representation has been used in [34] to
provide a transfer operator between different time grids for coupled poroelastic
problems (for the fluid, the structure and the interface).

Coupling both time and spatial different discretizations within the same
simulation is the next application and is currently under development.

4 Conclusions

Tools for field transfers between non matching discretizations have been pre-
sented (both for time or space). They allow to perform iterative resolutions
where different scales interfer. Flexibility of such approaches is largely due to
the use of an interface between the fields represented at different scales. This
interface can be a geometric interface between subdomains, or a more numeri-
cal one between different grids or between different physics. In each case, these
interfaces possess their own behavior and discretization.

This framework could also be used for the case of model coupling. Among
dedicated application cases, one can find: the coupling and transition between a
discrete representation (for instance with discrete element models) and a contin-
uous one, for fragmentation; the multiphysics coupling as in granular / fluid in-
teraction for flow through divided media; the mechanical / convection-diffusion
coupling for modeling hygromechanical phenomena, or biomechanical ones such
as bone remodelling.
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