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A class of optimal stopping problems for Markov processes

Diana DOROBANTU, Université de Lyon∗

Abstract : Our purpose is to study a particular class of optimal stopping problems for
Markov processes. We justify the value function convexity and we deduce that there exists
a boundary function such that the smallest optimal stopping time is the first time when the
Markov process passes over the boundary depending on time. Moreover, we propose a method
to find the optimal boundary function.

Keywords : strong Markov process, optimal stopping, Snell envelope, boundary function.

1 Introduction

In this paper we study a particular optimal stopping problem for strong Markov processes. We
propose a method to find the optimal stopping time form (it will be the first time when the
Markov process passes over a boundary depending on time), as well as for the calculation of the
optimal boundary.

In fact we seek to control a stochastic process V of the form V = veX where v is a real
strictly positive constant and X a strong Markov process. We consider the following optimal
stopping problem :

s(v) = supτ∈∆E
[

e−rτh(Vτ , τ) | V0 = v
]

,

where r > 0, FV
t = σ(Vs, s ≤ t), ∆ is the set of FV -stopping times and h is a Borelian function

h(V, t) = −V +cemt, c > 0, m < r. We prove that our problem may be easily reduced to an opti-
mal stopping problem for Markov processes and linear reward (i.e. supτ∈∆E [e−rτf(Vτ ) | V0 = v]
where f is a linear function). We justify the convexity of the value function s and we deduce that
the optimal strategy consists of stopping when the underlying Markov process crosses a boundary
depending on time, i.e. the smallest optimal stopping time has the form inf{t ≥ 0 : Vt ≤ b(t)}.
The main result is given by Theorems 3.1, 3.3 and 3.4 which allow to determine the optimal
stopping time form and the optimal boundary function.

Optimal stopping theory is a subject which often appears in the specialized literature. For
different areas of application or different methods for optimal stopping problems see, for example,
Peskir and Shiryaev (2003). Among others, Salminen (1985), Leland (1994, 1996, 1998), Duffie
and Lando (2001), Dayanik and Karatzas (2003) or Decamps and Villeneuve (2007, 2008) studied
optimal stopping problems for continuous Markov processes. Moreover, there are other authors
who used Lévy jumps processes (e.g. Pham (1997), Mordecki (1999), Hilberink and Rogers
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(2002), Kou and Wang (2004), Dao (2005), Kyprianou (2006), Dorobantu (2007)...) or symmet-
ric Markov processes (e.g. Zabczyk (1984)) for their models. Sometimes the studied problem
has the form supτ≥0E [e−rτh(Vτ )], other times it is more complicate supτ≥0E [e−rτh(Vτ , τ)] .
Our result completes these studies and the aim of the present paper is to solve a stopping time
problem for a more general class of processes (more precisely, Markov processes not necessar-
ily continuous). Contrary to the usual method, our method avoids long calculations of the
integro-differential operators.

This paper is organized as follows : we introduce the optimal stopping problem (Section
2). The following section (Section 3) contains the main results which characterize the optimal
stopping time and the optimal boundary. Section 4 is dedicated to the proofs of Theorems 3.1,
3.3 and 3.4.

2 Optimal stopping problem

Let V be a stochastic process on a filtered probability space (Ω,F , (Ft)t≥0,P). Assume that V

has the form V = veX where v is a real strictly positive constant and X is a strong Markov
process such that X0 = 0. Let FV be the right-continuous complete filtration generated by the
process V , FV

t = σ(Vs, s ≤ t). We introduce ∆ the set of FV -stopping times.

From now on, E(.|V0 = v) and P(.|V0 = v) are denoted Ev(.) and Pv(.).

We consider the following optimal stopping problem :

s(v) = supτ∈∆Ev

[

e−rτ (−Vτ + cemτ )
]

, (1)

where r, c > 0 and r > m.

We suppose that the process X checks the following assumptions :

Assumption 2.1 P(limt↓0Xt = X0) = 1.

Assumption 2.2 The process (e−rt+Xt , t ≥ 0) is of class D.

Assumption 2.3 inft≥0e
−rtE(eXt) = 0.

Assumption 2.4 The support of Xt is R for all t > 0.

