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Má
ajová and �koviera Conje
ture on Cubi
Graphs.J.L. Fouquet and J.M. VanherpeL.I.F.O., Fa
ulté des S
ien
es, B.P. 6759Université d'Orléans, 45067 Orléans Cedex 2, FRNovember 7, 2009Abstra
tA 
onje
ture of Má�
ajová and �Skoviera [8℄ asserts that every bridgeless
ubi
 graph has two perfe
t mat
hings whose interse
tion does not 
ontainany odd edge 
ut. We prove this 
onje
ture for graphs with few verti
esand we give a stronger result for tra
eable graphs.keywords :Cubi
 graph; Edge-partition; Tra
eable graphs1 Introdu
tionThe following 
onje
ture �rst appeared in [5℄ is known as the Fulkerson Conje
-ture, see [9℄.Conje
ture 1 If G is a bridgeless 
ubi
 graph, then there exist 6 perfe
t mat
h-ings M1, . . . , M6 of G with the property that every edge of G is 
ontained inexa
tly two of M1, . . . , M6.A 
onsequen
e of the Fulkerson 
onje
ture would be that every bridgeless
ubi
 graph has 3 perfe
t mat
hings with empty interse
tion (take 3 distin
t ofthe 6 perfe
t mat
hings given by the 
onje
ture). The following weakening ofthis (also suggested by Berge) is still open.Conje
ture 2 There exists a �xed integer k su
h that every bridgeless 
ubi
graph has a list of k perfe
t mat
hings with empty interse
tion.Fan and Raspaud [3℄ 
onje
tured that any bridgeless 
ubi
 graph 
an beprovided with three perfe
t mat
hings with empty interse
tion(we shall say alsonon interse
ting perfe
t mat
hings).Conje
ture 3 [3℄ Every bridgeless 
ubi
 graph 
ontains perfe
t mat
hing M1,
M2, M3 su
h that

M1 ∩ M2 ∩ M3 = ∅1



The following Conje
ture is due to Má�
ajová and �Skoviera in [8℄Conje
ture 4 Every bridgeless 
ubi
 graph has two perfe
t mat
hings M1, M2su
h that M1 ∩ M2 does not 
ontain an odd edge 
ut.A join in a graph G is a set J ⊆ E(G) su
h that the degree of every vertex inG has the same parity as its degree in the graph (V (G), J). A perfe
t mat
hingbeing a parti
ular join in a 
ubi
 graph Kaiser and Raspaud 
onje
tured in [6℄Conje
ture 5 [6℄ Every bridgeless 
ubi
 graph admits two perfe
t mat
hings
M1, M2 and a join J su
h that

M1 ∩ M2 ∩ J = ∅As a matter of fa
t Conje
tures 4 and 5 are equivalent. Equivalen
e 
omes fromthe fa
t that a set of edges 
ontains a join if and only if this set interse
ts allodd edge 
uts.If true Conje
ture 1 implies Conje
ture 3 whi
h itself implies Conje
tures 4and 5. All those 
onje
tures being obviously true for 
ubi
 graphs with 
hro-mati
 index 3, it is useful to 
onsider the following parameter for 
ubi
 graphs.The oddness of a 
ubi
 graph G is the minimum number of odd 
ir
uits in a2-fa
tor of G. In [6℄ Kaiser and Raspaud proved that Conje
ture 5 holds truefor bridgeless 
ubi
 graph of oddness two.In this paper, we 
onsider Conje
ture 4. We prove that a minimal 
oun-terexample to Conje
ture 5 must have at least 50 verti
es.Moreover, we prove that Conje
tures 4 and 5 hold true while the order ofthe graph is less than a fun
tion of the 
y
li
 edge 
onne
tivity. Finally, we givea re�ning of Kaiser and Raspaud result [6℄ when 
onsidering 
ubi
 bridgelesstra
eable graphs.When A is a set of edges, V (A) will denote the set of verti
es that arean endpoint of some edge in A. If M is a perfe
t mat
hing of a 
ubi
 graph
G = (V, E), then denote by GM the 2-fa
tor GM = (V, E − M). When X is aset of verti
es, δX denotes the set of edges with pre
isely one end in X . An edge
ut is a set of edges whose removal renders the graph dis
onne
ted and whi
his in
lusion-wise minimal with this property. The 
y
li
 edge 
onne
tivity of a
ubi
 graph is the size of a smallest edge 
ut in a graph su
h that at least twoof the 
onne
ted 
omponents 
ontain 
y
les. A graph G is said to be tra
eablewhenever G has a Hamiltonian path that is a path whi
h visits ea
h vertexexa
tly on
e.Notations ≺W and W (z, t), 
on
atenation of sub-walks. Let W be awalk of G. Writing W = x . . . y indu
es a natural order on the verti
es of W ,let us denote ≺W this order. When W = x . . . y, W will be said to start with xand to end with y.When z and t are verti
es of W su
h that z ≺W t, the sub-walk z . . . t of W whose endpoints are z and t will be denoted W (z, t). Whena walk W (W = W (x, y)) and a walk W ′ (W ′ = W ′(x′, y′)) have a 
ommonvertex, say a, we 
an 
on
atenate the sub-walks W (x, a) and W ′(a, y′) in order2



