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Abstract—The on-line Bayesian Cramer-Rao (BCRB) lower
bound for the dynamic estimation of a time-varying multi-path
Rayleigh channel in 4-QAM OFDM system is considered. In
case of negligible channel variation within one symbol and delay
related information, true BCRB for data-aided (DA) context, and
two closed-form expressions for non-data aided (NDA) context
are derived.

Index Terms—Bayesian Cramer-Rao Bound, OFDM, Rayleigh
complex gains.

I. I NTRODUCTION

In case of Orthogonal Frequency Division Multiplexing
(OFDM) mobile communication systems, dynamic estimation
of frequency selective and time-varying channel is a funda-
mental function [1]. Channel estimation can be summarized
to estimate of certain physical propagation parameters, such
as multi-path delays and multi-path complex gains [2] [3]
[5]. In Radio-Frequency transmission with slow variations,
the number of paths and time delays can be easily obtained
[2] [3], since the delays are quasi-invariant over a large
number of symbols. Assuming the availability of delay related
information, the question that arises is of the ultimate accuracy
that can be achieved in channel estimation operations. Tools to
approach this problem are available from the parameters esti-
mation theory [11] in form of the Cramer-Rao Bounds (CRBs),
which give fundamental lower limits of the Mean Square Error
(MSE) achievable by any unbiased estimator. A Modified CRB
(MCRB), easier to evaluate than the Standard CRB (SCRB),
has been introduced in [6] [7]. The MCRB proves useful when,
in addition to the parameter to be estimated, the observed data
also depend on other unwanted parameters. More recently, the
problem of deriving CRBs, suited to time-varying parameters,
has been addressed throughout the Bayesian context. In [9],the
authors propose a general framework for deriving analytical
expression of on-line CRBs. In [10], the authors introduce a
new asymptotic bound, namely the Asymptotic Bayesian CRB
(ABCRB), for the mono-carrier phase estimation problem
and Non-Data-Aided (NDA) scenario. This bound is closer
to the classical BCRB than the Modified BCRB (MBCRB)
and is easier to evaluate than BCRB. In this contribution
we investigate the BCRB related to the estimation of the
complex gains of a rayleigh channel, assuming negligible

time variation within one OFDM symbol (usual context for
OFDM modulation). Explicit expressions of the BCRB and
its variants, MBCRB and ABCRB, are provided for NDA and
DA 4-QAM on-line scenarios.

Notations :[x]k denotes thekth entry of the vectorx, and
[X]k,m the [k,m]th entry of the matrixX. As in matlabr,
X[k1:k2,m1:m2] is a submatrix extracted from rowsk1 to k2 and
from columnsm1 to m2 of X. diag{x} is a diagonal matrix
with x on its diagonal, diag{X} is a vector whose elements
are the elements of the diagonal ofX and blkdiag{X, Y} is
a block diagonal matrix with the matricesX and Y on its
diagonal. Ex,y[·] denotes the expectation overx and y. J0(·)
is the zeroth-order Bessel function of the first kind.∇x and
∆x

y represent the first and the second-order partial derivatives
operatori.e., ∇x = [ ∂

∂x1
, ..., ∂

∂xN

]T and∆x
y = ∇∗

y∇T
x .

II. SYSTEM MODEL

Consider an OFDM system with N sub-carriers, and a
cyclic prefix lengthNg. The duration of an OFDM symbol
is T = vTs, whereTs is the sampling time andv = N + Ng.
Let x(n) =

[

x(n)[−N
2 ], x(n)[−N

2 + 1], ..., x(n)[
N
2 − 1]

]T

be thenth transmitted OFDM symbol, where{x(n)[b]} are
normalized 4-QAM symbols. After transmission over a multi-
path Rayleigh channel, thenth received OFDM symboly(n) =
[

y(n)[−N
2 ], y(n)[−N

2 +1], ..., y(n)[
N
2 −1]

]T
is given by [2] [3]:

y(n) = H(n) x(n) + w(n) (1)

where w(n) is a N × 1 zero-mean complex Gaussian noise
vector with covariance matrixσ2IN , and H(n) is a N × N

diagonal matrix with diagonal elements given by:

[H(n)]k,k =
1

N

L
∑

l=1

[

α
(n)
l × e−j2π( k−1

N
− 1

2 )τl

]