Under Assumptions 2.1, 2.2, 2.3 and 2.4, we prove that the smallest optimal stopping time
of (1) is necessarily of the form inf{t ≥ 0 : Vt ≤ b(t)} and we compute the optimal boundary
function. We applied the same method in [10, 11] for Lévy processes and linear functions (i.e.
m = 0), but it may be extended to a more general class of processes and reward functions.
The same type of problem as (1) has been studied in [11] for a particular Markov process. The
method used in [11] is different and it could be applied because the model is easy.
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3 The main results

The main results caracterize the smallest optimal stopping time of (1). We show the following.

Theorem 3.1 Under Assumptions 2.1, 2.2, 2.3 and 2.4, there exists at least an optimal stopping
time for the problem (1).

For any c > 0, there exists bc > 0 such that the smallest optimal stopping time has the
following form

τbc
= inf{t ≥ 0 : Vt ≤ bce

mt}.

We introduce an auxiliary function

sb(v) = Ev

[

e−(r−m)τb

(

−e−mτbVτb
+ c

)

]

, v ∈ R
∗
+, b ∈ ]0, c[

where τb = inf{t ≥ 0 : e−mtVt ≤ b}. Let us point out that if b ∈ R+, then sb(.) is not necessarily
positive. The condition b ∈]0, c[ implies the positivity of sb(.).

Remark 3.2 Under the assumptions of Theorem 3.1, there exists Bc such that sBc
(.) = s(.).

Remark that we can write s.(.) as a function of Laplace transforms

L(x) = E

[

e−(r−m)τ̄x |X0 = 0
]

, G(x) = E

[

e−(r−m)τ̄x+X̄τ̄x |X0 = 0
]

where X̄ is the process defined by t 7→ X̄t = −mt + Xt and τ̄x = inf{t ≥ 0 : X̄t ≤ x}. Indeed,
the function s.(.) can be written as

sb(v) = −vG

(

ln
b

v

)

+ cL

(

ln
b

v

)

.

The following theorems caracterize the value of the optimal threshold Bc as a function of c,
L(.) and G(.).

When G is discontinuous at x = 0, Bc is easy to obtain.

Theorem 3.3 Under Assumptions 2.1, 2.2, 2.3 and 2.4, we suppose that the function G is
discontinuous at x = 0. Then the smallest optimal stopping time is τ∗ = inf{t ≥ 0 : Vt ≤

Bce
mt}, where Bc = c limx↑0

1−L(x)
1−G(x) .

When G is continuous at x = 0, Bc is more technical to obtain, but it has the same form.

Theorem 3.4 Under Assumptions 2.1, 2.2, 2.3 and 2.4, we suppose that the function G is
continuous at x = 0. Then we have the following :

1. If G has left derivative at x = 0 (say G′(0−)), then L has left derivative at x = 0 (say
L′(0−)).

2. If moreover G′(0−) 6= 0, then Bc ∈ [b̃, c[ where b̃ = c limx↑0
1−L(x)
1−G(x) .

3. If moreover s
b̃
(.) is strictly convex on ]b̃, ∞[,

then the smallest optimal stopping time is τ∗ = inf{t ≥ 0 : Vt ≤ Bce
mt}, where Bc = b̃.

The proofs of Theorems 3.1, 3.3 and 3.4 are given in Section 4.
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4 Appendix - Proofs

Before starting with the proof of Theorem 3.1, it is useful to re-formulate the problem (1). For
this purpose, following Gabillon (2003), we introduce a new process ν.

Notation 4.1 Let ν be the process defined by ν : t 7→ ve−mt+Xt(= veX̄t). We sometimes use
the notation νv = veX̄ , for v > 0.

The right-continuous complete filtration generated by the process ν is identical to FV . The
problem (1) may be written as

s(v) = supτ∈∆Ev

[

e−(r−m)τ f(ντ )
]

, (2)

where f is a decreasing linear function, f(v) = −v + c, v > 0. Therefore, problem (1) can be
reduced to an optimal stopping problem for Markov processes and linear functions.

The proof of Theorem 3.1 requires several results.

