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Abstract—The new generation of imaging spectrometers on
board planetary missions usually produce hundreds to thousands
of images a year, each made up of a thousand to a million
spectra with typically several hundred wavelengths. Such huge
datasets must be analyzed by efficient yet accurate algorithms.
A supervised automatic classification method (hereafter called
“wavanglet”) is proposed to identify spectral features and classify
images in spectrally homogeneous units. It uses four steps: A.
Selection of a library composed of reference spectra; B. Application
of a Daubechies wavelet transform to referenced spectra and
determination of the wavelet subspace that best separates all
referenced spectra; C. In this selected subspace, determination of
the best threshold on the spectral angle to produce detection masks.
This application is focused on the martian polar regions that
present three main types of terrains: H2O ice, CO2 ice and dust.
The “wavanglet” method is implemented to detect these major
compounds on near-infrared hyperspectral images acquired by
the OMEGA instrument on board the Mars Express spacecraft.
With an overall accuracy of 89%, “wavanglet” outperforms
two generic methods: Band Ratio (57% accuracy) and Spectral
Feature FittingTM (83% accuracy). The quantitative detection
limits of “wavanglet” are also evaluated in terms of abundance
for H2O and CO2 ices in order to improve the interpretation of
the masks.

I. INTRODUCTION

In order to understand the current climate on Mars it is
necessary to detect, characterize and monitor CO2 and H2O
ices at its surface (permanent and seasonal deposits) and in
its atmosphere (vapor, clouds). The series of images acquired
above medium latitudes and the poles by the OMEGA [1]
imaging spectrometer on board the Mars Express mission
(ESA) represents a unique opportunity to achieve these objec-
tives. At present, its contain more than a hundred visible (VIS)
and near infrared (NIR) hyperspectral images taken during
different seasons above the north and south polar regions with
usually ∼100,000 spectra for each image.

We aim to :
1) Evaluate the relevance of each image for volatile

molecule studies in terms of fractions covered by CO2

and H2O ices.
2) Generate CO2 and H2O ice distribution maps.
3) Automatically determine the seasonal condensation and

defrost lines and their temporal evolution.
4) Define spectrally homogeneous units of terrain as detec-

tion masks, each undergoing a specific physical mod-

eling of the spectra in order to evaluate their surface
properties.

Because of the huge volume of data, we need an automatic
and efficient algorithm to achieve these goals in a reasonably
short calculation time. In supervised classification, the usual
way to compare each spectr X of a hyperspectral image and a
well-known reference spectrum E is to calculate their Spectral
Angle (SA) [2] in the n dimensional base (n=the number of
channels) which is equivalent to the correlation coefficient.
However, this method is not robust enough to classify the
polar terrains because of the slightly degraded signal to noise
ratio of the spectra mostly acquired at high incidence angles.
Furthermore, gaseous CO2 and H2O present in the atmosphere
add absorption features that sometimes partly overlap their
solid counterparts. Finally, variations of the physical properties
of the ices (e.g. grain size) and variations of geometrical
illumination conditions induce non-linear variations of the
absorption band intensity across the studied scene that are
impossible to unravel using a linear Spectral Angle method.
Therefore we propose a supervised classification method
called wavanglet. It defines a more effective way of measuring
the spectral angle between the image spectrum X and the refer-
ence spectrum E in a wavelet transform domain. The reference
is usually an image end-member or a synthetic spectrum that
non-ambiguously characterizes the compound to be detected,
e.g. CO2 or H2O ice owing to their distinctive absorption
bands. Similar methods have already been evaluated in remote
sensing. The use of wavelets for pattern recognition was
already proposed by [3], [4] and their efficiency is better than
that provided by other techniques such as Principal Component
Analysis and Fourier Transforms [5]. Experimental studies
have shown that the performance of wavelets in classification
is very good for vegetation detection with AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) data [6] and hyper-
spectral data collected at ground level [7].
The use of unsupervised classification methods like PCA
[8] or hierarchical clustering [9] is limited when processing
large datasets because such methods are computer intensive.
Furthermore they do not take advantage of the a priori
knowledge we may have concerning planetary surfaces and
atmospheres. Finally they classify an image according to
multiple chemical, physical and structural information that are
combined. Thus the classification can be difficult to interpret
in terms of chemical composition only, a problem that we do
not encounter with wavanglet.

This paper is divided into four sections. In the first ,
we provide background information necessary to introduce
the wavanglet method and the OMEGA dataset on which
we will base our classification experiments. We also de-
scribe comparable standard methods that already exist: Band
Ratio[10], [11], Spectral Angle Mapper [2], and Spectral
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Feature FittingTM[12]. The second section presents the dif-
ferent steps followed by our method. Next, we will perform a
comparative experiment between wavanglet and two standard
methods based on performance (overall accuracy, separability
between classes, multiple end-members and possible overlap-
ping signatures, mass processing feasibility and calculation
time). Finally, in the particular case of the OMEGA polar
images, we evaluate quantitative detection limits in terms of
abundance for H2O and CO2 ices. We also determine how
these limits vary with the coexistence mode of the ices, their
main physical parameters (e.g. granularity) and the incidence
angle of the observation. For this, we use synthetic data.

II. BACKGROUND INFORMATION

A. OMEGA instrument

The OMEGA instrument [1] is an imaging spectrometer on
board the Mars Express mission (MEX - ESA). Its spatial res-
olution varies from 350 meters up to 4 kilometers depending
on the observation altitude. The instrument has three distinct
spectral channels designated V, C and L. Table I summarizes
the spectral range, number of spectels and spectral resolution
for each. Unlike the V channel, the C and L channels are
particularly relevant to our studies since they sample numerous
absorption bands distinctive of CO2 and H2O in their solid
state. After calibration, the dimensionless physical unit used
to express the spectra is the reflectance: the irradiance leaving
each pixel toward the sensor divided by the solar irradiance
at the ground. Each pixel is characterized by a spectrum of
256 spectels organized according to increasing wavelength, the
corresponding index going from 0 to 255. The name of each
observation is coded as ORBXXXX_Y where XXXX is the
orbit number and Y the observation number.

