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Introduction

This article is essentially an appendix to [START_REF] Duchamp | Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras[END_REF]. We gather here some useful properties of the algebra FQSym of free quasi-symmetric functions which were overlooked in [START_REF] Duchamp | Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras[END_REF].

Recall that FQSym is a subalgebra of the algebra of noncommutative polynomials in infinitely many variables a i which is mapped onto Gessel's algebra of quasi-symmetric functions QSym by the commutative image a i → x i of K A . As an abstract algebra, it is isomorphic to the convolution algebra of permutations introduced by Reutenauer and his school [START_REF] Reutenauer | Free Lie algebras[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and Solomon descent algebra[END_REF][START_REF] Poirier | Algèbre de Hopf des tableaux[END_REF], and further studied in [START_REF] Duchamp | Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras[END_REF][START_REF] Loday | Hopf algebra of the planar binary trees[END_REF][START_REF] Loday | Order structure on the algebra of permutations and of planar binary trees[END_REF][START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF]. However, the realization in terms of the variables a i provides one with a better understanding of several aspects of the theory. For example, it becomes possible, and sometimes straigthforward, to imitate various constructions of the theory of symmetric (or quasi-symmetric) functions. An illustration is provided by the construction of the coproduct given in [START_REF] Duchamp | Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras[END_REF]: a free quasi-symmetric function F can be regarded as a "function" of a linearly ordered alphabet A, and the obvious analog of the coproduct of QSym, that is, F (A) → F (A ′ ⊕ A ′′ ), where A ′ and A ′′ are two mutually commuting copies of A, and ⊕ is the ordered sum, gives back the coproduct of [START_REF] Malvenuto | Duality between quasi-symmetric functions and Solomon descent algebra[END_REF].

In the present text, we further investigate the rôle of the auxiliary variables a i .

We start with an alternative definition of the standard basis of FQSym, as resulting from a noncommutative lift of a Weyl-type character formula.

Next, we formulate a free Cauchy identity in FQSym, and investigate its implications. In the classical theory of symmetric functions, it is mostly in the so-called Cauchy identities, involving the product XY of two alphabets X, Y , that the existence of the underlying variables manifests itself. Even so, it is only when the auxiliary alphabet is specialized that one really sees the variables. Otherwise, the transformation f (X) → f (XY ) is best interpreted as a coproduct, dual to the internal product. The present version involves two alphabets A ′ , A ′′ , and specializes to the noncommutative Cauchy formula of [START_REF] Gelfand | Noncommutative symmetric functions[END_REF] under A ′ → X, A ′′ → A. This allows us to compute the commutative specializations of various bases of FQSym, in particular the basis V σ of [START_REF] Duchamp | Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras[END_REF] and the basis M σ of [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF], recovering here the result of [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF] in a simpler way.

We first illustrate the free Cauchy identity by computing the Hopf duals of various subalgebras of FQSym is a unified and straightforward way. We then apply it to the study of several multiplicative bases of FQSym and of their dual bases, including the free monomial functions of Aguiar and Sottile [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF], and the basis V σ introduced in [START_REF] Duchamp | Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras[END_REF]. We conclude with an extension of the splitting formula to FQSym.
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Background and notations

Our notations are as in [START_REF] Duchamp | Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras[END_REF]. All algebras are over some field K of characteristic 0. We shall also need the following notations.

2.1. Recall that for two permutations σ and τ , σ • τ denotes their shifted concatenation. In FQSym, we set

(1) G σ • G τ = G σ•τ so that I = (i 1 , . . . , i r ) and if α k ∈ S i k for all k ∈ [1, r], then (2) 
G α 1 . . . G αr = (G α 1 • • • • • G αr ) * S I .
Indeed, remembering that the internal product in the G-basis is opposite to the product in the symmetric group (G σ * G τ = G τ σ ), we recognize the convolution product of permutations. [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF] that quasi-symmetric polynomials could be defined as the invariants of a certain action of the symmetric group, or of the Hecke algebra, called the quasi-symmetrizing action. This action will be denoted by underlining the elements, e.g., σ • f denotes the quasi-symmetrizing action of a permutation σ on a polynomial f .

It has been shown in

The free Weyl formula

As already mentioned, QSym(X) is the algebra of S[X]-invariants in K[X] for a special action of the symmetric group, called the quasisymmetrizing action. Moreover, the analogy between Gessel's functions F I and Schur functions has been traced back to the existence of an expression of F I by a kind of Weyl character formula involving this action. In this Section, we show that this Weyl formula can be lifted to FQSym.

