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Galois coverings of weakly shod algebras

Patrick Le Meur

March 26, 2009

Abstract

We investigate the Galois coverings of weakly shod algebras. For a weakly shod algebra not quasi-tilted
of canonical type, we establish a correspondence between its Galois coverings and the Galois coverings of its
connecting component. As a consequence we show that a weakly shod algebra which is not quasi-tilted of
canonical type is simply connected if and only if its first Hochschild cohomology group vanishes.

Introduction

Let A be a finite dimensional k-algebra where k is an algebraically closed field. In order to study the category
mod A of finite dimensional (right) A-modules we assume that A is basic and connected. The study of mod A
has risen important classes of algebras. For example: The representation-finite algebras, that is, with only finitely
many isomorphism classes of indecomposable modules; the hereditary algebras, that is, path algebras kQ of finite
quivers Q with no oriented cycles; the tilted algebras of type Q, that is, endomorphism algebras EndkQ(T ) of
tilting kQ-modules (see [19]); and the quasi-tilted algebras, that is, endomorphism algebras EndH(T ) of tilting
objects T in a hereditary abelian category H (see [18], a quasi-tilted algebra which is not tilted is called of
canonical type). For the last three classes, each class is a generalisation of the previous one. More recently,
a new class of algebras has arisen (see [2, 27, 31]): That of laura algebras. The algebra A is called laura if
there is an upper bound in the number of isomorphism classes of indecomposable modules which can appear in an
oriented path of non-zero morphisms between indecomposable A-modules starting from an injective and ending at
a projective. It appears that this class contains the four classes cited above. A laura algebra which not quasi-tilted
is characterised by the existence of a unique non semi-regular component (that is, containing both a projective
and an injective) in its Auslander-Reiten quiver. It is called the connecting component as a generalisation of the
connecting components of tilted algebras. Hence a laura algebra which is not quasi-tilted of canonical type has at
least one, and at most two, connecting components (actually, it has two if and only if A is concealed). Recall that
quasi-tilted algebras of finite representation type are tilted ([18, Cor. 2.3.6]) and those of infinite representation
type are characterised by the existence of a sincere separating family of semi-regular standard tubes ([24]). Laura
algebras comprise the weakly shod algebras defined by the existence of an upper bound for the length of a path
of non-zero non-isomorphisms from an injective to a projective. Actually a laura algebra which is not quasi-tilted
is weakly shod if and only if the connecting component contains no oriented cycles. Weakly shod algebras were
introduced in [14] as a generalisation of shod algebras which were defined in [15, 26] as the class of algebras
for which any indecomposable module has injective dimension or projective dimension at most 1. For example,
quasi-tilted algebras are shod and therefore weakly shod.

On the other hand, the covering techniques ([11, 28]) have permitted important progress in the study of
representation-finite algebras (see [9, 12, 17]). These techniques need to consider algebras as k-categories. If
C → A is a Galois covering, then mod A and mod C are related by the so-called push-down functor Fλ : mod C →
mod A. When A has no proper Galois covering by a connected and locally bounded k-category (or, equivalently,
when the fundamental group of any presentation of A in the sense of [25] is trivial), we say that A is simply
connected (see [8]). Simply connected algebras are of special interest because of the reduction allowed by the
push-down functors. Also they have been object of many investigations (see [8, 10] for instance). For example,
Bongartz and Gabriel ([11]) have classified the simply connected representation-finite standard algebras using
graded trees. Therefore a nice characterisation of simply connected algebras would be very useful. In [29, Pb. 1],
Skowroński asked the following question for a tame and triangular algebra A:

Is A simply connected if and only if HH1(A) = 0? (Q)

Up to now, there have been partial answers to Q (regardless the tame assumption): For algebras derived equivalent
to a hereditary algebra in [22] (and therefore for tilted algebras), for tame quasi-tilted algebras in [3] and for tame
weakly shod algebras in [5]. Therefore it is natural to try to answer Q for laura algebras. This shall be done in a
forthcoming text ([1]). In the present text we study the case of weakly shod algebras not quasi-tilted of canonical
type, which will serve for the study made in [1]. For this purpose we prove the following main result.

Theorem A. Let A be connected, weakly shod and not quasi-tilted of canonical type. Let ΓA be a connecting
component of Γ(mod A). Let G be a group. Then A admits a Galois covering with group G by a connected
and locally bounded k-category if and only if ΓA admits a Galois covering with group G of translation quivers.
In particular A admits a Galois covering with group π1(ΓA) by a connected and locally bounded k-category.
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By [11, 4.2], the fundamental group π1(ΓA) of a connecting component ΓA is free and isomorphic to the
fundamental group of its orbit-graph. If A is concealed, then its two connecting components are the unique
postprojective and the unique preinjective components, so they have isomorphic fundamental groups. As a
consequence of our main result we prove that Q has a positive answer for weakly shod algebras.

Corollary B. Let A be connected, weakly shod and not quasi-tilted of canonical type. Let ΓA be a connecting
component of Γ(mod A). The following conditions are equivalent:

(a) A is simply connected.

(b) HH1(A) = 0.

(c) The orbit-graph O(ΓA) of ΓA is a tree.

(d) ΓA is simply connected.

Our proof of Corollary B is independent of the one given in [5] for the tame case. Actually we make no
distinction between the different representation types (finite, tame or wild). The proof of Theorem A decomposes
in two main steps:

1. If F : C → A is a Galois covering with group G, then every module X ∈ ΓA is isomorphic to Fλ
eX for some

eX ∈ mod C. The modules eX, for X in ΓA, form an Auslander-Reiten component of C. This component is
a Galois covering with group G of ΓA.

2. A admits a Galois covering with group π1(ΓA) associated to the universal cover of the orbit-graph O(ΓA).

As an application of the methods we use, we prove the last main result of the text.

Theorem C. Let A′ → A be a Galois covering with finite group G where A′ is a basic and connected finite
dimensional k-algebra . Then:

(a) A is tilted if and only if A′ is tilted.

(b) A is quasi-tilted if and only if A′ is quasi-tilted.

(c) A is weakly shod if and only if A′ is weakly shod.

The text is organised as follows. In Section 1 we fix some notations and recall some useful definitions. In
Section 2 we give some preliminary results: First, we prove some useful facts on covering techniques; second, we
compare the Auslander-Reiten quiver of A and the one of B when A = B[M ]. Section 3 is the very core of the
text and is devoted to the first step of Theorem A. In Section 4 we proceed the second step. In Section 5, we
prove Theorem A and Corollary B. Finally, we prove Theorem C in Section 6.

1 Definitions and notations
Notations on k-categories
We refer the reader to [11, 2.1] for notions on k-categories and locally bounded k-categories. All locally

bounded k-categories are small and all functors between k-categories are k-linear (of course, our module categories
will be skeletally small). For a locally bounded k-category C, its objects set is denoted by Co and the space of
morphisms from an object x to an object y is denoted by C(x, y). If A is a basic finite dimensional k-algebra, it
is equivalently a locally bounded k-category as follows. Fix a complete set {e1, . . . , en} of pairwise orthogonal
primitive idempotents. Then Ao = {e1, . . . , en} and A(ei, ej) = ejAei for every i, j. In the sequel, A will always
denote a basic finite dimensional k-algebra.

Notations on modules
Let C be a k-category. Following [11, 2.2], a (right) C-module is a k-linear functor M : Cop → MOD k

where MOD k is the category of k-vector spaces. If C′ is another k-category, a C − C′-bimodule is a k-linear
functor C × C′op → MOD k. We write MOD C for the category of C-modules and mod C for the full subcategory
of finite dimensional C-modules, that is, those modules M such that

P

x∈Co

dimk M(x) < ∞. The standard

duality Homk(−, k) is denoted by D. We write ind C for the full subcategory of mod C containing exactly one
representative of each isomorphism class of indecomposable modules. A set X of modules is called faithful
if
T

X∈X

Ann(X) = 0 where Ann(X) is the annihilator of X, that is, the C − C-subbimodule of C such that

Ann(X)(x, y) = {u ∈ C(x, y) | mu = 0 for every m ∈ X(y)}. If S is a set of finite dimensional C-modules,
then add(S) denotes the smallest full subcategory of mod C containing S and stable under direct sums and direct
summands.

Assume that C is locally bounded. We write Γ(mod C) for the Auslander-Reiten quiver and τC = DTr for
the Auslander-Reiten translation. Let Γ be a component of Γ(mod C). Then Γ is called generalised standard
if rad∞(X, Y ) = 0 for every X, Y ∈ Γ (see [30]). Here rad denotes the radical of mod C, that is, the ideal
generated by the non-isomorphisms between indecomposable modules, radn denotes the n-th power of the radical
and rad∞ =

T

n>1

radn. The component Γ is called non semi-regular if it contains both an injective module and

a projective module. We recall the definition of the orbit-graph O(Γ) of Γ in the case Γ has no periodic module
(see [11, 4.2] for the general case). First, fix a polarisation in Γ, that is, for every arrow α : x → y in Γ with y
non-projective we fix an arrow σ(α) : τCy → x in such a way that σ induces a bijection from the set of arrows
x → y to the set of arrows τCy → x (see [11, 1.1]). Then O(Γ) is the graph whose vertices are the τC-orbits of
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the vertices in Γ and such that there is an edge (X)τC − (Y )τC for every σ-orbit of arrows between a module in
(X)τC and a module in (Y )τC .

We refer the reader to [7, Chap. VIII, IX] for a background on tilting theory.

