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Abstract

In the supervised classification framework, human supervision is required for
labeling a set of learning data which are then used for building the classifier.
However, in many applications, human supervision is either imprecise, diffi-
cult or expensive. In this paper, the problem of learning a supervised multi-
class classifier from data with uncertain labels is considered and a model-
based classification method is proposed to solve it. The idea of the proposed
method is to confront an unsupervised modelling of the data with the super-
vised information carried by the labels of the learning data in order to detect
inconsistencies. The method is able afterward to build a robust classifier
taking into account the detected inconsistencies into the labels. Experiments
on artificial and real data are provided to highlight the main features of the
proposed method as well as an application to object recognition under weak
supervision.

Key words: supervised classification, data with uncertain labels, mixture
models, robustness, label noise, weakly-supervised classification.

1. Introduction

In the supervised classification framework, human supervision is required
to associate labels with a set of learning observations in order to construct
a classifier. However, in many applications, this kind of supervision is either
imprecise, difficult or expensive. For instance, in bio-medical applications,
domain experts are asked to manually label a sample of learning data (MRI
images, DNA micro-array, ...) which are then used for building a super-
vised classifier. The cost of the supervision phase is usually high due to the
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difficulty of labeling complex data. Furthermore, an human error is always
possible in such a difficult task and an error in the supervision phase could
have big effects on the decision phase, particularly if the size of the learn-
ing sample is small. It is therefore very important to provide supervised
classifiers robust enough to deal with data with uncertain labels.

1.1. The label noise problem

In statistical learning, it is very common to assume that the data are
noised. Two types of noise can be considered in supervised learning: the noise
on the explanatory variables and the noise on the response variable. Noise
on explanatory variables has been widely studied in the literature whereas
the problem of noise on the response variable has received less attention in
some supervised situations. While almost all approaches model the noise on
the response variable in regression analysis (see Chap. 3 of [15] for details),
label noise remains an important and unsolved problem in supervised clas-
sification. Brodley and Friedl summarized in [7] the main reasons for which
label noise can occur. Since the main assumption of supervised classification
is that the labels of learning samples are true, existing methods giving a full
confidence to the labels of the learning data naturally provide disappointing
classification results when the learning dataset contains some wrong labels.
Particularly, model-based discriminant analysis methods such as Linear Dis-
criminant Analysis (LDA, see Chap. 3 of [21]) or Mixture Discriminant Anal-
ysis (MDA, see [14]) are sensitive to label noise. This sensitivity is mainly
due to the fact that these methods estimate the model parameters from the
learning data and label noise naturally perturbs these estimates.

1.2. Related works

Learning a supervised classifier from data with uncertain labels can be
achieved using three main strategies: cleaning the data, using robust estima-
tions of model parameters and finally modelling the label noise.

Data cleaning approaches. Early approaches tried to clean the data by re-
moving the misclassified instances using some kind of nearest neighbor al-
gorithm [10, 12, 30]. Other works treat the noisy data using the C4.5 algo-
rithm [17, 32], neural networks [31] or a saturation filter [11]. Hawkins et
al. [16] identified as outliers the data subset whose deletion leads to the small-
est value of the determinant of the within-group covariance matrix. Guyon
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et al. proposed in [13] to remove noisy observations with a cumulative infor-
mation criterion and further checking by human experts. However, removing
noisy instances could decrease the classification bias but also increase the
classification variance since the cleaned dataset is of smaller size than the
original one. Thus, this procedure could give a less efficient classifier than
the classifier built with noisy data when the number of learning data is small.

Robust estimation of model parameters. Therefore, other researchers pro-
posed not to remove any learning instance and to build instead supervised
classifiers robust to label noise. Bashir et al. [2] focused on robust esti-
mation of the model parameters in the mixture model context. Maximum
likelihood estimators of the mixture model parameters are replaced by the
corresponding S-estimators (see Rousseeuw and Leroy [25] for a general ac-
count on robust estimation) but the authors only observed a slight reduction
of the average probability of misclassification. Similarly, Mingers [23], Sakak-
ibara [26] and Vannoorenberghe et al. [29] proposed noise-tolerant approaches
to make decision tree classifiers robust to label noise. Boosting [24, 27] can
also be used to limit the sensitivity of the built classifier to the label noise.

