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Abstract—The on-line Bayesian Cramer-Rao (BCRB) lower time variation within one OFDM symbol (usual context for
bound for the dynamic estimation of a time-varying multi-path  OFDM modulation). Explicit expressions of the BCRB and

Rayleigh channel in 4-QAM OFDM system is considered. In jis yariants, MBCRB and ABCRB, are provided for NDA and
case of negligible channel variation within one symbol and delay DA 4 AM7 i . ’
related information, true BCRB for data-aided (DA) context, and Q on-iiné scenarios.

two closed-form expressions for non-data aided (NDA) context ~ Notations [x], denotes théith entry of the vectox, and

are derived. [X]k,m the [k, m]th entry of the matrixX. As in matlab®,
Index Terms—Bayesian Cramer-Rao Bound, OFDM, Rayleigh X [k1:kz,m1:mz] is a submatrix extracted from rows to k, and
complex gains. from columnsm; to mo of X. diag{x} is a diagonal matrix

with x on its diagonal, diafX} is a vector whose elements
are the elements of the diagonal Xfand blkdiadX,Y} is
a block diagonal matrix with the matrices and Y on its

In case of Orthogonal Frequency Division Multiplexingdiagonal. E ,[-] denotes the expectation overandy. Jy(-)
(OFDM) mobile communication systems, dynamic estimatias the zeroth-order Bessel function of the first kind, and
of frequency selective and time-varying channel is a funda) represent the first and the second-order partial derivative

I. INTRODUCTION

mental function [1]. Channel estimation can be summarizegeratori.c., Vy = [8%1, . %]T andA¥ = VyVy.
to estimate of certain physical propagation parameters) su
as multi-path delays and multi-path complex gains [2] [3] II. SYSTEM MODEL

[5]. In Radio-Frequency transmission with slow variatipns i ) )

the number of paths and time delays can be easily obtained>0nsider an OFDM system with N sub-carriers, and a
[2] [3], since the delays are quasi-invariant over a Iarg@’CIIC prefix IengthNg. The dura‘gon ,Of an OFDM symbol
number of symbols. Assuming the availability of delay retat 'S 7' = vTs, whereT is the sampling time and = N + N,
information, the question that arises is of the ultimataigaey L€t Xy = [zm)[=5)zm(—%F + 1, 2m(5 — 1]

that can be achieved in channel estimation operationssTool Pe thenth transmitted OFDM symbol, wheréz(,,)[b]} are
approach this problem are available from the parameters eg§ermalized 4-QAM symbols. After transmission over a multi-
mation theory [11] in form of the Cramer-Rao Bounds (CRBspath Rayleigh channel, theth received OFDM symba},,, =
which give fundamental lower limits of the Mean Square Errdiy,,) [— ], y(n) [— 5 +1], -, y(n) [%—l]f is given by [2] [3]:
(MSE) achievable by any unbiased estimator. A Modified CRB

(MCRB), easier to evaluate than the Standard CRB (SCRB), Yoy = He) Xm) + W) @)

has been introduced in [6] [7]. The MCRB proves useful WheWherew(n) is a N x 1 zero-mean complex Gaussian noise
in addition to the parameter to be estimated, the observied d@actor with covariance matrix2l y, and Hiy is aN x N

also depend on pther unwantgd parameters. More recerdly, Elkihgonal matrix with diagonal elements given by:
problem of deriving CRBs, suited to time-varying paramgter
has been addressed throughout the Bayesian context. th¢9], 1 & (n)  —jom(E=l_lyn,

authors propose a general framework for deriving analltica ks = N Z {O‘l xe ’ } @
expression of on-line CRBs. In [10], the authors introduce a =1

new asymptotic bound, namely the Asymptotic Bayesian CRB is the total number of propagation paths; is the ith
(ABCRB), for the mono-carrier phase estimation probler@omplex gain of variance?, (with >, 02, = 1), andr x T

and Non-Data-Aided (NDA) scenario. This bound is closds thelth delay ¢; is not necessarily an integer, bt < Ny).