Weakly shod algebras ([14])
Let C be a locally bounded k-category and X, Y ∈ ind C. A path X  Y in ind C (or in Γ(mod C)) is a

sequence of non-zero morphisms (or of irreducible morphisms, respectively) between indecomposable C-modules

X = X0
f1−→ X1 → . . . → Xn−1

fn−−→ Xn = Y (with n > 0). We then say that X is a predecessor of Y and that
Y is a successor of X in ind C (or in Γ(mod C), respectively). Hence X is a successor and a predecessor of itself.

The algebra A is called weakly shod if and only if the length of paths in indA from an injective to a projective
is bounded. We write Pf

A for the set of indecomposable projectives which are successors of indecomposable
injectives. When A is weakly shod this set is partially ordered ([5, 4.3]) by the relation: P 6 Q if and only if P
is a predecessor of Q in indA. We need the following properties when A is weakly shod and connected:

(a) If Pf
A = ∅, then A is quasi-tilted ([18, Thm. II.1.14]).

(b) If Pf
A 6= ∅, then Γ(mod A) has a unique non semi-regular component ([14, 1.6, 5.4]). This component is

generalised standard, faithful, has no oriented cycle and contains all the modules lying on a path in indA
form an injective to a projective. In particular, every module lying on it is a brick ([7, IV.1.4]). This
component is called the connecting component of Γ(modA) (or of A).

Assume that A is connected, weakly shod and that Pf
A 6= ∅. Let Pm ∈ Pf

A be maximal and e the idempotent
such that Pm = eA. Then A = B[M ] where M = rad(Pm) and B = (1 − e)A(1− e). Moreover:

(a) Any component B′ of B is weakly shod. It is moreover tilted if Pf
B′ = ∅ ([14, 4.8]).

(b) Let M ′ ∈ indB be a summand of M and B′ the component of B such that M ′ ∈ indB′. Then B′ is
weakly shod and not quasi-tilted of canonical type and M ′ lies on a connecting component of Γ(mod B′)
([5, 5.3]).

Recall ([27, Thm. 3.1]) that if a connected algebra A admits a non semi-regular component which is faithful,
generalised standard and has no oriented cycle, then A is weakly shod.

Galois coverings of translation quivers ([11, 28])
Let Γ and Γ′ be translation quivers and assume that Γ is connected. A covering of translation quivers

p : Γ′ → Γ is a morphism of quivers such that: (a) p is a covering of unoriented graphs; (b) p(x) is projective (or
injective, respectively) if and only if so is x; (c) p commutes with the translations. It is called a Galois covering
with group G if, moreover, the group G acts on Γ′ in such a way that: (d) G acts freely on vertices; (e) p g = p for
every g ∈ G; (f) the translation quiver morphism Γ′/G → Γ induced by p is an isomorphism; (g) Γ′ is connected.
Given a connected translation quiver Γ, there exists a group π1(Γ) (called the fundamental group of Γ) and a

Galois covering eΓ → Γ with group π1(Γ) called the universal cover of Γ, which factors through any covering
Γ′ → Γ. If p : Γ′ → Γ is a covering (or a Galois covering with group G), then it naturally induces a covering (or
a Galois covering with group G, respectively) O(Γ′) → O(Γ) between the associated orbit-graphs. It is proved
in [11, 4.2] that if Γ has only finitely many τ -orbits and if p : Γ′ → Γ is the universal cover of translation quiver,
then O(Γ′) → O(Γ) is the universal cover of graphs, that is, π1(Γ) is isomorphic to π1(O(Γ)) (and therefore is
free).

Group actions on module categories ([17])
Let G be a group. A G-category is a k-category C together with a group morphism G → Aut(C). This defines

an action of G on MOD C: If M ∈ MOD C and g ∈ G, then gM = M ◦g−1. We write GM := {g ∈ G | gM ≃ M}
for the stabiliser of M . We say that G acts freely on C if the induced action on Co is free. Assume that C is locally
bounded. Then this G-action preserves Auslander-Reiten sequences and commutes with τC. Also it induces an
action on Γ(mod C) and on O(Γ) for any G-stable component Γ of Γ(mod C).

Galois coverings of categories ([17])
Let G be a group and F : E → B a functor between k-categories. We set Aut(F ) = {g ∈ Aut(E) | F ◦g = F}.

We say that F is a Galois covering with group G if there is a group morphism G → Aut(F ) such that G acts
freely on E and the induced functor F : E/G → B is an isomorphism. We need the following characterisation
for a functor F : E → B to be a Galois covering ([17, Sect. 3]). The group morphism G → Aut(F ) is such
that F is Galois with group G if and only if: (a) the fibres F−1(x) (x ∈ Bo) are non-empty and G acts on
these freely and transitively and (b) F is a covering functor in the sense of [11, 3.1], that is, for every x, y ∈ Eo

the two maps
L

g∈G

E(x, gy) → B(Fx,Fy) and
L

g∈G

E(gy,x) → B(Fy,Fx) induced by F are isomorphisms. A

Galois covering F : E → B with E and B locally bounded and connected is called connected. In such a case, the
morphism G → Aut(F ) is an isomorphism ([20, Prop. 6.1.37]). A connected and locally bounded k-category B
is called simply connected if and only if there is no connected Galois covering E → B with non trivial group. This
definition is equivalent ([21, Cor. 4.5]) to the original one of [8] and it is more convenient for our purposes.
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Covering techniques ([11] and [17])
Let F : E → B be a Galois covering between locally bounded k-categories. We write Fλ : MOD E → MODB

and F. : MODB → MOD E for the push-down functor and the pull-up functor, respectively. Recall ([11, 3.2])
that F. = X ◦ F for every X ∈ MODB and that for M ∈ MOD E , the B-module FλM is such that FλM(x) =
L

F x′=x

M(x′) for every x ∈ Bo. We list some needed properties on theses functors. Both Fλ and F. are exact;

(Fλ, F.) is adjoint; FλM is projective (or injective) if and only if M is projective (or injective, respectively);
Fλ(mod E) ⊆ modB; the functor Fλ is G-invariant, that is, Fλ ◦ g = Fλ for every g ∈ G; for every M ∈ mod E
we have F.FλM ≃

L

g∈G

gM ([17, 3.2]); and Fλ commutes with the duality, that is, D ◦Fλ ≃ F op
λ ◦D on mod E .

Finally, it satisfies a property which will be refered to as the covering property of Fλ: For M, N ∈ mod E , the
two maps

L

g∈G

HomE( gM, N) → HomB(FλM, FλN) and
L

g∈G

HomE(M, gN) → HomB(FλM, FλN) induced by

Fλ are k-linear isomorphisms. A module X ∈ indB is called of the first kind (with respect to F ) if and only if

there exists eX ∈ mod E (necessarily indecomposable) such that Fλ
eX ≃ X in mod B. Note that if eX exists, then

X = FλX for some X ∈ ind E ; and, if eX, bX ∈ ind E are such that Fλ
eX ≃ Fλ

bX ≃ X, then eX ≃ g
bX for some

g ∈ G (see [17, 3.5]).

2 Preliminaries
Some results on covering techniques
Let F : C → A be a Galois covering with group G where C is locally bounded. We prove some useful

comparisons between of Γ(mod A) and Γ(mod C). First, we give a necessary condition on a morphism in mod C
to be mapped by Fλ to a section or a to retraction.

Lemma 2.1. Let X, Y ∈ mod C and f ∈ HomC(X, Y ).

(a) Fλ(f) is a section (or a retraction) if and only if so is f .

(b) If Fλ(f) is irreducible, then so is f .

(c) Let u : E → X (or v : X → E) be a right (or left) minimal almost split morphism in mod C. Assume
that GX = 1. Then so is Fλ(u) (or Fλ(v), respectively).

(d) FλτCX ≃ τAFλX.

Proof: (a) Obviously, if f is a section (or a retraction), then so is Fλ(f). Assume that Fλ(f) is a section. So
IdFλX = r ◦ Fλ(f) with r ∈ HomA(FλX, FλY ). Moreover, r =

P

g

Fλ(rg) with (rg)g∈G ∈
L

g∈G

HomC(Y, gX),

using the covering propery of Fλ. Therefore IdFλX =
P

g

Fλ(rg ◦ f). The covering property of Fλ then implies

that IdX = r1 ◦ f , that is, f is a section. Dually, if Fλ(f) is a retraction, then so is f .
(b) is a direct consequence of (a).
(c) is due to the proof of [17, 3.6, (b)].
(d) follows from the fact that Fλ is exact, maps projective modules to projective modules (in particular, Fλ

maps a minimal projective resolution in mod C to a minimal projective resolution in mod A) and commutes with
the duality. �

Lemma 2.2. Let Γ be a component of Γ(mod A) made of modules of the first kind and eΓ the full subquiver
of Γ(mod C) generated by {X ∈ Γ(mod C) | FλX ∈ Γ}. Then:

(a) Let u : M → P be a right minimal almost split morphism in mod C with P indecomposable projective.
Then Fλ(u) is right minimal almost split.

(b) Let X ∈ eΓ be non projective. Then Fλ transforms any almost split sequence ending at X into an almost
split sequence ending at FλX.

(c) Let u ∈ HomC(X, Y ) with X, Y ∈ eΓ. Then u is irreducible if and only if so is Fλ(u).

(d) Γ is stable under predecessors and under successors in Γ(mod C) and under the action of G.

Proof: (a) follows from [11, 3.2].