Noise modelling. Among all these solutions, the model proposed in [18] by
Lawrence et al. has the advantage of explicitely including the label noise
in the model with a sound theoretical foundation in the binary classifica-
tion case. Denoting by y and ỹ the actual and the observed class labels
of an observation x, it is assumed that their joint distribution can be fac-
torised as p(x, y, ỹ) = P (y|ỹ)p(x|y)P (ỹ). The class conditional densities
p(x|y) are modelled by Gaussian distributions while the probabilistic rela-
tionship P (y|ỹ) between noisy and observed class labels is specified by a
2 × 2 probability table. An EM-like algorithm is introduced for building a
kernel Fisher discriminant classifier on the basis of the above model. This
work was recently extended by Li et al. in [19] who proposed a new in-
corporation of the noise model in the classifier and relaxed the distribution
assumption of Lawrence et al. by allowing each class density p(x|y) to be
modeled by a mixture of several Gaussians.

1.3. The proposed approach

We propose in this paper a supervised classification method, called Ro-
bust Mixture Discriminant Analysis (RMDA), designed for dealing with la-
bel noised data. Conversely to the noise modelling methods, the approach
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proposed in this paper does not rely on a specific label noise model which
could be ill adapted in some situations. The main idea of our approach is
to compare the supervised information given by the learning data with an
unsupervised modelling based on the Gaussian mixture model. With such
an approach, if some learning data have wrong labels, the comparison of the
supervised information with an unsupervised modelling of the data allows to
detect the inconsistent labels. It is possible afterward to build a supervised
classifier by giving a low confidence to the learning observations with incon-
sistent labels. The main advantages of the proposed approach compared to
previous works are the explicit modelling of more than two classes and the
flexibility of the method due to the use of a global mixture model.

The remainder of this paper is organized as follows. The model of the
proposed method is presented in Section 2 and Section 3 is devoted to the
inference aspects. Experimental studies on simulated and real datasets are
reported in Section 4. Finally, an application to object recognition under
weak supervision is presented in Section 5.

2. Robust mixture discriminant analysis

In order to compare the supervised information given by the learning data
with an unsupervised modelling, we propose to use an unsupervised mixture
model in which the supervised information is introduced.

2.1. The mixture model

Let us consider a mixture model in which two different structures coexist:
an unsupervised structure of K clusters (represented by the random discrete
variable S) and a supervised structure, provided by the learning data, of
k classes (represented by the random discrete variable C). As in the stan-
dard mixture model, we assume that the data (x1, ..., xn) are independent
realizations of a random vector X ∈ R

p with density function:

p(x) =

K
∑

j=1

P (S = j)p(x|S = j), (1)

where P (S = j) is the prior probability of the jth cluster and p(x|S = j) is
the corresponding conditional density. Let us now introduce the supervised
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information carried by the learning data. Since
∑k

i=1
P (C = i|S = j) = 1

for all j = 1, ..., K, we can plug this quantity in (1) to obtain:

p(x) =

k
∑

i=1

K
∑

j=1

P (C = i|S = j)P (S = j)p(x|S = j), (2)

where P (C = i|S = j) can be interpreted as the probability that the jth clus-
ter belongs to the ith class and thus measures the consistency between classes
and clusters. Using the classical notations of parametric mixture models and
introducing the notation rij = P (C = i|S = j), we can reformulate (2) as
follows:

p(x) =
k
∑

i=1

K
∑

j=1

rijπjp(x|S = j), (3)

where πj = P (S = j). Therefore, (3) exhibits both the “modelling” part
of our approach, based on the mixture model, and the “supervision” part
through the parameters rij. Since the modelling introduced in this section
is based on the mixture model, we can use any conditional density to model
each cluster. In particular, the use of the Gaussian mixture model is discussed
below.

2.2. The case of Gaussian mixture models

Among all parametric densities, the Gaussian model is probably the most
used in classification. The Gaussian mixture model has been studied exten-
sively in the last decades and used in many situations (see [1] for a review).

Usual Gaussian model. In the case of the usual Gaussian mixture model, the
conditional density p(x|S = j) is modelled by a Gaussian density φ with
mean µj and covariance Σj . Under this assumption, (3) can therefore be
rewritten as:

p(x) =

k
∑

i=1

K
∑

j=1

rijπjφ(x; µj, Σj). (4)

Parsimonious Gaussian models. In some situations, modelling the data with
a full covariance matrix can be too expensive in terms of number of parame-
ters to estimate. In such a case, it is possible to make additional assumptions
on the structure of the covariance matrix. For example, in the well-known
Linear Discriminant Analysis (LDA) method, the covariance matrices of the
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different components are supposed to be equal to a unique covariance matrix
(common Gaussian model hereafter). It is also possible to assume that the
covariance matrix of each mixture component is diagonal (diagonal Gaussian
model) or proportional to the identity matrix (spherical Gaussian model).
These models are known as parsimonious Gaussian models in the literature
since they require to estimate less parameters than the classical Gaussian
model. Celeux and Govaert proposed in [8] a family of parsimonious Gaus-
sian models based on an eigenvalue decomposition of the covariance matrix
including the previous models. These parsimonious Gaussian models were
then applied in [4] to supervised classification.