to obtain another walk say W ′′, also denoted W (x, a) + W ′(a, y′), su
h that
W ′′(x, a) = W (x, a) and W ′′(a, y′) = W ′(a, y′).For basi
 graph-theoreti
 terms, we refer the reader to Bondy and Murty [1℄.2 Preliminary results2.1 Fra
tional perfe
t mat
hingsThe following result belongs to folkloreTheorem 6 Let G be a 
ubi
 bridgeless graph. G is 3-edge 
olourable if andonly if there is a perfe
t mat
hing in G that does not 
ontain any odd edge 
ut.Proof Assume that G has a 3-edge 
olouring using 
olours α, β and γ. Let
Mα be the set of edges 
oloured with α, if Mα 
ontains an odd edge 
ut, theremust be a partition (V1, V2) of V (G) into two odd sets su
h that the edges of Xhave one end in V1 and the other end in V2. Sin
e all the edges of X are 
olouredwith α, the set of edges in V1 
oloured with β must be a perfe
t mat
hing in
V1, a 
ontradi
tion sin
e V1 has an odd number of verti
es.Conversely, 
onsider a perfe
t mat
hing M that does not 
ontain any oddedge 
ut. Suppose that the 2-fa
tor GM 
ontains an odd 
y
le C, thus δC is anodd edge 
ut entirely 
ontained in M , a 
ontradi
tion. Consequently GM doesnot 
ontain any odd 
y
le, it follows that G is 3-edge 
olourable. �In order to prove Conje
ture 4 for bridgeless 
ubi
 graphs with few verti
es,we will 
onsider the notion of fra
tional perfe
t mat
hing as used in [7℄.For a graph G = (V, E), a ve
tor w of RE is said to be a fra
tional perfe
tmat
hing whenever w satis�es the following properties (the entry of w 
orre-sponding to e ∈ E being denoted w(e) and w(A) = Σe∈Aw(e), for A ⊆ E) :
• 0 ≤ w(e) ≤ 1 for ea
h edge e of G

• w(δ{v}) = 1 for ea
h vertex v of G

• w(δX) ≥ 1 for ea
h X ⊆ V of odd 
ardinality.The perfe
t mat
hing polytope is the 
onvex hull of the set of in
iden
eve
tors of perfe
t mat
hings of G. In [2℄ Edmonds showed that a ve
tor w ∈ REbelongs to the perfe
t mat
hing polytope of G if and only if it is a fra
tionalperfe
t mat
hingMoreover, when χA denotes the 
hara
teristi
 ve
tor of the edge set A wewill use the following tool :Lemma 7 [7℄ If w is a fra
tional perfe
t mat
hing in a graph G = (V, E)and c ∈ RE, then G has a perfe
t mat
hing M su
h that c.χM ≥ c.w where .denotes the s
alar produ
t. Moreover, there exists su
h a perfe
t mat
hing Mthat 
ontains exa
tly one edge of ea
h edge 
ut C with w(C) = 1.It is shown in [7℄, among other results, that there must exist a perfe
t mat
h-ing M1 that interse
ts all edge 
uts of size 3 into a single edge and a perfe
t3



mat
hing M2 su
h that |M2 −M1| ≥
4
15 |E(G)|. When the graph has n verti
es,sin
e the size of a perfe
t mat
hing is pre
isely n

2 , it must be pointed out that
|M1 ∩ M2| ≤

n
10 .Observe that there is an alternate proof of Theorem 6 in terms of fra
tionalperfe
t mat
hings . Consider indeed a perfe
t mat
hing M that does not 
ontainany odd edge 
ut. We de�ne a fra
tional perfe
t mat
hing as follows : w(e) = 0when e ∈ M and w(e) = 1

2 otherwise. Given an odd set of verti
es, say X , δXis an odd edge 
ut whi
h interse
ts M in a odd number of edges, sin
e δX * M ,
w is a fra
tional perfe
t mat
hing. By Lemma 7 there is a perfe
t mat
hing M ′su
h that

c.χM ′

> c.w =
1

2
×

2

3
× |E| =

n

2
.When c = 1 − χM , sin
e c.χM ′

= |M ′\M | we have |M ′\M | = n
2 = |M ′| andthus M ∩ M ′ = ∅. It follows that χ′(G) = 3.2.2 Balan
ed perfe
t mat
hingsLet M be a perfe
t mat
hing of a 
ubi
 graph and let C = {C1, C2 . . . Ck} bethe 2-fa
tor GM . A ⊆ M is a balan
ed M−mat
hing whenever there is a perfe
tmat
hing M ′ su
h that M ∩ M ′ = A. That means that ea
h odd 
y
le of C isin
ident to an odd number of edges in A and the sub-paths determined by theends of A ∩ M ′ on the 
y
les of C in
ident to A have odd lengths.Lemma 8 Let M be a perfe
t mat
hing of a 
ubi
 graph G. A mat
hing A isa balan
ed M -mat
hing if and only if the 
onne
ted 
omponents of GM−A areeither odd paths or even 
y
les.Proof Sin
e GM is a 2-fa
tor of G, the 
onne
ted 
omponents of the subgraphindu
ed by V (G) − V (A) must be 
y
les or paths. Sin
e A is a balan
ed M -mat
hing, the 
onne
ted 
omponents of this graph must be even 
y
les or oddpaths.Conversely, assume that the 
onne
ted 
omponents of GM − V (A) are oddpaths or even 
y
les. Let A′ be a perfe
t mat
hing of GM − V (A), we set