Remark that s is a (decreasing) convex function because it is the sup of (decreasing) linear
functions :

s(v) = supτ≥0Ev

[

e−(r−m)τ (−νv

τ + c)
]

= supτ≥0E1

[

e−(r−m)τ (−vν1
τ + c)

]

.

Remark 4.2 Since s is a convex function, then it is continuous.

The function s is a positive function because

s(v) ≥ supt≥0Ev

[

e−(r−m)t(−νt + c)
]

≥ supt≥0Ev

[

−e−(r−m)tνt

]

= supt≥0 − vE
[

e−rt+Xt
]

= 0,

where for the last equality we used Assumption 2.3.

Under Assumption 2.2, the process
(

e−(r−m)tf(νt), t ≥ 0
)

is of class D. According to Theo-

rem 3.4 of [16], the Snell envelope of this process has the form
(

e−(r−m)ts(νt), t ≥ 0
)

. Theorem
3.3 page 127 of [27], allows us to find the optimal stopping of a problem supτ≥0Ev [f(ντ )] where
f is a measurable function. We easily deduce that this result may be applied to a process having
the form t 7→ e−rtf(νt). In our case, we can not apply this result for the problem (1) because
the process t 7→ e−(r−m)tf(νt) does not check the assumptions of Theorem 3.3 page 127 of [27]
; that is why we rewrite the function s under a new form.

Lemma 4.3 For v > 0, let s+(v) = supτ∈∆Ev

[

e−(r−m)τ (−ντ + c)+
]

, where x+ = max(x, 0).
Under Assumptions 2.1, 2.2, 2.3 and 2.4, s+(v) > 0 and s(v) = s+(v) for every v > 0.

Proof We show that if there exists v0 > 0 such that s(v0) < s+(v0), then there exists v1 > 0
such that s+(v1) = 0. We prove that this last relation can not be satisfied.

By construction, for each v > 0, s(v) ≤ s+(v). Let us suppose that there exists v0 > 0 such
that s(v0) < s+(v0).
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Under Assumption 2.1, the process ν. is right continuous at 0. Since the process Y + : t →
Y +

t
= e−(r−m)t(−νt + c)+ takes its values in [0, c], the assumptions of Theorem 3.3 page 127 of

[27] are checked for Y +. We denote by f+ the function f+(v) = (− v + c)+ ; the stopping time

τ+ = inf{u ≥ 0 : f+(νv0

u ) = s+(νv0

u )}

is the smallest optimal stopping time of the problem s+(v0) = supτ≥0Ev0

[

e−(r−m)τ (−ντ + c)+
]

.

Using the definition of s and s+, we have

Ev0

[

e−(r−m)τ+

f(ντ+)
]

≤ s(v0) < s+(v0) = Ev0

[

e−(r−m)τ+

f+(ντ+)
]

and consequently

Ev0

[

e−(r−m)τ+ (

f(ντ+) − f+(ντ+)
)

]

< 0, Pv0
({ω : f(ντ+) < 0}) > 0

and Pv0
({ω : s+(ντ+) = 0}) > 0.

Thus there exists v1 such that s+(v1) = 0. Then for any stopping time τ , Pv1
-almost surely

e−(r−m)τf+(ντ ) = 0 and in particular for every t ∈ R+, f+(νt) = 0. This involves that Pv1
-

almost surely νt ≥ c which is a contradiction because under Assumption 2.4, the support of νt

is R
∗
+. Therefore s+(v) > 0 for every v ∈ R

∗
+ and s(v) = s+(v). 2

Thanks to Lemma 4.3, the problem (1) can be brought back to an optimal stopping problem
for an American Put option with strike price c. Such a problem has been studied by many
authors when X is a Lévy process (see for exemple Gerber and Shiu (1994), Pham (1997),
Mordecki (1999), Boyarchenko and Levendorskii (2002), Avram, Chan and Usabel (2002), Ches-
ney and Jeanblanc (2004), Asmussen, Avram and Pistorius (2004), Alili and Kyprianou (2005),
Kyprianou (2006)). Next, we use a method close to the one used by Pham (1997). Pham studies
an optimal stopping problem for an American Put option with finite time horizon. In his model
X is a Lévy process. He uses integro-differential equations to solve his problem.
Proof of Theorem 3.1

By Lemma 4.3, the problem (1) can be written as supτ≥0E(Y +
τ ). By Theorem 3.3 page 127

of [27], τ∗ = inf{u ≥ 0 : f+(νu) = s+(νu)} is the smallest optimal stopping time. However
s(v) = s+(v) > 0 for all v > 0, so

τ∗ = inf{u ≥ 0 : f(νu) = s(νu)}

is the smallest optimal stopping time.