B. Wavelet transform (WT)

Our signals are modeled by finite energy functions of the H
Hilbert space with the usual norm of the L2(R) Banach space
and the usual inner product 〈 ; 〉. As the Fourier transform is
a projection on an orthogonal base made of orthogonal sine
and cosine functions, the wavelet transform is a projection
into a new base made of orthogonal wavelets. Each wavelet is
built by scaling and shifting a single “mother” wavelet [13].
Consequently, a wavelet is defined by a mother pattern, a scale
“s” and a position “p”.

The mother wavelet is:
• a function:

Ψ ∈ L2(R) (1)

• with a zero average:∫ +∞

−∞
Ψ(x)dx = 0 (2)

• centered in the neighborhood of t = 0
• and normalized such that:

‖Ψ‖ = 1 (3)

It is used to generate a family of functions: Ψs,p(x) =
1√
s
Ψ(x−p

s )

• which could be a base of L2(R)
• which could have the orthonormal property:

∀(s, p, s′, p′),〈Ψs,p; Ψs′,p′〉 = δs,s′ .δp,p′

The originality of wavelets compared to the usual sine and
cosine functions, is that each base function is localized. A
cosine function, instead, is defined by its period and its phase,
and is present throughout the entire signal.

The wavelet transform WE(s,p) of the signal-vector E(x) is:

WE(s, p) = 〈E,Ψs,p〉 =
∫ +∞

−∞
E(x)

1√
s
Ψ∗(

x − p

s
)dx (4)

This transformation is linear and can be written by the usual
convolution product:

WE(s, p) =
∫ +∞

−∞
E(x)

1√
s
Ψ∗(

x − p

s
)dx = f � Ψs (5)

with Ψs = 1√
s
Ψ∗(−x

s )
In signal processing, several classes of mother wavelets

exist, each with different properties (including non-base and
non-orthogonality). We build our wavanglet method on an
orthonormal base made using the Daubechies wavelet family.
The corresponding transform algorithm was specially devel-
oped for fast numerical calculation [14]. Faster than the usual
wavelet transforms [4], this particular wavelet transform is
particularly suitable for the detection and classification of
spectral features on large datasets.

The morphology of the Daubechies mother wavelet can be
tuned by a parameter - with 4, 16 or 20 as possible values
- that depends on the regularity of the signal. If the latter is
undersampled, the regularity is low and the best suited mother
wavelet must be highly irregular and as short as possible
(value 4). If sampling is sufficient, the mother wavelet must
be smooth and long (value 20). The OMEGA data correspond
to the first case. The discrete WT algorithm transforms a
2k element vector into a vector of the same length. The
counterpart of the spectel index in the wavelet domain will
be called the wavelet index. The length 2k of the vector
determines the number of scales k, 8 for OMEGA, due to
a spectral dimension of 256. The scale s and position p are
not explicitly specified in the output vector but can be easily
reconstructed. Each wavelet index corresponds to a unique
wavelet with scale s and position p. Different representations
of the vector can be used in the wavelet space: for instance
the primary output vector or a scale/position scheme. We will
use a convenient representation with each scale represented by
a 2k element vector resulting from the superposition of gate
functions, one for each wavelet, with a width equal to the scale
s, a localization equal to position p and a depth equal to the
projection coefficient (see figure 1).

Wavelet transforms can be used in spectral pattern recog-
nition as proposed several years ago [3], [4]. The idea is
that the wavelet localization and scale respectively correspond
to the position and width of a particular spectral feature.
Furthermore, the projection coefficient is linked to feature
depth. In the case of a hyperspectral planetary image, each
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Table I
BASIC SPECTRAL CHARACTERISTICS OF THE OMEGA INSTRUMENT ON BOARD MARS EXPRESS

V channel C channel L channel
Spectral Range (µm) 0.38 to 1.05 0.93 to 2.73 2.55 to 5.1
Number of Samples 96 or 144 128 128

Spectral Resolution (µm) 0.007 or 0.0045 0.013 0.020

Figure 1. Daubechies wavelet representation. Wavelet No 28 (Scale 5 Position
13) (a) and its representation (b). Wavelet No 73 (Scale 7 Position 10) (c)
and its representation (d).

absorption band can be represented by the sum of a limited
number of wavelets. In an ideal case, only the projection
coefficients for this group of wavelets would differ from zero.

C. Usual classification methods

Many different methods of detection and classification are
used in the domain of planetary sciences. We will only
summarize three among the most popular.

1) Band Ratio (BR) method: A ratio between two channels
of interest can be calculated for all the spectra of an image.
For instance, one channel can be chosen in the middle of
an absorption band and the other on its far wing (local
continuum). In this case, the ratio is straightforwardly
linked to the relative band depth. A detection mask can be
computed by applying a fixed threshold on the image ratio,

Table II
WAVELENGTHS USED IN THE BAND RATIO

Spectel index 35 40 60 75
Wavelength (µm) 1.4286 1.5004 1.7860 1.9973

above which we consider that the band exists. The threshold
can be calibrated by a visual inspection of representative
spectra. Sometimes the definition of the band ratio is slightly
more refined e.g. the area sustained by the absorption band
divided by its continuum. The main advantage of the ratio
method is its simplicity. Nevertheless this method is only
used for preliminary investigations because of a number of
limitations: dependence of hot spectels and sensitivity to
non-multiplicative noise, instrumental artifacts and frequent
superposition of different absorption bands. This method has
already been applied to Mars Express OMEGA data [10], [11].

