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Abstract

This paper deals with on-line Bayesian Cramer-Rao (BCR®gidound for complex gains dynamic
estimation of time-varying multi-path Rayleigh channéle propose three novel lower bounds for 4-
QAM OFDM systems in case of negligible channel variationhwitone symbol, and assuming both
channel delay and Doppler frequency related informatioa.dative the true BCRB for data-aided (DA)

context and, two closed-form expressions for non-datada{tidA) context.

Index Terms

Bayesian Cramer-Rao Bound, OFDM, Rayleigh complex gains.

. INTRODUCTION

Dynamic estimation of frequency selective and time-vagyéhannel is a fundamental function [2] for
orthogonal frequency division multiplexing (OFDM) mobileramunication systems. In radio-frequency
transmissions, channel estimation can be generally adatdig estimating only some physical propagation
parameters, such as multi-path delays and multi-path ecamgdins [3] [1] [4]. Moreover, in slowly
varying channels, the number of paths and time delays caadily ®btained [3], since delays are quasi-
invariant over a large number of symbols. Assuming full Elality of delay related information, which is

the ultimate accuracy that can be achieved with channehastn methods ? Tools to face this problem
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are available from parameters estimation theory [10] imfaf the Cramer-Rao Bounds (CRBs), which
give fundamental lower limits of the mean square error (MSHje@ble by any unbiased estimator. A
modified CRB (MCRB), easier to evaluate than the Standard CREBRE§Chas been introduced in [5]
[6]. The MCRB is effective when, in addition to the parameteibe estimated, the observed data also
depend on other unwanted parameters. More recently, thaegonoof deriving CRBs, suited to time-
varying parameters, has been addressed throughout thesiBayeontext. In [8], the authors propose a
general framework for deriving analytical expression oflioe CRBs. In [9], the authors introduce a new
asymptotic bound, namely the asymptotic bayesian CRB (ABJCRor non-data-aided (NDA) scenario.
This bound is closer to the classical BCRB than the Modified BGRBCRB) and it is easier to be
evaluated than BCRB. In this paper, we investigate the BC&8ted to the estimation of the complex
gains of a rayleigh channel, assuming negligible time warawithin one OFDM symbol and, both
channel delay and Doppler frequency related informatiorpliEix expressions of the the BCRB and its
variants, MBCRB and ABCRB, are provided for NDA and DA 4-QAM-tine scenarios.

Notations {x];, denotes theth entry of the vectox, and [X]; ,, the [k, m]th entry of the matrixX.
As in matlab, X[k, :k.,m::m,] IS @ submatrix extracted from rows to ks and from columnsn; to mo
of X. diag{x} is a diagonal matrix withx on its diagonal, diagX} is a vector whose elements are the
elements of the diagonal of and blkdiad X, Y} is a block diagonal matrix with the matricésandY
on its diagonal. E,[-] denotes the expectation overandy. Jy(-) is the zeroth-order Bessel function
of the first kind. Vi and Ay represent the first and the second-order partial derivatygesatori.e.,

Vi = [8%, %}T and A} = V; VI

II. SYSTEM MODEL

Consider an OFDM system with N sub-carriers, and a cyclic prefixength IV,. The duration
of an OFDM symbol isT' = vTs, whereT; is the sampling time and = N + Ny. Let X,y =
(20 [~ Y], 2oy [~ X 4 1], oy 2y [X — 1] be then-th transmitted OFDM symbol, wherr,,,)[b]} are
normalized 4-QAM symbols. It is assumed that the transimis& over a multi-path Rayleigh channel,

with negligible variation within one OFDM symbol, charadted by the impulse response:
L
hnT,7) = > a"é(r —nTy) (1)
=1

where L is the total number of propagation paths, is the ith complex gain of variancegl (with
Zle ail = 1), and 7, x T is the ith delay ¢; is not necessarily an integer, but < N,). The L

individual elements o{al(”)} are uncorrelated with respect to each other. They are widses&tationary
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narrow-band complex Gaussian processes, with the sadcadlkes’ power spectrum [11] with Doppler

)

frequencyf,. It means thabzl(” are correlated complex gaussian variables with zero-megashsorrelation

coefficients given by:
jo) = E[al(n)al(n_p)*] = 0(2)” Jo (27 f4Tp) (2)

Hence, thenth received OFDM symboy,,) = [y(n)[—%],y(n)[—% + 1, syl — 1]]T is given by
[3] [1]:

Yy = Hm) Xm) + W) 3)

wherew(,, is a N x 1 zero-mean complex Gaussian noise vector with covariantexme| y, andH )
is a N x N diagonal matrix with diagonal elements given by [3] [1]:

L

1=1
This coefficients are the Fourier Transform of (1) evaluatedtiediscrete frequencj, = (k_l_%)ﬁ
with k& € [1, N]. Using (4), the observation model in (3) for théh OFDM symbol can be re-written as:

y(n) = diag{x(n)}F () + Wn) (5)

wherea,) = [a&”), ...,a(L")]T is aL x 1 vector andF is the N x L Fourier matrix defined by:

k—1

[Flpy = e 92705 —2)m (6)

[1l. BAYESIAN CRAMER-RAO BOUNDS (BCRBS)

In this section, we present a general formulation for BCRBcWwhs related to the estimation of the
multi-path complex gains. In NDA context, we derive a clo$ein expression of a BCRBi.e., the
Asymptotic BCRB or the Modified BCRB. In DA context, the true BB is equal to the MBCRB in
NDA. &(y) denotes an unbiased estimator@f= [oy1y”, ..., a7 ]7 using the set of measurements
Yy =[¥n' - Yu 1" In the on-line scenario, the receiver estimates, based on the current and

previous observations only,e.,y = [y)", -, Yy ' 17

A. Bayesian Cramer-Rao bound

The BCRB is particularly suited when a priori information isadable. The BCRB has been proposed
in [10] such that:

Eyo|(a(y) — a)(ay) — )| > BCRB(a) (7)
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whereX > Y is interpreted as meaning that the mafkix- Y is positive semidefinite. The BCRB is the

inverse of the Bayesian Information Matrix (BIM), which che written as:
B = E. [.’F(a)] + Ea[— AS ln(p(a))] (8)

wherep(a) is the prior probability density function (pdf) an#(«) is the Fisher Information Matrix
(FIM) defined as:

Fla) = Eyal—AZ In(p(yle))] (9)

wherep(y|a) is the conditional pdf ofy given a. The on-line BCRB associated to observation vector

Y =[Ya)"s - YT 1" will be obtained [9] by:
BCRB(())ontine = Tr(BCRB(a)[i(K)J(KH) (10)

wherei(n) is a sequence of indices defined#fy.) = 1+ (n — 1)L : nL with n € [1, K]. The definition
(10) will stand for the closed form BCRBs.

1) Computation of Eq[ — AZ In(p(a))]: e is a complex Gaussian vector with zero mean and

covariance matriR, = E{aa!’} of size KL x KL defined as:

Rgﬁ_p/) for v=i e[1,L] ppefo, K1)

Ralip),ip) = { (11)

0 for /s &
wherei(l,p) =1+ (I — 1) + pL and Fgf) is defined in (2). For example, iIK = L = 2 then,R, is
given by:
(RY 0 RV o0
o RY o RY

Ra = () (0) (12)
Re, 0 Ry 0

o R) o RY

Thus, the pdfp(«) is defined as:

1
e
|TR&|

pla) = —oR. (13)

Taking the second derivative of the natural logarithm of) {d8h respect tax and making the expectation

over o, hence:

Ea[ — AZ In(p(a))] = RZ! (14)
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2) Computation of E4 [.’F(a)]: Using the whiteness of the noise and the independence ofahs-t

mitted OFDM symbols, one obtains from the observation moual€b) that:
K

A% In(plyla)) = D A% n(p(Ymlawm)) (15)

n=1

Each term of the sum (15) is AL x KL block diagonal matrix with only one nonzetio x L block
matrix, namely:

AG (Y em)) iy = Dai 0PY@lem)) (16)

As a direct consequencAZ In(p(y|a)) is a block diagonal matrix with theth diagonal block given by
(16). Moreover, because of the circularity of the obseoratioise, the expectation of (16) with respect

to Y,y ande(,,) does not depend oe(,,). One then obtains:
Ea[F(a)] = blkdiag{J,J,...,3} (17)
whereJ is a L x L matrix defined as:
J = BEpal—Aal) n(p(mlewm))] (18)

The log-likelihood function in (18) can be expanded as:

n(p(Ymylew))) = ln(ZP (Y () X(n)s ()P (X n))> (19)

X(n)
The vectory,, for givenx,) ande,,) is complex Gaussian with mean vectoy,,) = diag{X,) }Fe(,)
and covariance matrix?l ;. Thus, the conditional pdf is :