M ′ = A ∪ A′ and we are done. �Lemma 9 A bridgeless 
ubi
 graph 
ontains 3 non interse
ting perfe
t mat
hingif and only if there is a perfe
t mat
hing M and two balan
ed disjoint balan
ed
M−mat
hings.Proof Assume that M1, M2, M3 are three perfe
t mat
hings of G su
h that
M1 ∩ M2 ∩ M3 = ∅. Let M = M1, A = M1 ∩ M2 and B = M1 ∩ M3. Sin
e
A ∩ B = M1 ∩ M2 ∩ M3, A and B are two balan
ed M−mat
hings with emptyinterse
tion.Conversely, assume that M is a perfe
t mat
hing and that A and B aretwo balan
ed M−mat
hings with empty interse
tion. Let M1 = M , M2 be a4



perfe
t mat
hing su
h that M2 ∩ M1 = A and M3 be a perfe
t mat
hing su
hthat M3 ∩ M1 = B. We have M1 ∩ M2 ∩ M3 = A ∩ B and the three perfe
tmat
hings M1, M2 and M3 have an empty interse
tion. �3 On 
ubi
 graphs with few verti
esWe �rst prove that Conje
ture 4 holds true for bridgeless 
ubi
 graphs havingless than 50 verti
esTheorem 10 Let G be a bridgeless 
ubi
 graph of order n < 50. There areperfe
t mat
hings M and M ′ su
h that M ∩ M ′ does not 
ontain any edge 
ut.Proof We know from [7℄ that there must exist a perfe
t mat
hing M whi
hinterse
ts all edge 
uts of size 3 into a single edge and a perfe
t mat
hing M ′su
h that |M ∩ M ′| ≤ n
10 . It is assumed n < 50, thus |M ∩ M ′| < 5. Hen
e anodd edge 
ut, say C in M ∩ M ′ must be of size 3, but a su
h edge 
ut 
annotexist sin
e M interse
ts C in pre
isely one edge. �Let us now 
onsider 
y
li
 edge 
onne
tivity in 
ubi
 graphs.Theorem 11 Let G be a 
ubi
 graph of order n with 
y
li
 edge 
onne
tivity

k ≥ 3. One of the following holds.1. There are two perfe
t mat
hings M and M ′ su
h that |M∩M ′| ≤ n

2(2⌊ k
2 ⌋+3)

.2. For all perfe
t mat
hing M there is an edge 
ut of size 2⌊k
2 ⌋ + 1 entirely
ontained in M .Proof For 
onvenien
e we set s = 2⌊k

2 ⌋ + 3. Let M be a perfe
t mat
hingthat does not 
ontain any odd edge 
ut of size s− 2. The graph being 
y
li
ally
k-edge 
onne
ted s − 2 is the minimum size of an odd edge 
ut in G. We set
w(e) = 1

s
when e ∈ M and w(e) = s−1

2s
otherwise. If X is an odd set of verti
es,

δX is an odd edge 
ut of size at least s − 2. If |δX | ≥ s then w(δX) ≥ 1. If
|δX | = s − 2 then there are at least 2 edges of δX whi
h are not in M and
w(δX) ≥ 1 again. Hen
e w is a fra
tional perfe
t mat
hing.Applying Lemma 7 with c = 1−χM we get a perfe
t mat
hing, say M ′ su
hthat c.χM ′

≥ c.w = n × s−1
2s

. Sin
e c.χM ′

= |M ′ − M | and |M ′| = n
2 it followsthat |M ∩ M ′| ≤ n

2s
, as 
laimed. �Theorem 12 Let G be a 
ubi
 graph of order n with 
y
li
 edge 
onne
tivity

k ≥ 4. If n < 2(2⌊k
2⌋+ 3)(2⌊k

2⌋+ 1) then there are two perfe
t mat
hings whoseinterse
tion does not 
ontain any odd edge 
ut.5



Proof On
e again we denote s = 2⌊k
2⌋+ 3. We 
an assume that every perfe
tmat
hing 
ontains an odd edge 
ut of size s − 2. Otherwise, from Theorem 11there are two perfe
t mat
hings whose interse
tion 
ontains less than n

2s
= s−2edges and we are done.Let M be a perfe
t mat
hing of G. We set w(e) = 1

s−2 when e ∈ M and
w(e) = s−3

2(s−2) otherwise. The weight of an edge being at least 1
s−2 and anodd edge 
ut having at least s − 2 edges, w is a fra
tional perfe
t mat
hing. If

c = 1 − χM , by Lemma 7 there is a perfe
t mat
hing M ′ whi
h interse
ts in asingle edge every edge 
ut C su
h that w(C) = 1.In addition we know that c.χM ′

≥ c.w, in other words |M ∪M ′| ≥ 2
3 × |E|×

s−3
2(s−2) = n

2 × s−3
s−2 . Consequently |M ∩ M ′| ≤ n

2(s−2) . Sin
e n < 2s(s − 2) wehave that |M ∩ M ′| ≤ s.Assume that M ∩ M ′ 
ontains an odd edge 
ut C. By the above relation
|C| = s − 2 and then w(C) = 1, a 
ontradi
tion sin
e M ′ interse
ts the edge
uts of size s − 2 in a single edge. �An example of 
onsequen
e of Theorem 12 is that Conje
ture 4 and thereforeConje
ture 5 hold true for 
y
li
ally 4-edge-
onne
ted graphs having less than
70 verti
es.Remark 13 Kaiser, Král and Norine in [7℄ showed that every bridgeless 
ubi
graph 
ontains two perfe
t mat
hings whose interse
tion has at most n

