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TRACES OF TERM-AUTOMATIC GRAPHS

Antoine Meyer
1

Abstract. In formal language theory, many families of languages
are defined using either grammars or finite acceptors. For instance,
context-sensitive languages are the languages generated by growing
grammars, or equivalently those accepted by Turing machines whose
work tape’s size is proportional to that of their input. A few years
ago, a new characterisation of context-sensitive languages as the sets
of traces, or path labels, of rational graphs (infinite graphs defined by
sets of finite-state transducers) was established. We investigate a sim-
ilar characterisation in the more general framework of graphs defined
by term transducers. In particular, we show that the languages of
term-automatic graphs between regular sets of vertices coincide with
the languages accepted by alternating linearly bounded Turing ma-
chines. As a technical tool, we also introduce an arborescent variant
of tiling systems, which provides yet another characterisation of these
languages.

Mathematics Subject Classification. 68Q45, 68Q05.

Introduction

In classical language theory, context-sensitive languages, one of the families of
the Chomsky hierarchy [2], are defined as the languages generated by growing
grammars. They were later characterised as the languages accepted by linearly
space-bounded Turing machines [7], i.e. Turing machines whose runs on any input
word of length n use at most k ·n work tape cells, for some constant k. In [8], it was
shown that context-sensitive languages also coincide with the languages accepted
by bounded tiling systems.

In 2001, [11] provided yet another characterisation of this family as the set
of path languages of rational graphs [9], i.e. infinite graphs whose vertices are
words and whose sets of edges are defined by finite transducers. This result was
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later extended in [13] to the more restricted family of automatic graphs (cf. [6]),
and even to synchronous rational graphs when an infinite number of initial and
final vertices are considered (see also [10]). In a way, this provides a “forward”,
automata-based characterisation of context-sensitive languages, as opposed to lin-
early bounded machines which are essentially a two-way mechanism. To prove
the inclusion of context-sensitive languages in the set of path languages of these
families of graphs, these papers use a normal form for growing grammars, due to
Penttonen [12]. In [4], these results were reformulated using simpler proof tech-
niques based on tiling systems. This also allowed to investigate interesting sub-
cases, in particular concerning deterministic context-sensitive languages or various
sub-classes of rational graphs.

The aim of this work is to extend the results of [8] and [4] to the more general
family ETIME of languages accepted by deterministic Turing machines working
in time less than 2O(n), or equivalently by alternating linearly bounded machines.
This family lies between context-sensitive and recursively-enumerable languages
in the Chomsky hierarchy. We obtain two new characterisations of ETIME, first
as the languages accepted by arborescent tiling systems and second as the traces
of infinite graphs defined by various classes of term transducers, namely term-
synchronous and term-automatic (or tree-automatic) graphs [1].

After recalling definitions and notations in Section 1, we introduce the notion of
arborescent tiling systems in Section 2 and prove that they characterise ETIME.
Finally, we extend previously mentioned proofs over rational graphs to the family
of term-automatic graphs in Section 3.

1. Notations

1.1. Words, terms and trees

A word u over alphabet Σ can be seen as a tuple (a1, . . . , an) of elements of
Σ, usually written a1 . . . an. Its ith letter is denoted by u(i) = ai. The set of all
words over Σ is written Σ∗. The number of letters occurring in u is its length,
written |u| (here |u| = n). The empty word is written ε. The concatenation of
two words u = a1 . . . an and v = b1 . . . bm is the word uv = a1 . . . anb1 . . . bm. The
concatenation operation extends to sets of words: for all A, B ⊆ Σ∗, AB stands
for the set {uv | u ∈ A and v ∈ B}.

1.1.1. Terms

Let F =
⋃

n≥0 Fn be a finite ranked alphabet, each Fn being the set of symbols
of F of arity n, and X be a finite set of variables disjoint from F (all sets Fn

are also disjoint). We denote the arity of a symbol f ∈ F by a(f). Variables are
considered of arity 0. The set of finite first-order terms on F with variables in X ,
written T (F, X), is the smallest set including X such that f ∈ Fn ∧ t1, . . . , tn ∈
T (F, X) ⇒ ft1 . . . tn ∈ T (F, X). Words can be seen as terms over a ranked
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alphabet whose symbols have arity exactly 1 and whose last symbol is a variable
or a special constant. To improve readability, ft1 . . . tn will sometimes be written
f(t1, . . . , tn).

1.1.2. Trees

A finite ordered tree t over a set of labels Σ is a mapping from a prefix-closed
set dom(t) ⊆ N∗ into Σ. Elements of dom(t) are called positions, and for every
p ∈ dom(t), t(p) is the label of the node at position p. The node at position ε is
called the root of the tree, nodes at maximal positions (i.e. positions x such that
�y �= ε, xy ∈ dom(t)) are called leaves, other nodes are called internal.

Any term t over a ranked alphabet F and set of variables X can be represented
as a finite ordered ranked tree, whose leaves are labelled with constants in F0 or
variables in X and whose internal nodes are labelled with symbols of arity equal
to the number of children of that node. In that case, the domain of t, additionally
to being prefix-closed, also has the following properties:

(1) ∀p ∈ dom(t), t(p) ∈ Fn≥1 =⇒ {j | pj ∈ dom(t)} = [1, n],
(2) ∀p ∈ dom(t), t(p) ∈ F0 ∪ X =⇒ {j | pj ∈ dom(t)} = ∅.

