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Abstract

A conjecture of Macajova and Skoviera [8] asserts that every bridgeless
cubic graph has two perfect matchings whose intersection does not contain
any odd edge cut. We prove this conjecture for graphs with few vertices
and we give a stronger result for traceable graphs.
keywords :Cubic graph; Edge-partition; Traceable graphs

1 Introduction

The following conjecture first appeared in [5] is known as the Fulkerson Conjec-
ture, see [9].

Conjecture 1 If G is a bridgeless cubic graph, then there exist 6 perfect match-
ings My, ..., Mg of G with the property that every edge of G is contained in
exactly two of My, ..., Mg.

A consequence of the Fulkerson conjecture would be that every bridgeless
cubic graph has 3 perfect matchings with empty intersection (take 3 distinct of
the 6 perfect matchings given by the conjecture). The following weakening of
this (also suggested by Berge) is still open.

Conjecture 2 There exists a fized integer k such that every bridgeless cubic
graph has a list of k perfect matchings with empty intersection.

Fan and Raspaud [3]| conjectured that any bridgeless cubic graph can be
provided with three perfect matchings with empty intersection(we shall say also
non intersecting perfect matchings).

Conjecture 3 [3] Every bridgeless cubic graph contains perfect matching M,
Ms, Ms such that
MiNMyN Ms = 0



The following Conjecture is due to Magajova and Skoviera in [§]

Conjecture 4 FEvery bridgeless cubic graph has two perfect matchings My, Mo
such that My N My does not contain an odd edge cut.

A join in a graph G is a set J C E(G) such that the degree of every vertex in
G has the same parity as its degree in the graph (V(G), J). A perfect matching
being a particular join in a cubic graph Kaiser and Raspaud conjectured in [6]

Conjecture 5 [6] Every bridgeless cubic graph admits two perfect matchings
My, My and a join J such that

MiNnMyNnJ =10

As a matter of fact Conjectures 4 and 5 are equivalent. Equivalence comes from
the fact that a set of edges contains a join if and only if this set intersects all
odd edge cuts.

If true Conjecture 1 implies Conjecture 3 which itself implies Conjectures 4
and 5. All those conjectures being obviously true for cubic graphs with chro-
matic index 3, it is useful to consider the following parameter for cubic graphs.
The oddness of a cubic graph G is the minimum number of odd circuits in a
2-factor of G. In [6] Kaiser and Raspaud proved that Conjecture 5 holds true
for bridgeless cubic graph of oddness two.

In this paper, we consider Conjecture 4. We prove that a minimal coun-
terexample to Conjecture 5 must have at least 50 vertices.

Moreover, we prove that Conjectures 4 and 5 hold true while the order of
the graph is less than a function of the cyclic edge connectivity. Finally, we give
a refining of Kaiser and Raspaud result [6] when considering cubic bridgeless
traceable graphs.

When A is a set of edges, V(A) will denote the set of vertices that are
an endpoint of some edge in A. If M is a perfect matching of a cubic graph
G = (V, E), then denote by Gy the 2-factor Gpy = (V, E — M). When X is a
set of vertices, 0. X denotes the set of edges with precisely one end in X. An edge
cut is a set of edges whose removal renders the graph disconnected and which
is inclusion-wise minimal with this property. The cyclic edge connectivity of a
cubic graph is the size of a smallest edge cut in a graph such that at least two
of the connected components contain cycles. A graph G is said to be traceable
whenever G has a Hamiltonian path that is a path which visits each vertex
exactly once.

Notations <y and W(z,t), concatenation of sub-walks. Let W be a
walk of G. Writing W = z ...y induces a natural order on the vertices of W,
let us denote <y this order. When W =z ...y, W will be said to start with x
and to end with y.When z and ¢ are vertices of W such that z <y ¢, the sub-
walk z...¢ of W whose endpoints are z and ¢ will be denoted W(z,¢). When
a walk W (W = W(z,y)) and a walk W (W' = W'(2/,y’)) have a common
vertex, say a, we can concatenate the sub-walks W (z,a) and W'(a,y’) in order



to obtain another walk say W”, also denoted W(x,a) + W'(a,y’), such that
W' (z,a) = W(z,a) and W (a,y’) = W (a,y).
For basic graph-theoretic terms, we refer the reader to Bondy and Murty [1].