to the classical BCRB than the Modified BCRB (MBCRB)The L individual elements of{al(")} are uncorrellated with
and is easier to evaluate than BCRB. In this contributiorspect to each other. They are wide-sense stationarywiarro
we investigate the BCRB related to the estimation of tHeand complex Gaussian processes, with the so-called Jakes
complex gains of a rayleigh channel, assuming negligibfwer spectrum [12] with Doppler frequencl,. It means

k—1
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thatal(") are correlated complex gaussian variables with zeratherei(l,p) =1+ (I — 1) + pL and I%’;) is defined in (3).

means and correlation coefficients given by: For example, ifK = L = 2 then,R,, is given by:
H _
R® =Elof"a{" ™) = o2 Jo2faTp)  (3) RY) 0 R,V 0
0 R 0 R,
Using (2), the observation model in (1) for thth OFDM Ra = | 0 o RO g (11)
symbol can be re-written as: 81 0 81 RO)
(0] (&3]
= diag{X)}F w 4 . ,
Yiw X} iy + Wiy @) Thus, the pdfp(a) is defined as:
wherea,,y = [agn), ...,a(L”)]T is aL x 1 vector andF is the 1 Hria
N x L Fourier matrix defined by: pla) = TR > (12)
[Fley = e 727 —2)m (5) Taking the second derivative of the natural logarithm of) (12
with respect tooe and making the expectation oves, hence:
I11. BAYESIAN CRAMER-RAO BOUNDS (BCRBS) o .

In this section, we present a general formulation of the
BCRB related to the estimation of the multi-path complex

gains. In NDA context, we derive a closed-form expression of 2) Computation of E,, [F(a)]: Using the whiteness of the

a BCRB, i.c., the Asymptotic BCRB or the Modified BCRB. niseand the independence of the transmitted OFDM symbols,
In DA context, we deduce the computation of the true BCRBe obtains from the observation model in (4) that:

from the computation of the MBCRB in NDA&(y) denote

an unbiased estimator @f = [a ()", ..., (k)] using the A _ X AG v

set of measurements = [y ;)7 ...,y ]". In the on-line & n(pyle)) = X_:l o (Y mlaw)) 14

scenario, the receiver estimates,) based on the current and " .

previous observations On|¥/’e.7y — [y(l)T’ __.’y(n)T]T_ EaCh ter.m of the sum (14) is &L x KL blOCk dlagonal
matrix with only one nonzerd. x L block matrix, namely:

A. Bayesian (.:ramer—Rao bouhd o AL (P o)) iy iy = A n(p(Ymlam)))
The BCRB is particularly suited when a priori information (15)
is available. The BCRB has been proposed in [11] such thas a direct consequenc& ln(p(y|a)) is a block diagonal

= matrix with thenth diagonal block given by (15). Moreover,
Eya|(aly) — a)(a(y) — a) > BCRB(a) (6) because of the circularity of the observation noise, theeexp
tation of (15) with respect ty,,) and e(,,) does not depend
The BCRB is the inverse of the Bayesian Information Matrixon a(,). One then obtains:
(BIM) B, which can be written as:

E«[F(a)] = blkdiag{J,J,...,3} (16)
B = Ex|F(a)| +Es|—AS In(pla 7
[ ( )} [ (o ))] ) wherelJ is a L x L matrix defined as:
wherep(a) is the prior probability density function (pdf) and o
F(a) is the Fisher Information Matrix (FIM) defined as: J = Eyal—Aal) n(p(Ymlam)))] (7)
Fla) = Eyo|—AZ In(p(yla))] (8) The log-likelihood function in (17) can be expanded as:

where p(y|la) is the conditional pdf ofy given «. ln(p()’(n)\a(n))) = ln(ZP(Y(H)lx(n),a(n))p(x(n))> (18)
The on-line BCRB associated to observation vecyor= X(n)