Gaussian models for high-dimensional data. Nowadays, many scientific do-
mains produce high-dimensional data like medical research (DNA micro-
arrays) or image analysis (see Section 5 for an illustration). Classifying
such data is a challenging problem since the performance of classifiers suf-
fers from the curse of dimensionality [3]. Classification methods based on
Gaussian mixture models are directly penalized by the fact that the num-
ber of parameters to estimate grows up with the square of the dimension.
It is then necessary to use parsimonious Gaussian models in order to ob-
tain stable classifier. However, these parsimonious models are usually too
constrained to correctly fit the data in a high-dimensional space. To over-
come this problem, Bouveyron et al. proposed recently in [5] a family of
Gaussian models adapted to high-dimensional data. This approach, based
on the idea that high-dimensional data live in low-dimensional spaces, as-
sumes that the covariance matrix of each mixture component has only dj +1
different eigenvalues where dj is the dimension of the subspace of the jth
mixture component. This specific modelling allows to deal with the situa-
tion where the class manifold and the data density could be not correlated
in high-dimensional spaces.

2.3. Link with Mixture Discriminant Analysis

It is possible to establish a link between model (4) and the supervised
method Mixture Discriminant Analysis (MDA) [14] in which each class is
modelled by a mixture of Ki Gaussian densities. Denoting by K =

∑k

i=1
Ki

the total number of Gaussian components and keeping in mind the notations
of Paragraph 2.1, MDA assumes that the conditional density of the ith class,
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i = 1, ..., k, is:

p(x|C = i) =

K
∑

j=1

πijφ(x; µj, Σj), (5)

where πij = P (C = i, S = j) is the prior probability of the jth mixture
component of the ith class. Note that πij = 0 if the jth mixture component
is not included in the ith class. Moreover, remarking that πij = rijπj , we
obtain

p(x) =
k
∑

i=1

K
∑

j=1

rijπjφ(x; µj, Σj), (6)

which formally corresponds to model (4). The main difference is that, in the
MDA case, the labels are certain (supervised context). Thus, rij = P (C =
i|S = j) is known and reduces to rij = 1 if the jth mixture component
belongs to the ith class and rij = 0 otherwise. Consequently, in the case
where the labels of learning data are all consistent with the modelling of
these data, RMDA should provide the same classifier as MDA.

2.4. Classification step

In model-based discriminant analysis, new observations are usually as-
signed to a class using the maximum a posteriori (MAP) rule. The MAP rule
assigns a new observation x to the class for which x has the highest posterior
probability. Therefore, the classification step mainly consists in calculating
the posterior probability P (C = i|X = x) for each class i = 1, ..., k. In the
case of the model described in this section, this posterior probability can be
expressed as follows using the Bayes’ rule:

P (C = i|X = x) =

K
∑

j=1

rijP (S = j)p(x|S = j)/p(x),

and, since P (S = j|X = x) = P (S = j)p(x|S = j)/p(x), we finally obtain:

P (C = i|X = x) =
K
∑

j=1

rijP (S = j|X = x). (7)

Therefore, the classification step of RMDA relies on (7) and requires the
estimation of the probabilities rij as well as the unsupervised classification
probabilities P (S = j|X = x). As we can see, the probabilities rij, which
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quantify the consistency between the groups and the classes, balance the
importance of the groups in the final classification rule. Consequently, the
classifier associated with this decision rule will be mainly based on the groups
which are very likely to be made of points from a unique class.

3. Estimation procedure

Due to the nature of the model proposed in Section 2, the estimation pro-
cedure is made of two steps corresponding respectively to the unsupervised
and to the supervised part of the comparison. The first step consists in esti-
mating the parameters of the mixture model in an unsupervised way leading
to the clustering probabilities P (S = j|X = x). In the second step, the pa-
rameters rij linking the mixture model with the information carried by the
labels of the learning data are estimated by maximization of the likelihood.

3.1. Estimation of the mixture parameters

In this first step of the estimation procedure, the labels of the data are
discarded to form K homogeneous groups. Therefore, this step consists in
estimating the parameters of the chosen mixture model.