In such a tree, position pi with i ∈ N always denotes the ith child of node p.
Conversely, any finite ordered tree t labelled over Σ can be represented as a ranked
tree t′, and hence as a term, by mapping each node label a to a set of symbols
(a, n) in Σ × N, with a(a, n) = n, and by renumbering all positions such that
dom(t′) verifies the above properties. This will usually be left implicit.

1.1.3. Finite automata and regular sets

A finite tree (or term) automaton is a tuple A = 〈Q, F, q0, δ〉, where Q is a set
of control states, F a ranked alphabet, q0 the initial set and δ the set of transition
rules of A of the form (q, f, q1, . . . , qn) with a(f) = n. A run of A over a tree t is
a mapping ρ from dom(t) to Q such that ρ(ε) = q0 and for all node u ∈ dom(t) of
arity a(u) = n, (ρ(u), t(u), ρ(u1), . . . , ρ(un)) ∈ δ. If A has a valid run on t, we say
that t is accepted by A. The set of trees accepted by a finite automaton is called
its language, and all such languages are said to be regular.

1.2. Graphs

A labelled, directed and simple graph is a set G ⊆ V × Σ × V where Σ is a
finite set of labels and V an arbitrary countable set. An element (s, a, t) of G is
an edge of source s, target t and label a, and is written s

a→
G

t or simply s
a→ t if G

is understood. An edge with the same source and target is called a loop. The set
of all sources and targets of a graph form its support VG, its elements are called
vertices.

This vision of graphs as sets of edges allows us to define the union, intersection
and inclusion over graphs as the corresponding set operations. A graph included
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in another graph G is called a subgraph of G. The subgraph of G induced by a set
of vertices V ′ ⊆ V is simply the set of edges of G whose source and target both
belong to V ′ (i.e. G ∩ (V ′ × Σ × V ′)). One also speaks of the restriction of G
to V ′.

A sequence of edges (s1
a1→ t1, . . . , sk

ak→ tk) with ∀i ∈ [2, k], si = ti−1 is called
a path. It is written s1

u→ tk, where u = a1 . . . ak is the corresponding path label.
Vertex s1 is called the origin of the path, tk its destination. A path is called a cycle
if its origin and destination are the same vertex. The language, or set of traces of
a labelled graph between two sets I and F of vertices is the set of all words w such
that there exists a path labelled by w whose origin is in I and destination in F .

1.3. Turing machines

A Turing machine is a tuple M = 〈Γ, Σ, Q, q0, F, δ〉 where Σ is the input alpha-
bet, Γ the tape or work alphabet (with Σ ⊆ Γ), Q is a set of states among which
q0 is an initial state and F is a set of final states, and δ is a set of transition rules
of the form pA → qBε where p, q ∈ Q, A, B ∈ Γ ∪ {�} (� being a blank symbol
not in Γ) and ε ∈ {+,−}.

Configurations of M are denoted as words upv, where uv is the content of the
work tape (where prefix and suffix blank symbols are omitted), p is the current
control state and the head scans the cell containing the first letter of v. A transition
d = pA → qBε is enabled on any configuration c of the form upAv, and yields a
new configuration d(c) = uBqv′ (with v′ = v if v �= ε, or � otherwise) if ε = +
and u′qCBv (with u′C = u if u �= ε or u′ = ε and C = � otherwise) if ε = −. If d
is not enabled on c, then d(c) is left undefined.

An alternating Turing machine M is defined similarly, with the exception that
rules are of the form d = pA → ∧

i∈[1,n] qiBiεi. The alternation degree n of d is
written a(d), by analogy with the notion of arity. For all i ≤ a(d), we write di the
non-alternating transition pA → qiBiεi. A run of M on input word w is a tree
whose root is labelled by configuration q0w, and such that the children of any node
labelled by configuration c are labelled by c1, . . . , cn if and only if there exists a
transition d ∈ δ enabled on c such that a(d) = n and ∀i ∈ [1, n], ci = di(c). Such a
run is successful if all its leaves are labelled by configurations whose control state
is in F .

A Turing machine is linearly bounded if on every run the total work tape space
it uses is at most proportional to the length of its input word. By standard coding
techniques, it is sufficient to consider machines whose tape is limited to the cells
initially containing the input word. This may be enforced by forbidding transition
rules to rewrite the blank symbol �. The languages of non-alternating linearly
bounded machines form the complexity class SPACE(O(n)), which is equivalent to
context-sensitive languages [7]. Adding alternation, one obtains the more general
class ASPACE(O(n)). By classical complexity results [3], it is also equivalent to
the class DTIME(2O(n)), also called ETIME.
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2. Arborescent tiling systems

To facilitate the proofs of our main results, this section provides an important
technical tool, which was also central to some versions of the corresponding proofs
on rational graphs and context-sensitive languages (cf. [4]).

Tiling systems were originally defined to recognise or specify picture languages,
i.e. sets of two-dimensional words on finite alphabets [5], called local picture
languages. However, by only looking at the words contained in the first row of
each picture of a local picture language, one obtains a context-sensitive language,
and the converse is true: for any context-sensitive language there exists a local
picture language (and a tiling system accepting it) whose set of upper frontiers is
that language [8].