(2)

L is the total number of propagation paths,αl is the lth
complex gain of varianceσ2

αl
(with

∑L
l=1 σ2

αl
= 1), andτl×Ts

is thelth delay (τl is not necessarily an integer, butτL < Ng).
The L individual elements of{α(n)

l } are uncorrellated with
respect to each other. They are wide-sense stationary narrow-
band complex Gaussian processes, with the so-called Jakes’
power spectrum [12] with Doppler frequencyfd. It means
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thatα(n)
l are correlated complex gaussian variables with zero-

means and correlation coefficients given by:

R(p)
αl

= E[α
(n)
l α

(n−p)
l

H
] = σ2

αl
J0(2πfdTp) (3)

Using (2), the observation model in (1) for thenth OFDM
symbol can be re-written as:

y(n) = diag{x(n)}F α(n) + w(n) (4)

whereα(n) = [α
(n)
1 , ..., α

(n)
L ]T is a L× 1 vector andF is the

N × L Fourier matrix defined by:

[F]k,l = e−j2π( k−1
N

− 1
2 )τl (5)

III. B AYESIAN CRAMER-RAO BOUNDS (BCRBS)

In this section, we present a general formulation of the
BCRB related to the estimation of the multi-path complex
gains. In NDA context, we derive a closed-form expression of
a BCRB,i.e., the Asymptotic BCRB or the Modified BCRB.
In DA context, we deduce the computation of the true BCRB
from the computation of the MBCRB in NDA.̂α(y) denote
an unbiased estimator ofα = [α(1)

T , ...,α(K)
T ]T using the

set of measurementsy = [y(1)
T , ..., y(K)

T ]T . In the on-line
scenario, the receiver estimatesα(n) based on the current and
previous observations only,i.e., y = [y(1)

T , ..., y(n)
T ]T .

A. Bayesian Cramer-Rao bound

The BCRB is particularly suited when a priori information
is available. The BCRB has been proposed in [11] such that:

Ey,α

[

(

α̂(y) − α

)(

α̂(y) − α

)H

]

≥ BCRB(α) (6)

The BCRB1 is the inverse of the Bayesian Information Matrix
(BIM) B, which can be written as:

B = Eα

[

F(α)
]

+ Eα

[

− ∆α

α
ln

(

p(α)
)]

(7)

wherep(α) is the prior probability density function (pdf) and
F(α) is the Fisher Information Matrix (FIM) defined as:

F(α) = Ey|α
[

− ∆α

α
ln

(

p(y|α)
)]

(8)

where p(y|α) is the conditional pdf of y given α.
The on-line BCRB associated to observation vectory =
[y(1)

T , ..., y(K)
T ]T will be obtained [10] by:

BCRB(α(K))online = Tr
(

BCRB(α)[i(K),i(K)]

)

(9)

where i(n) is a sequence of indices defined by
i(n) = 1 + (n− 1)L : nL with n ∈ [1,K]. This definition (9)
will stand for the closed form BCRBs.

1) Computation of Eα

[

− ∆α

α
ln

(

p(α)
)]

: α is a complex
Gaussian vector with zero mean and covariance matrixRα =
E{αα

H} of sizeKL × KL defined as:

[Rα]i(l,p),i(l′,p′) =

{

R(p−p′)
αl

for l′=l ∈[1,L] p,p′∈[0,K−1]

0 for l′ 6=l ′′

(10)

1We recall that the Standard Cramer-Rao Bound (SCRB) is the inverse of
the Fisher Information MatrixF(α) (a priori information is not used).

where i(l, p) = 1 + (l − 1) + pL and R(p)
αl

is defined in (3).
For example, ifK = L = 2 then,Rα is given by:

Rα =









R(0)
α1

0 R(−1)
α1

0
0 R(0)

α2
0 R(−1)

α2

R(1)
α1

0 R(0)
α1

0
0 R(1)

α2
0 R(0)

α2









(11)

Thus, the pdfp(α) is defined as:

p(α) =
1

|πRα|
e−α

HR−1
α

α (12)

Taking the second derivative of the natural logarithm of (12)
with respect toα and making the expectation overα, hence:

Eα

[

− ∆α

α
ln

(

p(α)
)]

= R−1
α

(13)