2 Preliminary results

2.1 Fractional perfect matchings

The following result belongs to folklore

Theorem 6 Let G be a cubic bridgeless graph. G is 3-edge colourable if and
only if there is a perfect matching in G that does not contain any odd edge cut.

Proof Assume that G has a 3-edge colouring using colours «, 8 and . Let
M, be the set of edges coloured with «, if M, contains an odd edge cut, there
must be a partition (V1,V3) of V(G) into two odd sets such that the edges of X
have one end in V; and the other end in V5. Since all the edges of X are coloured
with «, the set of edges in V; coloured with 8 must be a perfect matching in
V1, a contradiction since V4 has an odd number of vertices.

Conversely, consider a perfect matching M that does not contain any odd
edge cut. Suppose that the 2-factor G; contains an odd cycle C, thus C' is an
odd edge cut entirely contained in M, a contradiction. Consequently G5 does
not contain any odd cycle, it follows that G is 3-edge colourable. O

In order to prove Conjecture 4 for bridgeless cubic graphs with few vertices,
we will consider the notion of fractional perfect matching as used in [7].

For a graph G = (V, E), a vector w of R¥ is said to be a fractional perfect
matching whenever w satisfies the following properties (the entry of w corre-
sponding to e € E being denoted w(e) and w(A) = X.caw(e), for A C E) :

e 0 <wf(e) <1 for each edge e of G
e w(d{v}) =1 for each vertex v of G
e w(6X) >1 for each X CV of odd cardinality.

The perfect matching polytope is the convex hull of the set of incidence
vectors of perfect matchings of G. In [2] Edmonds showed that a vector w € R¥
belongs to the perfect matching polytope of G if and only if it is a fractional
perfect matching

Moreover, when x“ denotes the characteristic vector of the edge set A we
will use the following tool :

Lemma 7 [7] If w is a fractional perfect matching in a graph G = (V, E)
and ¢ € RP, then G has a perfect matching M such that c.x™ > c.w where .
denotes the scalar product. Moreover, there exists such a perfect matching M
that contains exactly one edge of each edge cut C' with w(C) = 1.

It is shown in [7], among other results, that there must exist a perfect match-
ing M that intersects all edge cuts of size 3 into a single edge and a perfect



matching Mo such that [My — M| > 7:|E(G)|. When the graph has n vertices,
since the size of a perfect matching is precisely 7, it must be pointed out that
| My N Ma| < 15.

Observe that there is an alternate proof of Theorem 6 in terms of fractional
perfect matchings . Consider indeed a perfect matching M that does not contain
any odd edge cut. We define a fractional perfect matching as follows : w(e) =0
when e € M and w(e) = % otherwise. Given an odd set of vertices, say X, §X
is an odd edge cut which intersects M in a odd number of edges, since X ¢ M,
w is a fractional perfect matching. By Lemma 7 there is a perfect matching M’

such that 1 9

XM sew=2xZx|E =2

c.X cw=g X X |E| 5
When ¢ = 1 — x™, since c.x™" = |[M"\M| we have |[M'\M| = 5 = |[M'| and
thus M N M’ = {). Tt follows that x'(G) = 3.

2.2 Balanced perfect matchings

Let M be a perfect matching of a cubic graph and let C = {C1,C>...Ck} be
the 2-factor Gp;. A C M is a balanced M —matching whenever there is a perfect
matching M’ such that M N M’ = A. That means that each odd cycle of C is
incident to an odd number of edges in A and the sub-paths determined by the
ends of AN M’ on the cycles of C incident to A have odd lengths.

Lemma 8 Let M be a perfect matching of a cubic graph G. A matching A is
a balanced M -matching if and only if the connected components of Gpr—a are
either odd paths or even cycles.

Proof Since Gy is a 2-factor of G, the connected components of the subgraph
induced by V(G) — V(A) must be cycles or paths. Since A is a balanced M-
matching, the connected components of this graph must be even cycles or odd
paths.

Conversely, assume that the connected components of Gy — V(A) are odd
paths or even cycles. Let A’ be a perfect matching of Gy — V(A), we set
M' = AU A’ and we are done. O

Lemma 9 A bridgeless cubic graph contains 3 non intersecting perfect matching
if and only if there is a perfect matching M and two balanced disjoint balanced
M —matchings.

Proof Assume that My, My, Ms are three perfect matchings of G such that
MiNMyNMs=0. Let M = My, A= M, N Ms and B = My N Ms. Since
ANB=M;NMy;NMs, Aand B are two balanced M —matchings with empty
intersection.