(b) Fix an almost split sequence 0 → τCX
ϕ
−→ E

θ
−→ X → 0 in mod C. By 2.1, (d), we have an exact

sequence 0 → τAFλX
Fλ(ϕ)
−−−−→ FλE

Fλ(θ)
−−−−→ FλX → 0 in mod A. By 2.1, (a), it does not split. Moreover,

FλX is indecomposable and non-projective. Let v : Z → FλX be right minimal almost split. We only need
to prove that v factors through Fλθ. Write v : Z → FλX as v =

ˆ

v1 · · · vn

˜

: Z1 ⊕ . . . ⊕ Zn → FλX
where Z1, . . . , Zn ∈ ind A. We prove that each vi factors through Fλθ. We have Zi ∈ Γ because vi is
irreducible. Therefore Zi = Fλ

eZi for some eZi ∈ mod C indecomposable. So vi =
P

g

Fλ(vi,g) where (vi,g)g∈G ∈

L

g∈G

HomC( g
eZi, X). Note that g

eZi 6≃ X for every g ∈ G because Zi 6≃ FλX. Thus vi,g = θ ◦ wi,g for some

wi,g ∈ HomC( g
eZi, E) for every g. We may assume that wi,g = 0 if vi,g = 0. Then vi = Fλ(θ)◦

 

P

g∈G

Fλ(wi,g)

!

where
P

g∈G

Fλ(wi,g) ∈ HomA(Zi, FλX) for every i. Thus v1, . . . , vn factor through Fλθ. Therefore so does v.

This proves (b).
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(c) is a direct consequence of (a), (b) and 2.1.

(d) Clearly, eΓ is stable under the action of G. We prove the stability under predecessors (the proof for successors

is dual). Let u ∈ HomC(X, Y ) be irreducible with X ∈ ind C and Y ∈ eΓ. We claim that FλX ∈ add(Γ). If Y is
projective, then X is a direct summand of rad(Y ) and u : X → Y is the inclusion. So FλY is indecomposable
projective, FλX is a direct summand of Fλ(rad(Y )) = rad(FλY ) ([11, 3.2]) and Fλ(u) : FλX → FλY is injective.
Since FλY ∈ Γ we have rad(FλY ) ∈ add(Γ) and therefore FλX ∈ add(Γ). Assume that Y is not projective. So
there is an almost split sequence in mod C:

0 → τCY → E ⊕ X

2
4?
u

3
5

−−−→ Y → 0 .

By (a), there is an almost split sequence in mod A:

0 → τAFλY → FλE ⊕ FλX

2
4 ?
Fλu

3
5

−−−−−→ FλY → 0 .

Since FλY ∈ Γ, we have FλX ∈ add(Γ). This proves the claim. Now we prove that FλX is indecomposable.

Since FλX ∈ add(Γ), there exist eE1, . . . , eEn ∈ eΓ and an isomorphism ϕ : FλX
∼
−→ eE1 ⊕ . . . ⊕ eEn. From the

covering property of Fλ, we have ϕ =
P

g∈G

Fλ(ϕg) where (ϕg)g∈G ∈
L

g∈G

HomC( gX, eE1 ⊕ . . . ⊕ eEn). Since ϕ is

an isomorphism, there exists g ∈ G such that Fλ(ϕg) 6∈ rad(FλX, Fλ
eE1 ⊕ . . . ⊕ Fλ

eEn). So there exists i such

that the restriction Fλ
gX → Fλ

eEi of Fλ(ϕg) is an isomorphism so that gX ≃ eEi ∈ Γ. �

The following proposition describes the action of Fλ on almost split sequences in mod C under suitable
conditions. Note that if we assume that G acts freely on indecomposable C-modules (that is, GX = 1 for any
X ∈ ind C), then the last three points follow at once from [17, 3.6].

Proposition 2.3. Keep the hypotheses and notations of 2.2.

(a) Γ is faithful if and only if eΓ is.

(b) Γ is generalised standard if and only if rad∞(X, Y ) = 0 for every X, Y ∈ eΓ.

(c) eΓ is a (disjoint) union of components of Γ(mod C). In particular, eΓ is a translation subquiver of
Γ(mod C).

(d) The map X 7→ FλX extends to a covering of translation quivers eΓ → Γ. If eΓ is connected and GX = 1

for every X ∈ eΓ, then this is a Galois covering with group G.

(e) Γ has an oriented cycle if and only if eΓ has a non trivial path of the form X  gX.

Proof: (a) Assume that Γ is faithful. Let u ∈ Ann(eΓ)(x, y), that is, u ∈ C(x, y) and mu = 0 for every m ∈ X(y),

X ∈ eΓ. We claim that F (u) ∈ Ann(Γ)(Fx,Fy). Let X ∈ Γ and m ∈ X(Fy). We may assume that X = Fλ
eX

with eX ∈ eΓ. So m = (mg)g∈G ∈
L

g∈G

eX(gy) and, therefore, mF (u) = (mgg(u))g∈G. On the other hand,

g(u) ∈ Ann(eΓ)(gx, gy) because eΓ is G-stable. So mgg(u) = 0 for every g ∈ G so that mF (u) = 0. Thus

F (u) ∈ Ann(Γ)(Fx,Fy) = 0 and, therefore, u = 0. So eΓ is faithful.

Conversely, assume that eΓ is faithful and let u ∈ Ann(Γ)(Fx,Fy). So u =
P

g

F (ug) where (ug)g∈G ∈

L

g∈G

C(gx, y). We claim that ug ∈ Ann(eΓ)(gx, y) for every g ∈ G. Indeed, let X ∈ eΓ and m ∈ X(y). Then

m ∈ FλX(Fy) and 0 = mu = (mug)g∈G ∈
L

g∈G

FλX(gx). So mug = 0 for every g. Thus ug ∈ Ann(eΓ)(gx, y)

for every g ∈ G and, therefore, u = 0 because eΓ is faithful. So eΓ is faithful.
(b) Assume that rad∞(X, Y ) = 0 for every X, Y ∈ eΓ. Let X, Y ∈ eΓ. We prove that rad∞(FλX, FλY ) = 0.

Since HomA(FλX, FλY ) is finite dimensional and isomorphic to
L

g∈G

HomC(X, gY ), there exists n > 1 such that

radn(X, gY ) = 0 for every g ∈ G. Let f ∈ radl(FλX, FλY ) with l > 1. Let
ˆ

u1 . . . ut

˜t
: X → E1⊕ . . .⊕Et

be left minimal almost split in mod C. By 2.2, (a) and (b), there exist fi ∈ HomA(FλEi, FλY ) for every i,
such that f =

P

i

fi ◦ Fλ(ui). More generally an induction on l shows that there exist morphisms δ1 : X →

X1, . . . , δs : X → Xs in mod C all equal to compositions of l irreducible morphisms between indecomposable
modules and there exist hi ∈ HomA(FλXi, FλY ) for every i, such that f =

P

i

hi ◦ Fλ(δi). On the other hand,

hi =
P

g

Fλ(hi,g) with (hi,g)g∈G ∈
L

g∈G

HomC(Xi,
gY ) by the covering property of Fλ. Therefore:

f =
X

g

Fλ

 

X

i

hi,g ◦ δi

!

where
P

i

hi,g ◦ δi ∈ radl(X, gY ) for every g. In the particular case where l = n, we have f = 0. Thus

radn(FλX, FλY ) = 0. This proves that Γ is generalised standard.
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Conversely, assume that Γ is generalised standard. Let f ∈ radl(X, Y ) with X, Y ∈ eΓ and l > 1. The
arguments used above show that there exist morphisms δ1 : X → X1, . . . , δs : X → Xs in mod C all equal to
compositions of l irreducible morphisms between indecomposable modules and there exist morphisms h1 : X1 →
Y, . . . , hs : Xs → Y such that f =

P

i

hi ◦ δi. By 2.2, (c), we therefore have Fλ(f) ∈ radl(FλX, FλY ). Hence

Fλ(rad∞(X, Y )) ⊆ rad∞(FλX, FλY ) = 0. Since Fλ is faithful, we have rad∞(X, Y ) = 0 for every X, Y ∈ eΓ.
(c) This is a direct consequence of 2.2, (d).

(d) By assumption and 2.2, Fλ preserves indecomposability, irreducibility and almost split sequences in eΓ.

Consequently, for each X ∈ eΓ there is a bijection between the set of arrows in eΓ which leave (or arrive at) X and

the set of arrows in Γ which leave (or arrive at, respectively) FλX. Whence the covering eΓ → Γ extending the
map X 7→ FλX. The rest of the assertion is a consequence of the arguments presented in the proof of [17, 3.6].

(e) follows from (d). �

Remark 2.4. Assume, in 2.2, that eΓ is connected and GX = 1 for every X ∈ eΓ. By 2.3, (d), there is a

Galois covering with group G of graphs p : O(eΓ) → O(Γ) such that p ((X)τC ) = (FλX)τA for every vertex

X ∈ eΓ. The G-action on O(eΓ) is given by g ((X)τC ) = ( gX)τC for every g ∈ G, X ∈ eΓ. In particular, if

g : O(eΓ) → O(eΓ) is an automorphism of graphs such that p ◦ g = p, then there exists g′ ∈ G such that g is
induced by g′.

Remark 2.5. In view of the proof of 2.3, (a), if X ∈ mod C is faithful, then so is FλX. However, one can
easily find examples where FλX is faithful and X is not.

Comparisons between the Auslander-Rieten quivers of A and B when A = B[M ]
In this paragraph we assume that A is connected and weakly shod and Pf

A 6= ∅. Let Pm ∈ Pf
A be maximal and

A = B[M ] the associated one-point extension. We give a useful relationship between the connecting component
ΓA of Γ(mod A) and the connecting components associated to the connected components of B. It follows from
the work made in [14] (see also [5, Lem. 4.1] who treated the case where the extension point is separating). For
convenience, we give the details below. Note that:

(a) Any strict predecessor of Pm in ind A is a B-module.

(b) If P ∈ indB is projective, then any predecessor of P in indA is a B-module.

We begin with the following lemma.

Lemma 2.6. Let X be the full subcategory of indA generated by

{X ∈ indA | X 6≃ Pm and X is a predecessor in ind A of an indecomposable projective A-module} .