The band ratio we used for our classification experiments
(see section IV-B) is: S(40)

S(35) (1 − S(75)
S(60) ) with the associated

wavelengths listed in table II. Spectel index 35 corresponds
to a CO2 solid absorption band and spectel index 40 to a
water ice absorption. Spectel index 60 is the continuum and
spectel index 75 corresponds to both CO2 and H2O absorption
bands (see figure 2 for the reference spectra). Terrains with a
minimum value of the ratio are composed of dust. CO2 ice rich
terrains are represented by pixels with a high ratio. In between,
water ice rich terrains have intermediate values (see figure 4
for the band ratio distribution in one OMEGA observation).
An overview of the properties of this method and the results
from experiments are reported in table IX.

2) Spectral Angle MapperTM (SAMTM): A collection of
spectra produced by a given instrument can be represented
by a series of vectors each anchored at the origin of an n-
dimensional space (n being the number of channels of the
instrument). In a usual 3-d Euclidean space, the spectral angle
(SA) corresponds to the real angle between the two directions
defined by two vectors [2]. In a general n-d space, the SA is
a coefficient α between 0 and π radians which determines the
proximity of the directions of two vectors E and X.

The spectral angle: α(E; X) = arccos
(

〈E;X〉
‖E‖.‖X‖

)
=

arccos (cor(E; X))
The SA is not sensitive to a multiplication factor because

it is normalized. This method is often used in remote sensing
analysis to compare two spectra (vectors) because the photo-
metric effect is not taken into account. Another way to intro-
duce the SA, is to present it as a correlation coefficient between
two random vectors (the spectra) combined with an arc-cosine.
As the arc-cosine is a monotonically declining function in the
[0, 1] interval, the SA decreases as the normalized correlation
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increases. In the extreme case, when the two directions are
similar, SA tends to 0 and the normalized correlation tends
to 1. When the two vectors are anti-correlated, the correlation
coefficient is close to -1 and thus the spectral angle is close
to π radians. The intermediary situation is when the angle is
π
2 and the correlation is null.

The value of the SA does not depend on the base used
for the vector representation if the new base is orthogonal for
the usual scalar product. This means that if the scalar product
between two vectors is preserved, the spectral angle is also
preserved.

If Φ is a linear operator such as a wavelet transform, e.g. the
projection into an orthonormal base of the H Hilbert space,
we can write:

the Parseval formula:

〈Φ(E); Φ(X)〉 = 〈E; X〉 (6)

and the Plancherel formula:

‖Φ(X)‖ = 〈Φ(X); Φ(X)〉 = 〈X; X〉 = ‖X‖ (7)

thus

α {Φ(E); Φ(X)} = arccos
( 〈Φ(E); Φ(X)〉
‖Φ(E)‖ . ‖Φ(X)‖

)
(8)

α {Φ(E); Φ(X)} = arccos
( 〈E; X〉
‖E‖ . ‖X‖

)
(9)

α {Φ(E); Φ(X)} = α(E; X) (10)

SAMTM is an algorithm already implemented in the ENVI®
environment [15].

3) Spectral Feature FittingTM (SFFTM) : Spectral Feature
FittingTM is a method that compares the spectrum of an image
X to a selected reference spectrum E in a least-squares sense
[12]. The reference spectrum is scaled to match the image
spectrum after continuum removal for both spectra and the root
mean square (RMS) error is determined. We choose to express
the similarity between X and E by calculating the combined
ratio: Scale/RMS. The scale and the RMS are respectively an
estimation of the strength of the searched absorption features
and of the quality of the fit. A simple threshold can be applied
to the ratio to decide if the observed spectrum belongs to the
class of the reference spectrum or not.

An overview of the properties of this method and the results
from experiments are also reported in table IX. SFFTM is also
an algorithm included in the ENVI® environment [15].

III. PROPOSED METHOD: Wavanglet, A SPECTRAL ANGLE
CLASSIFICATION IN A WAVELET FILTERED SPACE

The proposed wavanglet method is a succession of four
steps. Step A is the determination of significant reference
spectra E characteristic of the different types of terrains present
in the scene (the set is called the “reference base”). Step
B is the choice of the most discriminating wavelet subspace
for spectral angle (SA) classification of the observed spectra
X. Step C is the determination of the best threshold for the

spectral angle to produce detection masks (0=non-detection;
1=detection). Step D is the automatic mass classification for
the complete dataset.

A. Step A: Choice of relevant reference spectra

This first step is crucial in the process because it will
strongly affect the validity of the detection. If some species are
not represented in the reference base, they will be misclassified
in the dataset. If other species are represented in the base but
are not present in the observation, the classification will not
be optimized. This method is supervised because the a priori

knowledge used to perform the classification is strong: number
of present compounds in the image, nature of the compounds,
etc. The user must supply a reference base that can be a
set of end-members extracted from the hyperspectral images
and/or a set of synthetic spectra generated by a physical model.
End-members can be extracted manually or automatically,
for instance by a Pixel Purity Index routine [16], after a
dimension reduction performed by different techniques such
as Principal Component Analysis (PCA) or Minimum Noise
Fraction (MNF) [17]. The synthetic spectra can be calculated
with a bidirectional reflectance model adapted to the type of
planetary surfaces observed [18]. A single chemical species
with homogeneous physical properties (grain size, roughness,
etc.) or a geographical/granular mixture of different chemical
species with different surface properties may be used under
certain circumstances. We will denote the ith spectra of the
reference base as Ei. Our algorithm will detect a reference
spectrum Ei in an observed spectrum X when the signatures
of the former are found in the latter with similar position,
width and relative depth. However this method will neither be
sensitive to the general level of the spectra nor to the absolute
depth of bands for a particular species.

B. Step B: Determination of the best subspace

Several methods have been proposed to reduce the dimen-
sion, such as band selection on a well documented learning
dataset using discriminant analysis [19], or directly on the
hyperspectral image avoiding correlation [20]. We will use the
discrete wavelet transform, which is already used to increase
the classification accuracy [21], in a alternative way.