Conversely, assume that M is a perfect matching and that A and B are
two balanced M —matchings with empty intersection. Let M; = M, Ms be a



perfect matching such that My N M7 = A and M3 be a perfect matching such
that M3 N M; = B. We have My N Ms N Ms = AN B and the three perfect
matchings M;, M, and M3 have an empty intersection. O

3  On cubic graphs with few vertices

We first prove that Conjecture 4 holds true for bridgeless cubic graphs having
less than 50 vertices

Theorem 10 Let G be a bridgeless cubic graph of order n < 50. There are
perfect matchings M and M' such that M N M’ does not contain any edge cut.

Proof We know from [7] that there must exist a perfect matching M which
intersects all edge cuts of size 3 into a single edge and a perfect matching M’
such that [M N M’'| < {5. It is assumed n < 50, thus |[M N M'| < 5. Hence an
odd edge cut, say C' in M N M’ must be of size 3, but a such edge cut cannot
exist since M intersects C in precisely one edge. O

Let us now consider cyclic edge connectivity in cubic graphs.

Theorem 11 Let G be a cubic graph of order n with cyclic edge connectivity

k > 3. One of the following holds.
1. There are two perfect matchings M and M’ such that |MNM'| < m
2

2. For all perfect matching M there is an edge cut of size 2\_%] + 1 entirely
contained in M.

Proof For convenience we set s = 2[£] 4+ 3. Let M be a perfect matching
that does not contain any odd edge cut of size s —2. The graph being cyclically

k-edge connected s — 2 is the minimum size of an odd edge cut in G. We set
w(e) = 1 when e € M and w(e) = -1 otherwise. If X is an odd set of vertices,

0X is an odd edge cut of size at least s — 2. If [0X| > s then w(6X) > 1. If
[0X| = s — 2 then there are at least 2 edges of X which are not in M and
w(6X) > 1 again. Hence w is a fractional perfect matching.

Applying Lemma 7 with ¢ = 1 — x™ we get a perfect matching, say M’ such
that c.x™ > cw =n x 1. Since exM = |M' — M| and |[M'| = % it follows

that [M N M’'| < 3%, as claimed. O

Theorem 12 Let G be a cubic graph of order n with cyclic edge connectivity
k>4. Ifn <2(2|5]+3)(2| 4] +1) then there are two perfect matchings whose
intersection does not contain any odd edge cut.



Proof Once again we denote s = 2L§J + 3. We can assume that every perfect
matching contains an odd edge cut of size s — 2. Otherwise, from Theorem 11
there are two perfect matchings whose intersection contains less than 5= = s—2
edges and we are done.

Let M be a perfect matching of G. We set w(e) = siQ when e € M and
w(e) = 255;}2) otherwise. The weight of an edge being at least —5
odd edge cut having at least s — 2 edges, w is a fractional perfect matching. If
c=1—-xM, by Lemma 7 there is a perfect matching M’ which intersects in a
single edge every edge cut C such that w(C) = 1.

In addition we know that ¢.x™' > c.w, in other words [M UM’| > 2 x|E|x
2(55;_32) = 2 x £=3. Consequently [M N M'| < Iog)- Since n < 2s(s — 2) we
have that |[M N M'| < s.

Assume that M N M’ contains an odd edge cut C. By the above relation
|C| = s — 2 and then w(C) = 1, a contradiction since M’ intersects the edge
cuts of size s — 2 in a single edge. (]

and an

An example of consequence of Theorem 12 is that Conjecture 4 and therefore
Conjecture 5 hold true for cyclically 4-edge-connected graphs having less than
70 vertices.

Remark 13 Kaiser, Kral and Norine in [7] showed that every bridgeless cubic
graph contains two perfect matchings whose intersection has at most 5 edges.
This result strengthen Fulkerson conjecture. Indeed, if we have a set of 6 perfect
matchings such that any edge of a bridgeless cubic graph is covered exactly twice
by this set, we certainly have two of them whose intersection has at most {5
edges. Observe that this upper bound would be implied by Conjecture 1. A
challenging question is thus to characterize the bridgeless cubic graphs for which
1g is optimal. The Petersen graph is obviously such a graph, but no other graph
is known with that property and we can conjecture that this is the only graph.
Theorem 11 above says that in a cyclically 4—edge connected cubic graph,
with chromatic index 4, either we can find two perfect matchings whose inter-
section has at most {7 edges or every two perfect matchings has an intersection
containing an odd cutset of size 5, a support to the above conjecture.

