Languages of tree-automatic graphs

Antoine Meyer

Institute of Mathematical Sciences, Chennai, India

Journées Montoises 2006, Irisa, Rennes

Outline

- Graphs and languages
- 2 Languages of rational graphs
- S Languages of term-automatic graphs
- ④ Future work

Outline

1 Graphs and languages

- 2 Languages of rational graphs
- Languages of term-automatic graphs
- ④ Future work

Graphs and languages

- Graph: countable set of edges $u \xrightarrow{a} v$ (up to isomorphism)
- Language of a graph G between two sets I and F:

$$L(G, I, F) = \{ w \mid \exists i \in I, \ f \in F, \ i \xrightarrow{w} f \}$$

• Parallel between classes of languages and classes of (infinite) graphs

A hierarchy of infinite automata

Graphs	Languages
Finite	Regular
Pushdown, Regular Prefix-recognizable	Context-free
Pushdown(<i>n</i>) Prefix-recognizable(<i>n</i>)	OI-languages(n)
Automatic / Rational Linearly bounded	Context-sensitive

A hierarchy of infinite automata

Classes of graphs defined by ...

Relations on words	Relations on terms					
Prefix rewriting	Ground term rewriting					
Automatic relations	Term-automatic relations					
Rational relations	?					

This work: languages of term-automatic graphs

Antoine Meyer

Outline

1 Graphs and languages

2 Languages of rational graphs

- Languages of term-automatic graphs
- 4 Future work

Rational relations

Definition

A binary relation over words is called rational if it is the set of pairs accepted by a finite transducer

Example:

accepts the relation $\{(A^n B^m, A^{n+1} B^m) \mid m, n \ge 0\}$

Antoine Meyer

Rational graphs

Definition

A rational graph is a graph whose edge relations are rational

- Domain of vertices = words
- · Edge relation for each label accepted by a transducer

Subclasses of rational graphs

• Synchronized transducer: all runs of one the forms

$$\left\{\begin{array}{cccc} q_0 & \stackrel{a_1/b_1}{\to} & \dots & \stackrel{a_n/b_n}{\to} & q_n & \stackrel{\varepsilon/b_{n+1}}{\to} & \dots & \stackrel{\varepsilon/b_{n+k}}{\to} & q_f \\ q_0 & \stackrel{a_1/b_1}{\to} & \dots & \stackrel{a_n/b_n}{\to} & q_n & \stackrel{a_{n+1}/\varepsilon}{\to} & \dots & \stackrel{a_{n+k}/\varepsilon}{\to} & q_f \end{array}\right.$$

- Automatic graph: defined by synchronized transducers (*)
- Synchronous transducer: no arepsilon appearing on any transition
- Synchronous graph: defined by synchronous transducers

Languages of rational graphs

Theorem (Morvan, Stirling, Rispal) *Rational and automatic graphs accept precisely the context-sensitive languages*

Synchronous graphs accept precisely the context-sensitive languages (between regular sets of vertices)

Languages of rational graphs

• Initial proofs use the Penttonen normal form

- Technically non-trivial
- No link to complexity
- No notion of determinism
- Recent contributions: (Carayol, M.)
 - Self-contained proof using tiling systems
 - · Characterization of languages for sub-families of graphs
 - · Characterization of graphs for sub-families of languages

Tiling systems

Definition

A framed tiling system Δ is a finite set of 2×2 pictures (tiles) with a border symbol #

- Picture: rectangular array of symbols
- $\circ\,$ Picture language of $\Delta\colon$ set of all framed pictures with only tiles in Δ
- $\circ\,$ Word language of $\Delta:$ set of all *first row contents* in the picture language of Δ

Proposition (Latteux, Simplot)

The languages of tiling systems are precisely the context-sensitive languages

A tiling system

#	#	#	#	#	#	#	#	#	#	#	#
#	а	а	а	а	а	b	b	b	b	b	#
#	а	а	а	а	\bot	\bot	b	b	b	b	#
#	а	а	а	\bot	\bot	\perp	\bot	b	b	b	#
#	а	а	\bot	\bot	\bot	\perp	\bot	\perp	b	b	#
#	а	\bot	\bot	\bot	\bot	\perp	\bot	\perp	\bot	b	#
#	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	#
#	#	#	#	#	#	#	#	#	#	#	#

