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Abstract. Multiphysics phenomena lead to computationally intensive
structural analyses. Recently, a new strategy derived from the LATIN
method was described and successfully applied to the consolidation of
saturated porous soils.

One of the main achievements was the use of the LATIN method to
take into account the different time scales which usually arise from the
different physics: a multi-time-scale strategy was proposed.

Here we go one step further and use the LATIN method to deal with some
of the classical nonlinearities of poroelasticity problems (such as non-
constant stiffness and permeability) and we show that these phenomena
do not result in a significant increase of the computation cost.

1 Introduction

For coupled multiphysics problems such as fluid-structure interaction, partitio-
ned procedures and staggered algorithms are often preferred, from the point of 
view of computational efficiency, to direct analysis (also called the monolithic 

approach). Moreover, partitioning strategies enable one to use different analyzers 

for different subsystems, and help keep the software manageable.
Recently, an approach suitable for multiphysics problems was developed ba-

sed on the LArge Time INcrement method (LATIN) [1] and applied to the 

consolidation of saturated porous soils, which is a typical example of a highly 

coupled fluid-structure interaction problem. The term consolidation designates 

the slow deformation of the solid phase accompanied by flow of the pore fluid. 
One of the consequences of natural consolidation is surface subsidence, i.e. the 

lowering of the Earth’s surface. The consolidation analysis of soils has long been 

recognized as an important problem in civil engineering design [2].
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The principles of the LATIN method and examples of its applicability to such
coupled multiphysics problems were given in [3]. This strategy was compared to
the Iterated Standard Parallel Procedure (ISPP) [4], which is one of the standard
partitioning schemes. In [5], a multi-time-scale strategy was proposed in order to
improve the LATIN procedure by taking into account the different time scales.
An ad hoc radial loading approximation for both kinematic and static quantities
was also set up in order to increase the modularity of the approach and to reduce
the storage cost. Here, we go one step further and use the LATIN method to
deal with some of the classical nonlinearities of poroelasticity problems (such as
non-constant stiffness and permeability).

2 The Reference Problem

Let us briefly describe a typical consolidation problem [6]. A structure Ω is made
of a saturated porous material undergoing small perturbations and isothermal
evolution over the time interval [0, T ] being studied.

The loading consists of a prescribed displacement Ud on a part ∂1Ω of the
boundary, a traction force F d on the complementary part ∂2Ω of ∂1Ω, a fluid
flux wd on another part ∂3Ω of the boundary and, finally, a prescribed pore
pressure pd on the complementary part ∂4Ω of ∂3Ω. For the sake of simplicity,
we assume that there are no body forces.

For solid quantities, strain and stress are denoted ε and σ respectively; for
fluid quantities, the pore pressure gradient is denoted Z and the opposite of
Darcy’s velocity W ; finally, q denotes the rate of fluid mass accumulation in
each representative elementary volume.

The state of the structure is given by the set of the fields s = (ε, p, Z,σ, q, W )
defined on the whole structure Ω and over the time interval [0, T ] being consi-
dered. The problem consists in finding s in the corresponding space S[0,T ] which
verifies at each time step the following equations:

– in the solid, compatibility of strains ε and equilibrium of stresses σ:

U ∈ U [0,T ] and ε = ε(U) on Ω

divσ = 0 on Ω and σn = F d on ∂2Ω
(1)

U [0,T ] being the set of the finite-energy displacement fields on Ω×[0, T ] equal
to Ud on ∂1Ω;

– in the fluid, flow conservation for Darcy’s velocity −W :

p ∈ P [0,T ] and Z = grad p on Ω

q = div W on Ω and W · n = wd on ∂4Ω
(2)

P [0,T ] being the set of the finite-energy pressure fields on Ω×[0, T ] equal to
pd on ∂3Ω;

– the constitutive relations:
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• Hooke’s law, which relates the macroscopic stress σ to the strain ε and
the pore pressure p so that:

σ = Dε − bpI (3)

• Darcy’s law, which relates Darcy’s velocity to the pore pressure gradient:

W =
K

µw
Z (4)

• compressibility, which relates the fluid accumulation rate to the pressure
rate and couples it with the rate of volume modification:

q =
1

Q
ṗ + b Tr ε̇ (5)

D is Hooke’s tensor of the drained skeleton, b is Biot’s coefficient, K is the
intrinsic macroscopic permeability and µw is the dynamic viscosity of the
saturation fluid. Throughout the following sections, the operator K

µw

I will
be designated by H. Finally, Q is Biot’s modulus.