2) Computation of Eα

[

F(α)
]

: Using the whiteness of the
noise and the independence of the transmitted OFDM symbols,
one obtains from the observation model in (4) that:

∆α

α
ln

(

p(y|α)
)

=

K
∑

n=1

∆α

α
ln

(

p(y(n)|α(n))
)

(14)

Each term of the sum (14) is aKL × KL block diagonal
matrix with only one nonzeroL × L block matrix, namely:

∆α

α
ln

(

p(y(n)|α(n))
)

[i(n),i(n)]
= ∆

α(n)
α(n)

ln
(

p(y(n)|α(n))
)

(15)
As a direct consequence,∆α

α
ln

(

p(y|α)
)

is a block diagonal
matrix with thenth diagonal block given by (15). Moreover,
because of the circularity of the observation noise, the expec-
tation of (15) with respect toy(n) andα(n) does not depend
on α(n). One then obtains:

Eα

[

F(α)
]

= blkdiag{J, J, ..., J} (16)

whereJ is a L × L matrix defined as:

J = Ey,α

[

− ∆
α(n)
α(n)

ln
(

p(y(n)|α(n))
)]

(17)

The log-likelihood function in (17) can be expanded as:

ln
(

p(y(n)|α(n))
)

= ln
(

∑

x(n)

p(y(n)|x(n),α(n))p(x(n))
)

(18)

The vectory(n) for given x(n) andα(n) is complex Gaussian
with mean vectorm(n) = diag{x(n)}Fα(n) and covariance
matrix σ2IN . Thus, the conditional pdf is :

p(y(n)|x(n),α(n)) =
1

|πσ2IN |e
− 1

σ2 (y(n)−m(n))
H

(y(n)−m(n)) (19)

Since each element of the vectorm(n) depends on only one
element ofx(n) then, using the Gaussian nature of the noise
and the equiprobability of the normalized QAM symbols, one
finds (see Appendix A) that:

ln
(

p(y(n)|α(n))
)

= ln

[

1
|πσ2IN |e

− 1
σ2 (yH

(n)y(n)+α
H

(n)FHFα(n))

N
∏

k=1

cosh
(

√
2

σ2
Re

(

an(k)
)

)

cosh
(

√
2

σ2
Im

(

an(k)
)

)

]

(20)
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wherean(k) = [y(n)]
∗

kgT
k α(n) and gT

k is the kth row of the
matrix F. The result of the second derivative of (20) with
respect toα(n) is given by:

∆
α(n)
α(n)

ln
(

p(y(n)|α(n))
)

= − 1
σ2 FHF +

N
∑

k=1

[

1

2σ4
[y(n)]k[y(n)]

∗

k

g∗kgT
k

(

2 − tanh2
(√

2
σ2 Re

(

an(k)
)

)

− tanh2
(√

2
σ2 Im

(

an(k)
)

)

)]

(21)
The expectation of (21) with respect toy(n)|α(n) does

not have any simple analytical solution. Hence, we have
to resort to either numerical integration methods or some
approximations.

In conlusion, the BRCB of the Rayleigh multi-path channel
gains estimation problem, for an OFDM observation model,
takes the following form :

BCRB(α) =
(

blkdiag{J, J, ..., J} + R−1
α

)−1

(22)

where the matrixJ obtained from (17) and (21) is difficult
to compute analytically. In the following, we present both the
high-SNR and the low-SNR approximations of the BCRB, in
order to compute the Asymptotic BCRB as defined in [10].

B. Asymptotic BCRB

1) High-SNR BCRB Asymptote: From the definition of
BIM (7), only the first term (i.e., Eα

[

F(α)
]

) depends on the
SNR, which is fully characterized byJ. Hence, we focus on the
behavior ofJ. At high SNR (i.e., σ2 → 0), the tanh-function in
(21) can be approximated as:tanh

(√
2

σ2 x
)

≈ sgn(x). Hence,
we obtain the high-SNR asymptote ofJ, which is:

Jh =
1

σ2
FHF (23)

2) Low-SNR BCRB Asymptote: Following the same rea-
soning as before, at low SNR (i.e., σ2 → +∞), we have
tanh(x) ≈ x arroundx = 0. Hence, we obtain:

∆
α(n)
α(n)

ln
(

p(y(n)|α(n))
)

≈ − 1
σ2 FHF+

N
∑

k=1

[

1

σ8
[y(n)]k[y(n)]

∗

kg∗kgT
k

(

σ4 − an(k)a∗
n(k)

)

]

(24)

Plugging (24) into (17), we obtain the low-SNR asymptote of
J, which is (see Appendix B):

Jl =
( β

σ4
+

8β2

σ6
+

6β3

σ8

)

FHF (25)

whereβ =
∑L

l=1 σ2
αl

is the total channel energy.