Usual and parsimonious Gaussian models. In the case of the usual Gaus-
sian model, the classical procedure for estimating the proportions πj , the
means µj and the variance matrices Σj , for j = 1, ..., K, is the Maximum
Likelihood (ML) method. Unfortunately, it is not possible to find directly a
solution of the maximum likelihood problem. In such a case, the Expectation-
Maximization (EM) algorithm proposed by Dempster et al. (1977) provides
the ML estimates of the parameters using an iterative procedure. We re-
fer to [4] for the parameter estimation in the case of parsimonious Gaussian
models.

Gaussian models for high-dimensional data. If the chosen mixture model
involves Gaussian models for high-dimensional data, this step consists in
estimating the following model parameters: the proportions πj , the means
µj, the subspace variances (a1j , ..., adjj), the noise variance bj , the subspace
orientation matrix Qj and the subspace dimension dj for each mixture com-
ponent. In [5], an EM-like approach is presented to estimate the parameters
πj , µj, aij , bj and Qj . An empirical strategy based on the eigenvalue scree

8



is also proposed in this work to find the intrinsic dimension of each mix-
ture component. We refer to [5] for more details and to Section 5 for an
application to object regognition.

3.2. Estimation of the parameters rij

In this second step of the procedure, the labels of the data are intro-
duced to estimate the k × K matrix of parameters R = (rij) and we use
the parameters learned in the previous step as the mixture parameters. The
parameters rij modify the unsupervised model for taking account of the label
information. They thus indicate the consistency of the unsupervised mod-
elling of the data with the supervised information carried by the labels of the
learning data. Since we consider a supervised problem, the labels c1, . . . , cn

of the learning data x1, . . . , xn are known, and we can therefore introduce
Ci = {xℓ, ℓ = 1, . . . , n /cℓ = i}. From (7), the log-likelihood associated to our
model can be expressed as:

ℓ(R) =

k
∑

i=1

∑

x∈Ci

log P (X = x, C = i),

=

k
∑

i=1

∑

x∈Ci

log

(

K
∑

j=1

rijP (S = j|X = x)

)

+ ξ,

where, in view of (1), ξ =
∑k

i=1

∑

x∈Ci
log p(x) does not depend on R. This

relation is matricially rewritten as:

ℓ(R) =

k
∑

i=1

∑

x∈Ci

log (RiΨ(x)) + ξ, (8)

with the R
K-vector Ψ(x) = (P (S = 1|X = x), . . . , P (S = K|X = x))t and

where Ri is the ith row of R. Consequently, we end up with a constrained
optimization problem:











maximize
∑k

i=1

∑

x∈Ci
log (RiΨ(x)) ,

with respect to rij ∈ [0, 1], ∀i = 1, . . . , k, ∀j = 1, . . . , K,

and
∑k

i=1
rij = 1, ∀j = 1, . . . , K.

Since it is not possible to find an explicit solution to this optimization prob-
lem, an iterative optimization procedure has to be used to compute the max-
imum likelihood estimators of the parameters rij. The partial derivatives
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associated with (8) can be expressed as follows:

∂ℓ(R)

∂rij

=
∑

x∈Ci

Ψj(x)

RiΨ(x)
,

where Ψj(x) is the jth coordinate of Ψ(x). This optimum search has been
implemented in Matlab using the function fmincon which is designed to find
a constrained optimum of multivariate functions.

3.3. Model selection and complexity

We now focus on the problem of choosing the most appropriate mixture
model for RMDA. In the context of this work, this issue includes the selection
of the conditional density of each mixture component as well as the choice of
the number of sub-classes per mixture component. We discuss biefly as well
the complexity and the scalability of RMDA.

Choosing a mixture model. As discussed in Paragraph 2.2, it is sometimes
useful to use a parsimonious model or a model designed for high-dimensional
data depending on the nature of the data and the size of the training dataset.
In order to choose among all existing models, it is possible to use either
cross-validation or information criteria, such as the Bayesian Information
Criterion (BIC) [28]. However, the practician has to be careful when choosing
between both approaches. Indeed, choosing cross-validation implies that
more importance is given to the labels of the learning dataset and this can
be contrary to the idea that there is label noise in the data. On the other
hand, adopting an information criterion, such as BIC, implies that more
importance is given to the unsupervised modelling of the data.

Choosing the number of sub-classes. Selecting the number of sub-classes is
usually a complex problem since different classes can have a different num-
ber of mixture components. For instance, in the case of MDA, trying out all
combinations of component numbers will confront the practician to a compu-
tational problem with a high level of complexity. In [14], the authors proposed
to make the additional assumption that the numbers of mixture components
of the classes are equal but this could be far away from the truth. Due to the
nature of the RMDA model introduced in this paper, choosing the number
of sub-classes per mixture component reduces to choosing the total number
of clusters K. Indeed, the selection of the number of sub-classes per class
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will be implicitely done through the parameters rij which measures the con-
sistency between the sub-classes and the mixture components. Therefore, it
only remains to select the unique parameter K and this easier problem can
be also addressed using cross-validation or BIC (with similar implications).