B1. Continuum removal: Real observed spectra commonly
result from the superposition of multiple absorption bands due
to several pure compounds mixed at different spatial scales.
Such absorption bands undergo non-linear variations when
the physical properties of the materials present in the scene
change [22]. Moreover these bands appear on a continuum that
is highly variable due to changes of illumination and global
albedo. These are the main limiting effects when comparing
the observed spectra with the image or synthetic end-members.
In order to reduce the sensitivity of our algorithm to such
variations - which cannot be taken into account by our
fixed reference end-members - we perform the comparison
only at medium and small wavelet scales (s∈ [5 − 8] for
OMEGA classification). In this first filtered space, all wavelet
coefficients mainly depend on the absorption band positions,
widths and relative depths. They are only moderately affected
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by noise in the spectra as shown by the experiments we carried
out (see section IV-C). One specific absorption band is usually
represented by several wavelets.

B2. Best discrimination: Additionally we have to select the
ideal subspace that allows the best discrimination among the
different end-members. It is possible to separate overlapping
signatures during the decomposition process if they have
different positions or widths, i.e. if we can find one wavelet
at medium or small scale, specific to one absorption band but
not polluted by another absorption band.

Qualitatively speaking, this subspace is composed of
wavelets on which the reference spectra show the greatest
differences. We propose three simple methods to carry out
the selection:

WEi(s,p) denotes the projection of the ith spectrum of the
reference base on the wavelet Ψs,p at scale s and position p.

1) Threshold for only one single reference spectra in the
base:
Keep Ψs,p if ∃i such that

‖WEi(s, p)‖ > thres(s) (11)

2) Threshold for an extended spectral base:
Keep Ψs,p if ∃(i, j) such that

‖WEi(s, p) − WEj(s, p)‖ > thres(s, i, j) (12)

with:
thres(s, i, j) = const (13)

3) Automatic threshold method, same as method 2 above
with:

thres(s, i, j) =
meani,j{‖WEi(s, p) − WEj(s, p)‖}

+c ∗ stdi,j{‖WEi(s, p) − WEj(s, p)‖}
(14)

Both mean meani,j and standard deviation stdi,j are
calculated for combinations of i and j for a given s.
The coefficient c is determined by the user.

The norm ‖ ‖ can be L1, L2, or any other norm definition.
We choose L2 to be consistent with previous considerations
concerning wavelet transforms in a H Hilbert space (see
section II-B).

Methods 1 and 2 cannot easily be carried out if the
number of reference spectra is high because the number of
thresholds becomes excessive. An alternative is method 3
which automatically determines the threshold. Other more
complicated automatic methods have already been proposed in
the literature, for example selection of the maximum by scale
instead of a threshold criterion [3] or the best basis algorithm
[23], [24].

B3. Circularity, noise and dead channels: The first prob-
lem that arises when analyzing numerical data by a wavelet
transform is the edge effect. The circularity of the sampling
creates false information symmetrically before and after the
measured signal. All wavelets near the edge are polluted by
this construction. To solve such a problem we eliminate all
wavelets containing information inherited from the first or last
instrument spectels. For the OMEGA images, this method is

valid because no features of interest are located near the edge
of the signal.

Also wavelets corresponding to spectels affected by in-
strumental defects or noise can reduce the accuracy of the
classification algorithm. These wavelets are determined by the
following method. First we built a null-vector with a length
equal to the number of spectels in an OMEGA spectrum. Sec-
ond, we change the value of the vector from zero to one only at
the rank of a defective spectel in order to simulate the defect
with a normalized energy of one. The base of the modeled
defect is denoted Di. Then we perform a wavelet transform
on this signal Di and eliminate all wavelets with a coefficient
higher than a threshold, i.e. the wavelets most affected by
the defect. If we choose a typical value of Di(s,p)>0.5, we
eliminate only the wavelets that receive more than 50% of
the defect energy. This operation should be performed for all
potential defects i.

C. Step C: Spectral angle thresholds

The calculation of the spectral angle (SA) between the
reference spectrum E and the observation spectrum X gives
the correlation coefficient between these two spectra in a
determined space. The characteristics of an appropriate sub-
space are the following: the belonging wavelets must be
corrected from continuum effect (Step B1), form a part of
an absorption band and be discriminating for at least one
reference spectrum (Step B2) and be almost free of noise and
numerical problems (Step B3). The SA in this subspace can
be interpreted as a measurement of the agreement between
distinctive spectral features of a reference spectrum and those
of an observed spectrum. A small value indicates a good match
of spectral features whereas a value close to π indicates total
disagreement. Some analysis procedures we use subsequently
in wavanglet require that we decide from the spectral angle if
a given compound, characterized by its associated reference
spectrum, is present or absent in a pixel. In this case, after
processing the whole image, we obtain detection masks for the
compounds that indicate if a given treatment is to be applied
or not for a given pixel.

To declare positive detection, the correlation coefficient
must be higher than a certain threshold or, in an analogous
manner, the spectral angle must be lower than a limiting angle.
Ideally, to build our detection algorithm, a unique limiting
angle, one per compound, must be detected and valid for
all observations. This limiting angle can be interpreted as a
limiting condition adapting the mathematical problem to a
physical one. Two methods can be performed to determine the
series of thresholds: calibration using a controlled database
of synthetic spectra - modeling approach [C1] - and/or an
empirical approach based on an already analyzed subset of
real data [C2]. The choice of the threshold must maximize
the detection limit of each pure compound in the image,
regardless of its physical properties, and and must minimize
false detections.

As the SA calculation is invariant with any linear orthonor-
mal transformation, such as the Daubechies wavelet transform,
we have the choice to perform the SA mapping of all the pixels
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in the filtered wavelet base or in the filtered spectral space. The
latter is reconstructed by the inverse transform of the filtered
wavelet base. The calculation of the SA is faster in the filtered
wavelet base than in the complete spectral space because the
dimensions of the former are lower. We therefore choose to
perform the calculation in the filtered wavelet base.