In this section, we extend this result to an arborescent extension of tiling sys-
tems, and prove that this new formalism characterises precisely the class ETIME.

2.1. Definitions

Instead of planar pictures, we consider so-called arborescent pictures, which are
to ordinary pictures what terms are to words.

Definition 2.1 (arborescent picture). Let Γ be a finite alphabet, an arborescent
picture p over Γ is a mapping from the set X × [1, m] to Γ, where X ⊆ N+

∗ is
a finite, prefix-closed set of sequences of positive integers (called positions in the
framework of trees) and m is a positive integer called the width of p. The set
dom(p) = X × [1, m] is the domain of p. The set of arborescent pictures over
X × [1, m] is written AP(X, m).

Like in the case of trees, we assume that X is not only prefix-closed but also
left-closed, i.e. ∀i > 0, ui ∈ X =⇒ ∀j < i, uj ∈ X . For a given picture
p ∈ AP(X, m), we write fr(p) the word w ∈ Γm such that w(i) = p(ε, i), which we
call the (upper) frontier of p.

Arborescent pictures of domain X × [1, m] are isomorphic to ordered trees of
domain X with nodes labelled over the set Γm. As such, if m = 1 they are
isomorphic to Γ-labelled ordered trees. One can observe that any branch of an
arborescent picture seen as a Γm-labelled tree, as well as any arborescent picture
whose set of positions X is a subset of 1∗, is an ordinary, planar picture.

Definition 2.2 (sub-picture). For any arborescent picture p ∈ AP(X, m), the
sub-picture p′ = p|x,i,Y,n of p at offset o = (x, i) with x ∈ X and i ∈ [0, m − 1] is
the arborescent picture of domain Y × [1, n] such that Y is prefix- and left-closed
and ∀(y, j) ∈ Y × [1, n], (xy, i + j) ∈ X × [1, m] and p′(y, j) = p(xy, i + j).

We can now define arborescent tiling systems, which allow the specification of
sets of arborescent pictures. Similarly to planar tiling systems, in order to be able
to recognise meaningful sets of pictures, we first add a border or frame to each
picture using a new symbol #.
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Definition 2.3 (framed picture). Let p be an arborescent picture of domain X ×
[1, m] over Γ and # �∈ Γ a new symbol, we define the #-framed picture p# as the
picture of domain X ′ × [1, m + 2] with X ′ = {ε} ∪ {1}X ∪ X ′′ and X ′′ = {1x1 |
x ∈ X ∧ �y ∈ N, xy ∈ X} such that

p#(ε, i) = # for all i ∈ [1, m + 2],

p#(1x, 1) = # and p#(1x, m + 2) = # for all x ∈ X,

p#(x, i) = # for all x ∈ X ′′, i ∈ [1, m + 2],

p#(1x, i + 1) = p(x, i) for all x ∈ X, i ∈ [1, m].

An arborescent tiling system is then defined as a set of tiling elements of width
and height 2, which can then be combined to form larger framed pictures.

Definition 2.4 (arborescent tiling system). An arborescent tiling system (or ATS)
S is a triple (Γ, #, Δ), where Γ is a finite alphabet, # �∈ Γ a frame symbol and Δ
is a set of arborescent tiling elements (tiles) in {Γ̄ × Γ̄ × Γ̄n × Γ̄n | n > 0} with
Γ̄ = Γ ∪ {#}.

Each tiling element d ∈ Δ is of the form d = (A, B, C̄, D̄) with A, B ∈ Γ̄
and C̄, D̄ ∈ Γ̄n for some positive integer n. We define additional notations to
conveniently manipulate tiling elements. Let d = (A, B, C̄, D̄) with C̄ = C1 . . . Cn

and D̄ = D1 . . .Dn, we write a(d) = n to denote the arity of d, and di with
i ∈ [1, a(d)] to denote the (planar) tile (A, B, Ci, Di).

Note that any tiling element d = (A, B, C̄, D̄) of arity n is isomorphic to an
arborescent picture pd of domain X × [1, 2], where X = {ε, 1, . . . , n} and pd(ε, 1),
pd(ε, 2), pd(i, 1) and pd(i, 2) are respectively equal to A, B, Ci and Di (for all
i ∈ [1, n]). In general we do not distinguish pd from d and write simply d.

Well-formed tiling systems should obey a certain number of restrictions over
their set of tiles, regarding in particular the occurrences of the frame symbol #
inside tiles. For all d = (A, B, C̄, D̄),

(1) (A, B) = (#, #) =⇒ a(d) = 1 ∧ (C1, D1) �= (#, #),
(2) ∃i, (Ci, Di) = (#, #) =⇒ a(d) = 1 ∧ (A, B) �= (#, #),
(3) ∃i, Ci = # ∧ Di �= # =⇒ A = # ∧ ∀i, Ci = #,
(4) ∃i, Di = # ∧ Ci �= # =⇒ B = # ∧ ∀i, Di = #.