For a word w on {a 1 , . . . , a n }, let |w| i be the number of occurrences of the letter a i in w and let the monomial

m = x |w| = x |w| 1 1 x |w| 2 2 . . . x |w|n n
be the commutative image of w. We denote by C(m) the composition obtained by removing the zeros in the vector |w|. The construction relies on the following well-known lemma (see [START_REF] Krob | Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q = 0[END_REF][START_REF] Novelli | On the hypoplactic monoid[END_REF]): Lemma 3.1. The map φ : w → (x |w| , std (w) -1 ) is a bijection between words and pairs (m, σ) such that C(m) is finer than C(σ).

Hence, for each σ, there is a linear isomorphism φ σ between the subspace of K A spanned by the words of standardized σ and the subspace of K[X] spanned by the monomials such that I(m) ≤ C(σ).

The definitions of F I and F σ can then be rewritten as

(3) F I = I(m)≤I m , and 
F σ = I(m)≤C(σ) φ -1 (m, σ) = φ -1 σ (F I ) .
Recall that the degenerate Hecke algebra H n (0) is generated by elements (π 1 , . . . , π n-1 ) satisfying the braid relation and π 2 i = π i . The Schur functions can be obtained in terms of an action of H n (0) on C[X] defined by (4)

π i (f ) := x i f -σ i (x i f ) x i -x i+1
where σ i is the automorphism exchanging x i and x i+1 . In this case, s λ = π ω (x λ ), where ω = (n, (n -1), . . . , 1) is the longest element of S n . If one instead uses the quasi-symmetrizing action, denoted here as in [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF] by f → σ i f , one still has an action of H n (0) and by complete symmetrization of monomials, one obtains Gessel's functions (5)

F I = π ω (x I ) .
From the definition of [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF], the monomials m ′ appearing in π ω (x I ) satisfy C(m ′ ) < I. Hence it makes sense to define an action of H n (0) on K A by lifting the action on K[X] along the maps φ σ .

Definition 3.2. Let f ∈ H n (0) and w ∈ A * . The action of f on w is defined by

(6) f (w) = φ -1 std (w) -1 (f (|w|))
. where f (|w|) is the quasi-symmetrizing action.

This action can be computed as follows. For a word w and k < |w| i , denote by w(a i ↑ k) (resp. w(a i ↓ k)), the word obtained by replacing the last (resp. first) k letters a i by a i+1 (resp. a i-1 ). Remark that [START_REF] Gelfand | Noncommutative symmetric functions[END_REF] std (w

(a i ↑ k)) = std (w(a i ↓ k)) = std (w) ,
so that the action of π i on w is given by ( 8)

π i (w) =                w if |w| i = 0 and |w| i+1 = 0, w if |w| i = 0 and |w| i+1 = 0, |w| i k=0 w(a i ↑ k) if |w| i = 0 and |w| i+1 = 0, - |w| i -1 k=1 w(a i ↓ k) if |w| i = 0 and |w| i+1 = 0.
Then the quasi-symmetric Weyl formula together with Equation (3) gives:

Theorem 3.3. Let σ ∈ S n and A = {a 1 , . . . a n }. Then (9) F σ (A) = π ω (A σ ) ,
where A σ is the smallest word on A of standardized word σ -1 for the lexicographic order.

Note that A σ is the unique word with standardized σ -1 and evaluation C(σ). For example, if σ = 1472635 then σ -1 = 1462753 and

A σ = a 1 a 2 a 3 a 1 a 3 a 2 a 1 .
The full algebra of invariants of the free quasi-symmetrizing action (either of S n or of H n (0)) is denoted by WQSym(A). In the limit n → ∞, it acquires the structure of a self-dual Hopf algebra [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF][START_REF] Novelli | Hopf algebras and dendriform structures arising from parking functions[END_REF][START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF]. Its bases are parametrized by set compositions (ordered set partitions), and the dimensions of its graded components are given by the ordered Bell numbers.

The free Cauchy identity

One of the most basic formulas in the classical theory of symmetric functions is the so-called Cauchy identity, which can be interpreted as giving an expression of the identity map of Sym, identified to an element of Sym ⊗ Sym ≃ Sym(X, Y ), in terms of the variables x i , y j .

In the commutative case, the Cauchy identity encodes almost entirely the Hopf algebra structure. The Cauchy kernel [START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF] K(X, Y ) = σ 1 (XY ) = i,j

(1

-x i y j ) -1
is reproducing for the standard scalar product , defined by

(11) s λ (X), s µ (X) X = δ λµ , that is, (12) f (X) = K(X, Y ), f (Y ) Y .
Also, the antipode of Sym is the map ω :

f (X) → f (-X) is given by (13) ωf (X) = f (-X) = K(-X, Y ), f (Y ) Y = λ -1 (XY ), f (Y ) Y ,
that is, its kernel is the inverse (in the sense of formal series in X, Y ) of the Cauchy kernel. Similarly, the Adams operations in the sense of Hopf algebras (the convolution powers of the identity map) have as kernels the corresponding powers σ 1 (kXY ) of the Cauchy kernel. Finally, the coproduct itself is given by ( 14)

∆(f ) = f (X + Y ) = D K(X,Y ) f (X) ,
where D K(X,Y ) is the adjoint of the operator of the multiplication by K(X, Y ), with respect to , X .