D. Step D: Automatic mass classification with spectral angles

in this subspace

All the parameters are now adjusted to perform the auto-
mated classification. For each image and each spectrum of the
reference base, a detection mask will be created. For datasets
spanning a long time range (several months to years), many
parameters can vary. For instance the bad channel list can
change with time thus affecting steps B2 and B3. If this
happens, then step C should be adapted according to the
former steps.

IV. EXPERIMENTS

We will now apply this general wavanglet method to a series
of OMEGA/MEX hyperspectral images and compare the ob-
tained classifications with the ones produced by two alternative
methods: Band Ratio (BR) and Spectral Feature Fitting (SFF)
(sections II-C1, II-C3). We also evaluate quantitative detection
limits for H2O and CO2 ices in terms of abundance. We use
synthetic spectra for this. Our study consists of five tests: clas-
sification accuracy, separability between classes, multiple end-
members and possible overlapping signatures, mass processing
feasibility and calculation time.

A. Application of the wavanglet method to the OMEGA

dataset

We follow the four steps described in section 3 to apply the
method to a collection of OMEGA/MEX images covering the
polar regions of Mars.

1) Step A: Choice of relevant “end-members” (reference

spectra): The OMEGA spectra display signatures character-
istic of both the atmosphere and the surface. The atmospheric
contribution is due to gaseous CO2 and, depending on weather
conditions, to clouds of dust, CO2 and H2O ices. The spectral
effect of the clouds can often be neglected for a first order
approximation. The surface contribution is due to a mixture
of H2O ice, CO2 ice and dust in various proportions. In the
images, we try to detect the last 3 compounds to which we
attribute reference spectra (see figure 2). Pure H2O and CO2

are represented by synthetic spectra computed by a reflectance
model [18] using the physical parameters listed in table III
and an optical constant measured in the laboratory [25], [26],
[27]. These parameters have been chosen to be compatible
with recent studies of both south and north martian polar
regions [28], [29], [11], [10]. On the other hand, the third
reference spectrum representing polar dust is extracted from a
single OMEGA image covering the southern high latitudes by
averaging all spectra within a relatively homogeneous region
near 70° longitude and -77° latitude. Note that this spectrum is
almost featureless in the near IR range except for the 3 micron

Figure 2. Spectral end-members: dust + atmosphere spectrum (a), synthetic
spectrum of H2O ice (b) and synthetic spectrum of CO2 ice (c).

Table III
SYNTHETIC END-MEMBER PARAMETERS

pure H2O ice pure CO2 ice
Grain size (µm) 10 100 000

Incidence angle (°) 85 85
Emergence Angle (°) 0 0

band due to the hydration of the minerals and the absorption
bands of atmospheric CO2. Globally the dust spectrum does
not display much spatial variation in this spectral range. Indeed
it is well mixed by winds and spread over wide areas. Thus
we can assume that our reference spectrum is representative
of most areas of both polar regions. Our martian studies focus
mainly on the two first end-members while the third end-
member represents spectral features that appear in the data
but which are not of interest to us.

2) Step B: Determination of the best subspace:

B1. Continuum removal: We use only the last four scales
(from 5 to 8) in order to remove the contribution of the
continuum.

B2. Best discrimination: We prefer the automatic thresh-
old method (method 3), with norm L2 and the value c=2.5 to
select the best subspace. This threshold criterion optimizes the
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Table IV
LIST OF ELIMINATED WAVELETS

Spectel indexes of dead spectels 34 78 158
Wavelet indexes of eliminated wavelets 35, 71, 144 82, 166 102, 206

Figure 3. Representation of the selected subspace of wavelets (upper part)
that best discriminate the end-members (lower part). Wavelets selected in
scales 5 to 8 (a to d). Observed dust and atmosphere spectra (e), synthetic CO2

ice (f) and synthetic H2O ice (g). [see section II-B for wavelet representation]

classification.
B3. Circularity, noise and dead spectels: We eliminate

all wavelets containing a non-zero contribution from the last
spectel # 255.

We eliminate wavelets polluted by damaged spectels (num-
ber 34, 78 and 158) with an energy criterion (D=0.45). Table
IV lists the indexes of the eliminated wavelets.

Finally the selected subspace is formed by the 12 wavelets
shown in figure 3 and summarized in table V.

3) Step C: Threshold determination: We use two different
procedures to constrain the spectral angle threshold: numerical
calibration [C1] and image calibration [C2]

C1. Numerical calibration: The idea is to generate a
database of synthetic spectra that simulates the OMEGA
dataset by varying the relative abundances of ices and dust
as well as other physical parameters over realistic ranges

Table V
LIST OF SELECTED WAVELETS

Scale Indexes of selected wavelets
5 28
6 36, 58
7 73, 80, 95, 118
8 145, 148, 149, 160, 161, 163, 164, 165, 175, 192, 202, 239

of values. Then we can apply the wavanglet method on
this controlled data and adjust the angle threshold so as to
maximize the detection sensitivity for H2O and CO2 ices while
minimizing false detections.

The synthetic spectra are calculated by SPECTRIMAG,
a bidirectional reflectance model that solves the radiative
transfer of solar light through granular icy media [18]. The
input data are the spectral optical constants of ice crystals
and dust measured in the laboratory [25], [26], [27]. Each
compound is also characterized by parameters such as grain
size and porosity. A real OMEGA spectrum measures the
surface reflectance of a geographical and/or granular mix-
ture of H2O ice, CO2 ice and dust at, or under, the pixel
scale. In the first case, the resulting spectrum is a linear
combination of the spectral reflectance signatures of the in-
dividual compounds. In the second case, the spectrum results
from non-linear physics aspects implemented in the model.
In order to simulate as realistically as possible a martian
spectrum acquired by OMEGA, we also take into account
the atmosphere and the instrumental noise contributions. The
first contribution is introduced by multiplying each simulated
spectrum by a constant atmospheric transmission spectrum
calculated for an altitude of -4800 m and typical martian
weather conditions by a line-by-line radiative transfer model
[30]. We simulate the instrumental noise by a Gaussian process
using statistics coming from dark current measurements of
OMEGA observation 41_1 acquired during orbit 41.