Before defining the set of pictures and the word language accepted by an arbores-
cent tiling system, we define for any arborescent picture p of domain X×[1, m] over
Γ the set T(p) of tiling elements of p as the set of all sub-pictures p|x,j,X′,2 of p such
that x is an internal position in X , j ∈ [1, m−1] and X ′ = {ε}∪{i′ > 0 | xi′ ∈ X}.
Definition 2.5 (language of a tiling system). The set of arborescent pictures
accepted by an arborescent tiling system S = (Γ, #, Δ) is the set P(S) = {p ∈
AP | T(p#) ⊆ Δ}. The (word) language accepted by S is the set L(S) = {w ∈
Γ∗ | ∃p ∈ P(S), w = fr(p)} of all upper frontiers of pictures of P(S).

As previously, note that arborescent tiling systems are a syntactical generalisa-
tion of planar tiling systems: framed pictures with a domain X ⊆ 1∗ or branches
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Figure 1. Arborescent picture p and the corresponding framed
picture p#.

of framed arborescent pictures are planar framed pictures, and arborescent tiling
systems whose elements all have arity 1 are ordinary, planar tiling systems.

Example 2.6. Figure 1 represents an arborescent picture p whose frontier is the
word a3b3c3, as well as the corresponding framed picture. By considering all sub-
pictures of height and width 2 of that framed picture, one obtains a set of tiling
elements Δ, which contains, among others, tiling elements (#, #, a, b), (a, +, +, +)
and (+, +, #, #) of arity 1 and (b, c, b +,×+) of arity 2, but not (b, c, b +, c +) or
(#, +, #, +) for instance.

One can see that the tiling system S = ({a, b, c, +,×}, #, Δ) accepts all arbores-
cent pictures similar to p whose frontiers are words of the form anbncn with n ≥ 2:
the left branch of each such picture ensures that the number of a’s and b’s is equal
by replacing at each successive row one occurrence of a and one occurrence of b
by some symbol +. Occurrences of c are irrelevant and are replaced with symbol
×. A lower frame borders can only be generated once all occurrences of a and b
have been replaced. A similar check is performed by the right branch for symbols
b and c.

Note that S does not accept the word abc, since accepting a similar picture
with frontier abc would require some additional tiling elements, like for instance
(a, b, +×, ++) and (b, c, ++,×+). Consequently, the language L(S) is {anbncn |
n ≥ 2}.

2.2. Languages of arborescent tiling systems

In this section, we prove that arborescent tiling systems and alternating linearly
bounded machines define the same family of languages, namely ASPACE(O(n)),
also equal as previously mentioned to DTIME(2O(n)) = ETIME.
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Proposition 2.7. For every arborescent tiling system S, there exists an alternat-
ing linearly bounded machine M such that L(M) = L(S).

Proof. Let S = (Γ, #, Δ) be an arborescent tiling system. We build an alternat-
ing linearly bounded machine M = (Γ, Γ′, Q, q#, f, δ) accepting L(S). Its work
alphabet Γ′ is the union of all Γ̄k for k ∈ [1, a(S)], where Γ̄ = Γ ∪ {#} and
a(S) = max{a(d) | d ∈ Δ}. The control states and transition rules of M are
(only) those appearing in the following description of M ’s behaviour.

(1) M starts in configuration [q#w], where w ∈ Γ∗ is the input word. For
all (#, #, C, D) ∈ Δ with D �= #, δ contains a rule qCD → qDD+. For
every tile (#, #, C, #) ∈ Δ and positive integer n ≤ a(S), M can reverse
its head with a rule qC ] → p1

#
#n ]−. This first sweep checks that w is a

possible upper frontier of a picture accepted by S.
(2) In the next sweep, M generates at once a possible n-tuple of next rows

based on the current configuration and the tiles in Δ. For all Ā =
A1 . . . Am, C̄ = C1 . . . Cn and D̄ = D1 . . . Dn with m, n ∈ [1, a(S)] and
for all k ∈ [1, m], δ contains the rules

pk
#
#nĀ → pk

Ak

C̄
C̄− for all (Ak, #, C̄, #n) ∈ Δ,

pk
Bk

D̄
Ā → pk

Ak

C̄
C̄− for all (Ak, Bk, C̄, D̄) ∈ Δ,

pk
Bk

D̄
[ →

∧
i∈[1,n]

qi
#
#l [+ for all (#, Bk, #n, D̄) ∈ Δ, l ∈ [1, a(S)].

Rules of the latter type perform a head reversal with universal branching
at the end of a sweep. On each new computation branch, proceed to the
next step.

(3) The last row generated on component k consists of a sequence of frame
symbols # if and only if the last symbol written to the right of the left
border symbol is #.

If this is the case on the current computation branch, reach accepting
state f with rules of the form qk

#
#nB̄ → fB̄+ for all m ∈ [1, a(S)], k ∈

[1, m] and B̄ = B1 . . . Bm with Bk = #. Otherwise, proceed to the next
step.

(4) This step is the right-to-left counterpart of step 2. For all B̄ = B1 . . . Bm,
C̄ = C1 . . . Cn and D̄ = D1 . . . Dn with m, n ∈ [1, a(S)] and for all k ∈
[1, m], δ contains the rules

qk
#
#nB̄ → qk

Bk

D̄
D̄+ for all (#, Bk, #n, D̄) ∈ Δ,

qk
Ak

C̄
B̄ → qk

Bk

D̄
D̄+ for all (Ak, Bk, C̄, D̄) ∈ Δ,

qk
Ak

C̄
] →

∧
i∈[1,n]

pi
#
#l ]− for all (Ak, #, C̄, #n) ∈ Δ, l ∈ [1, a(S)].
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As previously, rules of the latter type perform a head reversal with uni-
versal branching at the end of a sweep. On each new computation branch,
proceed to the next step.