The interpretation of FQSym as a subalgebra of K A allows one to lift the Cauchy identity to free quasi-symmetric functions.

Let x ij = i j be commuting indeterminates, and a ij = i j be noncommuting ones. We shall denote by

i1 i2 • • • ir j1 j2 • • • jr the monomial i1 j1 i2 j2 • • • ir jr and by i1, i2, • • • ir j1, j2, • • • jr the word i1 j1 i2 j2 • • • ir jr
. Such expressions will be referred to respectively as bimonomials and biwords. With a bimonomial u v , we associate the two biwords

u ′ v ′ and u ′′ v ′′
obtained by sorting u v in lexicographic order with priority respectively on the top and on the bottom row. For example, with

u v = cabaabcba abccaacbb , we get (16) u ′ v ′ = aaaabbbcc abbcabcac and u ′′ v ′′ = abcaababc aaabbbccc . (15) 
Observe that std (v ′ ) = 145726839 = (158236479) -1 = std (u ′′ ) -1 , which, in fact, is a general property.

Lemma 4.1. With the previous notations, for all bimonomials u v , one has std (u ′′ ) = std (v ′ ) -1 and all pairs of words with this property are obtained by this process. Therefore, we have an evaluationpreserving bijection between such pairs of words and bimonomials.

Proof -If u and v are permutations, cleary

u ′′ ⊗ v ′ = σ -1 ⊗ σ where σ is the permutation such that (17) u v = Id σ = σ -1 Id .
Now, the bi-standardization process satisfies:

(18) std u std v = std u ′′ ⊗ std v ′ ,
whence the result.

Let denote the linear map from

K[[x ij ]] to K A ⊗K A defined by u v = u ′′ ⊗ v ′ .
From the lemma, we obtain: Proposition 4.2. For any pair of adjoint bases (P, Q) of FQSym, one has [START_REF] Patras | Lie representations and an algebra containing Solomon's[END_REF] i,j

1 1 -x ij = std (v)=std (u) -1 u ⊗ v = σ F σ ⊗ G σ = σ P σ ⊗ Q σ .
In particular, identifying the tensor product FQSym⊗FQSym with FQSym(A ′ , A ′′ ), where A ′ and A ′′ are two commuting alphabets, and specializing a

′ i → x i (commuting variables), a ′′ i → a i , we get (20) σ F σ (X)G σ (A) = I F I (X)R I (A) = → i,j (1 -x i a j ) -1 = σ 1 (XA) ,
and for any pair (P, Q) of adjoint bases, the evaluation morphism [START_REF] Reutenauer | Free Lie algebras[END_REF] ev

X,A : u ⊗ v → u(X)v(A)
maps σ P σ ⊗ Q σ to σ 1 (XA).
5. Application to some duality questions 5.1. Specialization of the free Cauchy formula to Sym. From the free Cauchy formula, one derives a new way to recover the Cauchy identity associated with the dual pair of Hopf algebras (QSym, Sym).

Instead of mapping the a ′ i to our commuting variables x i , let us set [START_REF] Schocker | Lie idempotent algebras[END_REF] a ′ i → ãi , where the ãi 's satisfy the hypoplactic relations. Let ≡ H denote the hypoplactic congruence on words on A as well as on permutations considered as words on the positive integers. Recall that u ≡ H v iff (1) they have the same evaluation, and (2) σ = std (u) -1 and τ = std (v) -1 have the same descent set (see [START_REF] Krob | Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q = 0[END_REF][START_REF] Novelli | On the hypoplactic monoid[END_REF]). This implies that (23) σ

≡ H τ ⇐⇒ G σ (A) ≡ H G τ (A) , and (24) 
F σ (A) ≡ H F τ (A) ⇐⇒ C(σ) = C(τ ) .
Denote by w the image of w in the hypoplactic algebra. If C(σ) = I, then Fσ = F I ( Ã), the hypoplactic quasi-symmetric function, so that

std (u)=std (v) -1 ũ ⊗ v = σ Fσ ⊗ G σ = I F I ( Ã) ⊗   C(σ)=I G σ   = I F I ( Ã) ⊗ R I (A) . (25) 
This formula reflects the fact that the dual Sym * = QSym of Sym can be identified with the quotient of FQSym by the hypoplactic congruence.