4 On cubic traceable graphs

In [6] Kaiser and Raspaud proved that Conjecture 5 holds true for bridgeless
cubic graph of oddness two. In the following we prove a stronger result for cubic
bridgeless traceable graphs.

4.1 An auxiliary graph

Let us consider a Hamiltonian path of G. It will be convenient to denote the
vertices of G as integers from 1 to n and the Hamiltonian path will be merely



denoted 1...n. Hence ij (i # j € {1...n}) denotes an edge of G while the edge
joining i to i + 1(1 < ¢ <n — 1) will be denoted e;.

Suppose that chromatic index of G is 4, we can colour the edges of G in
the following way. The edges ¢; (1 < i < n — 1) of the Hamiltonian path
are alternately coloured with o and 3 (the first edge e; being coloured with
«). The remaining edges are coloured with v with the exception of one edge
incident with 1 and one edge incident with n. These two edges are coloured by
0. The set M, of edges coloured with « is a perfect matching and the 2—factor
G, = {Cy...Ck} is composed of a set of even cycles whose edges are coloured
[ or v and two odd cycles C; and C%. Without loss of generality we suppose
that 1 is a vertex of C7 and n is a vertex of C}.

The edges ¢, () and e,,4,(0). For C € {C1,Cs ... Cr} we denote max(C)
the greatest index ¢ such that e; is an edge of C, similarly min(C) denotes
the smallest index 4 such that e; belongs to C. Observe that maxz(C) and
min(C) are even numbers and that the corresponding edges are coloured with
. Moreover the endpoints of €,,;,(c) are min(C) and min(C) + 1 as well as
the endpoints of €,,44(cy are maz(C) and max(C) + 1

Observe that min(C') and maxz(C) are always defined and that min(C) =
maz(C) if and ounly if C is a triangle.

The sequence (I';);=1..,. We define a sequence (I'j)j=1..n, 2 < h < k of
members of {C1,...Cy} as follows :

e We set I'y = (.
o If max(T';) < min(Cy), since the edge €,q0(r,)+1 is not a bridge there is

a cycle C' in Gy, with min(C) < maz(I';) < maxz(C). Among all such
cycles, let us denote by ;11 the cycle C for which maz(C') is maximum.

o If max(T';) > min(Cy), we set h =7+ 1 and I'y, = C},.
Observe that by construction, when h = 2, we have
1 < min(T'y) = min(Cy) < max(C1) = maz(T'y) <n
and when h > 2, we have
min(T';) < mazx(T'j—1) < min(Tj41) < maz(T;) 1<j<h

and
min(Ty) = min(Cy) <n



mazx(T'1) + 1 \ ’ min(Ty)
min Fg i o Nm‘m(rﬂ) +1
min( maz (L)

min(FjH) —+ 1
max (T ;-

n max PJ 1) min(L'j41)

Figure 1: An auxiliary graph (with h > 2)

An auxiliary graph H. We consider an auxiliary graph H, where V(H) =
V(G) and E(H) is obtained from E(G) as follows (see Figure 1) :

e We delete the edges €,,40(r,) and €,,in(r,) and the edges €,,;,r;) and
€maz(r;) Of each cycle I'; (1 < j <h) .

e SinceI'; (1 < j < h) is an even cycle, when deleting the edges €min(r;) and
€max(T;), We get two odd paths with one end in {min(I';), min(I';) + 1}
and the other end in {maxz(T';), maz(I';) + 1}, namely P; and P;. We put
in F(H) two new edges (denoted in the following as addmonal edges) one
edge connecting the endpoints of P; while the endpoints of the other edge
are the endpoints of P/. We will say in the following that the first edge
represents the path P; whlle the other one represents the path P’

e Finally, we delete all the edges of G being coloured with v and § (that is
the chords of the Hamiltonian path).

All the vertices of H have degree 2 except 6 vertices, namely 1, max(I'1),
max(T'1)+1, min(Ty), min(Ty) + 1, n which have degree 1. Thus the con-
nected components of H are precisely 3 paths whose endpoints are members of
{1, max(T'1), max(T1) + 1, min(T}), min(Ty) + 1,n}

Notation.

Two walks of G will be said a-disjoint whenever those walks do not share
any edge coloured with «.