The function s is upper bounded by c because Y +
. is upper bounded by c and limv↓0s(v) =

limv↓0f(v) = c.

Since s is convex, f linear and f(.) ≤ s(.), then {v > 0 : f(v) = s(v)} is an interval of the
form ]0, bc]. This means that the smallest optimal stopping time τ∗ is also the first entrance
time of ν in ]0, bc]. 2
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The smallest optimal stopping time is hence a hitting time for the process ν.
Proof of Theorem 3.3

Let b ∈]0, c[. The function sb(.) has the form

sb(v) =

{

−v + c if v ≤ b

−vG
(

ln b

v

)

+ cL
(

ln b

v

)

if v > b.

If the function sb(.) is continuous at b, then b is solution of

−b + c = −bG(0−) + cL(0−). (3)

However, G is discontinuous at x = 0, so G(0−) 6= 1 and the equation (3) has only one solution :

b∗ = c
1 − L(0−)

1 − G(0−)
= c limx↑0

1 − L(x)

1 − G(x)
.

The function s has the form sBc
(.) = s(.) and is convex, thus it is continuous, in particular

it is continuous at Bc. We deduce that Bc = b∗. 2

Proof of Theorem 3.4

(1) By Remark 3.2, there exists Bc such that sBc
(.) = s(.). The function s is convex, therefore

the right and left derivatives exist everywhere and

s′(v−) ≤ s′(v+) for all v ∈ R
∗
+, (4)

where s′(v−) and s′(v+) are the left and right derivatives of s at v. In particular, this means
that

sBc
(v) = −vG

(

ln
Bc

v

)

+ cL

(

ln
Bc

v

)

= s(v)

has right and left derivatives at v = Bc. Since G has right and left derivatives at x = 0, then L
has also right and left derivatives at x = 0.
(2) Let us make v = Bc in (4) :

−1 ≤ −1 + G′(0−) −
c

Bc

L′(0−).

We deduce that Bc ≥ b̃ = c
L′(0−)
G′(0−) = c limx↑0

1−L(x)
1−G(x) .

(3) If moreover s
b̃
(.) is strictly convex on ]b̃, ∞[, then

s
b̃
(v) > f(v) for all v > b̃. (5)

Indeed, the graph of f is tangent to the graph of s
b̃
(.) in v = b̃.

Suppose that Bc > b̃, then f(Bc) = s(Bc) = sBc
(Bc) ≥ s

b̃
(Bc) which contradicts (5). 2

Remark 4.4 Assumption 2.2 may be replaced by

”There exists q ∈ R such that the support of Xt is included in ] −∞, q] for all t > 0.”

Under this assumption, we don’t need to use the intermediate Lemma 4.3 to find the smallest
optimal stopping time form. In this case the process (f(νt), t ≥ 0) is bounded and Theorem 3.3
page 127 of [27] can be directly applied. The function s is not necessarily continuous, but its
continuous extension by linear interpolation is convex and the conclusion of Theorems 3.1, 3.3
and 3.4 are true.
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Our results are consistent with existing literature. Recall that our problem can be brought
back to an American Put optimal stopping problem for strong Markov processes. Various authors
have found that, in the case of a Lévy process, the American Put optimal stopping problem
is linked to the first passage problem of the Lévy process. Moreover, the optimal threshold
is obtained using continuous or smooth pasting condition. For example, in [1, 4] sufficient
or necessary and sufficient conditions for smooth and continuous pasting were established for
different classes of Lévy processes. To this subject (but for a different optimal stopping problem),
see also [19]. The aim of this paper is to solve a little more general problem than the American
Put optimal stopping problem, for a more general class of processes.
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