10 edges.This result strengthen Fulkerson 
onje
ture. Indeed, if we have a set of 6 perfe
tmat
hings su
h that any edge of a bridgeless 
ubi
 graph is 
overed exa
tly twi
eby this set, we 
ertainly have two of them whose interse
tion has at most n
10edges. Observe that this upper bound would be implied by Conje
ture 1. A
hallenging question is thus to 
hara
terize the bridgeless 
ubi
 graphs for whi
h

n
10 is optimal. The Petersen graph is obviously su
h a graph, but no other graphis known with that property and we 
an 
onje
ture that this is the only graph.Theorem 11 above says that in a 
y
li
ally 4−edge 
onne
ted 
ubi
 graph,with 
hromati
 index 4, either we 
an �nd two perfe
t mat
hings whose inter-se
tion has at most n

14 edges or every two perfe
t mat
hings has an interse
tion
ontaining an odd 
utset of size 5, a support to the above 
onje
ture.4 On 
ubi
 tra
eable graphsIn [6℄ Kaiser and Raspaud proved that Conje
ture 5 holds true for bridgeless
ubi
 graph of oddness two. In the following we prove a stronger result for 
ubi
bridgeless tra
eable graphs.4.1 An auxiliary graphLet us 
onsider a Hamiltonian path of G. It will be 
onvenient to denote theverti
es of G as integers from 1 to n and the Hamiltonian path will be merely6



denoted 1 . . . n. Hen
e ij (i 6= j ∈ {1 . . . n}) denotes an edge of G while the edgejoining i to i + 1(1 ≤ i ≤ n − 1) will be denoted ei.Suppose that 
hromati
 index of G is 4, we 
an 
olour the edges of G inthe following way. The edges ei (1 ≤ i ≤ n − 1) of the Hamiltonian pathare alternately 
oloured with α and β (the �rst edge e1 being 
oloured with
α). The remaining edges are 
oloured with γ with the ex
eption of one edgein
ident with 1 and one edge in
ident with n. These two edges are 
oloured by
δ. The set Mα of edges 
oloured with α is a perfe
t mat
hing and the 2−fa
tor
GMα

= {C1 . . . Ck} is 
omposed of a set of even 
y
les whose edges are 
oloured
β or γ and two odd 
y
les C1 and Ck. Without loss of generality we supposethat 1 is a vertex of C1 and n is a vertex of Ck.The edges emin(C) and emax(C). For C ∈ {C1, C2 . . . Ck} we denote max(C)the greatest index i su
h that ei is an edge of C, similarly min(C) denotesthe smallest index i su
h that ei belongs to C. Observe that max(C) and
min(C) are even numbers and that the 
orresponding edges are 
oloured with
β. Moreover the endpoints of emin(C) are min(C) and min(C) + 1 as well asthe endpoints of emax(C) are max(C) and max(C) + 1Observe that min(C) and max(C) are always de�ned and that min(C) =
max(C) if and only if C is a triangle.The sequen
e (Γj)j=1...h. We de�ne a sequen
e (Γj)j=1...h, 2 ≤ h ≤ k ofmembers of {C1, . . . Ck} as follows :

• We set Γ1 = C1.
• If max(Γj) < min(Ck), sin
e the edge emax(Γj)+1 is not a bridge there isa 
y
le C in GMα

with min(C) < max(Γj) < max(C). Among all su
h
y
les, let us denote by Γj+1 the 
y
le C for whi
h max(C) is maximum.
• If max(Γj) > min(Ck), we set h = j + 1 and Γh = Ck.Observe that by 
onstru
tion, when h = 2, we have

1 < min(Γ2) = min(Ck) < max(C1) = max(Γ1) < nand when h > 2, we have
min(Γj) < max(Γj−1) < min(Γj+1) < max(Γj) 1 < j < hand

min(Γh) = min(Ck) < n.
7
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1
n

min(Γ2)

min(Γ2) + 1

min(Γj)

min(Γj) + 1

min(Γh)

min(Γj+1)

min(Γj+1) + 1

max(Γ1)

max(Γ1) + 1

max(Γj)

max(Γj−1)

max(Γj−1) + 1

max(Γh−1)

max(Γh−1) + 1

min(Γh) + 1

max(Γj) + 1

Figure 1: An auxiliary graph (with h > 2)An auxiliary graph H. We 
onsider an auxiliary graph H , where V (H) =
V (G) and E(H) is obtained from E(G) as follows (see Figure 1) :

• We delete the edges emax(Γ1) and emin(Γh) and the edges emin(Γj) and
emax(Γj) of ea
h 
y
le Γj (1 < j < h) .