T ™T 7 H .
Y™ ¥y 717 will be obtained [10] by: The vectory,,,, for givenx,,) and e, is complex Gaussian

BCRB(« tine = Tr(BCRB(a)i( k) 4 g) Wwith mean vectom(,,y = diag{x(,)}Fa(,) and covariance
(e(s)Jontine ( (@), (K)]> ®) matrix o1 5. Thus, the conditional pdf is :
where i(n) is a sequence of indices defined by 1

i(n) = 1+ (n— 1)L : nL with n € [1, K]. This definition (9) 2(Y(mX(n)» @(n) e~ 7 (oo =mm)™ (Ve =) (1)

= f
will stand for the closed form BCRBs. [mo?l x|
Since each element of the vector,,) depends on only one

1) Computation of E, [ — A% gn(p(a))}; o is a complex element ofx,, then, using the Gaussian nature of the noise
Gaussian vector with zero mean and covariance m&gjx=_ and the equiprobability of the normalized QAM symbols, one

E{aa™} of size KL x KL defined as: finds (see Appendix A) that:
RP=P) for v=i efi,n]  pup'elo,K—1] _ L= (Y el FiFa,)
Ralip),ip) = { 0 for /1 pp= ln(p(y]\(fn)la(n))) = In|pirae V™ ()
10 2 2
(10) Hcosh({Re(an(k)))cosh(\Clm(an(kz)))}
1We recall that the Standard Cramer-Rao Bound (SCRB) is thergevof k=1 g g

the Fisher Information Matri¥(cx) (a priori information is not used). (20)
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wherea, (k) = [y(n)};g}fa(n) and g/ is the kth row of the ~ This ABRCB is well a lower bound of the MSE (see
matrix F. The result of the second derivative of (20) witrappendix C).
respect tox,,) is given by:
N C. Modified BCRB
Do) In(p(Ymylam)) = _012FHF+Z|:%1[y(n)]k[y(n)]k The analytical computation oF(c) is quite tedious in
k=1 case of NDA context because of the OFDM symbgpls=
.97 <2 —tanh2<§Re(an(k))> _ tanh? (%Im(an(k))) } xayT, ... xT]*, which are “nuisance parameters”. In or-
) der to circumvent this kind of problem, a Modified BCRB

The expectation of (21) with respect g, |, does (MBCRB) has been proposed in [6]. This MBCRB is the

X . . inverse of the following information matrix:
not have any simple analytical solution. Hence, we have 9

to resort to either numerical integration methods or some C = Ea[G(a)] +Ea[—AZ In(p(a))] (29)
approximations. . - )

In conlusion, the BRCB of the Rayleigh muilti-path channdheréG(«) is the modified FIM defined as:
gains estimation problem, for an OFDM observation model, Gla) = ExEy|x,a[— AL ln(p(y|x,a))] (30)

takes the following form : _ _
Hence, following the same reasoning as before, we have:

Ea[G(e)] = blkdiag{J,dm,nJm}  (31)

whereld,,, is aL x L matrix defined as:

BCRB(a):(blkdiag{J,J,...,J} + R;1>71 22)

where the matrixJ obtained from (17) and (21) is difficult
to compute analytically. In the following, we present bdtle t N
high-SNR and the low-SNR approximations of the BCRB, in ~ Jn = Eyxa|—Aag) 00V Xm), @m))] (32)
order to compute the Asymptotic BCRB as defined in [10]. By taking the second derivative of the natural logarithim) (

_ of (19) with respect tax(,,), one easily obtains that:
B. Asymptotic BCRB )

1) High-SNR BCRB Asymptote: From the definition of Im = EX[ﬁFHd'ag{ng)}d'ag{x(n)}F} (33)
BIM (7), only the first term {.e., Eo [F(c)]) depends on the
SNR, which is fully characterized by Hence, we focus on the 1
behavior of]. At high SNR §.e., 2 — 0), the tanh-function in Jn = —FUF (34)