3 Nonlinear Behavior

Most of the consolidation problems which have been analyzed so far are limited to
the assumption of linear elastic constitutive behavior and constant permeability,
but in most geotechnical situations the behavior of the soil is nonlinear. Following
Kondner and his co-workers [7], the stress-strain curves for both clay and sand
in a conventional triaxial compression test (constant σ3) may be approximated
by a hyperbolic equation of the form:

σ1 − σ3 =
ε1

A + Bε1
(6)

which relates the difference between the major principal stress σ1 and the mi-
nor principal stress σ3 to the major principal strain ε1. A and B are material
constants which can be determined experimentally. Then, Hooke’s law is defined
by:

σ = D(ε)ε − bpI (7)

However, Kondner’s model (6) is available only for one-dimensional analysis.
This is the case of the following numerical test. There is also evidence that the
intrinsic permeability is not constant, even in the case of full saturation. It seems
reasonable [2] to assume a dependency of the permeability on the void ratio (or
porosity) as well as on the deformation. We propose to test the LATIN method
on a variation of one of the laws given in [8] for the intrinsic permeability:

K(ε) = K0

n0

1 + n0

(

1 +
1

n0

〈

Tr ε − Tr ε0

−Tr ε0

〉α

+

)

(8)
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where 〈·〉+ denotes the positive part, K0 and n0 the initial intrinsic permeability
and porosity, ε0 the strain below which the intrinsic permeability cannot decrease
(typically Tr ε0 = −n0), and α a material constant. Darcy’s law is then defined
by:

W = H(ε)Z (9)

Thus, the consolidation problem which is to be simulated is nonlinear.

4 The LATIN Method for Multiphysics Problems

The LATIN method is a nonincremental iterative approach originally designed
for nonlinear time-dependent problems [1]. For coupled multiphysics problems,
the method consists in extending the notion of material interface (between sub-
structures) [9] to that of multiphysics interface. Such an interface must take into
account the coupling between the constitutive relations. The development of this
strategy was described in [3] and only the main principles will be reviewed here.

At each iteration, the LATIN method produces an approximation of the
solution over the whole domain and over the entire time interval being studied.
The method is based on three principles:

– The first principle consists in separating the difficulties. For coupled field
problems, a first set of equations, Ad, containing the so-called admissibility
conditions is defined. In order to avoid dealing with both a global and a
coupled problem simultaneously, the remaining equations are grouped into
a second set of equations, Γ ; these equations, which are local in the space
variables, are the constitutive relations.

– The second principle of the method consists in using search directions
to build approximate solutions of Ad and Γ alternatively until a sufficient
convergence level has been reached. Each iteration consists of 2 stages: once
an element sn ∈ Ad is known, the local stage of iteration n+1 uses an initial
search direction E+ to provide an element ŝn+1/2 ∈ Γ :

(σ̂n+1/2 − σn) + Ln−1/2(ˆ̇εn+1/2 − ε̇n) = 0

(q̂n+1/2 − qn) + r(p̂n+1/2 − pn) = 0

(Ŵn+1/2 − Wn) + Hn−1/2(Ẑn+1/2 − Zn) = 0

(10)

Ln−1/2, Hn−1/2 and r are three parameters of the method; they do not
influence the solution once convergence has been reached. However, their
values modify the convergence rate of the algorithm. In dimensional analysis,
r can be chosen in the form r = 1

Qth

, where th is an arbitrary characteristic
time. The choice of Ln−1/2 and Hn−1/2 will be discussed below.
At each integration point, using the constitutive relations (3,4,5), the lo-
cal stage leads to the resolution of a small system of ordinary differential
equations in the local space variables:
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Ln−1/2
ˆ̇εn+1/2 + D(ε̂n+1/2)ε̂n+1/2 − bp̂n+1/2I = An