• Sin
e Γj (1 < j < h) is an even 
y
le, when deleting the edges emin(Γj) and
emax(Γj), we get two odd paths with one end in {min(Γj), min(Γj) + 1}and the other end in {max(Γj), max(Γj)+1}, namely Pj and P ′

j . We putin E(H) two new edges (denoted in the following as additional edges) oneedge 
onne
ting the endpoints of Pj while the endpoints of the other edgeare the endpoints of P ′
j . We will say in the following that the �rst edgerepresents the path Pj while the other one represents the path P ′

j

• Finally, we delete all the edges of G being 
oloured with γ and δ (that isthe 
hords of the Hamiltonian path).All the verti
es of H have degree 2 ex
ept 6 verti
es, namely 1, max(Γ1),
max(Γ1)+1, min(Γh), min(Γh) + 1, n whi
h have degree 1. Thus the 
on-ne
ted 
omponents of H are pre
isely 3 paths whose endpoints are members of
{1, max(Γ1), max(Γ1) + 1, min(Γh), min(Γh) + 1, n}Notation.Two walks of G will be said α-disjoint whenever those walks do not shareany edge 
oloured with α. 8



In the following, when a 
ubi
 brigeless tra
eable G graph is given we will
onsider the graph G together with the edge-
olouring de�ned above, the se-quen
e (Γj)j=1...h, the auxiliary graph H and all related notations.4.2 Te
hni
al lemmasLemma 14 Let G be a 
ubi
 bridgeless tra
eable graph su
h that χ′(G) = 4.There are in G three pairwise α-disjoint odd walks, W1, W2, W3 su
h that, for
i ∈ {1, 2, 3} :

• Wi has one endpoint say qi in C1 and the other endpoint q′i in Ck

• Wi does not share any edge with C1 nor CkProof Those walks will be derived from the 
onne
ted 
omponents of theauxiliary graph H . As a matter of fa
t, when h = 2, H is redu
ed to 3 sub-pathsof P , namely: Q1: 1...min(Γ2),Q2: min(Γ2) + 1....max(Γ1) and Q3:max(Γ1) +
1....n. We 
an thus suppose that h > 2.Let Q = x1 . . . xr be a 
onne
ted 
omponent of H with its endpoint x1in {1, max(Γ1), max(Γ1) + 1}, we will prove that the other endpoint xr of Qbelongs to {min(Γh), min(Γh)+1, n}. Let x be the maximum index in {1, . . . n}of a vertex of Q.Claim 1 x > max(Γh−2).Proof It is easy to 
he
k that x > max(Γ1).If x > max(Γj−1) and x ≤ max(Γj) for 1 < j < h − 1, then the vertex
x must be a vertex of one of the 2 sub-paths max(Γj−1) + 1 . . .min(Γj+1) or
min(Γj+1) + 1 . . .max(Γj) of P , thus x = min(Γj+1) or x = max(Γj). In both
ases, sin
e j < h−1 there must be in Q one vertex of {max(Γj+1), max(Γj+1)+
1}. But those verti
es have an index greater than x, a 
ontradi
tion. Thus
x > max(Γh−2). �Claim 2 The 
onne
ted 
omponents of H are odd paths with one end in
{1, max(Γ1), max(Γ1) + 1} and the other end in {min(Γh), min(Γh) + 1, n}.Proof From Claim 1, x > max(Γh−2) and either x = min(Γh) = xr or
x = max(Γh−1), in that 
ase xr = min(Γh) + 1, or x = n = xr. Con-sequently no 
onne
ted 
omponent of H 
an be a path with both ends in
{1, max(Γ1), max(Γ1) + 1}, the Claim follows. �To a path, say Qs (s ∈ {1, 2, 3}), of H we 
an asso
iate an odd walk Ws of
G as follows :

• Let qs be the last vertex of Qs that belongs to C1 when running on Qsfrom its endpoint in {1, max(C1), max(C1)+1}. Similarly let q′s be the lastvertex of Qs that belongs to Ck when running on Qs from its endpoint in9
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Figure 2: The walks Q and Q′ that interse
t Γj

{n, min(Ck), min(Ck)+1}. Let Q′
s be the sub-path of Qs whose endpointsare qs and q′s.

• Ea
h additional edge of Q′
s represents some odd sub-path (Pj or P ′

j) ofsome 
y
le Γj . The walk Ws is obtained from the path Q′
s by repla
ementof ea
h additional edge with the sub-path that it represents.The walks Ws (s ∈ {1, 2, 3}) de�ned above are α-disjoint walks. Moreoverthose walks have one end whi
h belongs to C1 and the other end whi
h belongsto Ck, have no edge of C1 nor of Ck while their end-edges are 
oloured with α. �We shall deal in the next subse
tion with the parti
ular 
ase where thesequen
e (Γj)j=1...h 
ontains only the two odd 
y
les C1 and Ck, see Proposition19. Hen
e, we assume in the sequel of this subse
tion that h > 2, we give belowsome notations in order to des
ribe the 
onstru
tion from W1, W2 and W3 ofnew walks whi
h interse
t the even 
y
les of the sequen
e.We intend to derive Q into a walk whi
h set of α-edges 
an be extended intoa perfe
t mat
hing on Γj .An odd subpath of Ci whose end edges are 
oloured with γ is a γ-
hain andwe de�ne analogously a β-
hain. A walk W will be said to well-interse
t a 
y
le