Then:

(a) X is made of B-modules.

(b) X is stable under predecessors in indA and contains no successor of Pm in ind A.

(c) τA and τB coincide on X .

(d) The full subquivers of Γ(mod A) and Γ(mod B) generated by X coincide.

Proof: (a) and (b) follow from the definition of X . For L ∈ mod A let L be the B-module obtained by re-
striction of scalars, that is, L = L.(1 − e) if e ∈ A is the idempotent such that Pm = eA. Assume that
0 → τAX

u
−→ E

v
−→ X → 0 is an almost split sequence in mod A with X ∈ ind B. Then it is easily verified that

τAX = τBX and 0 → τBX
u
−→ E

v
−→ X → 0 is almost split in mod B. Also, if X is not a successor of Pm, then

the two exact sequences coincide. Then (c) and (d) follow from these facts. �

The category X of the preceding lemma serves to compare connecting components as follows.

Lemma 2.7. Let X be as in the preceding lemma, M ′ ∈ indB a direct summand of M and B′ the component
of B such that M ′ ∈ ind B′. If Γ′ is the component of Γ(mod B′) containing M ′, then:

(a) The connecting component ΓA of Γ(mod A) contains every module lying on both Γ′ and X .

(b) The full subquivers of ΓA and Γ′ generated by the modules lying on both Γ′ and X coincide.

(c) Every τB′ -orbit of Γ′ contains a module lying on X .

Proof: (a) Let X lie on both Γ′ and X . By [5, 1.1], τm
B′X is a predecessor in Γ(mod B′) (and therefore in

Γ(mod A), by 2.6) of M ′ or of a projective P ∈ ind B′ for some m > 0. By [14, Lem. 5.3], P ∈ ΓA. So
τm

B′X ∈ ΓA. On the other hand, 2.6, (c), implies that τm
B′X = τm

A X. So X ∈ ΓA.
(b) Let X1 and X2 be the full subquivers of ΓA and Γ′, respectively, generated by the modules lying on both

X and Γ′. By (a), X1 and X2 have the same vertices. Then 2.6, (d), implies that X1 = X2.
(c) is obtained using similar arguments as those used to prove (a). �

Remark 2.8. Using 2.7 we get the following description of the orbit-graph O(ΓA). For simplicity, we write
O(ΓA)\{(Pm)τA} for the full subgraph of O(ΓA) generated by the vertices different from (Pm)τA .
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(a) Let B′ be a component of B and ΓB′ the (unique) connecting component of B′ containing a di-
rect summand of M . Then O(ΓB′) is a component of O(ΓA)\{(Pm)τA} and all the components of
O(ΓA)\{(Pm)τA} have this form.

(b) If X is an indecomposable direct summand of M with multiplicity d, then (X)τB lies on exactly one of
the connected components of O(ΓA)\{(Pm)}τA and O(ΓA) contains exactly d edges (X)τA − (Pm)τA .
Moreover all the arrows connected to (Pm)τA have this form.

3 Components of the first kind for weakly shod algebras

Let A be weakly shod. We examine when a component of Γ(mod A) is made of modules of the first kind
with respect to any Galois covering of A. We study two cases: When the component is connecting and when it
is semi-regular and not regular.

Connecting components of the first kind
The aim of this paragraph is to prove the following proposition.

Proposition 3.1. Let A be connected, weakly shod and not quasi-tilted of canonical type, ΓA a connecting
component of A and F : C → A a connected Galois covering with group G. Then ΓA is made of modules
of the first kind. Moreover the full subquiver ΓC of Γ(mod C) generated by the modules X ∈ ind C such that
FλX ∈ ΓA is a G-stable faithful and generalised standard component of Γ(mod C) with no non-trivial path
of the form X  gX. Finally, the map X 7→ FλX on the vertices of ΓC extends to a Galois covering of
translation quivers ΓC → ΓA with group G.

In order to prove this result, we proceed along the following steps:

(a) Any X ∈ ΓA satisfies X ≃ Fλ
eX for some eX ∈ ind C such that G eX = 1.

(b) rad∞(X, Y ) = 0 for every X, Y ∈ ΓC .

(c) ΓC is a component of Γ(mod C).

We prove each step in a separate lemma.

Lemma 3.2. Let A be connected, weakly shod and not quasi-tilted of canonical type, ΓA a connecting
component of A and F : C → A a Galois covering with group G where C is locally bounded. Then for every
X ∈ ΓA there exists eX ∈ ind C such that Fλ

eX ≃ X and G eX = 1.

Proof: Note that if Y = τm
A X for some m ∈ Z, then the conclusion holds true for X if and only if it hods true for

Y . We prove the lemma by induction on rk(K0(A)) and begin with the case where A is tilted. If A is tilted then
ΓA has a complete slice {T1, . . . , Tn}. By [22, Cor. 4.5, Prop. 4.6] and the above remark, the lemma holds true
for A. Now assume that A is not tilted and that the lemma holds true for algebras whose rank of the Grothendieck
group is smaller than rk(K0(A)). So Pf

A 6= ∅. Let Pm ∈ Pf
A be maximal and A = B[M ] the associated one-

point extension. Recall ([20, Prop. 6.1.40, Prop. 6.1.41]) that for any component B′ of B the Galois covering
F : C → A restricts to a Galois covering F−1(B′) → B′ with group G. The conclusion of the lemma clearly holds
true for X = Pm. Let B′ be a component of B and X lie in a connecting component of B′. By the induction
hypothesis, we have X ≃ F ′

λ
eX where eX ∈ ind F−1(B′) is such that G eX = 1 and F ′ : F−1(B′) → B′ is the re-

striction of F . In particular X ≃ Fλ
eX. By the above remark and 2.8, the proposition therefore holds true for A.�

Lemma 3.3. Keep the notations and hypotheses 3.2. Let ΓC be the full subquiver of Γ(mod C) generated by
the modules X ∈ ind C such that FλX ∈ ΓA. Then:

(a) ΓC is a (disjoint) union of components of Γ(mod C).

(b) ΓC is faithful, has no non trivial path of the form X  gX and rad∞(X, Y ) = 0 for every X, Y ∈ ΓC.

Proof: This follows from 2.3 and the fact that ΓA is faithful, generalised standard, and has no oriented cycle.�

Lemma 3.4. Keep the notations and hypotheses of 3.1. Then ΓC is a component of Γ(mod C).

Proof: Following [18], we define the left part LA of mod A as the full subcategory of indA generated by:

{M ∈ indA | pdA L 6 1 for every predecessor L of M in ind A}

where pdA is the projective dimension. Let T be the direct sum of the indecomposable A-modules which are either
Ext-injective in LA or not in LA and projective. Then T is a basic tilting A-module ([3, 4.2,4.4]) and for every
X ∈ ΓA there exists m ∈ Z such that τm

A X is a direct summand of T . Fix an indecomposable decomposition
T = T1 ⊕ . . . ⊕ Tn in mod A. By 3.2, there exist eT1, . . . , eTn ∈ ΓC such that Fλ

eTi ≃ Ti and G eTi
= 1, for every

i. Let E be the full subcategory of ind C generated by { g
eTi | i ∈ {1, . . . , n} and g ∈ G}. So C and E have

equivalent derived categories (see the proof of [22, Lem. 4.8]). In particular E is connected. So, by 3.3, (b),

there is a component Γ of ΓC which contains { g
eTi}i,g . We claim that Γ = ΓC. If X ∈ ΓC , then FλX ∈ ΓA

so that τm
A FλX ≃ Ti for some i ∈ {1, . . . , n} and m ∈ Z. Consequently τm

C X ≃ g
eTi for some g and therefore
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X ∈ Γ. Thus ΓC = Γ is connected. �

Now we prove 3.1.
Proof of 3.1: The proposition is a direct consequence of 3.2, 3.3 and 3.4. �

Remark 3.5. Assume that Pf
A = ∅ and A admits two connecting components: Its unique postprojective

component and its unique preinjective one. With the hypotheses and notations of 3.1, assume that ΓA is
the postprojective component (or the preinjective component) of A. Then it is not difficult to check that ΓC

is the unique postprojective component (or the unique preinjective component, respectively) of Γ(mod C).

Semi-regular components of the first kind
Now we treat the case of semi-regular components containing a projective or an injective. Most of the work

in this paragraph is based on the following lemma which does not assume A to be weakly shod.

Lemma 3.6. Let F : C → A be a Galois covering with group G where C is locally bounded. Let Γ be a
component of Γ(mod A) such that:

(a) Γ has no multiple arrows and every vertex in Γ is the source of at most two arrows and the target of
at most two arrows.

(b) There exists M0 ∈ Γ which is either the source of exactly one arrow or the target of exactly one arrow,

and which is isomorphic to Fλ
fM0 where fM0 ∈ ind C is such that GfM0

= 1.

Then every X ∈ Γ is isomorphic to Fλ
eX for some eX ∈ ind C such that G eX = 1.