5.2. Specialization of the free Cauchy formula to FSym. This is reminescent of a result of Poirier-Reutenauer [START_REF] Poirier | Algèbre de Hopf des tableaux[END_REF] allowing to identify the dual of FSym to the quotient of FQSym by the relations

(26) G σ ∼ G τ ⇐⇒ σ ≡ P τ ,
where ≡ P is the plactic congruence, permutations being considered as words. In fact, two words u, v ∈ A * are plactically equivalent iff, as above, (1) they have the same evaluation, and (2) std (u)

≡ P std (v). Hence, (27) G σ ∼ G τ ⇐⇒ G σ (A) ≡ P G τ (A) ,
the plactic congruence being understood in the free associative algebra on A. This shows that FSym * is actually a subalgebra of the plactic algebra, spanned by the plactic classes Ḡσ of the G σ 's. If P (σ) = t, let us set Ḡσ = S * t (we denote by w the image of w in the plactic algebra), and consider the specialization

std (u)=std (v) -1 u ⊗ v = σ F σ ⊗ Ḡσ = t   P (σ)=t F σ   ⊗ S * t = t S t ⊗ S * t . (28) 
This last equality looks closer to the classical Cauchy identity. However, it is not symmetric due to the non-self-duality of FSym. To recover a symmetric form, let us now impose the plactic relations on the first factor of the tensor product (so that the resulting element belongs to Pl(A) ⊗ Pl(A)). We get

(29) t St ⊗ S * t = λ S λ ⊗ S λ ,
where S λ is the plactic Schur function

(30) S λ = shape( w)=λ w ,
defined as the sum of all tableaux of shape λ in the plactic algebra. We see that

(31) S λ = shape(t)=λ S * t ,
that is, the commutative algebra spanned by the plactic Schur functions introduced by Lascoux and Schützenberger [START_REF] Lascoux | Le monoïde plaxique, Noncommutative Structures in Algebra and Geometric Combinatorics A[END_REF] gets naturally identified with a subalgebra of FSym * .

5.3. Specialization of the free Cauchy formula to PBT. By the same reasoning, we see that the dual PBT * of the Loday-Ronco algebra of planar binary trees [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF][START_REF] Hivert | The algebra of binary search trees[END_REF] PBT is ismomorphic to the image of FQSym under the canonical projection

(32) π : K A -→ K[Sylv(A)] ≃ K A / ≡ ,
where Sylv(A) denotes the sylvester monoid. The dual basis Q T of the natural basis

P T is Q T = π(G w T )
, where w T is the permutation canonically associated with the tree T .

Multiplicative bases and their adjoint bases

The free Cauchy formula is also useful for studying duals of multiplicative bases, from which bases of primitive elements can be extracted. In this section, we discuss two kinds of analogs of the monomial symmetric functions and of the forgotten symmetric functions. One of them is the free monomial basis of Aguiar-Sottile [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF].

6.1. Analog of the pair (h, m) (first kind). We know that Sym ⊂ FQSym, and that the noncommutative products of complete homogenous functions S I are realized by setting S m = G (12...m) and S I = S i 1 S i 2 • • • S ir , as usual. There are of course many possibilities to extend S I to a multiplicative basis of FQSym. We know that FQSym is free as an algebra, and that its number of algebraic generators by degree is given by Sequence A003319 of [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF], counting connected permutations. In the G basis, we make use of anticonnected permutations, i.e., permutations σ whose mirror image σ is connected. If we introduce the left-shifted concatenation of words

(33) u ◮ v = u[l]v if u ∈ A k , v ∈ A l ,
similar to •, but with the shift on the first factor, we can start with the convention (34)

S σ = S σ 1 S σ 2 • • • S σr whenever σ = σ 1 ◮ σ 2 ◮ • • • ◮ σ r
is the decomposition of σ into anticonnected components. It remains to decide the value of S σ when σ is anticonnected. For σ = id m , we want S σ = S m = G σ , but for other anticonnected permutations, there are several possibilities. Note that, with our indexation scheme, we have S I = S ω(I) , so that

(35) S ω(I) = τ ≤ω(I) G τ ,
where ≤ is the left weak order. One possibility is to keep the rule S σ = G σ , but the previous equation suggests that a reasonable choice would be (36)

S σ := τ ≤σ G τ
for σ anticonnected. Then the resulting basis has the following properties.

Proposition 6.1. (i) For any permutation σ (anticonnected or not), S σ is given by formula (36).

(ii) The adjoint basis of (S σ ) is the free monomial basis (M σ ) of Aguiar and Sottile [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF].