C of GMα
when either W ∩ C = ∅ or the set of endpoints of the α-edges of Wwhi
h belong to C, say {a1 . . . ap} in that order around C, are su
h that the
onse
utive subpaths {[ai . . . ai+1]}0<i<p are odd..Lemma 15 Let W1, W2, W3 be the three walks des
ribed in Lemma 14 then,ea
h even 
y
le of GMα

not involved in the sequen
e (Γj)j=1...h is well-interse
tedby Wi (i ∈ {1, 2, 3}).Proof Let C be an even 
y
le not involved in the sequen
e (Γj)j=1...h. Thewalks Wi i ∈ {1, 2, 3} possibly interse
t this 
y
le in using only edges 
oloured10



β. The α edges of Wi with an end in C determine thus a set of γ-
hains or
β-
hains. The result follows. �Lemma 16 Let W1, W2, W3 be the three walks des
ribed in Lemma 14 then,for ea
h even 
y
le of the sequen
e (Γj)j=1...h the walk whi
h do not use theverti
es max(Γj) and max(Γj) + 1 well-interse
ts Γj .Proof Assume without loss of generality that W1 does not use neither max(Γj)nor max(Γj) + 1, then, by 
onstru
tion, W1 has not been obtained by repla
e-ment of the additional edges representing the two paths Pi or P ′

i of Ci = Γj .Hen
e W1 possibly interse
ts Γj by using only edges 
oloured β. The α edges of
W1 with an end in Γj determine thus a set of γ-
hains or β-
hains. The resultfollows. �Given an even 
y
le of the sequen
e (Γj)j=1...h say Γj , there are pre
iselytwo walks in {W1, W2, W3} say Q = Q(x, y) and Q′(x′, y′), x ∈ Γ1, y ∈ Γh,
x′ ∈ Γ1, y′ ∈ Γh, both of them 
ontaining a subpath of Γj with end-edges
oloured with γ (see Figure 2). Morover both Q and Q′ 
ontain pre
isely onevertex of {max(Γj), max(Γj) + 1}.The �rst vertex of Q (resp. Q′) following the order given by ≺Q (resp. ≺Q′)that belongs to Γj is denoted xj (resp. x′

j).Lemma 17 Let G be a 
ubi
 bridgeless tra
eable graph su
h that χ′(G) = 4. Let
Γj be an even 
y
le of the sequen
e (Γj)j=1...h. Then there are two α-disjointwalks say R and R′ su
h that1. R(x, xj) = Q(x, xj) and R′(x′, x′

j) = Q′(x′, x′
j).2. R 
ontains one end vertex of emax(Γj), say yj, while R′ 
ontains the other,say y′

j.3. Either Q(yj , y) is a subwalk of R and Q′(y′
j , y

′) a subwalk of R′ or Q′(y′
j , y

′)is a subwalk of R and Q(yj , y) a subwalk of R′.4. R(xj , yj) and R′(x′
j , y

′
j) are subpaths of Γj .5. R(xj , yj) is a γ-
hain.Proof One of the two paths of Γj joining xj to the endpoints of emax(Γj) is
ertainly a γ-
hain. Let P be this path. Let yj be the endpoint of emax(Γj)whi
h belongs to P while y′
j denotes the other. If Q 
ontains the path P , weset R = Q and R′ = Q′ otherwise we set R = Q(x, xj) + P + Q′(yj , y

′) and
R′ = Q′(x′, x′

j)+ P ′ + Q(y′
j, y) where P ′ is a subpath of Γj joining x′

j to y′
j (seeFigure 3). �In the following, up to a renaming of the verti
es y and y′, we assume that

y is an endpoint of R while y′ is an endpoint of R′.11
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Figure 3: The walks R and R′ that interse
t ΓjSin
e Γj is an even 
y
le we have j < h, thus there 
ertainly exists one 
y
lein {Γj+1, Γj+2} say Γ whi
h have an endpoint of emax(Γ) on R. The index Γ inthe sequen
e (Γj)j=1...h will be denoted σR(Γj). The index σR′(Γj) is de�nedsimilarly from the walk R′. By 
onstru
tion we have {σR(Γj), σR′(Γj)} = {j +
1, j + 2}.Lemma 18 Let G be a 
ubi
 bridgeless tra
eable graph su
h that χ′(G) = 4.Let Γj be an even 
y
le of the sequen
e (Γj)j=1...h. There are two α-disjointwalks say S and S′ su
h that1. The vertex xj (resp. x′

j) is an endpoint of S (resp. S′).2. S and S′ have distin
t endpoints in {xσR(Γj), x
′
σR′ (Γj)

}.3. The verti
es of S and S′ are verti
es of R(xj , xσR(Γj)) or verti
es of
R′(x′

j , xσR′ (Γj)) or of Γj .4. S well-interse
ts the 
y
le Γj .Proof By 
onstru
tion the walk R(xj , yj) well-interse
ts Γj . If the subwalk
R(yi, σR(Γj)) shares an edge, say e, with Γj , this edge is 
oloured with β. When
e belongs to Γ(xj , yj) the interse
tion of R with Γj will not be 
hanged by e.This is not the 
ase when e is an edge of a β-
hain.Let P be the subpath of Γj whose endpoints are xj and yj whi
h is distin
tfrom Γj(xj , yj). Observe that P is a β-
hain.If the subwalk R(yi, σR(Γj)) does not interse
t P we set S = R(yi, σR(Γj))and S′ = R′(x′

j , x
′
σR′ (Γj)