Proof: Let X be the set of those modules X ∈ Γ for which the conclusion of the lemma holds. Therefore X
contains M0 and X is stable under τA and τ−1

A because of 2.1, (d). Assume by absurd that X ( Γ. Then by
considering an unoriented path in Γ starting from a module X ∈ Γ\X , ending at M0 and of minimal length, we
have the following (or its dual treated dually): There exists an irreducible morphism u : Y → X with X ∈ X ,
Y ∈ Γ\X and such that if E → X is right minimal almost split, then either E = Y , or E = Y ⊕ Y ′ for some

Y ′ ∈ X . We prove that Y ≃ Fλ
eY for some eY ∈ ind C. For this purpose, we distinguish two cases according

to whether E is indecomposable or not. We fix eX ∈ ind C such that Fλ
eX ≃ X and G eX = 1. Assume first

that E = Y is indecomposable. Let eu : eY → eX be a right minimal almost split morphism in mod C. Thus
2.1, (c), implies that so is Fλ(eu) : Fλ

eY → Fλ
eX . Therefore Fλ

eY ≃ Y . Now assume that E = Y ⊕ Y ′ with

Y ′ ∈ X . In particular, Y ′ ≃ Fλ Y ′ for some eY ′ ∈ ind C. We thus have a right minimal almost split mor-
phism [u, u′] : Y ⊕ Y ′ → X in mod A. Let f : eE → eX be a right minimal almost split morphism in mod C. As

above, we deduce that so is Fλ(f) : Fλ
eE → Fλ

eX in mod A. Therefore Fλ
eE ≃ Y ⊕ Fλ

eY ′. Applying F. yields
L

g∈G

g
eE ≃ F.Y ⊕

L

g∈G

g
eY ′. Since eY ∈ ind C, we deduce that g

eE = eY ′ ⊕ eY for some g ∈ G and some eY ∈ mod C.

Consequently Fλ
eE ≃ Fλ

eY ′⊕Fλ
eY and finally Y ≃ Fλ

eY . Hence, in any case, we have Y ≃ Fλ
eY and an irreducible

morphism eY → eX for some eY ∈ ind C. Since Y 6∈ X , there exists g ∈ G\{1} such that g
eY ≃ eY . Therefore the

morphism eY → eX defines two irreducible morphisms α : eY → eX and β : eY → g
eX . Since G eX = 1, and by 2.1,

(c), both Fλ(α) : Fλ
eY → Fλ

eX and Fλ(β) : Fλ
eY → Fλ

g
eX = Fλ

eX are irreducible. On the other hand, Γ has no

multiple arrows so there exists an isomorphism ϕ : Fλ
eX

∼
−→ Fλ

eX such that Fλ(β) = ϕ ◦Fλ(α). By the covering

property of Fλ we have ϕ =
P

h∈G

Fλ(ϕh) with (ϕh)h ∈
L

h∈G

HomC(eY , h
eX). So Fλ(β) =

P

g∈G

Fλ(ϕh ◦ α) and

therefore β = ϕg ◦α because of the covering property of Fλ. This implies that ϕg : eX → g
eX is a retraction and

therefore an isomorphism. We get a contradiction because G eX = 1. �

We apply this lemma to our situation where A is weakly shod and not quasi-tilted of canonical type.

Proposition 3.7. Let A be connected, weakly shod and not quasi-tilted of canonical type, F : C → A a Galois
covering with group G where C is locally bounded and Γ a semi-regular component of Γ(mod A) containing a

projective or an injective. Then for every X ∈ Γ there exists eX ∈ ind C such that Fλ
eX ≃ X and G eX = 1.

Proof: It follows from [14, 6.2] that at least one of the following cases is satisfied:

(a) Γ is a postprojective or a preinjective component.

(b) Γ is obtained from a tube or from ZA∞ by ray or coray insertions.

In case (a), the proposition follows from: 2.1, (d); the fact that the G-action on mod C commutes with τC; and, the
fact that the conclusion of the proposition holds true for indecomposable projective or injective modules. In case
(b), there exists a projective M0 ∈ Γ such that Γ and M0 statisfy the conditions of 3.6. Whence the proposition.�

Remark 3.8. Keep the notations and hypotheses of the 3.7. Let eΓ be the full subquiver of Γ(mod C) generated

by the vertices X ∈ ind C such that FλX ∈ Γ. Then eΓ is a union of semi-regular components and contains a
projective or an injective.

The following example shows that 3.7 does not necessarily hold for regular components, even for tilted algebras.
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Example 3.9. Let A be the path algebra of the Kronecker quiver 1
a //
b

// 2 . It admits a Galois covering

F : A′ → A with group Z/2Z =< σ > where A′ is the path algebra of the following quiver of type fA3:

2

1

a
77ppppppp

b ''NNNNNN σ1

σb
ggOOOOOO

σawwoooooo

σ2

with F (x) = F (σx) = x for every x ∈ {1, 2, a, b}. Then the indecomposable A-module k
Id //
id

// k lying on

a homogeneous tube is not of the first kind with respect to F and, in general, with respect to any non-trivial
connected Galois covering of A.

4 The Galois covering of A associated to the universal cover of the con-

necting component

Let A be weakly shod and not quasi-tilted of canonical type and ΓA a connecting component. Recall that
given a connected Galois covering F : A′ → A with group G there is a component ΓA′ of Γ(mod A′) and a Galois
covering of graphs O(ΓA′) → O(ΓA) with group G (see 3.1 and 2.4). This Galois covering of graphs is called
associated to F . In this section, we prove the following result which is a counter-part of the work made in 3.1.

Proposition 4.1. Let A be connected, weakly shod and not quasi-tilted of canonical type, and ΓA a connecting
component. Then there exists a connected Galois covering F : eA → A with group the fundamental group
π1(ΓA) such that the associated Galois covering of graphs O(Γ eA) → O(ΓA) is the universal cover.

Remark 4.2. Recall that if A has more than one connecting component, then it has two of them: The unique
preinjective component and the unique postprojective component. In particular the isomorphism class of
π1(ΓA) does not depend on the connecting component.

Until the end of the section we adopt the hypotheses and notations of the above proposition. Here is the
strategy of its proof. We use an induction on rk(K0(A)). If A is tilted of type Q, then O(ΓA) is the underlying
graph of Q. So 4.1 follows from [22, Thm. 1] in that case. If A is not tilted, there exists Pm ∈ Pf

A maximal
and defining the one-point extension A = B[M ]. Then we use 2.8 and the Galois covering of B given by the
inductive step to construct the desired Galois covering of A.

From now on we assume that A is not tilted, Pm ∈ Pf
A is maximal and A = B[M ] is the associated one-point

extension. The extending object is denoted by x0 ∈ Ao. Also we assume that 4.1 holds true for the components
B1, . . . , Bt of B (B = B1 × . . . × Bt). Thus for every i ∈ {1, . . . , t} there is a connected Galois covering

F (i) : eBi → Bi with group π1(Γi) equal to the fundamental group of the (unique) connecting component Γi of

Bi containing a direct summand of M . We write eΓi → Γi for the universal cover of translation quivers. The
construction of a connected Galois covering F : C → A with group π1(ΓA) is decomposed into the following
steps.

(a) A reminder on the universal cover of O(ΓA).

(b) The construction of a Galois covering F : eB → B with group π1(ΓA) using F (1), . . . , F (t).

(c) The construction of the locally bounded k-category eA and the Galois covering F : eA → A.

(d) The proof that eA is connected.

Reminder: the universal cover O(ΓA)
For simplicity, we still denote by x0 the vertex (Pm)τA of O(ΓA) and use it as the base-point for the

computation of the universal cover of O(ΓA). Recall that the universal cover p : eO → O(ΓA) is such that:

(a) eO is the graph with vertices the homotopy classes [Γ] of paths Γ: x0  x in O(ΓA) (where x is any vertex)

and such that for every edge α : x − y in O(ΓA) and every vertex [Γ] in eO with end-point x, there is an

edge α : [Γ] − [αΓ] in eO.

(b) With the notations of (a), p maps the vertex [Γ] to x and the edge α : [Γ] − [αΓ] to α : x − y.

The Galois covering of F : B̃ → B with group π1(ΓA)
We construct a Galois covering F : eB → B with group π1(ΓA) using F (1), . . . , F (t). We define eB as a

disjoint union
t
‘

i=1

‘

?

eBi of (infinitely many) copies of eBi (i ∈ {1, . . . , t}). More precisely, let i ∈ {1, . . . , t}. Every

component U of p−1(O(Γi)) is simply connected so the restriction U → O(Γi) of p fits into a commutative
diagram of graphs:

U
∼ //

""D
DD

DD
O(eΓi)

zztt
tt

t

O(Γi)

(DU )
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where the horizontal arrow is an isomorphism and the oblique arrow on the right is induced by eΓi → Γi. We
then attach to eB one copy of eBi for each component U of p−1(O(Γi)). The Galois coverings F (1), . . . , F (t) then

clearly define a functor F : eB → B such that F and F (i) coincide on each copy of eBi.
Now we endow eB with a π1(ΓA)-action such that F ◦ g = g for every g ∈ π1(ΓA). Let g ∈ π1(ΓA) and bBi

be a copy of eBi in eB. We define the action of g on bBi. Let U be the component of p−1(O(Γi)) associated to
bBi. Then g(U) is also a component of p−1(O(Γi)) to which corresponds a copy Bi of eBi in eB. Moreover, the

graph morphism g : U → g(U) and the diagrams (DU ) and (Dg(U)) determine an automorphism O(eΓi)
∼
−→ O(eΓi)

making the following diagram commute:

O(eΓi)
∼ //

$$J
JJ

JJ
O(eΓi)

zztt
tt

t

O(Γi) .

Therefore, the automorphism O(eΓi)
∼
−→ O(eΓi) extends the map (X)

τ eBi 7→ ( ḡX)
τ eBi associated to some ḡ ∈

π1(Γi) (see 2.4). The action of g on bBi is therefore defined as follows: g maps the component bBi of eB to the

component Bi and, as a functor, it acts like ḡ : eBi = bBi
∼
−→ eBi = Bi. This way, we get a π1(ΓA)-action on eB

such that F ◦ g = F for every g ∈ G.

Lemma 4.3. The π1(ΓA)-action on eB is free, eB is locally bounded and F : eB → B is a Galois covering with
group π1(ΓA).