Proof -(i) One has only to prove that S σ◮τ satisfies formula (36), under the assumptions that both S σ and S τ satisfy it for all permutations σ and τ . Let n = |σ| and m = |τ |. It is first obvious that all elements in the expansion of S σ◮τ are smaller than σ ◮ τ . Conversely, let us consider a permutation µ smaller than σ ◮ τ . Then let σ ′ be the permutation obtained by standardizing the subword consisting of letters of µ on the interval [m + 1, m + n]. By definition of the weak left order, σ ′ ≤ σ. Defining in the same way τ ′ , and checking that τ ′ ≤ τ , one then concludes that µ ∈ (σ ′ [m] τ ′ ), so that G µ appears in the expansion S σ◮τ .

(ii) Straightforward from Formula 1.12 p. 232 in [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF].

For example, with I = (1, 2, 1), we have

S 4132 = G 1 (G 123 + G 132 ) = G 1234 + G 2134 + G 3124 + G 4123 + G 1243 + G 2143 + G 3142 + G 4132 . (37) 
And indeed, the permutations smaller than, or equal to 4132 in the left permutohedron are the eight permutations listed above. We also have

S 4231 = S 121 = G 1 G 12 G 1 = σ∈1 23 4 G σ = G 1234 + G 2134 + G 3124 + G 4123 + G 1243 + G 2143 + G 3142 + G 4132 + G 1342 + G 2341 + G 3241 + G 4231 . (38) 
And indeed, the permutations smaller than, or equal to 4231 in the left permutohedron are the twelve permutations listed above.

As a consequence, we can easily derive the specialization M σ (X) of the free monomial basis to commuting variables, as given in [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF].

Let us recall that permutations τ whose descent composition C(τ ) is I form an interval [α(I), ω(I)] of the weak order (left permutohedron). We shall say that permutations that are ω(I) for an I are bottom descent permutations. Lemma 6.2 (Theorem 7.3 of [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF]). Let σ be a permutation. Then

(39) M σ (X) = M I if σ = ω(I), 0 otherwise,
Proof -Indeed, the free Cauchy formula tells us that on the one hand

(40) σ M σ (X)S σ (A) = I F I (X)R I (A) = I F I (X) C(τ )=I G τ (A) ,
and on the other hand,

σ M σ (X)S σ (A) = σ M σ (X) τ ≤σ G τ (A) = τ σ≥τ M σ (X) G τ (A) . (41) 
Equating the coefficients of G τ in both expressions, we see that for any permutation τ with descent composition I, we must have

(42) σ≥τ M σ (X) = F I (X) .
Now, given a permutation σ, the set of permutations greater than, or equal to σ in the left permutohedron order that are ω(I) for some I depends only on C(σ) and is equal to

(43) {ω(I)|I C(σ)}.
Indeed, it is the case if σ is itself an ω(J) and one then only has to see that all permutations τ greater than σ satisfy C(τ ) C(σ).

Thanks to this property, we can assume by induction that the lemma is true for all permutations strictly greater than σ in the left permutohedron. Then, if σ = ω(J), by inversion on the lattice of compositions, M ω(J) (X) = M J (X), as expected. Otherwise, σ is strictly greater than ω(C(σ)), so that it has to be zero to satisfy (42).

Note that the multiplication formula (34) is valid as soon as the σ i 's are such that σ = σ 1 ◮ σ 2 ◮ • • • ◮ σ r (it not necessarily has to be the maximal factorisation). Also, from (34), one obtains the coproduct of a M σ , as given in [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF], Theorem 3.1.

Dually, the multiplication formula for M α M β (Theorem 4.1 of [START_REF] Aguiar | Structure of the Malvenuto-Reutenauer Hopf algebra of permutations[END_REF]) is equivalent to the computation of ∆S γ . Again, it is more easily obtained on this side. To state the coproduct formula, it will be convenient to introduce the notation

(44) Šσ = S σ -1 .
Then,

(45) ∆ Šσ = u•v≤σ σ|u v Šstd (u) ⊗ Šstd (v) ,
that is, we sum over pairs of complementary subwords u, v of σ whose concatenation u • v is a permutation smaller than σ in the right weak order. For example, ∆S 32451 = 1 ⊗ S 32451 + S 1 ⊗ S 2134 + 2S 

Λ 3412 = G 3412 + G 3421 + G 4312 + G 4321 .
Proposition 6.4. The basis (Λ σ ) is multiplicative, meaning that

(51) Λ σ Λ τ = Λ σ•τ .
Proof -The product rules of the basis (G σ ) can be written as

(52) G µ G ν = α∈Sm,n G α•(µ•ν) ,
where S m,n is set of the inverse of the permutations occurring in the shuffle (12 . . . m) (m + 1 . . . m + n). It follows that (53)

Λ σ Λ τ = α∈Sm,n , µ≥σ , ν≥τ G α•(µ•ν) .
As before, it is well-known that the decomposition α

• (µ • ν) ∈ S m,n • (S m × S n ) is reduced and that (54) α • (µ • ν) ≥ σ • τ if and only if µ • ν ≥ σ • τ ,
which completes the proof.