1

o E VM) (Ve —mi) (20)
|mo?l N’

PY () X(n)s X)) =
Since each element of the vector,,) depends on only one element xf,) then, using the Gaussian

nature of the noise and the equiprobability of the normdli@?®AM symbols, one finds (see Appendix

A) that:
N

ln(p(y(n)‘a(n))) = In meiﬁ(ygﬂy("ﬁa{fﬂFHFa(”) H Osh( n(k‘)))cosh(?lm(an(k)))]
) (21)

wherea,, (k) = [y(n)];gfa(n) andg? is thekth row of the matrixF. The result of the second derivative

of (21) with respect tax,, is given by:

Agi:; ln(p(y(n)’a(n))) = _#FHF

+§: [204 [Y () £ GR Gk (2 - tanh2(§Re(an(k))) - tanh2<‘§|m(an(k))))] (22)

k=1

June 19, 2008 DRAFT



SUBMITTED TO MINOR REVISISONS IN ELSEVIER SIGNAL PROCESS(NFAST COMMUNICATION 6

The expectation of (22) with respect y@n)|a(n) does not have any simple analytical solution. Hence,
we have to resort to either numerical integration methodsoone approximations. In the following, we

present both the high-SNR and the low-SNR approximations ®B@GRB, as defined in [9].

B. Asymptotic BCRB

1) High-SNR BCRB Asymptote: From the definition of BIM (8), only the first term.¢., Eq [F(at)])

depends on the SNR, which is fully characterizedJoyHence, we focus on the behavior &f At high
SNR (i.e.,0? — 0), the tanh-function in (22) can be approximated ﬂmh(%m) ~ sgn(r). Hence,
we obtain the high-SNR asymptote &f which is:

1
= —FF (23)
g

2) Low-SNR BCRB Asymptote: Following the same reasoning as before, at low SNR,¢? —

+00), we havetanh(z) ~ x arroundz = 0. Hence, we obtain:

Aai) (P o)) ~ —:FF + Z [ el ligiah (o - an(k)aZ(k))] (24)
Plugging (24) into (18), we obtain the Iow—SNR asymptotelofvhich is (see Appendix B):
J = (—+—+—>FHF (25)
O'

whereg = Zle afw is the total channel energy.

The Asymptotic BCRB (ABCRB) defined in [9] leads to a lower bowrdthe MSE. This ABCRB is
given by:
-1
ABCRB(a) = <blkdiag{Jmm, s dmin} + R;l) (26)

+ 88 1 59 anduy, = 4.

04 o

whereJ, i, = min(vy, vh)FHF, with v; =

C. Modified BCRB

The analytical computation aF () is quite tedious in case of NDA context because of the OFDM
symbolsx = [x1y7, ..., x(x)T]7, which are “nuisance parameters”. In order to circumvei Knd of
problem, a Modified BCRB (MBCRB) has been proposed in [5]. ThiBGRB is the inverse of the

following information matrix:

C = Ea[G(a)] +Ea| - AZ In(p(a))] (27)
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whereG(«) is the modified FIM defined as:

Gla) = EEyxal— AL n(pyx a))] (28)

It should be noted that the MBCRB in NDA context is equal to BRCB in DA context {.e. symbols

X are a priori known). Hence, following the same reasoningedsrb, we have:
Ea[G(a)] = blkdiag{Jm,Im, ..., Im} (29)
wherel,, is a L x L matrix defined as:

I = Ey,X,Ot[ - Agﬁ:; In (p(y(n) |X(n)7 a(n)))] (30)

By taking the second derivative of the natural logarithim) (of (20) with respect tox,,), one easily

obtains that:
Jn = E [i Fdiag{x Y diag{x }F] _ Lpugp (31)
m X o2 (n) (n) o2

since the QAM-symbols are normalized and uncorrelated végipect to each other. The MBCRB for

the estimation okx is given by:
-1
MBCRB(a) = (blkdiag{Jm,Jm, e dm )+ R;l) (32)

We see thatl, = J,, hence, the high-SNR asymptote of the BCRB is equal to the MBCRis

corroborates the result of [7] for a scalar parameter in Bapesian case.

IV. DIscussiON ANDCONCLUSION

In this section, we illustrate the behavior of the previowsidds for the complex gains estimation.
A 4-QAM OFDM system with normalized symbolgy = 128 subcarriers andV, = % is used. The
normalized Rayleigh channel contains= 6 paths and others parameters given in [1].