Proof: Let x ∈ eBo and g ∈ π1(ΓA) be such that gx = x. We write bBi for the copy of eBi in eB containing x and
U for the corresponding component of p−1(O(Γi)). In particular, g(U) = U and there exists g′ ∈ π1(Γi) such

that the action of g on bBi is given by g′ : eBi = bBi
∼
−→ bBi = eBi. Since gx = x, this means that g′x = x. So

g′ = Id eBi
and g is the identity map on U . Thus, g is the identity on the universal cover O(eΓi) and therefore on

eB. This proves that the π1(ΓA)-action on eB is free.

By construction, eB is locally bounded.
Now we prove that π1(ΓA) acts transitively on F−1(x) for every x ∈ eBo. Let x, y ∈ eBo be such that

Fx = Fy. By construction of F , there exists i such that x and y lie on copies bBi and Bi of eBi in eB, respectively.
We write U and V for the components of p−1(O(Γi)) corresponding to bBi and Bi, respectively. So there exists

g ∈ π1(ΓA) such that g(U) = V. Therefore gx lies on Bi and F (gx) = Fy. So we may assume that Bi = bBi.

Using (DU ), we identify the map U → O(Γi) induced by p with the universal cover O(eΓi) → O(Γi). Since

F coincides with F (i) : eBi → Bi on bBi, there exists g′ ∈ π1(Γi) such that g′(x) = y. Moreover, there exists

g′′ ∈ π1(ΓA) such that g′′ and g′ coincide on some vertex of U (because p : eO → O(ΓA) is a Galois covering
with group π1(ΓA)) and therefore on U (because U → O(Γi) is a Galois covering). We thus have g′′x = y with

g′′ ∈ π1(ΓA). This shows the transitivity of π1(ΓA) on the fibres of F : eBo → Bo.

Therefore F : eB → B is, by construction, a covering functor, π1(ΓA) is a group acting freely on eB such that

F ◦ g = g for every g ∈ π1(ΓA) and π1(ΓA) acts transitively on the fibres of F : eBo → Bo. So F is a Galois
covering with group π1(ΓA). �

The Galois covering F : Ã → A with group π1(ΓA)
Now we extend F : eB → B to a Galois covering F : eA → A with group π1(ΓA). Recall that A = B[M ].

Accordingly let eA be the category:

eA =

"

S fM

0 eB

#

(⋆)

where S is the category with objects set So = π1(ΓA) × {x0} and no non-zero morphism except the scalar

multiples of the identity morphisms and fM is an S − eB-bimodule defined as follows. Fix an indecomposable

decomposition M =
t
L

i=1

ni
L

j=1

Mi,j such that Mi,j ∈ ind Bi for every i, j. Let i, j be such indices. Then the

homotopy class of the edge x0 − (Mi,j)
τA associated to the inclusion morphism Mi,j →֒ Pm is a vertex in eO (see

2.8). Also it lies on some component U of p−1(O(Γi)) to which corresponds a copy bBi of eBi in eB. By 3.2, there

exists fMi,j ∈ ind eBi such that F
(i)
λ
fMi,j = Mi,j . We thus consider fMi,j as an indecomposable eB-module such

that fMi,j ∈ ind bBi. In particular we have Fλ
fMi,j = Mi,j . The S − eB-bimodule fM is then defined as follows:

fM : S × eBop → mod k

((g, x0), x) 7→
t
L

i=1

ni
L

j=1

g
fMi,j(x) .

The k-category eA is thus completely defined. Now we extend the π1(ΓA)-action on eB to an action on eA. We

let π1(ΓA) act on π1(ΓA)×{x0} in the obvious way. Let g ∈ π1(ΓA) and u ∈ fMi,j(h
−1x) ⊆ fM((h, x0), x). We

define g.u to be the morphism u viewed as an element of fMi,j(h
−1x) ⊆ fM(g.(h, x0), g.x).
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Lemma 4.4. The above construction defines a locally bounded k-category eA endowed with a free π1(ΓA)-
action.

Proof: We clearly have defined a k-category and the π1(ΓA)-action is well-defined and free because π1(ΓA) acts

freely on π1(ΓA)×{x0} and on eB. We prove that eA is locally bounded. Recall that eB is locally bounded. Moreover

for every g ∈ π1(ΓA) we have
L

x∈ eBo

eA((g, x0), x) =
L

x∈ eBo,i,j

fMi,j(g
−1x) =

L

x∈Bo

M(x) because Fλ
fMi,j = Mi,j for

every i, j. Thus
L

x∈ eBo

eA((g, x0), x) is finite dimensional for every g ∈ π1(ΓA). Finally, for every x ∈ eBo we have

L

g∈π1(ΓA)

eA((g, x0), x) =
L

g∈π1(ΓA),i,j

fMi,j(g
−1x) = M(F (x)). So

L

g∈π1(ΓA)

eA((g, x0), x) is finite dimensional for

every x ∈ eBo. This proves that eA is locally bounded. �

We extend the Galois covering F : eB → B to a functor F : eA → A as follows:

(a) F ((g, x0)) = x0 for every g ∈ π1(ΓA).

(b) Let u ∈ fMi,j(g
−1x) ⊆ fM((g, x0), x). Then fMi,j(g

−1x) ⊆
L

h∈π1(ΓA)

fMi,j(h
−1x) = Mi,j(F (x)) ⊆

M(F (x)) (recall that Fλ
fMi,j = Mi,j). So we set F (u) = u ∈ M(F (x)).

Lemma 4.5. The above construction defines a Galois covering F : eA → A with group π1(ΓA).

Proof: F : eA → A is a k-linear functor such that F ◦ g = g for every g ∈ π1(ΓA). Moreover it is a covering

functor because so is F : eB → B and Fλ
fMi,j = Mi,j for every i, j. Finally, the group π1(ΓA) acts transitively on

F−1(x) for every x ∈ eAo. Indeed, this is the case if x ∈ eBo because F : eB → B is a Galois covering with group
π1(ΓA) and it is clearly the case if x = x0. So F is a Galois covering with group π1(ΓA). �

The category Ã is connected
We denote by ePm the indecomposable projective eA-module associated to the object (1, x0) of eA. Therefore

rad(Pm) =
L

i,j

fMi,j . We need the following lemma whose proof follows from the definitions and where ex0 =

(x0, 1).

Lemma 4.6. Let g ∈ π1(ΓA) and gex0 − x1 be an edge in eO. Then there exist i, j such that x1 is the
homotopy class of the edge α : x0 − (Mi,j)

τA in O(ΓA) associated to the inclusion Mi,j →֒ Pm. Let U be the

component of p−1(O(Γi)) containing x1 and bBi the associated copy of eBi in eB. Then g
fMi,j ∈ ind bBi (and

fMi,j is a direct summand of rad( g
ePm)).

We use 4.6 to prove that eA is connected.

Lemma 4.7. eA is connected

Proof: It suffices to prove that two indecomposable projective eA-modules lie on the same component of mod eA.
Let g ∈ π1(ΓA). Since eO is connected, there is a sequence of edges in eO:

ex0

::
:

g1ex0

~~
~ @@

@
g2ex0

~~
~ @@

@
. . . gn−1ex0

uuu
FF

FF
gnex0

}}
}

x1 x′
1

x2 x′
2

x3 . . . x′
n−1 xn x′

n

where g = gn and, for every j, the vertices xj and x′
j lie on the same component of p−1(O(Γij )) for some ij .

By 4.6 and because eB1, . . . , eBt are connected, the modules ePm and g
ePm lie on the same connected component

of mod eA.
Now let eP be an indecomposable projective eA-module associated to an object x ∈ eBo. So Fλ

eP is the inde-
composable projective B-module associated to Fx. Let i ∈ {1, . . . , t} be such that Fx is an object of Bi. So x

is an object of some copy bBi of eBi in eB and we let U be the associated component of p−1(O(Γi)). On the other

hand, we let Bi be the copy of eBi in eB such that fMi,1 ∈ ind Bi and V the associated component of p−1(O(Γi)).

In particular there exists g ∈ π1(ΓA) such that g(V) = U so that g
fMi,1 ∈ ind bBi. Therefore: eP and g

fMi,1 lie

on the same component of mod eA because they are indecomposable bBi-modules and cBi is connected; g
fMi,1 and

g
ePm lie on the same component of mod eA because of the inclusion fMi,j →֒ ePm; and we already proved that so

do ePm and g
ePm. This shows that eP and ePm lie on the same component of mod eA. So eA is connected. �

Now we are in position to prove the main result of the section.
Proof of 4.1: We use an induction on rk(K0(A)). If A is tilted, then the result follows from [22, Thm.
1]. Assume that A is not tilted and that the conclusion of the proposition holds for algebras B such that
rk(K0(B)) < rk(K0(A)). Hence there exists a maximal element Pm ∈ Pf

A. Let A = B[M ] be the associated
one-point extension. Let B = B1 × . . . × Bt be an indecomposable decomposition. Then B1, . . . , Bt are con-
nected, weakly shod and not quasi-tilted of canonical type. Let Γ1, . . . , Γt be the connecting components of
B1, . . . , Bt, respectively, containing a summand of M . The induction hypothesis implies that, for every i, there
exists a connected Galois covering F (i) : eBi → Bi with group π1(Γi) whose associated Galois covering of O(Γi)
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is the universal cover of graph. By 4.5 and 4.7, there exists a connected Galois covering F : eA → A with group
π1(ΓA). Let O(Γ eA) → O(ΓA) be the associated Galois covering with group π1(ΓA). Since π1(ΓA) is free, this
Galois covering is necessarily the universal covering of graphs. �

We give some examples to illustrate 4.1. In these examples we write Px, Ix or Sx for the corresponding
indecomposable projective, indecomposable injective or simple, respectively.

Example 4.8. Let A be the radical square zero algebra with ordinary quiver Q as follows:

1 // 2 // 3 // 4 // 5
////// 6 .