) and we are done.If on the 
ontrary R(yi, σR(Γj)) shares an edge with P , let ab (a ≺R b) be asu
h edge where Γ(a, yj) is a subpath of P with maximum length. It must bepointed out that in this 
ase R(yi, σR(Γj)) does not interse
t with Γj.12
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Figure 4: The walks R and R′ in Case 1Case 1. If b is a vertex of Γ(a, yj) (see Figure 4) we write S = R(xj , yj) +
Γ(yj , b) + R(b, σR(Γj)) and S′ = R′(x′

j , σ
′
R(Γj)) .Case 2. When b does not belong to Γ(a, yj) the a is a vertex of Γ(b, yj)( seeFigure 5). We write S = R(xj , yj) + R(yj, a) + Γ(a, y′

j) + R′(y′
j , σR′ (Γj)) and

S′ = R′(x′
j , b) + R(b, σR(Γj)), where R′(x′

j , b) denotes the subpath of Γ withendpoints x′
j and b whi
h does not 
ontain a.

�4.3 The main resultsWe use in the sequel the same notations than above.In Propositions 19, 20 and 21 we 
onsider parti
ular 
ases of 
ubi
 graph forwhi
h Conje
ture 3 holds true.Proposition 19 Let G be a 
ubi
 bridgeless tra
eable graph su
h that χ′(G) =
4. If the sequen
e (Γj)j=1...h has only two 
y
les then there exists four perfe
tmat
hings Mα, M1, M2 and M3 su
h that Mα∩Mi ∩Mj = ∅ for i, j ∈ {1, 2, 3},
i 6= j.Proof Sin
e h = 2 we have Γ1 = C1 and Γ2 = Ck. Moreover, the walks de-s
ribed in Lemma 14 are redu
ed to paths whose edges are alternately 
olouredwith α and β. Thus, for i ∈ {1, 2, 3}, by Lemma 8, the set of α-edges of Wi isa balan
ed Mα−mat
hing. Hen
e we are done sin
e the walks W1, W2 and W313
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Figure 5: The walks R and R′ in Case 2are α-disjoint. �Proposition 20 Let G be a 
ubi
 bridgeless tra
eable graph su
h that χ′(G) =
4. If the sequen
e (Γj)j=1...h has only three 
y
les then there exists three perfe
tmat
hings Mα, M1, M2 su
h that Mα ∩ M1 ∩ M2 = ∅Proof As a matter of fa
t, when h = 3, the sequen
e (Γj)j=1...3 is redu
edto (Γ1 = C1, Γ2, Γ3 = Ck). Let W1, W2 and W3 be the three walks obtained byLemma 14. By Lemma 15 those walks well-interse
t all 
y
les whi
h are not inthe sequen
e (Γj)j=1...h. By Lemma 16 we 
an 
onsider that W2 well-interse
ts
Γ2 and by Lemma 18 we 
an transform W1 in a walk S1 well-interse
ting this
y
le. We get hen
e two walks α disjoint S1 and W2 well-interse
ting every
y
le of GMα

. Hen
e the set of edges of W 
oloured with α, as well as the sameset for W ′, are balan
ed Mα−mat
hings. By Lemma 8, we get thus two perfe
tmat
hings M1 and M2 su
h that Mα ∩ M1 ∩ M2 = ∅ as 
laimed. �Let G be a 
ubi
 bridgeless tra
eable graph su
h that χ′(G) = 4. Re
allthat given an even 
y
le of the sequen
e (Γj)j=1...h say Γj we have de�ned twoodd paths Pj and P ′
j with one end in {min(Γj), min(Γj) + 1} and the otherend in {max(Γj), max(Γj) + 1}. When one of those paths have endpoints in

{min(Γj), max(Γj)} the paths Pj and P ′
j are said to be 
rossing , non 
rossingotherwise. 14



Proposition 21 Let G be a 
ubi
 bridgeless tra
eable graph su
h that χ′(G) =
4. If for ea
h even 
y
le of the sequen
e (Γj)j=1...h, say Γj , the paths Pj and
P ′

j are non 
rossing then there exists three perfe
t mat
hings Mα, M1, M2 su
hthat Mα ∩ M1 ∩ M2 = ∅Proof By Propositions 19 and 20, we 
an 
onsider that h ≥ 4. Let W1, W2and W3 be the 3 walks obtained by Lemma 14. It is an easy task to see that,up to the names of the walks, W1 is obtained by repla
ing the additional edgeswith the paths that they represent for the even 
y
les Γj with j even. In thesame way, W2 is obtained by repla
ing the additional edges with the paths thatthey represent for the even 
y
les Γj with j odd. At last, W3 is obtained byrepla
ing the additional edges with the paths that they represent for ea
h even
y
les Γj .Starting with the green 
olour for the subpath 
ontaining the vertex 1, themaximal subpaths of the Hamiltonian path, say P , not 
ontaining the edges
emin(Γj) and emax(Γj) (j = 2 . . . h−1), as well as the edges emax(Γ1) and emin(Γh),are 
oloured alternately with green and red. One 
an see that W3 uses all thered subpaths while W1 and W2 use the green subpaths only.Claim Wi (i = 1, 2) well interse
ts ea
h 
y
le of the sequen
e (Γj)j=1...hProof Assume without loss of generality that i = 1. From Lemmas 15 and16 we have just to prove that W1 well interse
ts the even 
y
les Γj with j ≥ 2even.We 
an 
he
k that W1 
ontains the vertex min(Γj), moreover sin
e thesubpaths Pj and P ′