Then the noncommutative symmetric function Λ i = R (1 i ) is equal to the free quasi-symmetric function Λ i i-1 ... 1 . Hence the correct identification is (55

) Λ I = Λ (i 1 i 2 ...i k ) = Λ (i 1 i 1 -1 ... 1) • (i 1 +i 2 ... i 1 +1) ••••• (n ... i 1 +i 2 +...i k-1 +1) that is (56) Λ I = Λ α(I c ) = Λ α( Ī∼ )
where α(I c ) is the shortest permutation whose descent set is the complementary set of the descent set of I.

The adjoint basis (W µ ) of (Λ σ ) is an analog of the forgotten basis. It is given by ( 57)

F σ = τ ≤σ W τ , or equivalently (58) W τ = σ≤τ µ(τ, σ)F σ ,
where µ(τ, σ) is the Moebius function of the permutoedron [START_REF] Björner | Orderings of Coxeter groups, Combinatorics and algebra[END_REF][START_REF] Edelman | Geometry and the Möbius function of the weak Bruhat order of the symmetric group[END_REF]. The same argument as in the previous section shows that Proposition 6.5. (i) The family (W σ ) where σ goes along the set of connected permutation is a linear basis of the primitive Lie algebra of FQSym.

(ii) The commutative image W σ (X) vanishes unless σ is of the form α(I) for a composition I.

6.3.

Analog of the pair (e, f ) (second kind).

6.3.1. Definition. The Poirier-Reutenauer basis G σ , defined in [START_REF] Poirier | Algèbre de Hopf des tableaux[END_REF] by 

(59) G σ = G σ 1 G σ 2 • • • G σr where σ = σ 1 • σ 2 • • • • • σ r is
G 124365 = G 1 G 1 G 21 G 21 = Λ 1122 .
It is convenient to introduce also the basis F σ , defined by (62)

F σ = F σ 1 F σ 2 • • • F σr
Since the factorization into connected components commutes with inversion, one has (63)

F σ = G σ -1 .
6.3.2. Transition matrices and order relations. To determine the transition matrices between the pairs of bases (F σ ), (F σ ) and (G σ ), (G σ ), we introduce two relations between permutations. Given two permutations σ and τ , we write σ ≺ F τ iff F τ appears in the expansion of F σ in this basis. We define in the same way ≺ G :

(64) σ ≺ G τ ⇐⇒ σ -1 ≺ F τ -1 ,
By definition of the scalar product in FQSym, the relations can equivalently be defined by

(65) σ ≺ F τ ⇐⇒ F σ , G τ = 1 (66) σ ≺ G τ ⇐⇒ G σ , F τ = 1.
Lemma 6.6. The relations ≺ F and ≺ G are order relations.

Proof -We can restrict ourselves to the ≺ F case thanks to (64). By definition, ≺ F is antisymmetric since the product F σ 1 F σ 2 consists in σ 1 • σ 2 plus other terms greater in the lexicographic order. In other words, the transition matrix between the bases F σ and F σ is triangular with ones on the diagonal and this is equivalent to the reflexivity and antisymmetry of ≺ F . Now, let us assume σ ≺ F τ ≺ F ν. This means that τ appears in the shuffle of the connected components factors of σ. The same words for ν and τ . Since the connected components of τ are themselves shuffles of connected components of σ, we deduce σ ≺ F ν, hence proving the transitivity of ≺ F .

The order ≺ F will also be called the catenohedron order (see Fig- 
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F σ = σ≺ F τ F τ ; F σ = σ≺ F τ µ F (σ, τ )F τ (68) G σ = σ≺ G τ G τ ; G σ = σ≺ G τ µ G (σ, τ )G τ .
Note that µ G (σ, τ ) = µ F (σ -1 , τ -1 ).

(69)

M 3 (F σ , F τ ) =        1 . . . . . 1 1 . . . . 1 . 1 . . . 1 . 1 1 . . 1 1 . . 1 . 1 1 1 . . 1        (70) M 3 (F τ , F σ ) =        1 . . . . . -1 1 . . . . -1 . 1 . . . . . -1 1 . . . -1 . . 1 . 1 -1 -1 . . 1       
We shall now see that those matrices can be described in combinatorial terms. 6.3.3. Explicitation of ≺ F and computation of µ F . A chain of length n from σ to τ is a sequence of distinct elements