Complexity and scalability of RMDA. Regarding the model complexity, RMDA
mainly depends on the chosen mixture model since RMDA requires only to
estimate the mixture parameters and the parameters rij . The number of
parameters rij to estimate is (k − 1)K and thus does not depend on the
dimension of the data. Conversely, the number of mixture parameters to
estimate heavily depends on the data dimension. For instance, the num-
ber of parameters to estimate in a Gaussian mixture of K classes in R

p is
larger than Kp2/2. Therefore, when the data dimension becomes high, it is
preferable to switch for a parsimonious model which requires the estimation
of less parameters. In particular, Gaussian models for high-dimensional data
(see Paragraph 2.2) require only the estimation of approximatively Kpd/2
parameters, where d is the intrinsic data dimension. Therefore, these models
are well suited for classifying high-dimensional data as soon as d is small
compared to the original data dimension p. Regarding now the scalability,
RMDA inherits its flexibility and its ability to model complex processes from
MDA. This feature is mainly due to the modelling of each class by a mixture
of several Gaussians in order to be able to deal with non-Gaussian data.

4. Experimental results

In this section, we present experimental results on artificial and real
datasets in situations illustrating the problem of supervised classification
under uncertainty.

4.1. Experimental setup

In the following studies, we consider the general problem of label switching
between the classes. In this case, complex models are very sensitive but
parsimonious models can also be affected if the contamination rate is high.
In order to simulate a label noise, the observation labels have been switched
following a Bernoulli distribution with parameter η ranging from 0 to 1 and
representing the contamination rate. Each label ℓ is therefore left unchanged
with probability 1 − η or switches to a value ℓ′ 6= ℓ with probability η/k.
In all studies, the performance of the methods is assessed by the correct
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Figure 1: Decision rules for MDA and RMDA for increasing contamination rates η on a
2-dimensional simulated dataset (2 classes).
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Figure 2: Performance of LDA, MDA, RLDA and RMDA for increasing contamination
rates on a simulated dataset (2 classes).

classification rate and computed on a test dataset. The experiments have
been repeated 25 times in order to average the classification results.

4.2. Binary classification (simulated data)

For this first experiment, we simulated the data following the mixture
model of MDA and RMDA. The dataset is made of 2 classes and each class
was modeled with a Gaussian mixture of 2 components. We used for the mix-
ture components of each class a spherical Gaussian model. The means of the
different mixture components were chosen in order to obtain two separated
enough classes. Figure 1 compares the performance of MDA and RMDA (in-
troduced in this paper) on a 2-dimensional simulated dataset for increasing
contamination rates η. As expected, MDA and RMDA give similar decision
rules when there is no label noise (η = 0). This observation confirms the
existing link between both methods (see Paragraph 2.3). For higher con-
tamination rates η, MDA builds very unstable decision rules whereas RMDA
demonstrates its robustness by providing very stable decision boundaries.
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Figure 3: Some examples of the USPS-24 dataset.

The performance of LDA, MDA, RLDA (proposed by Lawrence et al. (2001))
and RMDA on a 25-dimensional dataset simulated under similar conditions
is illustrated on Figure 2. First, it appears that RMDA is as efficient as
MDA when there is no label noise and this illustrates again the equivalence
between both methods in this special case. On the one hand, LDA and MDA
appear to be sensitive to contamination. Particularly, MDA becomes very
unstable for contamination rates higher than 0.2. The behavior of these two
supervised methods is not surprising since they both have full confidence
in the labels of the data. On the other hand, RLDA turns out to be more
robust than LDA but its performance quickly decreases for contamination
rates higher than 0.3. Finally, RMDA appears to be particularly robust for
a large panel of contamination rates (up to 0.4).

4.3. Binary classification (real data)

We consider here a dataset from the real world, called USPS-24, extracted
from the well-known USPS dataset1. The learning dataset is made of 1383
hand-written digits. Among them, 731 observations belong to the class of the
digit 2 and of 652 observations belong to the class of the digit 4. Similarly,
the test dataset contains 298 elements: 198 and 200 observations respectively
from the classes of the digit 2 and 4. These two classes have been chosen since
they have a high misclassification rate in the original USPS dataset. Each
observation of the USPS-24 dataset corresponds to a 16×16 grey level image
of a digit and represented as a 256-dimensional vector. Figure 3 shows some
samples from the dataset. For both MDA and RMDA, each class was modeled
by a mixture of 5 Gaussians and, due to the high dimension of the data, we
used for each mixture component a spherical Gaussian model. Figure 4
shows the performance of LDA, MDA, RLDA and RMDA on the USPS-24
dataset for increasing contamination rates. As in the previous experiment,

1The USPS dataset is available for download at www.kernel-machines.org.
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Figure 4: Performance of LDA, MDA, RLDA and RMDA for increasing contamination
rates on the USPS-24 dataset.