Let M = rad(P6). Then A = B[M ] where B is the radical square zero algebra with ordinary quiver:

1 // 2 // 3 // 4 // 5 .

Note that B is of finite representation type and Γ(mod B) is equal to:

P2 = I1

$$I
II

II
I P4 = I3

$$I
II

II
I

P1 = S1

77pppppp
S2

$$I
II

II
I S3

::uuuuuu
S4

$$I
II

II
I S5 = I5

P3 = I2

::uuuuuu
P5 = I4

88pppppp
.

The algebra A is wild and weakly shod, it has a unique connecting component of the following shape:

P2

��>
>>

>>
P4

��>
>>

>>
P6

��>
>>

>>

��>
>>

>>

��>
>>

>>
�

��:
::

::

��:
::

::

��:
::

::

�

@@�����
�

��>
>>

>>
�

@@�����
�

��>
>>

>>
S5

>>|||||
>>|||||

>>|||||
�

BB�����

BB�����

BB�����
�

P3

@@�����
P5

>>|||||
.

Note that A is not quasi-tilted because the projective dimension of S5 is equal to 4. The orbit-graph of the
connecting component of A is equal to:

(P4)
τA (P3)

τA

(S5)
τA

qqqq

MMM
M

MMMM

qqq
q

(P5)
τA (P2)

τA

(P6)
τA .

The fundamental group of this graph is free of rank 2. So 4.1 implies that A admits a connected Galois
covering with group a free group with rank 2. Actually this Galois covering is given by the fundamental
group of the monomial presentation of A (see [25]).

Recall that weakly shod algebras are particular cases of Laura algebras. The following example from [14]
shows that 4.1 holds for some Laura algebras which are not weakly shod.

Example 4.9. (see [14, 2.6]) Let A be the radical square zero algebra with ordinary quiver Q as follows:

3

��=
==

=

1
//// 2

@@����
// 4

//// 5 .

Then A is a Laura algebra. The component of Γ(mod A) consist of:

1. The postprojective components and the homogeneous tubes of the Kronecker algebra with quiver

1
// // 2 .

2. The preinjective component and the homogeneous tubes of the Kronecker algebra with quiver 4
// // 5 .

3. A unique non semi-regular component of the following shape:

�

��4
44

44
4

��4
44

44
4 I1

��:
::

::
:

��:
::

::
:

P5

��8
88

88
8

��8
88

88
8

�

��4
44

44
4

��4
44

44
4

P3

%%J
JJJ

I3

&&LL
LL

�

EE







EE






�

CC������

CC������
S2

88qqqq

!!B
BB

BB
�

::uuuu

��=
==

==
S4

AA������

AA������
�

EE







EE






�

P4

@@�����

��>
>>

>>
I2

>>}}}}}

  A
AA

AA

S3

>>|||||
�

@@�����
S3

where the two copies of the S3 are identified.
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In this example, the orbit-graph of the unique non semi-regular component is the following:

(P3)
τA

(I1)
τA (S2)

τA (P5)
τA

(P4)
τA

(S3)
τA

The fundamental group of this graph is the free group of rank 3. On the other hand, if one denotes by (kQ+)
for the ideal of kQ generated by the set of arrows, then the fundamental group of the natural presentation
kQ/(kQ+)2 ≃ A (in the sense of [25]) is also isomorphic to the free group of rank 3. Hence A admits a
connected Galois covering with group isomorphic to the orbit-graph of the connecting component.

5 Proof of Theorem A and of Corollary B

Throughout the section we assume that A is connected and weakly shod. We prove the first two main results
of the text presented in the introduction.
Proof of Theorem A: We assume that A is not quasi-tilted of canonical type. Let G be a group and ΓA a con-
necting component of Γ(mod A). If F : C → A is a connected Galois covering then 3.1 yields a Galois covering
of translation quivers with group G of ΓA. Conversely, let Γ′ → ΓA be a Galois covering of translation quivers
with group G. Therefore G ≃ π1(ΓA)/N for some normal subgroup N ⊳ π1(ΓA) ([11, 1.4]). On the other hand,

4.1 yields a connected Galois covering eA → A with group π1(ΓA). Factoring out by N yields a connected Galois

covering eA/N → A with group G. �

Now we turn to the proof of Corollary B. We need the three following lemmas. The first one follows directly
from Theorem A so we omit the proof.

Lemma 5.1. Assume that A is not quasi-tilted of canonical type. Let ΓA be a connecting component of A.
Then the following conditions are equivalent:

(a) A is simply connected,

(b) The orbit-graph O(ΓA) is a tree.

(c) ΓA is simply connected.

The following lemma expresses the simple connectedness of A = B[M ] in terms of the simple connectedness
of the components of B. In the case where A is tame weakly shod, the necessity was proved in [5, Lem. 5.1].
We recall that if A is connected and x0 ∈ Ao is the extension object in A = B[M ], then x0 is called separated if
M has exactly as many indecomposable summands as the number of components of B (that is, M restricts to
an indecomposable module on each component of B).

Lemma 5.2. Assume that Pf
A 6= ∅. Let Pm ∈ Pf

A be maximal, A = B[M ] the associated one-point extension
and x0 ∈ Ao the extending object. Then A is simply connected if and only if the two following conditions
are satisfied:

(a) B is a product of simply connected algebras,

(b) x0 is separating (that is, M is multiplicity-free).

Proof: By [14, 4.5, 4.8], B is a product of connected, weakly shod and not quasi-tilted of canonical type al-
gebras. Assume that A is simply connected. By [4, 2.6], the object x0 is separating. Let B′ be a connected
component of B. Since A is connected, M admits an indecomposable summand lying on ind B′. By 2.8 and
because the orbit-graph of any connecting component of A is simply connected, the orbit-graph of any connecting
component of B′ is simply connected. So B′ is simply connected by Theorem A. Conversely assume that x0 is
separating and B is a product of simply connected algebras. By Theorem A, for every component B′ of B, the
orbit-graph of any connecting component of B′ is a tree. By 2.8 and because x0 is separating, we deduce that the
orbit-graph of any connecting component of A is a tree. By Theorem A, this implies that A is simply connected.�

Finally, we recall the following lemma which was proved in [5, 2.5].

Lemma 5.3. Under the hypothesis and notations of 5.2, the following conditions are equivalent:

(a) HH1(A) = 0.

(b) HH1(B) = 0 and x0 is separating.
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Now we can prove Corollary B.
Proof of Corollary B: We use an induction on rk(K0(A)). By [22, Thm. 1], the corollary holds true if
A is tilted. So we assume that A is not quasi-tilted and the corollary holds true for algebras B such that
rk(K0(B)) < rk(K0(A)). Since Pf

A 6= ∅, there exists Pm ∈ Pf
A maximal. Let A = B[M ] be the associated

one-point extension. Using the induction hypothesis applied to the components of B and using 5.1, 5.2 and 5.3,
we deduce that A is simply connected if and only if HH1(A) = 0. On the other hand, Theorem A shows that A
is simply connected if and only if O(ΓA) is a tree. �

We finish this section with an example to illustrate Corollary B

Example 5.4. Let A be as in 4.8. Then A is not simply connected and neither is the orbit-graph of its
connecting component. On the other hand, a straightforward computation shows that dim HH0(A) = 1,
dim HH1(A) = 3 and dim HHi(A) = 0 if i > 2.

6 The class of weakly shod algebras is stable under finite Galois coverings

and under quotients

In this section we prove Theorem C. At first we study the implications of Theorem C in the more general
setting of Galois coverings with non necessarily finite groups.

Lemma 6.1. Let F : C → A be a connected Galois covering with group G. If A is weakly shod and not
quasi-tilted, then Γ(mod C) has a unique non semi-regular component ΓC. Moreover it is faithful, generalised
standard and has no non trivial path of the form X  gX with X ∈ ΓC and g ∈ G.

Proof: Let ΓA be the connecting component of A. Let ΓC be as in 3.1. We only need to prove that ΓC is
the unique non semi-regular component of Γ(mod C). Note that ΓC contains both a projective and an injetive
because so does ΓA. Let P ∈ ind C\ΓC be projective. Then FλP ∈ ind A\ΓA is projective and therefore lies on
a semi-regular component of Γ(mod A). By 3.8, so does P . Whence the lemma. �

The preceding lemma has a converse under the additional assumption that the group G acts freely on the
indecomposable modules lying on ΓC . This last condition is always verified when G is torsion-free.

Lemma 6.2. Let F : C → A be a connected Galois covering with group G. Assume that Γ(mod C) has a
unique non semi-regular component ΓC and that the following conditions are satisfied:

(a) ΓC is faithful and generalised standard.

(b) ΓC has no non trivial path of the form X  gX.

(c) GX = 1 for every X ∈ ΓC .

Then A is weakly shod.

Proof: Note that ΓC is G-stable because of its uniqueness. If follows from the arguments presented in the proof
of [17, 3.6] that there is a component Γ of Γ(mod A) such that Γ = {FλX | X ∈ ΓC}. Also the map X 7→ FλX
extends to a Galois covering of translation quivers ΓC → Γ with group G. In particular Γ is non semi-regular.
Moreover 2.3 implies that Γ is faithful, generalised standard and has no oriented cycles. Therefore A is weakly
shod. �

Now we prove the equivalences of Theorem C. Part of the tilted case was treated in [22, Rem. 4.10]. We
recall it for convenience.

Proposition 6.3. Let F : A′ → A be a connected Galois covering with finite group G. Then A′ is tilted if
A is tilted.

Now we prove the equivalence of Theorem C in the quasi-tilted case.

Proposition 6.4. Let F : A′ → A be a connected Galois covering with finite group G. Then A′ is quasi-tilted
if and only if A is quasi-tilted.

