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INVERSION OF SOME SERIES OF FREE QUASI-SYMMETRIC

FUNCTIONS

FLORENT HIVERT, JEAN-CHRISTOPHE NOVELLI, AND JEAN-YVES THIBON

Abstract. We give a combinatorial formula for the inverses of the alternating
sums of free quasi-symmetric functions of the form Fω(I) where I runs over com-
positions with parts in a prescribed set C. This proves in particular three special
cases (no restriction, even parts, and all parts equal to 2) which were conjectured
by B. C. V. Ung in [Proc. FPSAC’98, Toronto].

1. Introduction

The algebra of Free Quasi-Symmetric Functions FQSym [5] is a graded algebra of
noncommutative polynomials whose bases are parametrized by permutations. Under
commutative image, it is mapped onto Gessel’s algebra of quasi-symmetric functions,
whence its name.

Quasi-symmetric functions generalize symmetric functions in a natural way, and
many classical results admit quasi-symmetric extensions or analogs. However, very
few results resembling symmetric series identities, like those of Schur or Littlewood
(see, e.g., [11]) are known. In [15], B. C. V. Ung proves a quasi-symmetric analog
of Schur’s identity, and conjectures three further combinatorial inversions of quasi-
symmetric series, which are even stated at the level of FQSym.

In this note, we prove a master identity, which consists in a combinatorial formula
for the inverses of the alternating sums of free quasi-symmetric functions of the form
Fω(I) where I runs over compositions with parts in a prescribed set C. Here Fσ

denotes the standard basis of FQSym (mapped onto Gessel’s fundamental basis),
and ω(I) is the longest permutation with descent composition I. Ung’s conjectures
boil down to the following special cases : no restriction on the parts, even parts, and
all parts equal to 2.
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2. Background and notations

2.1. Free quasi-symmetric functions. Let A be a totally ordered alphabet. Re-
call that the standardized Std(w) of a word w ∈ A∗ is the permutation obtained by
iteratively scanning w from left to right, and labelling 1, 2, . . . the occurrences of its
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smallest letter, then numbering the occurrences of the next one, and so on. Alter-
natively, σ = Std(w)−1 can be characterized as the unique permutation of minimal
length such that wσ is a nondecreasing word. For example, Std(bbacab) = 341625.

An elementary observation, which is at the basis of the constructions of [5], is that
the noncommutative polynomials

(1) Gσ(A) =
∑

w∈A∗;Std(w)=σ

w

span a subalgebra of Q〈A〉. When A is infinite, this subalgebra admits a natural
Hopf algebra structure, but this fact will not be needed here. This is FQSym, the
algebra of Free Quasi-Symmetric Functions.

Let Fσ = Gσ−1 . The scalar product is defined by

(2) 〈Fσ , Gτ 〉 = δσ,τ .

For a word w on the alphabet {1, 2, . . .}, denote by w[k] the word obtained by re-
placing each letter i by the integer i + k. If u and v are two words, with u of length
k, one defines the shifted concatenation

(3) u • v = u · (v[k])

and the shifted shuffle

(4) u ⋒ v = u (v[k]) .

where u u′ is the usual shuffle product on words.
The product formula in the F basis is

(5) FαFβ =
∑

γ ∈α⋒β

Fγ .

The sum of the inverses of the permutations occuring in α−1⋒β−1 is called convolution

and denoted by α⋆β. Thus, FQSym provides a realization of the convolution algebra
of permutations studied in [13, 12].

2.2. Descent classes and compositions. Recall that the descent set of a permu-
tation σ is D = {i | σ(i) > σ(i + 1)}. If σ ∈ Sn has descent set D = {d1 < . . . <

dk} ⊆ [n− 1], the descent composition I = C(σ) is the composition I = (i1, . . . , ik+1)
of n defined by is = ds − ds−1, where d0 = 0 and dk+1 = n. The symbol I � n means
that I is a composition of n, and l(I) denotes the length of I.

The descent class DI = {σ ∈ Sn |C(σ) = I} has a unique element of minimal
(resp. maximal) length denoted by α(I) (resp. ω(I)). Actually, descent classes are
intervals DI = [α(I), ω(I)] for the left weak order on Sn (see, e.g., [3]).

The mirror image of a word w = a1a2 · · ·am is w̄ = amam−1 · · ·a1. We shall use
this notation for compositions and permutations as well.

Finally, the diameter of a descent class is the permutation

(6) diam(I) := α(I)ω(I)−1 = α(I)ω(I).
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2.3. A multiplicative basis of FQSym. The left-shifted concatenation of words
is

(7) u ◮ v = u[l] · v if u ∈ Ak, v ∈ Al ,

similar to the usual shifted concatenation •, but with the shift on the first factor.
The following basis is introduced in [4]:

(8) Sσ :=
∑

τ≤σ

Gτ

where ≤ is the left weak order. It has the property

(9) Sσ = Sσ1Sσ2 · · ·Sσr

whenever σ = σ1 ◮ σ2 ◮ · · · ◮ σr.
The Moebius function of the left weak order is explicitely known [6, 2, 3], and gives

in particular

(10) Gσ =
∑

I�C(σ−1)

(−1)l(I)−1Sα(I)σ.