(71) σ = σ 0 ≺ F • • • σ n-1 ≺ F σ n = τ .
The set of such chains will be denoted by cat n (σ, τ ). One has Proof -We already know that τ → J(τ ) is strictly decreasing. Let σ 1 , σ 2 ∈ [σ, ν] F , and let J i = J(σ i ) be the corresponding compositions. For J = (j 1 , . . . , j r ), let Des (J) be the associated subset of [1, n-1]. We now introduce projectors pT , which are essentially the ones defined in [4, Eq.( 46)], with indexation by subsets, and without standardisation. Let

T = {t 1 < t 2 < • • • t k } ⊂ [1, n - 1 
], τ j being the subword of τ obtrained by restricting the alphabet to [t j-1 + 1, t j ] (with t 0 = 0, t k+1 = n). We set

(73) pT (τ ) := τ 1 • τ 2 • • • τ k • τ k+1 .
For example, 

(76) µ F (σ, τ ) = (-1) #Mστ if τ = sup(M στ ), 0 otherwise .
Proof -Let χ, δ be the characteristic and Dirac functions. One has

(77) χ([σ, τ ]) = δ σ + χ( σ 1 ∈Mστ [σ 1 , τ ]) since ]σ, τ ] = ∪ σ 1 ∈Mστ [σ 1 , τ ]. By inclusion-exclusion, (78) χ 
( σ 1 ∈Mστ [σ 1 , τ ]) = #Mστ k=1 (-1) k-1 F ⊂Mστ |F |=k χ( σ 1 ∈F [σ 1 , τ ]) .
For F ⊂ M στ , let σ F = sup(F ). Then, (77) and ( 78) yield (79)

δ σ = F ⊂Mστ (-1) |F | χ([σ F , τ ]) .
The result comes from the fact that σ F appears only once in the sum, since the immediate successors are associated with subsets differing by exactly one element from the subset associated with σ. 

δ σ = σ≺σ 1 ≺τ µ F (σ, σ 1 )χ([σ 1 , τ ])
whence the result.

6.3.4. Transition between V σ and F σ . Let us recall that the basis V σ of FQSym defined in [START_REF] Duchamp | Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras[END_REF] is the adjoint basis of G σ . Since G σ is the adjoint basis of F σ , it appears that (81)

V τ = σ≺ G τ µ G (σ, τ )F σ .
6.4. Analog of the pair (h, m) (second kind). There is finally another basis that can be defined in the same way as the first pair (h, m).

6.4.1. Definition. Let σ be a permutation and let us consider its de-

composition σ = σ 1 ◮ σ 2 ◮ • • • ◮ σ r into anticonnected components. Then (82) H σ := G σ 1 G σ 2 . . . G σr .
For example,

H 3421 =G 12 G 1 G 1 = G 1234 + G 1243 + G 1324 + G 1342 + G 1423 + G 1432 + G 2314 + G 2341 + G 2413 + G 2431 + G 3412 + G 3421 . (83) 
It is easy to check that (84)

H σ = G σ
where the line over G has the following meaning: expand G σ in the G τ basis and then take the mirror image of all indices. For example, one checks:

(85)

H 3421 = G 1243 = G 1 G 1 G 21 .
In particular, this proves that the transition matrix between H σ and G τ is equal to the transition matrix between G σ and G τ up to the same reordering of the indices of both bases. 6.4.2. Duality. Let U σ be the dual basis of H σ . The same computations as before get immediately the transition matrices between the U and the F.

The splitting formula

The internal product * is defined on FQSym by (86)

G σ * G τ = G τ σ if |τ | = |σ| 0 otherwise
where τ σ is the usual product of the symmetric group.

The fundamental property for computing with the internal product in Sym is the following splitting formula: Proposition 7.1 ( [START_REF] Gelfand | Noncommutative symmetric functions[END_REF]). Let F 1 , F 2 , . . . , F r , G ∈ Sym. Then,

(87) (F 1 F 2 • • • F r ) * G = µ r [(F 1 ⊗ • • • ⊗ F r ) * ∆ r G]
where in the right-hand side, µ r denotes the r-fold ordinary multiplication and * stands for the operation induced on Sym ⊗n by * .

This formula can be extended to FQSym with the following assumptions: F 1 , . . . , F r are arbitrary, but G must belong to the Patras-Reutenauer algebra A, defined in [START_REF] Poirier | Algèbre de Hopf des tableaux[END_REF].

Indeed, by (2), for I = (i 1 , . . . , i r ) and σ k ∈ S i k , we have (90) By linearity, this proves that (7.1) is valid for arbitrary F 1 , . . . , F r ∈ FQSym and H ∈ Sym. Now, as observed by Schocker [22,Thm. 2.3], an identity from Garsia-Reutenauer [6, Thm. 2.1], implies that (89) is valid for any H = π 1 . . . π s , if the π k are in the image of Lie j k ∈ FQSym with the embedding σ → G σ . Such products π 1 . . . π s span the Patras-Reutenauer algebra A = ⊕A n [START_REF] Patras | Lie representations and an algebra containing Solomon's[END_REF]. This is a Hopf subalgebra of FQSym, and each A n is stable under the internal product. Summarizing, we have Proposition 7.2. The splitting formula (7.1) holds for arbitrary F i ∈ FQSym and H in the Patras-Reutenauer algebra A.