LDA and MDA appear to be very sensitive to contamination. RLDA is again
more robust than LDA and MDA but its performance decreases quickly for
contamination rates higher than 0.2. Finally, RMDA appears to be very
robust for contamination rates up to 0.4 and to be almost as efficient as the
other methods when the label noise is low. In this experiment, RMDA has
therefore demonstrated its ability to deal with label noise in real and complex
situations.

4.4. Multi-class classification (simulated data)

This last simulation study aims at demonstrating the ability of RMDA to
deal with label noise in multi-class classification problem whereas the existing
methods consider only binary classification. Indeed, the model of RLDA,
proposed by Lawrence et al. [18] and its extension [19] are designed for only
two classes. We therefore compare here RMDA to only LDA and MDA which
are able to deal with multi-class classification problems as well. As before,
we simulated the data following the mixture model of MDA and RMDA.
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Figure 5: Performance of LDA, MDA and RMDA for increasing contamination rates on a
simulated dataset (3 classes).

The simulated dataset is made of 3 classes and each class was modeled with
a Gaussian mixture of 2 components in a 25-dimensional space. We used
for the mixture components of each class a spherical Gaussian model. The
means of the different mixture components were again chosen in order to
obtain separated enough classes. Figure 5 shows the performance of LDA,
MDA and RMDA for increasing contamination rates. Unsurprisingly, it can
be noticed that the average correct classification rate of the methods is lower
than in the binary classification case and decreases to 1/3. Secondly, it
appears that RMDA is again as efficient as MDA when there is no label
noise. Regarding the robustness of the studied methods, LDA and MDA
have similar behaviours as in the binary case. The performance of MDA
decreases almost linearly with the contamination rate. As in the previous
experiments, LDA is more robust than MDA for low contamination rates
but its performance decreases after 0.2. Finally, RMDA turns out to be
as robust as in the binary case since its performance is almost constant for
contamination rates up to 0.45. This experiment illustrates the robustness
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of RMDA in the multi-class classification case which is a more common and
difficult problem in practice than the binary classification problem.

5. Application to object recognition under weak supervision

The supervised classification method proposed in this work is designed
for performing classification in the presence of label noise. We present here
an application of this method to object recognition under weak supervision.

5.1. Object recognition under weak supervision

Object recognition is one of the most challenging problems in computer
vision and it requires that human experts segment a very large number of
images for each object category. Earlier approaches characterized the objects
by their global appearance and were not robust to occlusion, clutter and
geometric transformations. To avoid these problems, recent methods use
local image descriptors for selecting the relevant parts of the images and
then classify these local descriptors to one of the object categories. Regarding
the supervision, it is clear that it is impossible that human experts segment
images for each object category given the infinite number of existing object
categories. However, it is easy to obtain images containing a given object
(using Google Image for instance) and to assume that all descriptors of these
images are representative of the studied object even though we know that it
is wrong. By doing that, we consciously introduce a label noise between the
class “object” and the class “background” but, using the approach proposed in
this paper, it should be possible to identify all pixels which actually belong to
the class “object” and, finally, localize the studied object in the images. This
approach will be called in the sequel weakly-supervised object recognition.

5.2. The data

The object category database used in this study is the Pascal dataset [9]
which has been proposed for an object localization challenge organized by
the Pascal Network. Examples of images in this dataset are presented in
Figure 6. The Pascal dataset is divided into four categories: motorbikes, bi-
cycles, people and cars. It contains 684 images for learning and two test sets:
test 1 (689 images) and test 2 (956 images). Images in test 1 were collected
from the same distribution as the training images. The set test 2 can be seen
as a harder challenge since images are collected by “Google Image” and thus
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Figure 6: Some images used for learning and testing from the Pascal database [9].