1

Q
ˆ̇pn+1/2 + rp̂n+1/2 + b Tr ˆ̇εn+1/2 = αn

(Hn−1/2 + H(ε̂n+1/2))Ẑn+1/2 = β
n

(11)

where An = σn + Ln−1/2ε̇n, αn = qn + rpn and β
n

= Wn + Hn−1/2Zn are
known quantities from local stage n + 1, and with the initial conditions on
the pressure and strain fields. This nonlinear system (11) is solved using a
Newton-type scheme.
Once an element ŝn+1/2 ∈ Γ is known, the linear stage provides an element
sn+1 ∈ Ad. sn+1, which must satisfy the admissibility relations, is sought
along a search direction E− conjugate of the previous one, so that the me-
chanical and hydraulic problems remain uncoupled:

(σn+1 − σ̂n+1/2) − Ln+1/2(ε̇n+1 − ˆ̇εn+1/2) = 0

(qn+1 − q̂n+1/2) − r(pn+1 − p̂n+1/2) = 0

(Wn+1 − Ŵn+1/2) − Hn+1/2(Zn+1 − Ẑn+1/2) = 0

(12)

One can note that the search directions in linear stage n and local stage n+1
are conjugates if the parameters of these directions are kept constant.
In order to use a finite element approach, the admissibility of sn+1 is ex-
pressed using a variational formulation. On the one hand, this admissibility
condition consists in U ∈ U [0,T ] and σ ∈ S [0,T ] such that:

∀t ∈ [0, T ], ∀U⋆ ∈ U0,

∫

Ω

Tr[σε(U⋆)]dΩ =

∫

∂2Ω

F d · U⋆dS (13)

where U0 is the set of the finite-energy displacement fields on Ω which vanish
on ∂1Ω. On the other hand, the admissibility condition also consists in p ∈
P [0,T ], q ∈ Q[0,T ] and W ∈ W [0,T ] such that:

∀t ∈ [0, T ], ∀p⋆ ∈ P0,

∫

Ω

(qp⋆ + W · grad p⋆)dΩ =

∫

∂4Ω

wdp
⋆dS (14)

where P0 is the set of the finite-energy pressure fields on Ω which vanish on
∂3Ω. Equations (13) and (14) define two uncoupled global problems para-
meterized by time t.
The convergence of this approach is guaranteed provided that Ln+1/2,
Hn+1/2 and r are positive definite operators which remain constant throug-
hout the iterations [1].

– The third principle uses the fact that the successive approximations are
defined over both the entire domain and the entire time interval to represent
the solution on a radial loading basis. This last point was detailed in [1] and
developed, for this particular case, in [3,5]. Briefly, this approach enables one
to reduce the number of space fields generated and, therefore, the number
of global systems to be solved.
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A multi-time-scale strategy was also described in [5]. This strategy enables
one to use different time steps for the solid and fluid parts of the problem.
In particular, in order to perform an iso-quality simulation (i.e. with identical
contributions to the global error) the fluid part requires a smaller time step than
the solid.

Choice of the search direction (Ln+1/2,Hn+1/2) Many choices, all of
which ensure the convergence of the LATIN method, are available [1]. The easiest
way is to take a constant search direction:

∀n, Ln+1/2 = tmD(ε̂ = O) and Hn+1/2 = H(ε̂ = O) =
K0

µw
I (15)

where tm is an arbitrary characteristic time. This choice allows one to assemble
operators Ln+1/2 and Hn+1/2 only once at the beginning of the algorithm. In
[1], it was shown that optimal convergence of the method is achieved by using
a tangent search direction. In the present case of a multiphysics problem, an
approximation of such a tangent direction is:

(σn+1 − σ̂n+1/2) − D(ε̂n+1/2)(ε̇n+1 − ˆ̇εn+1/2) = 0

(qn+1 − q̂n+1/2) − r(pn+1 − p̂n+1/2) = 0

(Wn+1 − Ŵn+1/2) − H(ε̂n+1/2)(Zn+1 − Ẑn+1/2) = 0

(16)

which is equivalent to Ln+1/2(t) = D(ε̂n+1/2(t)) and Hn+1/2(t) = H(ε̂n+1/2(t)).
Such a choice requires the assembly and factorization of the operators not only
at each iteration, but also at each time step. A new approximation consists in
defining an average of the operators over the time interval [0, T ]:

Ln+1/2 =
1

T

∫ T

0

D(ε̂n+1/2(t))dt and Hn+1/2 =
1

T

∫ T

0

H(ε̂n+1/2(t))dt (17)

5 Numerical Results

The proposed test case concerns the consolidation of a Berea sandstone soil. The
geometry is shown in Fig. 1 and the material characteristics are given in Table 1.
The simulation was performed for the one-dimensional case, since the law (6) is
defined only in that case.

Table 1. Water-saturated Berea sandstone poroelastic material

Initial porosity n0 = 0.19 Initial Young’s modulus E0 = 14.4 GPa
Poisson’s coeff. ν = 0.2 Biot’s modulus Q = 13.5 GPa

Biot’s coeff. b = 0.78 Initial permeability K0

µw
= 2 10−10 m3.s.kg−1
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Fig. 1. The force-driven test problem

The time interval was T = 1 s with t1 = T/2 and the pressures were
p1 = 10 MPa and p0 = 0.1 MPa; the initial condition was p(t = 0) = p0;
the height of the structure was L = 5 m, discretized into 100 elements (quadra-
tic interpolation for displacements and linear interpolation for pore pressures).
The search direction parameters were set to tm = 9 10−3 tc and th = 8 10−3 tc,
where tc = 9.3 s.

Two simulations were performed to illustrate the behavior of the method
when nonlinearity increases. The first test was dedicated to the evaluation of
the influence of stiffness: in (6), the value of A and σ3 were set to A = 1

E0

and
σ3 = 0 while the value of B increased from 0 (which corresponds to the linear
case) to 1 GPa−1. The second test concerned the evaluation of the influence of
permeability: in (8), the value of α was set to α = 3 while the initial porosity
n0 = −Tr ε0 was no longer that of the Berea sandstone, but was assumed to
decrease from 0.9 to 0.01. (The linear case was recovered by taking n0 → +∞.)

From here on, the error indicator based on the difference between an element
s of Ad and an element ŝ of Γ will be used: η̂ = e(ŝ − s)/e(1

2 (ŝ + s)) with

e2(ŝ− s) =
∫ T

0
( 1
2‖ε̂− ε‖2

D
+ 1

2‖p̂− p‖2
Q−1)dt, ‖ε‖2

D
=

∫

Ω
Tr[εD(ε̂ = O)ε]dΩ and

‖p‖2
Q−1 =

∫

Ω
pQ−1pdΩ.

Fig. 2(a) and Fig. 3(a) show that if constant search directions, such as (15),
are used (as in [3,5]) the convergence rate is very dependent on the degree of
nonlinearity. One can see in Fig. 2(b) and Fig. 3(b) that if updated average
search directions, such as (17), are used at each iteration the convergence rate
becomes nearly independent, but in that case, even if the number of iterations is
smaller, the strategy could become very expensive because it requires the assem-
bly and factorization of the operators at each iteration. However, one can note
that nearly identical results can be obtained by using updated search directions
only during the first iterations (usually 4 or 5). This reduces the computational
cost significantly. Let us observe that nonlinearities do not increase the number
of iterations needed to reach a given error.
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(a) Constant search direction (b) Variable search direction

Fig. 2. Variable rigidity
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Fig. 3. Variable permeability

6 Conclusions

In this paper, we described a partitioned strategy based on the LATIN ap-
proach which enables one to take into account some of the classical nonlinearities
of consolidation problems. The numerical tests showed that if updated search
directions are used during the first iterations, the convergence rate is nearly in-
dependent of the level of nonlinearity. Thus, these nonlinear phenomena do not
result in a significant increase in the computational costs.
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