C2. Image calibration: We carry out the training phase
of the wavanglet and SFFTM methods using observation 41_1
that covers the South polar region during local summer (Ls =
337.9 ◦).

A careful visual interpretation of observation 41_1 was
carried out in order to select samples of pixels that we can
define as “ground truth” regions of interest (GTROI). Dust,
H2O, and CO2 ices are identified on the basis of their distinct
absorption bands. Nevertheless this operation is very time-
consuming and we need as many GTROIs as possible to carry
out the training and subsequent testing (see section IV-B) of
the classification methods evaluated in this paper. Furthermore
the sensitivity of the brain/eye system is sometimes insufficient
to recognize relevant spectral features in circumstances such
as a very small amount of water ice mixed with solid CO2. As
a consequence we use the limited (≈ 30), manually obtained
set of GTROIs for 41_1 in order to train the Band Ratio (BR)
method which is always more sensitive than the human eye.
We obtain two detection thresholds that respectively separate
the CO2 class from the H2O class and the latter from the dust
class. These thresholds are optimized for observation 41_1
or any other visually interpreted image. Then we consider
that the classification maps obtained with this optimized BR
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method (hereafter named BR_opt) constitute a reference for
the training (observation 41_1) and testing (observation 231_1,
see IV-B) of wavanglet as well as other classification methods.

Since our detection classes can overlap because both CO2

and H2O ices as well as dust can be detected in the same
pixel, the training and testing are performed separately for the
three compounds. In each case we consider two classes: pixels
with positive detection and pixels with negative detection.
For a range of proposed spectral angle thresholds (see Table
VII), we calculate the overall accuracy and the kappa statistics
[31] given by wavanglet by comparing its classification map
with the reference map (BR_opt). The production and user
accuracies are also calculated. We retain the threshold that
maximizes the kappa factor. The training of SFF is performed
in the same manner.

Both numerical and image calibrations converge on thresh-
old angles of 1.54 radian for H2O ice, 1.48 radian for CO2 ice,
and 0.34 for dust. Note that the threshold value is close to π/2
for the ices whereas it is much lower for dust. Our reference
spectra for H2O and CO2 do not contain any atmospheric
contribution as opposed to the dust reference and to the
images we classify. As a consequence, the observed spectra
over icy terrains differ more from their reference spectra than
those observed over the dusty terrains. In subsection IV-C, we
present the detection limits we achieve on the synthetic spectra
in more detail.

4) Step D: Classification using the complete dataset: The
presentation and discussion of the results obtained by applying
the wavanglet method to the complete OMEGA dataset is not
the subject of this paper. We only discuss the ability of our
algorithm to analyze a selection of representative observations.
For that purpose we carry out a comparative study with the
BR, SAMTM and SFFTM methods (see section II-C).

B. Comparison with other methods

In this paper we illustrate our tests with observation 231_1
of the North polar region recorded during local springtime
(Mars solar longitude, Ls = 8.6 ◦). This observation presents
different H2O and CO2 ice properties than observation 41_1,
such as grain size and dust content [28], [11], [10].

All the results are summarized in table IX.
1) Classification accuracy: We admit that the optimized

BR method (BR_opt for 231_1) is the best classification
method and thus constitutes a reference (see section IV-A3
C2). Yet we cannot use it to classify the whole OMEGA
dataset since it requires the manual constitution of GTROIs
and subsequent manual training. As a consequence we only
test and compare classification methods that could be used to
process a large number of images automatically:

• the non-optimized BR method (hereafter called BR_fix),
• the SFF method,
• and the “Wavanglet” method.

All three methods use fixed detection thresholds to classify
the dataset. For BR_fix, the thresholds equal those of BR_opt
for observation 41_1.

Table VI shows the overall accuracy of the classifications
achieved by wavanglet, SFFTM, and BR_fix using the opti-
mized thresholds listed in section IV-A3 . In table VI, note that

for the detection of water ice terrains, SFFTM and wavanglet
show similar detection capabilities with an overall accuracy
of 86 and 84 % respectively. On the other hand BR_fix mis-
classifies 64 % of the pixels spectrally dominated by H2O.
For CO2 terrains, wavanglet clearly outperforms SFFTM and
BR_fix with an overall accuracy of 93 % versus 80%.

2) Separability between classes: Class separability must
be considered to evaluate the robustness of a classification
algorithm. In our case, each class corresponds to the positive
detection of H2O ice, CO2 ice and dust. First, we must
consider a space in which the data can be represented. For wa-

vanglet, this space is the spectral angle in the wavelet filtered
subspace, one for each end-member Ei. For the Band Ratio
method, this space is the ratio, unique for all end-members.
In these representation-spaces, a hyperspectral image is a
collection of values, each representing one spectrum. The
classification consists in defining a threshold in the distribution
of spectral angles or a ratio for the whole population of spectra
of a hyperspectral image. The distribution may have three
types of groups: first with a dominant presence of the reference
material corresponding to Ei (group #1), second with the
presence of the same material mixed with other components
(group #2), third without the presence of the selected material
corresponding to Ei (group #3). In the distribution, each group
can be identified and usually multiple peaks correspond to a
single group. In our case, the intersection between materials
are non-null: for instance we can find materials with both H2O
ice and CO2 ice (group #2).
The less the intersection between group #2 and group #3
contains pixels, the more the classification will be reliable.
One way to estimate the class separability is to evaluate the
range of thresholds that give reasonably accurate detections.
Robustness is ensured when the range of possible values is
relatively wide compared to the width of the groups. This
corresponds to a large distance between pixels from groups
#2 and #3 in the representative space.
For the Band Ratio method (Fig 4), the H2O, CO2 and
dust groups strongly overlap and thus the range of possible
thresholds is very limited. On the other hand, for the wavanglet

method (Fig 5), the spectral angle distribution plots of the
different materials, measured in their relative representing
space, display well separated groups.