In the following, when a cubic brigeless traceable G' graph is given we will
consider the graph G together with the edge-colouring defined above, the se-
quence (I';)=1..., the auxiliary graph H and all related notations.

4.2 Technical lemmas

Lemma 14 Let G be a cubic bridgeless traceable graph such that X' (G) = 4.
There are in G three pairwise a-disjoint odd walks, Wy, Wo, W3 such that, for
ie€{1,2,3}:

e W; has one endpoint say q; in C1 and the other endpoint ¢, in Cy

o W, does not share any edge with C7 nor Cy

Proof Those walks will be derived from the connected components of the
auxiliary graph H. As a matter of fact, when h = 2, H is reduced to 3 sub-paths
of P, namely: Qq: 1..min(I'2),Q2: min(T2) + 1...max(T1) and Qz:max(Ty) +
1....n. We can thus suppose that A > 2.

Let Q = x1...2z, be a connected component of H with its endpoint
in {1, max(T1),max(Ty) + 1}, we will prove that the other endpoint z, of Q
belongs to {min(T'y), min(T'y)+1,n}. Let 2 be the maximum index in {1,...n}
of a vertex of Q.

Cramv 1 z > maz(Tp_2).

Proof It is easy to check that z > max(I'y).

If © > max(Tj_1) and z < max(T;) for 1 < j < h — 1, then the vertex
x must be a vertex of one of the 2 sub-paths maz(I'j_1) + 1...min(I'j4+1) or
min(Tj41) +1...maz(T;) of P, thus x = min(T'j11) or x = maz(T';). In both
cases, since j < h—1 there must be in @ one vertex of {maz(I'j;1), maz(Lj1)+
1}. But those vertices have an index greater than x, a contradiction. Thus
x> maz(Tp_2). O

CraiM 2 The connected components of H are odd paths with one end in
{1,max(T1), maz(T1) + 1} and the other end in {min(Ty), min(Ty) + 1,n}.

Proof From Claim 1, x > max(I',—2) and either z = min(T',) = z, or
x = maxz(Tp_1), in that case z, = min(Ty) + 1, or £ = n = x,. Con-
sequently no connected component of H can be a path with both ends in
{1,max(T'1), maz(Ty) + 1}, the Claim follows. o

To a path, say Qs (s € {1,2,3}), of H we can associate an odd walk Wy of
G as follows :

e Let g5 be the last vertex of @, that belongs to C7 when running on Q)
from its endpoint in {1, max(C1), maz(Cy)+1}. Similarly let ¢, be the last
vertex of Qs that belongs to C when running on @ from its endpoint in



Figure 2: The walks @ and @’ that intersect I';

{n, min(Cy), min(Cj)+1}. Let Q. be the sub-path of Q; whose endpoints
are ¢ and ¢/,.

e Each additional edge of Q) represents some odd sub-path (P; or P}) of
some cycle I';. The walk Wj is obtained from the path @’ by replacement
of each additional edge with the sub-path that it represents.

The walks W (s € {1,2,3}) defined above are a-disjoint walks. Moreover
those walks have one end which belongs to C; and the other end which belongs
to C, have no edge of C; nor of C}, while their end-edges are coloured with . [J

We shall deal in the next subsection with the particular case where the
sequence (I'j);j=1.. 5 contains only the two odd cycles Cy and Cj, see Proposition
19. Hence, we assume in the sequel of this subsection that h > 2, we give below
some notations in order to describe the construction from Wy, Wy and W3 of
new walks which intersect the even cycles of the sequence.

We intend to derive @ into a walk which set of a-edges can be extended into
a perfect matching on I';.

An odd subpath of C; whose end edges are coloured with v is a vy-chain and
we define analogously a 3-chain. A walk W will be said to well-intersect a cycle
C of Gy, when either W N C = () or the set of endpoints of the a-edges of W
which belong to C, say {a1...a,} in that order around C, are such that the
consecutive subpaths {[a; .. .a;t1]} o<i<p are odd..

Lemma 15 Let Wi, Wy, W3 be the three walks described in Lemma 14 then,
each even cycle of G, not involved in the sequence (I';)j=1...1, is well-intersected
by W; (i € {1,2,3}).