We can then combine the low- and high- SNR BRCB
asymptotes from (23), (25) and (22) to define the Asymptotic
BCRB (ABCRB) as :

ABCRB(α) =
(

blkdiag{Jmin, ..., Jmin} + R−1
α

)−1

(26)

where

Jmin = min(vl, vh).FHF (27)

vl = β
σ4 + 8β2

σ6 + 6β3

σ8 and vh = 1
σ2 (28)

This ABRCB is well a lower bound of the MSE (see
appendix C).

C. Modified BCRB

The analytical computation ofF(α) is quite tedious in
case of NDA context because of the OFDM symbolsx =
[x(1)

T , ..., x(K)
T ]T , which are “nuisance parameters”. In or-

der to circumvent this kind of problem, a Modified BCRB
(MBCRB) has been proposed in [6]. This MBCRB is the
inverse of the following information matrix:

C = Eα

[

G(α)
]

+ Eα

[

− ∆α

α
ln

(

p(α)
)]

(29)

whereG(α) is the modified FIM defined as:

G(α) = ExEy|x,α

[

− ∆α

α
ln

(

p(y|x,α)
)]

(30)

Hence, following the same reasoning as before, we have:

Eα

[

G(α)
]

= blkdiag{Jm, Jm, ..., Jm} (31)

whereJm is a L × L matrix defined as:

Jm = Ey,x,α

[

− ∆
α(n)
α(n)

ln
(

p(y(n)|x(n),α(n))
)]

(32)

By taking the second derivative of the natural logarithm (ln)
of (19) with respect toα(n), one easily obtains that:

Jm = Ex

[ 1

σ2
FHdiag{xH

(n)}diag{x(n)}F
]

(33)

which leads to:

Jm =
1

σ2
FHF (34)

since the QAM-symbols are normalized. The MBCRB for the
estimation ofα is given by:

MBCRB(α) =
(

blkdiag{Jm, Jm, ..., Jm} + R−1
α

)−1

(35)

We see thatJh = Jm hence, the high-SNR asymptote of the
BCRB is equal to the MBCRB. This corroborates the result
of [8] for a scalar parameter in non-Bayesian case. Moreover,
In Appendix C, we show that:

MBCRB(α) ≤ ABCRB(α) ≤ BCRB(α) (36)

This corroborates the result derived in [10] for a mono-carrier
phase estimation problem.

Notice that the term∆
α(n)
α(n)

ln
(

p(y(n)|x(n),α(n))
)

=

− 1
σ2 FHF does not depend on the transmitted data sequence

x(n). Hence, the true BCRB in data-aided (DA) context is
equal to the MBCRB in non-data-aided (NDA) context.

IV. D ISCUSSION

In this section, we illustrate the behavior of the previous
bounds for the complex gains estimation. A 4QAM-OFDM
system with normalized symbols,N = 128 subcarriers and
Ng = N

8 is used. The normalized Rayleigh channel contains
L = 6 paths and others parameters given in [3] [4].

Fig. 1 presents the on-line BCRB (evaluated by Monte-
Carlo trials), ABCRB and MBCRB versus SNR (= 1

σ2 ), for a
block-observation lengthK = 20 and a normalized Doppler
frequencyfdT = 10−3. We plot also as reference the Standard
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Fig. 1. SCRB and BCRBs vs SNR forfdT = 10−3 and K = 20
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Fig. 2. BCRBs vs SNR forfdT = 10−3 and two different observation
lengthsK = 1 andK = 20

CRB (SCRB2) corresponding to the case where the a priori
information is not used. We observe that the ABCRB and the
MBCRB are less than SCRB since the prior information of
the complex gains is taken into account. We also verify that
MBCRB ≤ ABCRB ≤ BCRB, as proved in Appendix C.
At high SNR, the MBCRB and the ABCRB are very close,
as predicted by our theoretical analysis.