The property was known to Schocker [23]. A different proof has been recently published by Blessenohl [START_REF] Blessenohl | An unpublished theorem of Manfred Schocker and the Patras-Reutenauer algebra[END_REF].
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 6362 The family (M σ ) where σ goes along the set of anticonnected permutations is a linear basis of the primitive Lie algebra of FQSym. Analog of the pair (e, f ) (first kind). The basis Λ I of product of elementary symmetric functions of Sym can be extended to FQSym in the same way as the S I . One has here to set (48) Λ σ = τ ≥σ G τ , so that, for example (49) Λ 132 = G 132 + G 231 + G 321 and (50)

  the factorization of σ into connected permutations, has to be considered as another analog of the basis of products of elementary symmetric functions. Indeed, it contains the noncommutative elementary functions Λ n = G ωn = G ωn , where ω n = n • • • 1 and, when σ = α(I) is the minimum element of a descent class D I , one has (60) G α(I) = Λ I c . For example, with I = (3, 2, 1), α(I) = 124365 and (61)

  ures 1 and 2).
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 1 Figure 1. The catenohedron order for n = 3.
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Figure 2 .

 2 Figure 2. The catenohedron order for n = 4.

Lemma 6 . 8 .

 68 (72) µ F (σ, τ ) = n odd #cat n (σ, τ )n even #cat n (σ, τ ) which proves that the restriction of µ F to an interval of ≺ F coincides with the Moebius function of this interval. Let us therefore study the intervals [σ, ν] F for σ ≺ F ν. Let σ ≺ F ν. Any two elements σ 1 , σ 2 of [σ, ν] F admit a supremum σ 1 ∨ σ 2 .
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 611 Let σ ≺ F ν. Then, if σ = ν, there exists τ ∈ [σ, ν] such that l(J(σ)) = l(J(τ )) + 1.Now, by definition of the Moebius function of [σ, τ ], one has (80)

(S i 1 *(G σ 1 *

 11 1 . . . G σr ) * H = (G σ 1 • • • • • G σr ) * S I * HIf H ∈ Sym, the classical splitting formula (7.1) applies, andS I * H = µ r [(S i 1 ⊗ • • • ⊗ S ir ) * r ∆ r H] H (1)) . . . (S ir * H (r) ), (89) using Sweedler's notation, so that the right-hand side of (88) can be rewritten as(G σ 1 • • • • • G σr ) * (H);deg H (k) =i k (S i 1 * H (1) ) . . . (S ir * H (r) ) = (G σ 1 • • • • • G σr ) *   (H);deg H (k) =i k (H (1) ) • • • • • (H (r) ) H (1) ) . . . (G σr * H (r) ) = µ r [(G σ 1 ⊗ G σr ) * r ∆ r H] .

  1 ⊗ S 2341 + S 21 ⊗ S 231 + 2S 21 ⊗ S 123 + S 321 ⊗ S 12 + S 213 ⊗ S 21 + S 2134 ⊗ S 1 + S 3241 ⊗ S 1 + S 32451 ⊗ 1.

	(46)	
	Indeed, here are the pairs of complementary subwords of 52134 whose
	concatenation u • v is smaller than 52134:
	(47)	(ǫ, 52134), (5, 2134), (2, 5134), (1, 5234), (52, 134), (51, 234), (21, 534), (521, 34), (213, 54), (5213, 4), (2134, 5), (52134, ǫ).
	By the argument of [4, Prop. 3.6], which holds for any multiplicative
	basis, we have:

  This family is indeed closed under intersection (but not under union). We shall need the notion of immediate sucessors of σ in the direction ν.

	T	{}	{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
	pT (4231) 4231 1423 2143 2314 1243 1234 2134	1234
	Since the alphabets of the τ j are disjoint intervals, one has
	(74)		Des (J(p T (σ))) ⊇ T
	and the set of those T for which this is an equality is stable under
	intersection, whence the result.
	In the above example, Des (p {1,3} (4231)) = {123} ⊃ {1, 3}, and the
	subsets for which equality is realized are
	(75)	{} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} .

Definition 6.9. For σ ≺ F τ , we shall denote by M στ the set of minimal elements of ]σ, τ ] = [σ, τ ] -{σ}. Proposition 6.10. Let τ ∈ [σ, ν]. The Moebius function µ F (σ, τ ) is given by