(5) Conversely to step 3, if the last symbol written on component k to the
left of the right border symbol is #, then reach accepting state f with
rules of the form pk

#
#nĀ → fĀ− for all m ∈ [1, a(S)], k ∈ [1, m] and

Ā = A1 . . . Am with Ak = #. Otherwise, proceed to step 2.

Steps 2 to 5 are repeated until all computation branches have reached the accepting
state f . It then only remains to check that this happens if, and only if, the input
word w is accepted by S.

A control state of M of the form pk
Bk

D̄
, occurring in a right-to-left sweep of the

tape (step 2), carries the information that at the previous step, the tape cell to
the right of the head contained some word B̄ of k-th letter Bk, and that this cell
now contains D̄. Transitions from this control state to a control state pk

Ak

C̄
are

now enabled if, and only if, the current cell contains a word Ā whose k-th letter
is Ak, and there exists in Δ a tiling element (Ak, Bk, C̄, D̄), which M can non-
deterministically try to simulate. If such a transition is used, Ā is then replaced
with C̄ and the simulation continues.

Once a complete sweep is achieved, it is ensured that the new tape content is
consistent with the tiling elements in Δ as far as component k of the previous tape
content is concerned. Once the left tape delimiter is reached, either the whole tape
contains border symbols, in which case the current execution branch should reach
an accepting state (step 3), or M has to launch as many alternating computations
as necessary to proceed with the simulation. Similar explanations then hold for
states of type qk

Ak

C̄
during step 4.

Consider a run ρ of M over word w with |w| = n. Let wx be the tape content
reached after |x| complete sweeps of the tape where x is a sequence of indices
denoting the computation branch where this tape content appears (i.e. x is the
sequence of indices k of control states of M encountered after each head reverse
on this particular execution branch), and let X be the set of all such x. Define
wx(k) as the word Ā(x,1)(k) . . . Ā(x,n)(k), where wx = Ā(x,1) . . . Ā(x,n). Let p be
the arborescent picture of domain Y = {y | 1y ∈ X} whose row at position ε is w
and whose row at position yk is precisely w1y(k). It is tedious but straightforward
to prove that p belongs to P(S) (and hence w to L(S)) if and only if ρ is an
accepting run (and hence w ∈ L(M)). �

Proposition 2.8. For every alternating linearly bounded machine M , there exists
an arborescent tiling system S such that L(S) = L(M).

Proof. Let M = (Σ, Γ, Q, q0, F, δ) be an alternating linearly bounded machine. We
build an arborescent tiling system S = (Γ′, #, Δ) such that L(S) = [L(M)], where
[ and ] are two new symbols. We suppose without loss of generality that every
rule d of M is given under the form d = pA → q1B1μ1 ∧ . . . ∧ qnBnμn. By di we
refer to the fragment pA → qiBiμi of d, and we let a(d) = n.
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The construction goes as follows. S first needs to set an input word w as the
upper frontier of any picture it accepts. It then encodes the initial configuration
of M on w as the second row. Subsequent tiles simulate the application of a
transition of M on the configuration encoded by the current row, and check that
the previous transition was correctly simulated. Arity n tiling elements will be
used to simulate a rule of alternation degree n. This process goes on until an
accepting state is reached by M on a given execution branch. In that case, a
bottom border is generated by S on the corresponding picture branch.

This process requires additional information, in particular about the position
of the head and the index of the last simulated transition, to be added to the
picture alphabet. To this end, bracketed superscripts of the form (d) with d ∈ δ
will be used to indicate that the transition last performed by M before reaching
the configuration represented by the current row is d. Subscripts � and r are used
to indicate whether a given cell lies to the left or to the right of the read head.
Subscripts of the form p with p ∈ Q denote that the read head currently stands
on the position represented by the current cell and is in state p.

Tiling elements of S consist in the following sets. First, we need a set of tiles
of arity 1 to set the input word as upper frontier. For all a, b ∈ Σ, Δ contains

(#, #, #, [ ), (#, #, [ , a), (#, #, a, b), (#, #, b, ]), (#, #, ], #).

In the second row we then need to encode the initial configuration [q0w] of M .
Thus for all a, b ∈ Σ, Δ contains the arity 1 tiles

(#, [ , #, [ (⊥)
� ), ([ , a, [ (⊥)

� , a(⊥)
q0

), (a, b, a(⊥)
q0

, b(⊥)
r ),

(a, b, a(⊥)
r , b(⊥)

r ), (b, ], b(⊥)
r , ](⊥)), ( ], #, ](⊥)

r , #),

where ⊥ denotes a dummy transition of arity considered as 1. Subsequent tiles
check the consistency of the previously applied transition d throughout a row, and
simulate the application of a new transition d′ of M . Arity n tiles are used when
d′ is of alternation degree n. For all A, B, B′, C, C′ ∈ Γ and d ∈ δ, Δ thus contains

(#, [ (d)
p , #n, ([ (d′)