A tiling system

#	#	#	#	#	#	#	#	#	#	#	#
#	а	а	а	а	а	b	b	b	b	b	#
#	а	а	а	а	\bot	\bot	b	b	b	b	#
#	а	а	а	\bot	\bot	\perp	\bot	b	b	b	#
#	а	а	\perp	\perp	\bot	\perp	\bot	\perp	b	b	#
#	а	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	b	#
#	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	#
#	#	#	#	#	#	#	#	#	#	#	#

Proof technique

Proof in three steps:

- 1 Trace-equivalence of rational and synchronous graphs
- Simulation of a synchronous graph by a tiling systems
- **8** Simulation of a tiling system by a synchronous graph

() relies on elimination of ε in transducers (2) and (3) rely on identifying graph paths with pictures

Synchronous graph \leftrightarrow tiling system

Proof idea

- Identify transducer runs and picture columns
- Establish a bijection between accepting paths and pictures
- Deduce a bijection between synchronous graphs and tiling systems

Outline

1 Graphs and languages

- 2 Languages of rational graphs
- S Languages of term-automatic graphs
- ④ Future work

Languages of term-automatic graphs

Theorem

The following statements are equivalent:

- L = L(G, I, F) for some term-automatic graph G and finite sets I and F
- **2** L = L(G, I, F) for some term-synchronous graph G and regular sets I and F
- **3** *L* is accepted by an arborescent tiling system
- 4 L is accepted by an alternating linearly bounded machine
- **6** L is in ETIME (= $DTIME(2^{O(n)})$)

Term-automatic relations

Definition

Let s, t be two terms, [st] denotes the term such that

Term-automatic relations

Example:

Term-automatic relations

Definition

- A binary relation R over terms is automatic if
 {[st] | (s, t) ∈ R} is regular
 (i.e. accepted by a finite tree automaton)
- A binary relation R over terms is synchronous if it is automatic and $\forall (s, t) \in R$, dom(s) = dom(t)
- A graph is term-automatic (resp. synchronous) if its edge relations are automatic (resp. synchronous)

Arborescent pictures

Definition

An arborescent picture is a mapping $P: X \times [1, n] \rightarrow \Gamma$ where

- $X \subseteq \mathbb{N}^*$ is a prefix- and left-closed set of positions
- *n* is the width of *P*
- Γ is a finite alphabet

Remark:

P isomorphic to a finite tree of domain X with labels in Γ^n

Arborescent tiling systems

Definition

An arborescent tiling system Δ is a set of arborescent pictures of height and width 2 (tiles) over $\Gamma \cup \{\#\}$ (with $\# \notin \Gamma$)

- $\circ\,$ Picture language of $\Delta\colon$ set of all framed arborescent pictures with tiles only in Δ
- Word language of Δ : set of all *first row contents* in the picture language of Δ

Linearly Bounded Machines

Definition

Linearly Bounded Machine (LBM): Turing machine working in linear space

- Finite set of control states
- Fixed-size tape containing the input word
- Transitions: cell rewriting + left/right movement

$$pA \rightarrow qB +$$
 $pA \rightarrow qB -$
 $p[\rightarrow q[+$ $p] \rightarrow q] -$

• Alternation: combination of right-hand sides:

$$pA \rightarrow (qB + \wedge q'C - \wedge q''D +)$$

Equivalence proof

Equivalence proof

- Term-automatic \rightarrow term-synchronous graphs:
 - Consider the padding symbol \perp as a new symbol
- Term-synchronous graphs \leftrightarrow alternating LBMs:
 - Same mathematical description for paths and LBM runs (arborescent pictures)
 - Local integrity constraints
 - Equivalence between alternation and branching

Outline

1 Graphs and languages

- 2 Languages of rational graphs
- S Languages of term-automatic graphs
- 4 Future work

Term-rational graphs?

Possible extension: graphs defined by tree transducers

• Problem 1: permutations between sub-terms

• Problem 2: arbitrary ε -transitions along runs

Other questions

- Term-automatic graphs
 - Structural restrictions (in particular the degree)
 - Comparison with other classes (up to isomorphism)
- Arborescent tiling systems
 - Yields of regular sets of terms: context-free languages
 - → Yields of arborescent pictures?