Proof Let C be an even cycle not involved in the sequence (I';);=1.5. The
walks W; i € {1,2,3} possibly intersect this cycle in using only edges coloured

10



B. The a edges of W; with an end in C determine thus a set of y-chains or
[-chains. The result follows. O

Lemma 16 Let Wi, Wy, W3 be the three walks described in Lemma 14 then,
for each even cycle of the sequence (I';);=1..n the walk which do not use the
vertices maz(L';) and max(T;) + 1 well-intersects T';.

Proof Assume without loss of generality that W3 does not use neither maz(T';)
nor max(I';) + 1, then, by construction, Wi has not been obtained by replace-
ment of the additional edges representing the two paths P; or P/ of C; =T;.
Hence W, possibly intersects I'; by using only edges coloured 3. The o edges of
W1 with an end in I'; determine thus a set of y-chains or -chains. The result
follows. O

Given an even cycle of the sequence (I';);=1..» say I';, there are precisely
two walks in {Wy, Wy, W3} say Q = Q(z,y) and Q'(2',y'), © € T'1, y € Ty,
' € I'1, y € Ty, both of them containing a subpath of I'; with end-edges
coloured with v (see Figure 2). Morover both @ and Q' contain precisely one
vertex of {maxz(T';), max(T;) + 1}.

The first vertex of @ (resp. Q') following the order given by <¢ (resp. <¢/)
that belongs to I'; is denoted z; (resp. z7).

Lemma 17 Let G be a cubic bridgeless traceable graph such that x'(G) = 4. Let
T, be an even cycle of the sequence (I';);j=1..,. Then there are two a-disjoint
walks say R and R’ such that

1. R(x,x;) = Q(z,z;) and R'(2',2}) = Q' (', 27}).
2. R contains one end vertex of €pax(r;), S0y y;, while R’ contains the other,
/
say yj-

3. Either Q(y;,y) is a subwalk of R and Q'(y;,y') a subwalk of R" or Q'(y;,y')
is a subwalk of R and Q(y;,y) a subwalk of R'.

4- R(zj,y;) and R'(z},y;) are subpaths of I';.
5. R(zj,y;) is a y-chain.

Proof One of the two paths of I'; joining z; to the endpoints of €,,4.(r;) is
certainly a y-chain. Let P be this path. Let y; be the endpoint of €44 (r;)
which belongs to P while y; denotes the other. If @) contains the path P, we
set R = @Q and R’ = Q' otherwise we set R = Q(z,z;) + P+ Q'(y;,y’) and
R = Q'(2',2%) + P+ Q(y},y) where P’ is a subpath of I'; joining 2/ to y; (see
Figure 3). O

In the following, up to a renaming of the vertices y and y’, we assume that
y is an endpoint of R while 3’ is an endpoint of R'.

11
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Figure 3: The walks R and R’ that intersect I';

Since I'; is an even cycle we have j < h, thus there certainly exists one cycle
in {T'j; 1,142} say I' which have an endpoint of €,,,,(ry on R. The index I in
the sequence (I';);=1...;, will be denoted og(I';). The index og/(I';) is defined
similarly from the walk R’. By construction we have {og(T';),or (T';)} = {j +
1,5 +2}.

Lemma 18 Let G be a cubic bridgeless traceable graph such that X' (G) = 4.
Let T'j be an even cycle of the sequence (I';)j=1..n. There are two a-disjoint
walks say S and S’ such that

1. The vertex x; (resp. x;) is an endpoint of S (resp. S').

2. S and S’ have distinct endpoints in {.’L'O-R(F].),J,';R,(Fj)}.

3. The vertices of S and S" are vertices of R(x;, T, r,)) or vertices of
Rz}, 25 ,,(r;)) or of T';.

4. S well-intersects the cycle I';.

Proof By construction the walk R(z;,y;) well-intersects I';. If the subwalk
R(y;,or(T;)) shares an edge, say e, with I';, this edge is coloured with 5. When
e belongs to I'(x;,y;) the intersection of R with I'; will not be changed by e.
This is not the case when e is an edge of a (-chain.

Let P be the subpath of I'; whose endpoints are z; and y; which is distinct
from I'j(z;,y;). Observe that P is a 3-chain.

If the subwalk R(y;,or(I';)) does not intersect P we set S = R(y;,or(T;))
and S’ = R’(:z:;-,x’O_R/(Fj)) and we are done.

If on the contrary R(y;,or(T';)) shares an edge with P, let ab (a <p b) be a
such edge where I'(a,y;) is a subpath of P with maximum length. It must be
pointed out that in this case R(y;,or(T';j)) does not intersect with I';.