3) Multiple end-members and possible overlapping signa-

tures: When an increasing number of end-members is required
to classify a large dataset, it must still be possible to separate
classes. The band ratio method, as presented above, does not
work for the detection of more than a few species because
it becomes impossible to find a ratio that ensures class sepa-
rability, especially when the spectral signatures overlaps. On
the other hand, the SFFTM and wavanglet methods are more
suitable for the classification of large spectral datasets with
multiple end-members because they perform the classification
based on an automatically defined spectral subspace. The user
only needs to define the end-member collection.

4) Mass processing feasibility: Application of a classifica-
tion method with a threshold (like wavanglet, BR, SFFTM)
to a huge dataset requires a constant threshold from one
image to the other. Table VII shows the acceptable range of
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Figure 5. Spectral angle distributions from the wavanglet method applied to the 231_1 image for H2O ice (a), CO2 ice (b) and dust (c) end-members. The
gray box represents the range of acceptable thresholds for reliable detection.
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Table VI
CLASSIFICATION ACCURACY FOR A POLAR OBSERVATION (231_1) ACQUIRED BY OMEGA. THE REFERENCE METHOD IS THE BAND RATIO METHOD

OPTIMIZED FOR 231_1. THE DEFINITION OF THE KAPPA PARAMETER AND THE OVERALL AND USER ACCURACY CAN BE FOUND IN [31].

Method Threshold Kappa Overall accuracy
(%)

user accuracy
(%) detection

user accuracy
(%) no detection

BR_fix - H2O 0.36 - 0.664 0.071 35.6 16.8 97.0
SFFTM- H2O 5.534 0.583 86.0 49.3 99.9

Wavanglet - H2O 1.54 0.538 83.7 45.3 100.0
BR_fix - CO2 0.467 0.576 80.2 54.6 100.0
SFFTM- CO2 3.716 0.572 80.0 54.4 99.9

Wavanglet - CO2 1.48 0.793 93.2 100 92.0

Figure 4. Band Ratio (BR) value distribution for the 231_1 image. The gray
boxes represent the range of thresholds possible for Dust/H2O detection on
the right and H2O/CO2 detection on the left.

thresholds for the band ratio and wavanglet methods based
on observations 41_1 and 231_1. For BR, the threshold range
between dust and H2O is strongly variable and automation is
therefore not possible. For the wavanglet method, the threshold
range for a given compound varies only slightly and a single
constant value can be selected for optimized detection. The
final thresholds determined in section IV-A3 for H2O, CO2,
and dust are also reported in table VII.

5) Calculation time: We measured the computation time
necessary to complete the classification of observation 41_1
(111616 spectra of 256 spectels) with the BR, SFFTM and

wavanglet methods. A complete process consists of opening
files, running the classification algorithm, creating regions of
interest and saving product files. Each type of processing
was performed in the ENVI® environment on a LINUX
workstation with the following characteristics: Intel Xeon 2.40
GHz bi-processor with a 512 KB cache memory for each
processor, hyper-threading active technology, 6 GB of RAM,
OS Linux with kernel 2.6 SMP. Results of the tests are given
in table IX. Wavanglet is the slowest method but its run-time
is comparable to SFFTM.

C. Evaluating detection limits with synthetic data

We now evaluate the sensitivity of wavanglet for the de-
tection of H2O and CO2 ices using synthetic data. For this,
we consider that solid H2O, CO2, and dust form a granular
mixture with different mass proportions and grain sizes. For
given observation conditions, we calculate the reflectance
spectra that OMEGA would measure including the atmosphere
contribution and the instrument noise (as explained in IV-A3
C1). We use different sets of parameters in the simulation.
We span the whole range of mass proportions in a relatively
continuous manner and use a limited set of values for the
other parameters: atmospheric path, grain sizes, and incidence
angle. The latter values, listed in table VIII, are characteristics
of polar ices [28], [29], [11], [10]. For each combination
of parameters, we perform automatic detection of the ices
using wavanglet. The reference base is composed of the three
spectra described in section IV-A1 (see fig 2). The results are
represented in ternary diagrams with the three poles (H2O,
CO2, and dust) at the edges of the triangle, one point inside the
triangle corresponding to a triplet of mass proportions (their
sum being always equal to unity). Each symbol represents
a positive detection for a triplet. The absence of symbol
means no detection. At one triplet location two symbols can
be superimposed on the triangular diagram: the inner and
outer symbols correspond to incidence angles of 85° and
15° respectively. We can thus assess the effect of changing
the atmospheric path, grain size, and incidence angle on the
detection limits.

a) General result: The detection limit for physical pa-
rameters of the typical surface (see table VIII) of the perma-
nent South polar cap is plotted in figure 6 and zoomed in figure
7. First, note that the general detection of H2O ice is good until
near the dust corner and near the CO2 corner. Secondly, the
detection of CO2 ice is only present near the pure CO2 ice
pole. The difference between these two situations is related to
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Table VII
THRESHOLD RANGE OF POSITIVE DETECTION FOR THE BAND RATIO AND wavanglet METHODS BASED ON 41_1 AND 231_1 OBSERVATIONS.