02
(21) can be approximated asinh ga:) ~ sgn(x). Hence, . .
we obtain the high-SNR asymptote &fwhich is: since the QAM-symbols are normalized. The MBCRB for the

estimation ofa is given by:
1
b = —FIF (23)
g

which leads to:

MBCRB (a) = (blkdiag{\]m,\]m, e d )+ R;l) (35)

2) Low-SNR BCRB Asymptote: F°2”0Wi”g the same rea- \ve see thatl, = J,, hence, the high-SNR asymptote of the
soning as before, at low SNR.¢.,0* — +oc), we have BCRB is equal to the MBCRB. This corroborates the result

tanh(z) ~ = arroundz = 0. Hence, we obtain: of [8] for a scalar parameter in non-Bayesian case. Moreover
N Agg; ln(p(y(n)la(n))) ~ —%FHF—i— In Appendix C, we show that:
1 . . (24) MBCRB (a) < ABCRB(a) < BCRB(«) (36)
> LS[Y(n)}an)]kgkgf (04 - an(k)an(k))] _ T _
k=1 This corroborates the result derived in [10] for a mono-iearr
Plugging (24) into (17), we obtain the low-SNR asymptote dgthase estimation problem.a(")
J, which is (see Appendix B): Notice that the termAa() 1n(p(Y(n)|X(n) ctmy)) =
5 s 65 —ﬁFHF does not depend on the transmitted data sequence
J = (74 +—+ T)FHF (25) X(n)- Hence, the true BCRB in data-aided (DA) context is
g g g

equal to the MBCRB in non-data-aided (NDA) context.
where = Zle ail is the total channel energy.
IV. DISCUSSION
We can then combine the low- and high- SNR BRCB |, yhis section, we illustrate the behavior of the previous
asymptotes from (23), (25) and (22) to define the Asymptotig, ;nqs for the complex gains estimation. A 4QAM-OFDM
BCRB (ABCRB) as : system with normalized symbolsy = 128 subcarriers and

. N\t N, = ¥ is used. The normalized Rayleigh channel contains
= ) ) 1 3 yleig
ABCRB () (blkdlag{‘]m”“ <o Imind 4 Ra ) (26) L = 6 paths and others parameters given in [3] [4].
where Fig. 1 presents the on-line BCRB (evaluated by Monte-
) I Carlo trials), ABCRB and MBCRB versus SNR;(%), for a
Jmin = min(v,vp).F7F (27)  plock-observation lengt = 20 and a normalized Doppler

= % + 8%62 + % and v, = % (28) frequencyf,;T = 10~3. We plot also as reference the Standard

g
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more significant for slow channel variations (lotyT’).
CRB (SCRB?) corresponding to the case where the a priori
information is not used. We observe that the ABCRB and the
MBCRB are less than SCRB since the prior information of . L . . .
the complex gains is taken into account. We also verify that!N this contibution, we have derived analytical expression
MBCRB < ABCRB < BCRB, as proved in Appendix C. of BCRB for the estimation of Rayleigh multi-path channel

At high SNR, the MBCRB and the ABCRB are very closeComplex gains with slow time variations. These bounds are
as predicted ’by our theoretical analysis. useful when analyzing the performance of complex gains

Fig. 2 is a zoom of Fig. 1 for the BRCBs with = 20. It estimators in DA and.NDA contexts and in on.-Iine scgnarios.
also shows the BCRBs for a block-observation length- 1, Moreover, they permit to meagure.the benefit of using past
i.c., when the estimator uses only the current symbol instegdr M symbols for channel estimation process, whereas most
of the current and past symbols. First, we can measure {R§th0ds use only the current symbol [1].
potential performance improvement for Data Aided (MBCRB)
versus Non Data Aided (BRCB) scenarios. Secondly, we APPENDIXA
can measure the great potential gain obtained in taking into DERIVATION OF EXPRESSION(20) AND (21)
account the past informatiorik( = 20 versuskK = 1).