� )n) for all d′ = (p[→ q1[ + ∧ . . . ∧ qn[ +) ∈ δ,

(#, [ (d)
� , #n, Y ) for all d′ ∈ δ with a(d′) = n, where ∀i ∈ [1, n],

Yi =

⎧⎨
⎩

[ (d′)
qi

or [ (d′)
� if d′i = pC → qiC

′−
[ (d′)
� otherwise,

(A(d)
� , B

(d)
� , (A(d′)

� )n, Y ) for all d′ ∈ δ with a(d′) = n, where ∀i ∈ [1, n],

Yi =

⎧⎨
⎩

B(d′)
qi

or B
(d′)
� if d′i = pC → qiC

′−
B

(d′)
� otherwise,
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(A(d)
� , B(d)

p , X, Y ) for all d′ ∈ δ with a(d′) = n, where ∀i ∈ [1, n],⎧⎨
⎩

Xi = A(d′)
qi

and Yi = B′
r
(d′) if d′i = pB → qiB

′−
Xi = A

(d′)
� and Yi = B′

�
(d′) if d′i = pB → qiB

′+

as well as all tiling elements of the form ( ](d)
p , #, ( ](d

′)
p )n, #n), ([ (d)

� , #, X, #n),
(A(d)

r , B
(d)
r , X, (B(d′)

r )n) and (A(d)
p , B

(d)
r , X, Y ), defined dually.

Furthermore, if the last simulated transition ends in a final control state, tiles
of Δ should allow one to generate a lower border: we thus have copies of all the
previous rules with X = Y = #, with the additional constraint that transition d
reaches an accepting state of M .

It remains to prove that one indeed has L(S) = [L(M)], which can be done by
proving that in any picture p accepted by S, if a row r encodes some configuration
c of M , then the children of r accurately encode the direct successors of c through
an alternating transition d ∈ δ. Consequently, each picture of upper frontier [w]
accepted by S is a faithful encoding of an accepting run of M on w. Conversely,
whenever M has an accepting run over some word w, its encoding as a picture has
to be accepted by S.

Defining a tiling system which accepts precisely L(M) and not [L(M)], i.e.
removing the border symbols from L(S), is then a simple exercise. �

From Propositions 2.7 and 2.8, we deduce the announced theorem.

Theorem 2.9. The languages of arborescent tiling systems form the complexity
class ETIME.

Note that the language accepted by the tiling system of Example 2.6 is a context-
sensitive language, which could also be accepted by a non-arborescent tiling sys-
tem.

3. Traces of term-automatic graphs

We now turn to the main result of this paper, which is the study of languages
of graphs characterised by automata-defined binary relations over terms, and in
particular term-automatic graphs. We define these relations and the graphs they
generate, then present a two-steps proof that the languages of term-automatic
graphs indeed coincide with ASPACE(O(n)). First, we establish this result for
the simpler term-synchronous graphs in Section 3.2, then generalise it to term-
automatic graphs in Section 3.3.

3.1. Definitions

Let s = f(s1 . . . sm) and t = g(t1 . . . tn) be two terms over some ranked alphabet
F . We define the overlap [st] of s and t as a term over domain dom(s) ∪ dom(t)
and extended alphabet (F ∪ {⊥})2 (each element (f, g) of this alphabet being
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written simply fg), such that ∀p ∈ dom(s) ∪ dom(t), [st](p) = fg with f = s(p)
if p ∈ dom(s) or ⊥ otherwise, and g = t(p) if p ∈ dom(t) or ⊥ otherwise. This
notation is extended to sets in the natural way.

We can now define term-automatic and term-synchronous relations. We say a
binary relation R is term- (or tree-)automatic if the term language [R] = {[st] |
(s, t) ∈ R} is regular. If furthermore for all (s, t) ∈ R, dom(s) = dom(t), it is called
synchronous. In other words, a synchronous relation is an automatic relation which
only associates terms with the same domain. Both families of relations are closed
under relational composition. Term-automatic and term-synchronous relations
are syntactical extensions of the corresponding families of relations over words.
As such, they also define extended families of graphs.

Definition 3.1. A Σ-graph G is term-automatic (resp. term-synchronous) if it is
isomorphic to a graph {u a→ v | a ∈ Σ, (u, v) ∈ Ra}, where (Ra)a∈Σ is a family of
term-automatic (resp. term-synchronous) relations.

3.2. Term-synchronous graphs

This section presents direct simulations of alternating tiling systems by syn-
chronous graphs and conversely, showing that the languages of term-synchronous
graphs between regular sets of vertices form the class ETIME.

Proposition 3.2. For every term-synchronous graph G and regular sets I and F
there exists an arborescent tiling system S such that L(S) = L(G, I, F ).

Proof. Let G = (Ra)a∈Σ be a term-synchronous graph, and I, F two regular sets
of vertices of G. We build an arborescent tiling system S = (Γ, #, Δ) such that
L(S) = L(G, I, S).

For all a ∈ Σ, let Aa be a finite top-down term automaton accepting the lan-
guage [Ra] (as defined in Section 3.1), and AI , AF similar automata for I and
F respectively. For every a ∈ Σ, we also define relations RI◦a = IdI ◦ Ra and
Ra◦F = Ra ◦ IdF , where IdL denotes the identity relation over some set L. Let
also AI◦a and Aa◦F be two automata accepting the languages [RI◦a] and [Ra◦F ]
respectively. The control state sets of all these automata are supposed disjoint.