Fig. 1 presents the on-line BCRB (evaluated by Monte-Caildsl;, ABCRB and MBCRB versus
SNR= 0—12 for a block-observation length’ = 20 and a normalized Doppler frequengyl’ = 10~3. We
plot also as reference the SCRBe(, the prior information is not used). We observe that both ABCR
and the MBCRB are lower than SCRB since the prior informatibthe complex gains is considered.
We also verify thatM BOCRB < ABCRB < BCRB, as in [9]. At high SNR, the MBCRB and the
ABCRB are very close, as predicted by our theoretical aiglys

Fig. 2 presents the on-line ABCRB versus time indéxor different normalized Doppler frequencies

107° < £4T < 5.1072 and SNR= 10dB. When the number of observations increases, the estimedion
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be significantly improved when the estimator takes also intmant the previous information; the bound
thus decreases and converges to an asymptote. The estirgaiions larger using previous symbols
with slow channel variations (low;T). In brief, our contribution permit to measure the benefit sihg

additonal previous OFDM symbols for channel estimation esscof the current symbol, whereas most

methods use only the current symbol [2].

APPENDIXA

DERIVATION OF EXPRESSION(21) AND (22)

Plugging (20) into (19), we obtain:

L m H P(X(n)) 2 Re(y” mq.
ln(p(Y(n)\a(n))) = - 2 (y(n)y(n) + m(n)m(n)) + ln<|7m2|N|Ze” ey, mam)) (33)
X(n)

since the 4QAM symbols are equiprobable:( p(X,)) = 4%). However,m,, = diag{X, }Fa,) then,

Zan X(m) ]k Whereay, (k) is defined in section 11l part A. Hence, one obtains:

N
S emRebtma) T ( ) e;Re(an(knxm)) (34)
i

X(n) E=1 \[X(m)]x

Since Xk = 7(jzl + 7) (4QAM-symbol), we obtain:

Z o= k)X k) 4005}1(;/3Re(an(k)))cosh<glm(an(k))> (35)

Xk

Inserting this result into (33), we obtain the expressiof2ih). Taking the second derivative of (21) with
respect too(,,y and usingVe,,,Re(an(k)) = 3[Y()]x 9k @nd Va, IM(an(k)) = 55[Y(n)]x9 We obtain

finally the expression in (22).

APPENDIX B

EVALUATION OF J; IN (25)

Inserting the definition of., (k) into (24) and plugging the result into (18), one obtains:

N N
N - 1 N N 2
3= 5FYF = L) giEaE, [[Y(n)]k[Y(n)]k] O + 5D _9i9i Ea [am)a(n)Hngya [([y(n)]k[y<n)]k) H Ok
k= f—
' ' (36)
Using thatly,,)|x = [x(n)]kg}fa(n) + W]k, the independance between the QAM-symbols and the noise,

and these results below:
2 2 *2 4
S [[Xm)]k} = E[w@)]k[[W(n)]k} = 0 and ﬁw(mh[ Wi } = 207 (37)
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we obtain:
Byl VkVmli] = ohamafhg:+o?
*\ 2 * * *
Eyja [([Y(n)]k[Y(n)]k) ] = 20" + 4o’ a0 + Of o 6ok am el O (38)

Hence,J; becomes:
| XN
J;, = — ) V,.DV Vv T V ViEa T 39
! 04;k K+ Zk 1] Vi + Zk 2] (39)

where V, = gzgg, T, = a(n)agb)vka(n)a( ) Ty = a(n)a( )Vka( ) (n)Vka(n)agl) and D =
Ea [a(n) o, )] =diag{c2 ,...,02, }. The elements of; and T, are given by:

L
Z Vil lam ] lem], [emp [em];
L

[To],, = Z > > Z Vil o Vel lem] [am], [em], [am]) lam], [am]),

lh=11l=11l3=114=1

=
R
h||Mh

b‘II

(40)
Using that k), [[c(n)]ﬂ = 0 and the definitions of 4th and 6th order moments for complexsgjan

variables, we obtain:

m
Q
-

I

DV;D + Tr(V;D)D
Ea[T2] = 2DVkDVkD+2Tr(VkD)DVkD+Tr(VkDVkD)D+(Tr(Vk,D)>2D (41)

Using thatg/ Dg; = Tr(V,D) = SE o2 = 3, Tr(V,DV,D) = 3? DV,DV,D = DV,D, and

inserting these results into (39), we obtain the expressfal) in (25).
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