come from a different distribution than the training set. An additional diffi-
culty for test 2 is that many images contain instances of several categories.
The Pascal dataset also provides for each image a bounding box indicating
the localization of the object. The local image descriptors were obtained
by first using the Harris-Laplace detector [22] to extract interest points and
by then using the SIFT descriptor [20] to represent the scale-invariant re-
gions around these points. The dimension of the obtained SIFT features is
128. See [6] for more details on the image descriptor extraction. Therefore,
the object recognition task reduces to classifying the detected interest points
in a 128-dimensional space. We evaluated our approach in both supervised
and weakly supervised frameworks. In the supervised framework, only the
descriptors located inside the bounding boxes were labeled as belonging to
the class “object” in the learning step. Conversely, in the weakly supervised
framework, all descriptors of images containing at least one instance of the
object were labeled as belonging to the class “object” for learning. Figure 7
shows on the left panel an original image and on the right panel all extracted
interest points.
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Figure 7: An original image from the Pascal test 1 dataset and the extracted interest
points.

5.3. Experimental setup

We compared our approach based on RMDA with different Gaussian mod-
els to the object localization methods of the Pascal Challenge [9]. For RMDA,
we used parsimonious Gaussian models as well as Gaussian models for high-
dimensional data, see Paragraph 2.2. On the one hand, we selected the
following parsimonious Gaussian models: common covariance matrix Gaus-
sian model (RMDA common), diagonal Gaussian model (RMDA diagonal),
spherical Gaussian model (RMDA spherical). On the other hand, the follow-
ing Gaussian models for high-dimensional data were also selected: [aijbiQidi],
[aijbQidi], [aibiQidi], [aibQidi] and [aibiQid]. We refer to [5] for details on the
different models. For all the models the parameters were estimated via the
EM algorithm using the same initialization. For high-dimensional models,
the resulting average value for intrinsic dimensions di was approximately 10.
In this experiment, we used 50 clusters for modelling each of the four object
categories whatever the clustering method used. In order to compare our
results with the ones of the Pascal Challenge, we used the localization mea-
sure “Average Precision” (AP) proposed for this competition. It quantifies
the consistency between the interest points classified as “object” with the
provided bounding boxes (see [9] for more details). Therefore, the higher the
AP value is, the better the object localization is.

5.4. Experimental results

Figure 8 illustrates the localization process with our approach in the
weakly-supervised framework on an image from the test 1 dataset. Table 1
summarizes the localization results obtained in the supervised and weakly-
supervised frameworks with our approach on both Pascal test 1 and test 2
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Figure 8: Weakly-supervised object localization on Pascal test 2 : An original image from
the Pascal test 1 dataset (left), the extracted interest points (center) and the interest
points classified as “object” with the provided bounding box (right).

and reports the results of the best method of the Pascal challenge. The
values presented in this table are the mean of the AP measure obtained by
the different methods over the 4 object categories (motorbikes, bicycles, peo-
ple and cars). Detailed results are presented in the appendix. On the one
hand, our approach performs well in the supervised case compared to the
results obtained during the Pascal competition. Moreover, the models de-
signed for high-dimensional data perform best among the different Gaussian
mixture models. In particular, RMDA with high-dimensional models wins
two “competitions” (bicycle and people) on Pascal test 1 (see Appendix A.1)
and three “competitions” (motorbike, bicycle and people) on Pascal test 2
(see Appendix A.2). This is despite the fact that our approach assumes
that there is only one object per image for each category and this reduces
the performance when multiple objects are present. On the other hand, it
appears that the results obtained in the weakly-supervised framework are
not very different from those obtained in the supervised framework. This
means that our approach efficiently identifies discriminative clusters of each
object category and that even with a weak supervision. We do not have the
corresponding results for the Pascal challenge methods since there was no
competition for detection in the weakly-supervised framework. However, we
can remark that RMDA performs best in the weakly-supervised framework
compared to the results of the Pascal Challenge methods in the supervised
framework.

These results are actually promising and mean that the weakly-supervised
approach is tenable for object localization since the manual annotation of
training images is time consuming. Furthermore, this study has shown that
classification with label noise can be extended to classification under weak
supervision and that RMDA is able to solve both problems in complex situ-

20



Database Pascal test 1 Pascal test 2

Supervision full weak full weak

RMDA [aijbiQidi] 0.302 0.273 0.172 0.145
RMDA [aijbQidi] 0.318 0.287 0.181 0.147
RMDA [aibiQidi] 0.313 0.285 0.183 0.142
RMDA [aibQidi] 0.318 0.283 0.176 0.148

RMDA [aibiQid] 0.314 0.287 0.179 0.130

RMDA spherical 0.271 0.216 0.149 0.106
RMDA diagonal 0.276 0.227 0.161 0.110
RMDA common 0.267 0.246 0.164 0.116

Best method of [9] 0.279 / 0.112 /

Table 1: Object localization results on the Pascal database: mean of the AP measure over
the 4 object categories (motorbikes, bicycles, people and cars).

ations.