Fig. 2 is a zoom of Fig. 1 for the BRCBs withK = 20. It
also shows the BCRBs for a block-observation lengthK = 1,
i.e., when the estimator uses only the current symbol instead
of the current and past symbols. First, we can measure the
potential performance improvement for Data Aided (MBCRB)
versus Non Data Aided (BRCB) scenarios. Secondly, we
can measure the great potential gain obtained in taking into
account the past information (K = 20 versusK = 1).

Fig. 3 emphasizes this last point in presenting the on-line
ABRCB (versus SNR) forfdT = 10−4 and various observa-
tion lengthsK = 1, 5, 20, 60. We notice that the estimation
can be greatly improved when the number of observationsK

increases, since the estimator takes into account more past
informations. It is then interesting to have an idea of the
observation length requisite to acquire major part of the gain,
which is the aim of Fig. 4.

Fig. 4 presents the on-line ABCRB versus time indexK

for different normalized Doppler frequenciesfdT (10−5 to
5.10−3) and SNR = 10 dB. When the number of obser-
vations increases, the bound decreases and converges to an
asymptote. The estimation gain using past symbols is naturally

2SCRB is computed as the inverse ofJm in equation (34). It is the true
SCRB in DA context or the Modified SCRB in NDA context.
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Fig. 3. ABCRB vs SNR forfdT = 10−4 and variousK

10 20 30 40 50 60 70 80
10

−5

10
−4

10
−3

Observation Block Length K

M
SE

 

 

SCRB
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Fig. 4. BCRB vs observation length, forSNR = 10 dB

more significant for slow channel variations (lowfdT ).

V. CONCLUSION

In this contibution, we have derived analytical expressions
of BCRB for the estimation of Rayleigh multi-path channel
complex gains with slow time variations. These bounds are
useful when analyzing the performance of complex gains
estimators in DA and NDA contexts and in on-line scenarios.
Moreover, they permit to measure the benefit of using past
OFDM symbols for channel estimation process, whereas most
methods use only the current symbol [1].

APPENDIX A
DERIVATION OF EXPRESSION(20) AND (21)

Plugging (19) into (18), we obtain:

ln
(

p(y(n)|α(n))
)

= − 1
σ2

(

yH
(n)y(n) + mH

(n)m(n)

)

+

ln

(

p(x(n))

|πσ2IN |
∑

x(n)

e
2

σ2 Re(yH

(n)m(n))
)

(37)

since the 4QAM-symbols are equiprobable (i.e., p(x(n)) =
1

4N ). However,m(n) = diag{x(n)}Fα(n) then, yH
(n)m(n) =

N
∑

k=1

an(k)[x(n)]k wherean(k) is defined in section III part A.

Hence, one obtains:

∑

x(n)

e
2

σ2 Re(yH

(n)m(n)) =

N
∏

k=1





∑

[x(n)]k

e
2

σ2 Re
(

an(k)[x(n)]k

)





(38)
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Since[x(n)]k = 1√
2
(±1 ± j) (4QAM-symbol), we obtain:

∑

[x(n)]k

e
2

σ2 Re
(

an(k)[x(n)]k

)

=

4cosh
(√

2
σ2 Re

(

an(k)
)

)

cosh
(√

2
σ2 Im

(

an(k)
)

)

(39)

Inserting this result into (37), we obtain the expression in(20).
Taking the second derivative of (20) with respect toα(n) and
using∇α(n)

Re
(

an(k)
)

= 1
2 [y(n)]

∗

kgk and∇α(n)
Im

(

an(k)
)

=
1
2j

[y(n)]
∗

kgk, we obtain finally the expression in (21).