Proof: Recall that LA denotes the left part of A. We use the following description of LA ([6, Thm. 1.1]):

LA = {M ∈ indA | pdA(L) 6 1 for every L ∈ ind A such that HomA(L, M) 6= 0} .

Also, by ([18, II Thm. 1.14, II Thm. 2.3]), the following conditions are equivalent for any algebra A:

(a) A is quasi-tilted.

(b) A has global dimension at most 2 and idA(X) 6 1 or pdA(X) 6 1 for every X ∈ indA.

(c) LA contains all the indecomposable projective A-modules.

Assume that A is quasi-tilted. Let u : X → P be a non-zero morphism of A′-modules with X, P ∈ ind A′ and P
projective. So Fλ(u) : FλX → FλP is non zero and FλP is indecomposable projective. Fix an indecomposable
decomposition FλX = X1 ⊕ . . . ⊕ Xr in mod A. So the restriction Xi → FλP of Fλ(u) is non-zero for some i.
Since A is quasi-tilted, we have FλP ∈ LA and therefore pdA(Xi) 6 1. On the other hand, F.FλX =

L

g∈G

gX,
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F.FλX = F.X1 ⊕ . . . ⊕ F.Xr and the projective dimension is unchanged under F., Fλ and under the action of
G. Consequently pdA′(X) = pdA′(F.Xi) = pdA(Xi) 6 1. So P ∈ LA′ . Thus, A′ is quasi-tilted.

Conversely, assume that A′ is quasi-tilted. In particular, A and A′ have the same global dimension, that
is, at most 2. Let X ∈ ind A. Since G is finite, F.X ∈ mod A′. Fix an indecomposable decomposition
F.X = X1 ⊕ . . . ⊕ Xr in mod A′. We claim that X1, . . . , Xr have the same projective dimension. Indeed,
let d = pdA′(X1) and I = {i ∈ {1, . . . , r} | pdA′(Xi)) = d}. Then F.X = L ⊕ M where L =

L

i∈I

Xi and

M =
L

i∈Ic

Xi. Since the G-action on mod A′ preserves the projective dimension, we have gL = L and gM = M

for every g ∈ G. By [16, 1.2], we deduce that there exist Y, Z ∈ mod A such that X = Y ⊕ Z, L = F.Y
and M = F.Z. Since X is indecomposable and I 6= ∅, we have Z = 0 and, therefore, I = {1, . . . , r}. Thus
pdA′(Xi) = pdA′(Xj) = pdA(X) (and, dually, idA′(Xi) = idA′(Xj) = idA(X)) for every i, j. Since A′ is
quasi-tilted, we infer that pdA(X) 6 1 of idA(X) 6 1. This proves that A is quasi-tilted. �

Now we end the proof of Theorem C.
Proof of Theorem C: The necessity in (a) follows from 6.3 and (b) was proved in 6.4. We prove (c) and may
assume that neither A nor A′ is quasi-tilted. Assume that A is weakly shod and not quasi-tilted. Then 6.1 implies
that Γ(mod A′) has a unique non semi-regular component which is moreover faithful, generalised standard and
has no oriented cycle. Therefore A′ is weakly shod. This proves the necessity in (c). From now on, we assume
that A′ is weakly shod and not quasi-tilted of canonical type. We prove that A is weakly shod. In view of 6.2,
we need the following result.

Lemma 6.5. Assume that A′ is weakly shod and not quasi-tilted of canonical type. We have GX = 1 for
every indecomposable A′-module X lying on a connecting component of Γ(mod A′).

Proof of 6.5: The conclusion of the lemma holds true for any indecomposable projective or injective A′-module.
So does it for non-stable modules because τA′ commutes with the G-action. Let ΓA′ be a connecting component
of A′ and X ∈ ΓA′ be stable. We still write LA′ for the left part of mod A′ and we write RA′ for the right
part of mod A′, defined dually. Since A′ is weakly shod, the set indA′\ (LA′ ∪RA′) is finite, contained in ΓA′ ,
and has no periodic module. Therefore there exists n ∈ Z such that τn

A′X ∈ ΓA′ ∩ (LA′ ∪RA′). Assume for
example that X ′ = τn

A′X ∈ ΓA′ ∩LA′ (the remaining case is dealt with dually). Let e be the sum of the primitive
idempotents e′ of A′ such that e′A′ ∈ LA′ and let B′ = eA′e. Therefore B′ is a full convex subcategory of
A′, it is a product of tilted algebras, X ′ ∈ indB′ (see [3]) and B′ is stable under G because so is LA′ . In
particular, F restricts to a Galois covering F ′ : B′ → B with group G, where B := F (B′). In order to prove
that GX = 1 we prove that GX′ = 1. By absurd assume that there is g ∈ G\{1} such that gX ′ 6≃ X ′. After
replacing g by some adequate power, we assume that g is of prime order p. The quotient π : B → B/ 〈g〉 is a

Galois covering with group 〈g〉 ≃ Z/pZ. Therefore Ext1B/〈g〉(πλX ′, πλX ′) ≃
p−1
L

j=0

Ext1B(X ′, gj

X ′) = 0 because

of [22, 2.1], the isomorphism gX ′ ≃ X ′ and the equality Ext1B(X ′, X ′) = 0. In order to get a contradiction
we first prove that πλX ′ is indecomposable. Fix an indecomposable decomposition πλX ′ = M1 ⊕ . . . ⊕ Ml

in mod(B/ 〈g〉). Hence Ext1B/〈g〉(Mi, Mi) = 0 for all i. We claim that Mi lies in the image of πλ for all i.
Indeed, we distinguish two cases according to whether car(k) = p or car(k) 6= p. If car(k) = p then the claim
follows from [23, Lem. 6.1]. If car(k) 6= p, then B/ 〈g〉 is Morita equivalent to the skew-group algebra B[〈g〉]
([13, Thm. 2.8]) and B[〈g〉] is tilted ([6, Thm. 1.2, (g)]). Therefore B/ 〈g〉 is tilted and the claim follows
from [22, Prop. 4.6]. Thus, in all cases, Mi ≃ πλM ′

i for some M ′
i ∈ mod B (necessarily indecomposable). So

p−1
L

j=0

gj

M ′
i ≃ π.Mi is a summand of π.πλX ′ ≃

p−1
L

j=0

gj

X ′ ≃
p−1
L

j=0

X ′. We thus have M ′
i ≃ X ′ for all i, whereas

πλX ′ = πλM ′
1⊕ . . .⊕πλM ′

l . this proves that πλX ′ is indecomposable. The contradiction is therefore the follow-
ing. On the one hand, Ext1B/〈g〉(πλX ′, πλX ′) = 0, πλX ′ ∈ ind(B/ 〈g〉) and B/ 〈g〉 is a product of quasi-tilted
algebras (because B is a product of tilted algebras and by 6.4), which imply that EndB/〈g〉(πλX ′) ≃ k. On the

other hand, EndB/〈g〉(πλX ′) ≃
p−1
L

j=0

HomB(X ′, gj

X ′) ≃
p−1
L

j=0

EndB(X ′) as k-vector spaces. This is absurd. So

GX′ = 1 and therefore GX = 1. �

Now we can prove that A is weakly shod by applying 6.2. As remarked in the proof of 6.5, a non trivial path
in indA of the form X  gX with X ∈ ΓA′ gives rise to a non trivial path X  X in indA′ which is impossible
because A′ is weakly shod. Therefore all the hypotheses of 6.2 are satisfied and A is weakly shod. This proves
(c).

It only remains to prove the necessity in (a). We assume that A′ is tilted and prove that so is A. Let ΓA′

be a connecting component of Γ(mod A′). It admits a complete slice Σ′. Clearly, ΓA′ is G-stable whatever the
number of connecting components of A′ is (one or two). By 6.2, 6.5 and [17, 3.6], there exists a component Γ of
Γ(mod A) such that Γ = {FλX | X ∈ ΓA′}. Moreover there is a Galois covering of translation quivers ΓA′ → Γ
with group G extending the map X 7→ FλX. We prove that Γ has a complete slice. For this purpose we use the
following lemma.

Lemma 6.6. gX ∈ Σ′ for every g ∈ G, X ∈ Σ′.

Proof of 6.6: Let g ∈ G and write Σ′ = {X1, . . . , Xn}. So there exist a permutation i 7→ g.i of {1, . . . , n} and
integers l1, . . . , ln such that gXi = τ li

A′Xg.i for every i. Clearly, the modules gX1, . . . ,
g Xn form a complete slice
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g(Σ′) in ΓA′ . This implies that l1 = l2 = . . . = ln. We write l = l1. Therefore g(Σ′) = τ l
A′(Σ′). On the other

hand, g has finite order and ΓA′ has no oriented cycles. So l = 0 and g(Σ′) = Σ′. �

Let Σ be the full subquiver of Γ generated by {FλX | X ∈ Σ′}. Hence Σ is convex in Γ, has no oriented
cycle and intersects each τA-orbit of Γ exactly once because Σ′ is a G-stable complete slice in ΓA′ . Moreover,
the arguments used in the proof of 2.3 show that Σ is faithful because so is Σ′. Finally, given X, Y ∈ Σ′, we have
HomA(FλX, τAFλY ) ≃

L

g∈G

HomA′(X, τA′
gY ) = 0 because of the covering property of Fλ, 2.1 (d) and the fact

that Σ′ is a G-stable slice in ΓA′ . Thus Σ is a complete slice and A is tilted with Γ as a connecting component.
This proves the sufficiency (a) and finishes the proof of Theorem C. �

Remark 6.7. The reader may find similar equivalences to those of Theorem C about skew-group algebras
(instead of Galois coverings) under the additional assumption that car(k) does not divide the order of the
group G (see [6]).
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