6. Conclusion and discussion

We have proposed in this paper a multi-class supervised classification
method, called Robust Mixture Discriminant Analysis (RMDA), for per-
forming classification in the presence of label noise. The experimental studies
show that RMDA is as efficient as fully supervised techniques when the label
noise is low and that RMDA is very robust to label noise, even in complex
and real situations. In particular, RMDA appears to be more robust than
existing methods. In addition, RMDA is able to deal with multi-class classi-
fication problems whereas existing methods cannot. Finally, we believe that
this work may open the way to a new kind of learning in which a complete
human supervision is not possible and replaced by a less expensive super-
vision. As an example, RMDA has been successfully applied for localizing
objects in natural images in a weakly-supervised context which does not re-
quire the manual segmentation of the objects in many learning images. The
classification method proposed in this paper could be therefore a way to solve
an important issue of learning theory in the future: How to learn under weak
supervision?
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A. Appendix: detailed results for object localization

A.1. Object localization on Pascal test 1

Model Motorbike Bike People Car Mean

RMDA [aijbiQidi] 0.665 0.403 0.047 0.095 0.302
RMDA [aijbQidi] 0.680 0.439 0.032 0.123 0.318

RMDA [aibiQidi] 0.664 0.404 0.062 0.120 0.313
RMDA [aibQidi] 0.671 0.437 0.035 0.128 0.318

RMDA [aibiQid] 0.665 0.432 0.065 0.093 0.314
RMDA spherical 0.572 0.349 0.042 0.118 0.271
RMDA diagonal 0.587 0.344 0.052 0.122 0.276
RMDA common 0.640 0.341 0.041 0.049 0.267
Best method of [9] 0.886 0.119 0.013 0.613 0.279

Table 2: Object localization results (AP measure) in the supervised case on the Pascal
test 1 database for the 4 object categories (motorbikes, bicycles, people and cars).

Model Motorbike Bike People Car Mean

RMDA [aijbiQidi] 0.658 0.384 0.020 0.027 0.273
RMDA [aijbQidi] 0.686 0.404 0.038 0.020 0.287

RMDA [aibiQidi] 0.674 0.399 0.027 0.042 0.285
RMDA [aibQidi] 0.671 0.403 0.022 0.034 0.283
RMDA [aibiQid] 0.677 0.410 0.035 0.026 0.287

RMDA spherical 0.592 0.228 0.021 0.025 0.216
RMDA diagonal 0.603 0.234 0.044 0.027 0.227
RMDA common 0.655 0.293 0.015 0.021 0.246

Table 3: Object localization results (AP measure) in the weakly-supervised case on the
Pascal test 1 database for the 4 object categories (motorbikes, bicycles, people and cars).

22



A.2. Object localization on Pascal test 2

Model Motorbike Bike People Car Mean

RMDA [aijbiQidi] 0.305 0.169 0.061 0.154 0.172
RMDA [aijbQidi] 0.316 0.164 0.091 0.151 0.181
RMDA [aibiQidi] 0.315 0.172 0.091 0.155 0.183

RMDA [aibQidi] 0.307 0.169 0.091 0.136 0.176
RMDA [aibiQid] 0.351 0.164 0.061 0.141 0.179
RMDA spherical 0.261 0.142 0.045 0.149 0.149
RMDA diagonal 0.245 0.153 0.091 0.156 0.161
RMDA common 0.301 0.163 0.045 0.147 0.164
Best method of [9] 0.341 0.113 0.021 0.304 0.112

Table 4: Object localization results (AP measure) in the supervised case on the Pascal
test 2 database for the 4 object categories (motorbikes, bicycles, people and cars).

Model Motorbike Bike People Car Mean

RMDA [aijbiQidi] 0.304 0.141 0.021 0.115 0.145
RMDA [aijbQidi] 0.312 0.141 0.018 0.115 0.147
RMDA [aibiQidi] 0.311 0.161 0.045 0.049 0.142
RMDA [aibQidi] 0.298 0.153 0.026 0.116 0.148

RMDA [aibiQid] 0.322 0.141 0.023 0.034 0.130
RMDA spherical 0.254 0.111 0.023 0.037 0.106
RMDA diagonal 0.239 0.120 0.011 0.069 0.110
RMDA common 0.276 0.142 0.008 0.036 0.116

Table 5: Object localization results (AP measure) in the weakly-supervised case on the
Pascal test 2 database for the 4 object categories (motorbikes, bicycles, people and cars).
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