j of Γj are not 
rossing the vertex max(Γj) + 1 belongs to
W1 too.By 
onstru
tion of Γj , the green subpath of P ending with the vertex
min(Γj) has no edge in 
ommon with Γj , as well as the green subpath start-ing with max(Γj) + 1. Hen
e W1 
ontains exa
tly two α-edges one ending on
min(Γj) and the other on max(Γj) + 1 on Γj . The two subpaths of Γj so de-termined are odd, whi
h proves that W1 well interse
t Γj . �By Lemma 8, the set of α-edges of W1 (W2 respe
tively) is a balan
ed Mα-mat
hing. We have thus two perfe
t mat
hings M1 and M2 with no α-edge in
ommon. Hen
e Mα, M1 and M2 have an empty interse
tion, as 
laimed. �Conje
ture 5 is known to be veri�ed for bridgeless 
ubi
 graphs of oddness
2 (see [6℄), Theorem 22 gives a stronger result for 
ubi
 bridgeless tra
eablegraphs of 
hromati
 index 4.Theorem 22 Let G be a 
ubi
 bridgeless tra
eable graph of 
hromati
 index 4.Then there exists four perfe
t mat
hings Mα, M1, M2 and M3 su
h that Mα∩Midoes not 
ontain any odd 
ut set, for i ∈ {1, 2, 3}. Moreover, for i ∈ {1, 2, 3} one
an asso
iate to Mi two joins Ji and J ′

i su
h that Mα∩Mi∩Ji = Mα∩Mi∩J ′
i =

∅. 15



Proof We 
onsider the walksW1, W2 and W3 des
ribed in Lemma 14. Withoutloss of generality we 
hoose i = 1 and we derive from W1 a walk S1 as follows.First we set S1 = W1. Following the natural order on the verti
es of S1 givenby ≺S1 when there is on S1 a vertex of some edge emax(Γj) for some 
y
le Γj ofthe sequen
e (Γj)j=2,...h−1 we set R = S1 and thus either R′ = W2 or R′ = W3.We apply Lemma 18 on R and R′ and we get thus two walks S and S′, weknow that R(x, x′
j) + S well-interse
ts Γj. The walks S and S′ have endpointsin {σR(Γj), σR′ (Γj)}. Hen
e when σR(Γj) is an endpoint of S we write S1 =

S1(x, xj)+S+R(σR(Γj), y) and R′ = R′(x′, x′
j)+S′+R′(σR′ (Γj), y

′). Otherwise
σR′(Γj) is an endpoint of S and we write S1 = S1(x, x′

j) + S + R′(σR′(Γj), y
′)and R′ = R′(x′, x′

j) + S′ + R(σR(Γj), y)(re
all that either R′ = W2 or R′ =
W3). Finally S1 well-interse
ts all 
on
erned 
y
le of the sequen
e (Γj)j=2,...h−1.Moreover, the walks S1, W2 and W3 are α-disjoint all of them have one endpointin {q1, q2, q3} and the other one in {q′1, q

′
2, q

′
3}.Due to Lemma 8, the set of edges A = Mα ∩S1 is a balan
ed Mα-mat
hing,that is there is a perfe
t mat
hing M1 su
h that Mα ∩ M1 = A.But now, if Mα ∩M1 
ontains an odd 
ut set, say X , there must be a partition

(V1, V2) of V (G) into two odd sets su
h that the edges of X have one end in
V1 and the other end in V2. Moreover X ⊂ Mα, V1 and V2 being odd, ea
h ofthose sets pre
isely 
ontains exa
tly one odd 
y
le of GMα

. Sin
e W2 and W3are both 
onne
ting a vertex of C1 to a vertex of Ck, there must be an edge of
S1 and an edge of W3 in X , a 
ontradi
tion sin
e S1, W2 and W3 are α-disjoint.Moreover, the set of verti
es S1 ∪W2 − S1 ∩W2 together with a sub-path of
C1 whose endpoints are q1 and q2 and a sub-path of Ck whose endpoints are q′1and q′2 form a set X of verti
es that indu
e 
y
les of G. Thus the edge set J1 ofthe subgraph indu
ed with V (G) − X is a join that avoids the edges of S1, inother words Mα ∩M1∩J1 = ∅. Similarly we 
an derive from S1 ∪W3 −S1∩W3another join J ′

1 with the same property. �A dire
t 
onsequen
e of Theorem 22 is that Conje
ture 4 holds true for 
ubi
bridgeless tra
eable graphs.5 Con
lusionAs far as we know the te
hniques developed in Lemmas 14 to 18 as well as inTheorem 22 do not lead to a proof of Conje
ture 3 for 
ubi
 bridgeless tra
eablegraphs in general. However Conje
ture 3 holds true in some parti
ular 
ases,see for example Propositions 19, 20 or 21 or when in applying Lemma 18 on allthe 
on
erned 
y
les of the sequen
e (Γj)j=2,...h−1, we get two α-disjoint walksthat well-interse
t the 
y
les.In a forth
oming paper ([4℄), we prove that a minimal 
ounter-example toConje
ture 3 must have at least 36 verti
es (40 verti
es when the 
y
li
 edge
onne
tivity of the graph is at least 4).A
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