12



Cmin (r;)

Figure 4: The walks R and R’ in Case 1

Case 1. If b is a vertex of I'(a,y;) (see Figure 4) we write S = R(xj,y;) +
D(y;.b) + R, or(T;)) and S’ = R'(x), ap(T;)

Case 2. When b does not belong to I'(a, y;) the a is a vertex of I'(b, y,)( see
Figure 5). We write S = R(z;,y;) + R(y;,a) +T'(a,y;) + R'(y},0r (I';)) and
S" = R/(a,b) + R(b,or(T';)), where R'(z,b) denotes the subpath of I' with
endpoints z; and b which does not contain a.

O

4.3 The main results

We use in the sequel the same notations than above.
In Propositions 19, 20 and 21 we consider particular cases of cubic graph for
which Conjecture 3 holds true.

Proposition 19 Let G be a cubic bridgeless traceable graph such that x'(G) =
4. If the sequence (T';)j=1..5 has only two cycles then there exists four perfect
matchings Mo, My, My and Ms such that Mo, NM;NM; =0 fori,j € {1,2,3},
i 7.

Proof Since h = 2 we have I'y = C; and I's = C),. Moreover, the walks de-
scribed in Lemma 14 are reduced to paths whose edges are alternately coloured

with « and . Thus, for ¢ € {1,2,3}, by Lemma 8, the set of a-edges of W; is
a balanced M, —matching. Hence we are done since the walks Wy, Wy and W35

13



emin(r‘j)

Figure 5: The walks R and R’ in Case 2

are a-disjoint. O

Proposition 20 Let G be a cubic bridgeless traceable graph such that x'(G) =
4. If the sequence (I';j);j=1..n has only three cycles then there exists three perfect
matchings My, My, My such that Mo, N My N My =0

Proof As a matter of fact, when h = 3, the sequence (I';);=1. 3 is reduced
to (I'y = C1,T9,T's = Cf). Let Wy, Wa and W3 be the three walks obtained by
Lemma 14. By Lemma 15 those walks well-intersect all cycles which are not in
the sequence (I';);j=1...,. By Lemma 16 we can consider that Wy well-intersects
'y and by Lemma 18 we can transform Wj in a walk S; well-intersecting this
cycle. We get hence two walks « disjoint S7 and W5 well-intersecting every
cycle of Gpy,,. Hence the set of edges of W coloured with «, as well as the same
set for W', are balanced M,—matchings. By Lemma 8, we get thus two perfect
matchings M; and Ms such that M, N My N My = () as claimed. O

Let G be a cubic bridgeless traceable graph such that x/(G) = 4. Recall
that given an even cycle of the sequence (I';);=1..., say I'; we have defined two
odd paths P; and P; with one end in {min(T;), min(I';) + 1} and the other
end in {max(T;), maz(I';) + 1}. When one of those paths have endpoints in
{min(T';), maz(T;)} the paths P; and P} are said to be crossing , non crossing
otherwise.
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Proposition 21 Let G be a cubic bridgeless traceable graph such that x'(G) =
4. If for each even cycle of the sequence (I';);=1..1n, say T'j, the paths P; and
PJf are non crossing then there exists three perfect matchings M., My, Ms such
thatMaﬂMlﬂMg :@

Proof By Propositions 19 and 20, we can consider that h > 4. Let Wi, Ws
and W3 be the 3 walks obtained by Lemma 14. It is an easy task to see that,
up to the names of the walks, W7 is obtained by replacing the additional edges
with the paths that they represent for the even cycles I'; with j even. In the
same way, W5 is obtained by replacing the additional edges with the paths that
they represent for the even cycles I'; with j odd. At last, W35 is obtained by
replacing the additional edges with the paths that they represent for each even
cycles I';.

Starting with the green colour for the subpath containing the vertex 1, the
maximal subpaths of the Hamiltonian path, say P, not containing the edges
Cmin(r;) A €mae(r;) (J = 2... h—1), as well as the edges €,,q0(r,) and €pin(ry,),
are coloured alternately with green and red. One can see that W3 uses all the
red subpaths while W; and W5 use the green subpaths only.

Cramv W; (i =1,2) well intersects each cycle of the sequence (T';)j=1..n

Proof Assume without loss of generality that ¢ = 1. From Lemmas 15 and
16 we have just to prove that W; well intersects the even cycles I'; with j > 2
even.