3. The main result

3.1. Ung’s conjectures. In [15], Ung made the following conjectures. The inverses
of the series

H1 =
∑

I

(−1)ℓ(I)Fω(I)

H2 =
∑

n≥0

(−1)nFω(2n)

H3 =
∑

I

(−1)ℓ(I)Fω(2I)

are as follows. For a permutation σ of shape I, let σ̂ = σω(I)−1. Then,

H−1
1 =

∑

α

Gα̂

H−1
2 =

∑

β

Gβ̂

H−1
3 =

∑

γ

Gγ̂

where α runs over all permutations, β ∈ S2p runs over permutations of shape 22p,
and γ ∈ S2p runs over permutations with descent set contained in {2, 4, . . . , 2p− 2}.

Taking into account (8) and (6), we see that all three identities are of the form
(11) below, with E = N∗, {2} and 2 N∗, respectively.
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3.2. Generalization.

Theorem 3.1. Let E be any subset of N∗. And let C(E) be the set of all compositions

with parts in this subset. Then

(11)





∑

I∈C(E)

(−1)l(I)Gω(I)





−1

=
∑

K∈C(E)

Sdiam(K).

Proof – Thanks to (10), the statement to be proved is equivalent to

(12)





∑

I∈C(E)

(−1)l(I)
∑

J�I

(−1)l(J)−1Sα(J)ω(I)









∑

K∈C(E)

Sα(K)ω(K)



 = 1,

or, opening the parentheses,

(13)
∑

I,K∈C(E)

∑

J�I

(−1)l(I)+l(J)−1Sα(J)ω(I)Sα(K)ω(K) = 1.

Now,

(14) Sα(J)ω(I)Sα(K)ω(K) = Sα(J ′)ω(I′),

where I ′ = I • K and J ′ = K ⊲ J . Note that J ′ � I ′ and that

(15) (−1)l(I)+l(J)−1 = −(−1)(l(I′)+l(J ′)−1.

Now, given any non-empty permutation σ obtained as a product α(J)ω(I) with
J � I, it can be decomposed in exactly two ways as a product α(J)ω(I) ◮ α(K)ω(K):
either with K = ∅ or with α(K)ω(K) corresponding to the last anticonnected per-
mutation associated with the decomposition of σ into anticonnected permutations.
This comes from the fact that α(J)ω(I) (with J � I) is anticonnected iff J = I.

Since the coefficients associated with these two decompositions are opposite, such
a permutation does not occur in the final result. Hence the result reduces to the
contribution of the empty permutation.

4. Comments on Ung’s other identities

In [15], Ung proves quasi-symmetric analogs of Schur’s identity (for the sum of all
Schur functions) and of Littlewood’s identity (for its inverse). In fact, these analogs
may be formulated without further work at the level of FQSym.

The first identity is

(16)
∑

I

FI =
1

2

[

∏

i

1 + xi

1 − xi

− 1

]

=
1

2
[λ1(X)σ1(X) − 1]

where λ1 (resp. σ1) is the sum of the elementary (resp. complete) symmetric func-
tions. Interpreting the right-hand side in the algebra of noncommutative symmetric
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functions, we have

(17)
1

2
[λ1(A)σ1(A) − 1] =

1

2

[

←
∏

i

(1 + ai)
→
∏

i

(1 − ai)
−1 − 1

]

=
∑

n≥0

Hn

where

(18) Hn =

n−1
∑

k=0

R1k,n−k .

The commutative image of R1k ,n−k is the Schur function sn−k,1k, whose quasi-symmetric
expansion is easily found to be

(19) sn−k,1k =
∑

I⊢n, l(I)=k+1

FI .

But R1k ,n−k can also be interpreted as an element of FQSym,

(20) R1k ,n−k =
∑

C(σ−1)=(1k ,n−k)

Fσ

so that (16) means that each descent class contains exactly one permutation whose
inverse has a hook shape (1k, n − k).

The second identity is

(21)

(

∑

I

FI

)−1

= 1 +
∑

I�2n+1

(−1)n+1cIFI

where cI is the number of permutations of shape I whose inverse has shape (12n).
This formula is obtained by observing that the inverse of H =

∑

n Hn is the noncom-
mutative hyperbolic tangent of [7], that is

(22) H−1 = 1 −
∑

n≥0

(−1)nR12n ,

which can again be interpreted as an identity in FQSym

(23) H−1 = 1 +
∑

n≥0

(−1)n
∑

C(σ−1)=(12n)

Fσ .
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