For every path t0
a1→ t1 . . .

an→ tn in G with t0 ∈ I, tn ∈ F and ∀i, dom(ti) = X ,
we want S to accept an arborescent picture p such that

• p|ε,1,X,1 is isomorphic to the term a1, (ρ1), where ρ1 is an accepting run
of AI◦a1 over [t0t1];

• p|ε,i,X,1 is isomorphic to the term ai(ρi) for all i ∈ [2, n − 1], where ρi is
an accepting run of Aai over [ti−1ti];

• p|ε,n,X,1 is isomorphic to the term an(ρn), where ρn+1 is an accepting run
of Aan◦F over [tn−1tn],

and conversely, S should only accept all such pictures which correspond to paths
in G between I and F .

These conditions are sufficient for S to accept the word language L(G, I, F ).
To ensure they indeed hold, we define Δ as containing the following tiles. For
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the leftmost columns of pictures, we simulate for every a the possible runs of
automaton AI◦a with tiles

(#, #, #, a),

(#, a, #, px) if p initial in AI◦a,

(#, px, #k, p1x1 . . . pkxk) if px → p1x1 . . . pkxk ∈ AI◦a,

(#, px, #, #) if px → ε ∈ AI◦a.

For pairs of intermediate columns inside a picture, we simulate two automata side
by side while checking for consistency. Hence for all a, b ∈ Σ, we have tiles

(#, #, a, b),

(a, b, px, qy) with p initial in Aa, q initial in Ab

and x = fg and y = gh for some f, g, h,

(px, qy, p1x1 . . . pkxk, q1y1 . . . qkyk) if
{

px → p1x1 . . . pkxk ∈ Aa

qy → q1y1 . . . qkyk ∈ Ab

and ∀i ∈ [0, k], xi = fg and yi = gh for some f, g, h

(px, qy, #, #) if px → ε ∈ Aa, qy → ε ∈ Ab

and x = fg and y = gh for some f, g, h.

Finally, for the rightmost columns we have the following set of tiles, which is
analogous to the leftmost case. For every letter b, Δ contains

(#, #, b, #),

(b, #, qy, #) if q initial in Ab◦F ,

(qy, #, q1y1 . . . qkyk, #k) if qy → q1y1 . . . qkyk ∈ Ab◦F ,

(qy, #, #, #) if qy → ε ∈ Ab◦F .

It then only remains to check that given this set of tiles, S indeed enjoys the
properties cited above, and hence accepts L(G, I, F ). �

Proposition 3.3. For every arborescent tiling system S, there exists a term-syn-
chronous graph G and regular sets I and F such that L(G, I, F ) = L(S).

Proof. Let S = (Γ, #, Δ) be an arborescent tiling system. We build a term-
synchronous graph G such that L(S) = L(G, I, F ) for some regular sets I and F .
In the following, symbol # is overloaded to make the notation less cumbersome,
and represents functional symbols of varying arities, which can be deduced from
the context. In particular, we write #X for a given prefix-closed set X the term
of domain X whose nodes are all labelled with #.

Let Ra, a ∈ Σ, be the binary relation between all terms #(s) and #(t) (i.e.
s and t with an additional unary # at the root) such that a labels the root of t
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and for a given p ∈ P (S), either s = p|ε,i,X,1 and t = p|ε,i+1,X,1 for some i > 0 or
s = #X and t = p|ε,0,X,1.

Let G be the graph defined by (Ra)a∈Σ, we show that G is term-synchronous
by constructing automata (Aa)a∈Σ such that L(Aa) = [Ra] = {[st] | (s, t) ∈ Ra}.
For all a, Aa has transitions:

q0## → qAB,1 if (#, #, A, B) ∈ Δ,

qĀB̄,iAB → qC̄D̄,1 . . . qC̄D̄,k if d = (Ai, Bi, C̄, D̄) ∈ Δ, k = a(d),

Ai = Ā(i) and Bi = B̄(i),

qĀB̄,iAiBi → ε if (Ai, Bi, #, #) ∈ Δ,

Ai = Ā(i) and Bi = B̄(i).

We define I as the regular set of all terms labelled over {#}, and F as the set
of all possible rightmost columns of pictures accepted by S. This set of terms is
accepted by the automaton AF whose transitions are:

q0# → qA,1 if (#, #, A, #) ∈ Δ,

qĀ,iAi → qC̄,1 . . . qC̄,k if d = (Ai, #, C̄, #k) ∈ Δ and Ai = Ā(i),

qĀ,iAi → ε if (Ai, #, #, #) ∈ Δ and Ai = Ā(i).

By construction of each of the Aa, I and AF , there exists a path in G labelled by
a word w between a vertex in I and a vertex in F if and only if the vertices along
that paths are the successive columns of a picture in P (S) whose frontier is w. �

3.3. Term-automatic graphs

In this section, we show that the more general family of term-automatic graphs
defines the same family of languages as their synchronous counterparts.

Proposition 3.4. For every term-automatic graph G and regular sets of terms I
and F , there exists a term-synchronous graph G′ and regular sets I ′ and F ′ such
that L(G′, I ′, F ′) = L(G, I, F ).