We can check that TW; contains the vertex min(I';), moreover since the
subpaths P; and P} of I'; are not crossing the vertex max(T;) + 1 belongs to
Wy too.

By construction of I'j, the green subpath of P ending with the vertex
min(T';) has no edge in common with I';, as well as the green subpath start-
ing with max(T';) + 1. Hence W; contains exactly two a-edges one ending on
min(T';) and the other on max(I';) +1 on I';. The two subpaths of I'; so de-
termined are odd, which proves that W, well intersect I';. m

By Lemma 8, the set of a-edges of Wi (W5 respectively) is a balanced M-
matching. We have thus two perfect matchings M; and M; with no a-edge in
common. Hence M,, M; and Ms have an empty intersection, as claimed. O

Conjecture 5 is known to be verified for bridgeless cubic graphs of oddness
2 (see [6]), Theorem 22 gives a stronger result for cubic bridgeless traceable
graphs of chromatic index 4.

Theorem 22 Let G be a cubic bridgeless traceable graph of chromatic index 4.
Then there exists four perfect matchings M, My, Ms and Ms such that M,NM;
does not contain any odd cut set, fori € {1,2,3}. Moreover, fori € {1,2,3} one
can associate to M; two joins J; and J| such that Mo, NM;NJ; = M,NM;NJ! =
0.
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Proof We consider the walks W7, W5 and W3 described in Lemma 14. Without
loss of generality we choose i = 1 and we derive from W; a walk S; as follows.

First we set S; = W;. Following the natural order on the vertices of Sy given
by <s, when there is on S a vertex of some edge €,,4.(r,) for some cycle I'; of
the sequence (I';) =2,..n—1 we set R = S; and thus either R’ = W5 or R = Ws.
We apply Lemma 18 on R and R’ and we get thus two walks S and S’, we
know that R(z,z’) + S well-intersects I';. The walks S and S have endpoints
in {or(T'j),0r (I';)}. Hence when or(T';) is an endpoint of S we write S1 =
Si(z,2j)+S+R(er(ly),y) and R' = R'(2',25)+ 5"+ R (o ('), y). Otherwise
or/(I'j) is an endpoint of S and we write S = S1(z,2%) + S + R'(or (T;),y')
and R = R'(z',2}) + 8" + R(or(T';), y)(recall that either R’ = W or R’ =
W3). Finally Sq well-intersects all concerned cycle of the sequence (I';)j=2. .. p—1.
Moreover, the walks S1, W5 and W3 are a-disjoint all of them have one endpoint
in {q1,q2,¢3} and the other one in {q}, ¢, ¢5}.

Due to Lemma 8, the set of edges A = M, NSy is a balanced M,-matching,
that is there is a perfect matching M; such that M, N M; = A.
But now, if M, N M; contains an odd cut set, say X, there must be a partition
(V1,V3) of V(G) into two odd sets such that the edges of X have one end in
V1 and the other end in V5. Moreover X C M,, Vi and V5 being odd, each of
those sets precisely contains exactly one odd cycle of G . Since Wy and W3
are both connecting a vertex of C to a vertex of Cf, there must be an edge of
S1 and an edge of W3 in X, a contradiction since S7, Wo and W3 are a-disjoint.

Moreover, the set of vertices S; U Wy — S N Wy together with a sub-path of
C; whose endpoints are ¢; and g2 and a sub-path of Cj whose endpoints are ¢}
and ¢4 form a set X of vertices that induce cycles of G. Thus the edge set J; of
the subgraph induced with V(G) — X is a join that avoids the edges of S, in
other words M, N M;N.J; = . Similarly we can derive from S; UW3 — S; NW3
another join J| with the same property. 0

A direct consequence of Theorem 22 is that Conjecture 4 holds true for cubic
bridgeless traceable graphs.

5 Conclusion

As far as we know the techniques developed in Lemmas 14 to 18 as well as in
Theorem 22 do not lead to a proof of Conjecture 3 for cubic bridgeless traceable
graphs in general. However Conjecture 3 holds true in some particular cases,
see for example Propositions 19, 20 or 21 or when in applying Lemma 18 on all
the concerned cycles of the sequence (I'j)j=2, .n—1, we get two a-disjoint walks
that well-intersect the cycles.

In a forthcoming paper ([4]), we prove that a minimal counter-example to
Conjecture 3 must have at least 36 vertices (40 vertices when the cyclic edge
connectivity of the graph is at least 4).
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