Threshold H2O ice CO2 ice dust
BR_opt on 41_1 <0.360 (<0.398) to >0.467 (>0.664) >0.467 to >0.664 <0.360 to <0.398

BR_opt on 231_1 <0.507 (<0.532) to >0.651 (>0.695) >0.651 to >0.695 <0.507 to <0.532
wavanglet opt. on 41_1 <1.5 to <1.56 <1.4 to <1.53 <0.3 to <0.6

wavanglet opt. on 231_1 <1.45 to <1.57 <1.43 to <1.52 <0.32 to <0.58
operational wavanglet <1.54 <1.48 <0.34

the grain size effect. The grain size of CO2 ice is almost 500
times greater than the grain size of H2O ice and 1000 times
greater than that of dust. In our case of granular mix, the mean
free path is smaller inside CO2 ice than inside H2O ice or dust.
The result is that even with a similar proportion of H2O, CO2

and dust, the CO2 absorption bands will be smaller than the
H2O and dust absorption bands. The presence of significant
CO2 absorption bands in the spectra requires a high relative
weight proportion of CO2 in order to balance this grain size
effect.

b) Atmospheric path: We generate two ternary diagrams
for an atmosphere extending from space to an altitude of
respectively + 4800 m (a situation typical of South polar
region of Mars, fig 6) and - 4800 m (a situation typical of
the northern lowland region, fig 8). We see in the figures
that, despite a large atmosphere thickness difference, the
atmospheric path has only a minor effect on our detection
limits. The detection of ice with the wavanglet method is thus
only slightly disturbed by the atmosphere contribution.

c) Grain size effect: Two ternary diagrams are calculated,
one with a water ice grain size of 100 µm (fig 6), a value
characteristics of the permanent South polar cap [28], [29],
[10] and a second with a much higher value (1000 µm, North
polar Cap [11], fig 9). Comparison of the two figures shows
that the detection capacity strongly decreases as the grain size
departs from the one used to generate the reference spectrum
(10µm). This effect is due to the high non-linear dependence
of the H2O and CO2 spectral signatures with grain size that
wavanglet cannot handle. In conclusion, for efficient detection,
the real grain size on the site must not be too different from the
value used for the end-member reference. Otherwise we must
modify or complete our reference base with more relevant
spectra (simulated, measured or observed) in order to improve
the detection limit.

d) Incidence angle: For a first approximation, the obser-
vation parameters (incidence, emergence and azimuth angles)
only influence the absolute band depth of the spectral features.
Since the wavanglet classification method is mostly sensitive
to relative band depth, it may be fairly independent with
respect to the illumination and observation conditions. The
effect of the incidence angle has been tested for two extreme
values: 85° (inner symbols) and 15° (outer symbols) for all the
previous parameter sets (figures 6, 8, 9 and 7). The relative
positioning of the inner and outer symbols for H2O and CO2

in all figures shows a very slightly better detection limit for
15° incidence. Other calculations on the emergence angle near
the nadir support the same conclusion. The wavanglet method
appears to be independent of the geometrical conditions of the
observation.

Figure 6. Detection limits for H2O and CO2 for physical parameters of
the typical surface (see table VIII) of the permanent South polar cap. The
atmosphere is typical for these conditions. The type of mixing is granular.
Each symbol corresponds to positive detection of H2O ice (square and cross)
and CO2 ice (circle and dot).

V. DISCUSSION AND CONCLUSION

We have conducted a comparative study between two
generic methods - the Band Ratio method (BR) and Spectral
Feature Fitting (SFFTM) - and wavanglet, our wavelet based
procedure. For this, we have considered five criteria pertaining
to automatic compound detection and classification of spectra:
overall accuracy, separability between classes, multiple end-
members and possible overlapping signatures, mass processing
feasibility and calculation time. Table IX shows that only
wavanglet possesses all the desired properties. Furthermore it
has the highest overall accuracy, outperforming SFFTM for the
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Table VIII
SET OF PHYSICAL AND OBSERVATION PARAMETER VALUES USED TO GENERATE THE TERNARY COMPOSITION DIAGRAMS

Figure 6 and 7 Figure 8 Figure 9
Grain size H2O ice (µm) 100 100 1000
Grain size CO2 ice (µm) 45 000 45 000 45 000

Grain size dust (µm) 30 30 30
Incidence angle (°) 85 and 15 85 and 15 85 and 15

Emergence angle (°) 0 0 0
Atmosphere South North (deeper) South

Figure 7. Zoom on the lower right corner (pure CO2) of figure 6. Each
symbol corresponds to positive detection of H2O ice (square and cross) and
CO2 ice (circle and dot).

CO2 terrains. The BR_fix method usually mis-classified a large
fraction of the OMEGA images and unfortunately BR_opt is
not suitable for mass processing of complete datasets because
a unique single detection threshold cannot be determined and
applied to all OMEGA images. Also, BR is potentially very
sensitive to noise for some spectels. Furthermore wavanglet

has two interesting properties for classifying our dataset: a
reasonable calculation time and possible multidetections with
a large end-member dataset. We demonstrated that the wavan-

glet method is able to discriminate between various spectral
patterns that sometimes differ insufficiently and strongly over-
lap. We have also evaluated the sensitivity of wavanglet for

Figure 8. Same conditions as in figure 6 except for a larger atmospheric
path. Each symbol correspond to a positive detection of H2O ice (square and
cross) and CO2 ice (circle and dot). Table VIII summarizes all parameters.

the detection of H2O and CO2 ices as a function of certain
physical as well as geometrical parameters using synthetic
data. Thanks to the selection of medium and small scale
wavelets, the sensitivity of wavanglet is not hampered by
variations of the incidence and emergence angles or by noise.
Furthermore, the presence of atmospheric CO2 bands has a
minor influence on detection. On the other hand, the non-
linear effect of grain size variability on the spectral signatures
is difficult to handle with only one reference spectrum per
material. To improve detectability over a wide range of surface
textures, we propose selection of one end-member per terrain
and per characteristic grain size in the reference base.
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Table IX
COMPARISON OF BAND RATIO, SPECTRAL FEATURE FITTING AND wavanglet METHODS

Band Ratio (BR_fix) Spectral Feature Fitting Wavanglet

Overall accuracy
(mean for H2O and CO2)

57% 83% 89%

Class separability Low Overlap High
Large end-member dataset Difficult Possible Possible

Mass processing Yes (No for BR_opt) - Yes
Calculation time (s) 11 41 54
Noise dependence High and localized - Low

Figure 9. Same conditions as in figure 6 except for a larger water grain size
(1000 µm) compared to the reference on the detection limits (100 µm). Each
symbol corresponds to positive detection of H2O ice (square and cross) and
CO2 ice (circle and dot). Table VIII summarizes all parameters.
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