Proof. Let G be a term-automatic graph defined by a family (Ra)a∈Σ of automatic
relations and I, F be two regular languages, each [Ra] being accepted by an au-
tomaton Aa, I by AI and F by AF . We define a synchronous graph G′ = (R′

a)a∈Σ

and two regular sets I ′ and F ′ such that L(G, I, F ) = L(G′, I ′, F ′).
Recall that term-automatic relations are defined using a notion of overlap be-

tween terms (cf. Sect. 3.1). Two terms s and t with different domains belong to
a term-automatic relation R defined by automaton A if the overlap [st] of s and t
is accepted by A. This notion of overlap consists in “unifying” the domains of s
and t, and padding undefined positions with a special symbol ⊥.

We wish to reuse this idea, but instead of unifying the domains of two terms
only, we have to unify the domains of all vertices along a given path. Indeed, in
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a term-synchronous graph, edges can only exist between terms with precisely the
same domain. For every term s standing for a vertex in G, we will thus have to
consider an infinite set of “versions” of s in G′, one for each possible term domain
larger than that of s.

Let Γ be a ranked alphabet, we define alphabet Γ′ as Γ′ = Γ0∪Γn with Γ′
0 = #0

and Γ′
n = Γ∪#n, where n is the maximal arity of symbols in Γ. Let φ be a mapping

from T (Γ) to 2T (Γ′) such that for any term t ∈ T (Γ),

φ(t) =
{
t′ ∈ T (Γ′) | dom(t) ⊂ dom(t′), ∀p ∈ dom(t), t′(p) = t(p)

and ∀p ∈ dom(t′) \ dom(t), t′(p) ∈ {#0, #n}
}
.

In other words, to any term t, φ associates the set of all terms obtained by
“padding” t with silent symbols #0 and #n. This mapping is extended to sets of
terms in the natural way. Note that, given any t′ ∈ F (Γ′), there exists at most
one term t ∈ T (Γ) such that t′ ∈ φ(t).

We now define, for every a ∈ Σ, relation R′
a as {(s′, t′) | (s, t) ∈ Ra, s′ ∈

φ(s), t′ ∈ φ(t) and dom(s′) = dom(t′)}. This synchronous relation can be char-
acterised by a finite tree automaton A′

a defined from Aa. For every transition
px → q1 . . . qk in Aa, with 0 ≤ k ≤ n, A′

a has a transition p′x → q′1 . . . q′k(q#)n−k,
as well as transitions q##n → (q#)n and q##0 → ε. The initial state of A′

a is q′0.
We also let I ′ = φ(I) and F ′ = φ(F ), for which automata can be similarly defined
from AI and AF .

Let G′ be the term-synchronous graph defined by (R′
a)a∈Σ. For every path

i′ = t′0
a1→ t′1 . . . t′n−1

an→ t′n = f ′ in G′ with i′ ∈ I ′ and f ′ ∈ F ′, by definition of G′

and φ, and for all i ∈ [1, n], there must exist ti−1 and ti such that ti−1
ai→ ti ∈ G,

t′i−1 ∈ φ(ti−1) and t′i ∈ φ(ti). Also, by definition of I and F , t0 ∈ I and tn ∈ F .
Hence a1 . . . an ∈ L(G, I, F ), and more generally L(G′, I ′, F ′) ⊆ L(G, I, F ).

Conversely, consider any path i = t0
a1→ t1 . . . tn−1

an→ tn = f in G with i ∈ I
and f ∈ F . One can easily see that for some sufficiently large domain X , for
all i ∈ [0, n] there exists t′i ∈ φ(ti) with dom(t′i) = X . From there, it is not
difficult to conclude that there is a path in G′ labelled by a1 . . . an, hence that
L(G, I, F ) ⊆ L(G′, I ′, F ′). �
Remark 3.5. Note that for every term-automatic graph G and regular sets I
and F , there exists a term-automatic graph G′ and finite sets I ′ and F ′ such that
L(G′, I ′, F ′) = L(G, I, F ). Indeed, for any regular I and F and finite I ′ and F ′

the relations I ′ × I and F ×F ′ are automatic. Since term-automatic relations are
closed under union and composition, this can be used to build G′ from G.

This, however, does not hold in the term-synchronous case. Indeed, since each
connected component of a term-synchronous graph is finite, the language of any
such graph from a finite set of initial vertices is regular.

Combining Theorem 2.9, Propositions 3.2, 3.3 and 3.4, as well as Remark 3.5,
we obtain the following result concerning the family of languages accepted by
term-synchronous and term-automatic graphs.
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Theorem 3.6. The languages of term-synchronous graphs between regular sets
of vertices and of term-automatic graphs between regular or finite sets of vertices
form the complexity class ETIME.

4. Conclusion

We have proved that the class of languages accepted by alternating linearly
bounded machines (ETIME) can also be characterised as the sets of first rows of
pictures accepted by arborescent tiling systems, as well as the sets of path labels
of term-automatic graphs between regular or finite sets of initial and final vertices.

A natural extension of this work would be to generalise Theorem 3.6 to graphs
defined by more expressive classes of tree transducers, in order to fully extend the
existing results on rational graphs. In practice, this would require extending the
construction for Proposition 3.4 to more general padding techniques.

Further points of interest concern the extension of other results from [4] to term-
automatic graphs, in particular regarding structural restrictions of these graphs,
like finite or bounded degree, or the restriction to a single initial vertex, as well as
a similar study of related complexity classes or families of languages.
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