Fig. 3 emphasizes this last point in presenting the on-line

V. CONCLUSION

Plugging (19) into (18), we obtain:

ABRCB (versus SNR) forfy7' = 10~ and various observa-  In(p(y,lam)) = — & (ygl)y(n) + m{;’t)m(n)) +
tion lengths K = 1,5,20,60. We notice that the estimation

can be greatly improved when the number of observatigns ln<mzeﬁRe(yﬁ>m<m)> (37)
increases, since the estimator takes into account more past X(n)

informations. It is then interesting to have an idea of the h bol iorobabi
observation length requisite to acquire major part of th'e,gas'lnCe the 4QAM-sym OIS are equiproba be.gg(x(n)) -
which is the aim of Fig. 4. ax)- However,me,) = diagiXn) }Fa) then, yq,Me) =
. . . . N

Fig. 4 presents the on-line ABCRB versus time ind&x . ) . .
for different normalized Doppler frequencigg? (10~° to Za"(k)[x(")]’“ wherea, (k) is defined in section Il part A.
5.1073) and SNR = 10 dB. When the number of obser—ﬁ:elnce, one obtains:
vations increases, the bound decreases and converges to an

. . . . . N
asymptote. The estimation gain using past symbols is ritura Z 2 RE(y ) _ H Z o 2 RE(a (0) o))
X(n)lk

2SCRB is computed as the inverse Bf, in equation (34). It is the true X(n) k=1 \[
SCRB in DA context or the Modified SCRB in NDA context. (38)
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Since [X () ]k = %(il + j) (4QAM-symbol), we obtain: Using that g/Dg; = Tr(ViD) = Y/ ,02 = 5
Tr(V,DV,D) = 3% DV;DV;D = DV,D, and inserting
Z o2 R€(an (6)x( 1) _ these results into (43), we obtain the expressiod;ah (25).
Xy Ii (39)
4cosh(§Re(an(k)))cosh(”—‘/glm(an(k))) APPENDIXC

PROOF OF THE INEQUALITY (36)
Inserting this result into (37), we obtain the expressio(Ri).

Ki h d derivati £ (2 ith g ¢ From the definition od,,,;,,, we havel,,.;,, < J,, = J; and
Taking the second derivative of (20) with respectig,) an then we have the first inequality in (36)e., MBCRB () <

uSing Ve, Re(an (k) = 5¥(n))18x aNdVa,, IM(an(k)) = ABCRB (a). To prove the second inequality in (36), we have

35 Y (m)]19x, We obtain finally the expression in (21). to show that) < J,,;,. The tanh?(x) function is tangent to
the curvey = z? atz = 0 and hasy = 1 as horizontal
APPENDIXB asymptote. Hence, we can write, for every> 0, these two

EVALUATION OF J; IN (25) properties below:

Inserting the definition of.,, (k) into (24) and plugging the 9 5 5
result into (17), one obtains: tanh(z) < 1 and tanh’(z) < = (46)
Using these two properties, we obtain from (21) that:

N
3= HFF = L BBy Voo kY | oF
k=1

1
QA (n) H
Aa(n) ln( ( (n)|a(n))) 2 _EF F (47)
N
+5) gl E () TG Ey e | (Vi eV )| | OF AZD In(ply o) > ——FHF +
5 ) 99 ) n)" OByl () IElY (n)lk k a(ny P () 1C(n) = o2
k=1
. . (40) a 1 *yxnl [ 4 *
Using that[y )l = Xoulk9F () + Wik, the indepen- > e JONEN TN (0 - an(k)an(k)) (48)
dance between the QAM-symbols and the noise, and these k=1
results below: Substituting (47) and (48) in (17), we obtain:
2 2
Exd [Koolk| = Eaweon |[Weolk] = 0 J = Jn and J < J (49)
S [[W(n)}i[w(n)];;?] = 90 (41) _Hence,_ we havel < J,,;,, and consequently the second
inequality in (36),i.c., ABCRB(a) < BCRB(a).
we obtain:
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