APPENDIX B
EVALUATION OF Jl IN (25)

Inserting the definition ofan(k) into (24) and plugging the
result into (17), one obtains:

Jl = 1
σ2 FHF − 1

σ4

N
∑

k=1

g∗kEαEy|α
[

[y(n)]k[y(n)]
∗

k

]

gT
k

+ 1
σ8

N
∑

k=1

g∗kgT
k Eα

[

α(n)α(n)
Hg∗kEy|α

[

(

[y(n)]k[y(n)]
∗

k

)2
]

]

gT
k

(40)
Using that [y(n)]k = [x(n)]kgT

k α(n) + [w(n)]k, the indepen-
dance between the QAM-symbols and the noise, and these
results below:

E[x(n)]k

[

[x(n)]
2
k

]

= E[w(n)]k

[

[w(n)]
2
k

]

= 0

E[w(n)]k

[

[w(n)]
2
k[w(n)]

∗
k
2
]

= 2σ4 (41)

we obtain:

Ey|α
[

[y(n)]k[y(n)]
∗

k

]

= gT
k α(n)α

H
(n)g

∗
k + σ2

Ey|α
[

(

[y(n)]k[y(n)]
∗

k

)2
]

= 2σ4 + 4σ2gT
k α(n)α

H
(n)g

∗
k

+gT
k α(n)α

H
(n)g

∗
kgT

k α(n)α
H
(n)g

∗
k (42)

Hence,Jl becomes:

Jl =
1

σ
4

NX
k=1

VkDVk +
4

σ
6

NX
k=1

VkEα

�
T1

�
Vk +

1

σ
8

NX
k=1

VkEα

�
T2

�
Vk

(43)
where Vk = g∗kgT

k , T1 = α(n)α
H
(n)Vkα(n)α

H
(n), T2 =

α(n)α
H
(n)Vkα(n)α

H
(n)Vkα(n)α

H
(n) andD = Eα

[

α(n)α
H
(n)

]

=

diag
{

σ2
α1

, ..., σ2
αL

}

. The elements ofT1 andT2 are given by:

[

T1

]

l,l′
=

L
∑

l1=1

L
∑

l2=1

[

Vk

]

l1,l2

[

α(n)

]

l

[

α(n)

]

l2

[

α(n)

]∗
l′

[

α(n)

]∗
l1

[

T2

]

l,l′
=

L
∑

l1=1

L
∑

l2=1

L
∑

l3=1

L
∑

l4=1

[

Vk

]

l1,l2

[

Vk

]

l3,l4

[

α(n)

]

l

[

α(n)

]

l2

[

α(n)

]

l4

[

α(n)

]∗
l′

[

α(n)

]∗
l1

[

α(n)

]∗
l3

(44)
Using that E[c(n)]l

[

[

c(n)

]2

l

]

= 0 and the definitions of 4th and
6th order moments for complex gaussian variables, we obtain:

Eα

[

T1

]

= DVkD + Tr
(

VkD
)

D

Eα

[

T2

]

= 2DVkDVkD + 2Tr
(

VkD
)

DVkD

+Tr
(

VkDVkD
)

D +
(

Tr
(

VkD
)

)2

D (45)

Using that gT
k Dg∗k = Tr

(

VkD
)

=
∑L

l=1 σ2
αl

= β,
Tr

(

VkDVkD
)

= β2, DVkDVkD = βDVkD, and inserting
these results into (43), we obtain the expression ofJl in (25).

APPENDIX C
PROOF OF THE INEQUALITY (36)

¿From the definition ofJmin, we haveJmin ≤ Jm = Jh and
then we have the first inequality in (36),i.e., MBCRB(α) ≤
ABCRB(α). To prove the second inequality in (36), we have
to show thatJ ≤ Jmin. The tanh2(x) function is tangent to
the curvey = x2 at x = 0 and hasy = 1 as horizontal
asymptote. Hence, we can write, for everyx ≥ 0, these two
properties below:

tanh2(x) ≤ 1 and tanh2(x) ≤ x2 (46)

Using these two properties, we obtain from (21) that:

∆
α(n)
α(n)

ln
(

p(y(n)|α(n))
)

≥ − 1

σ2
FHF (47)

∆
α(n)
α(n)

ln
(

p(y(n)|α(n))
)

≥ − 1

σ2
FHF +

N
∑

k=1

[

1

σ8
[y(n)]k[y(n)]

∗

kg∗kgT
k

(

σ4 − an(k)a∗
n(k)

)

]

(48)

Substituting (47) and (48) in (17), we obtain:

J ≤ Jh and J ≤ Jl (49)

Hence, we haveJ ≤ Jmin, and consequently the second
inequality in (36),i.e., ABCRB(α) ≤ BCRB(α).
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