open science

Kaiser and Raspaud conjecture on cubic Graphs with few vertices

Jean-Luc Fouquet, Jean-Marie Vanherpe

To cite this version:

Jean-Luc Fouquet, Jean-Marie Vanherpe. Kaiser and Raspaud conjecture on cubic Graphs with few vertices. 2008. hal-00325255v1

HAL Id: hal-00325255
https://hal.science/hal-00325255v1
Preprint submitted on 27 Sep 2008 (v1), last revised 7 Nov 2009 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Kaiser-Raspaud Conjecture on Cubic Graphs with few vertices.

J.L. Fouquet and J.M. Vanherpe
L.I.F.O., Faculté des Sciences, B.P. 6759
Université d'Orléans, 45067 Orléans Cedex 2, FR

Abstract

A conjecture of Kaiser and Raspaud [6] asserts (in a special form due to Máčajová and S゙koviera) that every bridgeless cubic graph has two perfect matchings whose intersection does not contain any odd edge cut. We prove this conjecture for graphs with few vertices and we give a stronger result for traceable graphs.

Key words: Cubic graph; Edge-partition; Traceable graphs

1 Introduction

The following conjecture first appeared in [5] is known as The Berge-Fulkerson Conjecture, see [9].

Conjecture 1 If G is a bridgeless cubic graph, then there exist 6 perfect matchings M_{1}, \ldots, M_{6} of G with the property that every edge of G is contained in exactly two of M_{1}, \ldots, M_{6}.

Fan and Raspaud [3] conjectured that any bridgeless cubic graph can be provided with three perfect matchings with empty intersection (we shall say also non intersecting perfect matchings).

Conjecture 2 [3] Every bridgeless cubic graph contains perfect matching M_{1}, M_{2}, M_{3} such that

$$
M_{1} \cap M_{2} \cap M_{3}=\emptyset
$$

A join in a graph G is a set $J \subseteq E(G)$ such that the degree of every vertex in G has the same parity as its degree in the graph $(V(G), J)$. A perfect matching being a particular join in a cubic graph Kaiser and Raspaud conjectured in [6]

Conjecture 3 [6] Every bridgeless cubic graph admits two perfect matching M_{1}, M_{2} and a join J such that

$$
M_{1} \cap M_{2} \cap J=\emptyset
$$

If true Conjecture 1 implies Conjecture 2 which itself implies Conjecture 3. Those conjectures being obviously true for cubic graphs with chromatic index 3 , it is usefull to consider the following parameter for cubic graphs. The oddness of a cubic graph G is the minimum number of odd circuits in a 2 -factor of G. In [6] Kaiser and Raspaud proved that Conjecture 3 holds true for bridgeless cubic graph of oddness two.

In this paper, we consider Conjecture 3 and an equivalent form due to Máčajová and S̆koviera ([8], see Conjecture 5). We prove that a minimal counter example to Conjecture 5 must have at least 50 vertices.
The cyclic edge connectivity is the size of a smallest edge cut in a graph such that at least two of the connected components contain cycles. We prove that Conjecture 5 holds true while the order of the graph is less than a function of the cyclic edge connectivity.
In addition, we consider cubic bridgeless traceable graphs. A graph G is said to be traceable whenever G has an Hamiltonian path that is a path which visits each vertex exactly once. As we will see later the oddness of those graphs is either 0 or 2, thus Conjecture 3 holds true. We prove a stronger result for cubic bridgeless traceable graphs with chromatic index 4.

When A is a set of edges, $V(A)$ will denote the set of vertices which are an end-point of some edge in A. If M is a perfect matching of a cubic graph $G=(V, E)$, we denote G_{M} the 2 -factor $G_{M}=(V, E-M)$. When X is a set of vertices, δX denotes the set of edges with precisely one end in X. An edge cut is a set of edges whose removal renders the graph disconnected and which is inclusion-wise minimal with this property. For basic graph-theoretic terms, we refer the reader to Bondy and Murty [1].

2 Preliminary results

2.1 Fractional perfect matchings

The following results belongs to folklore
Theorem 4 Let G be a cubic bridgeless graph. G is 3-edge colorable if and only if there is a perfect matching in G that does not contain any odd edge cut.

Proof Assume that G has a 3 -edge coloring using colors α, β and γ. Let M_{α} be the set of edges colored with α, if M_{α} contains an odd edge-cut, there must be a partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ into two odd sets such that the edges of X have one end in V_{1} and the other end in V_{2}. Since all the edges of X are colored with α, the set of edges in V_{1} colored with β must be a perfect matching in V_{1}, a contradiction since V_{1} has an odd number of vertices.

Conversely, consider a perfect matching M which does not contain any odd edge-cut. Suppose that the 2 -factor G_{M} contains an odd cycle C, thus δC is an odd edge cut entirely contained in M, a contradiction. Consequently G_{M} does not contain any odd cycle, it follows that G is 3 -edge colorable.

This result is related to the following, an equivalent form of Conjecture 3 due to Mác̆ajová and S̆koviera.

Conjecture 5 Every bridgeless cubic graph has two perfect matchings M_{1}, M_{2} so that $M_{1} \cap M_{2}$ does not contain an odd edge cut.

Equivalence comes from the fact that a set of edges contains a join if and only if this set intersects all odd edge cuts([8]).

In order to prove this conjecture for bridgeless cubic graphs with few vertices, we will consider the notion of fractional perfect matching as used in [7].

For a graph $G=(V, E)$, a vector w of \mathbb{R}^{E} is said to be a fractional perfect matching whenever w satisfies the following properties (the entry of w corresponding to $e \in E$ being denoted $w(e)$ and $w(A)=\Sigma_{e \in A} w(e)$, for $\left.A \subseteq E\right)$:

- $0 \leq w(e) \leq 1$ for each edge e of G
- $w(\delta\{v\})=1$ for each vertex v of G
- $w(\delta X) \geq 1$ for each $X \subseteq V$ of odd cardinality.

The perfect matching polytope is the convex hull of the set of incidence vectors of perfect matchings of G. In [2] Edmonds showed that a vector $w \in \mathbb{R}^{E}$ belongs to the perfect matching polytope of G if and only if it is a fractional perfect matching

Moreover, when χ^{A} denotes the characteristic vector of the edge set A we will use the following tool :

Lemma 6 [7] If w is a fractional perfect matching in a graph $G=(V, E)$ and $c \in \mathbb{R}^{E}$, then G has a perfect matching M such that $c . \chi^{M} \geq c . w$ where . denotes the scalar product. Moreover, there exists such a perfect matching M that contains exactly one edge of each cut C with $w(C)=1$.

It is shown in [7], among other results, there must exist a perfect matching M_{1} which intersects all edge cuts of size 3 into a single edge and a perfect matching M_{2} such that $\left|M_{2}-M_{1}\right| \geq \frac{4}{15}|E(G)|$. Since the size of a perfect matching is precisely $\frac{n}{2}$, it must be pointed out that $\left|M_{1} \cap M_{2}\right| \leq \frac{n}{10}$.

Observe that there is an alternate proof of Theorem 4 in terms of fractional perfect matchings :
Consider a perfect matching M that does not contain any odd edge cut. We define a fractional perfect matching as follows : $w(e)=0$ when $e \in M$ and $w(e)=\frac{1}{2}$ otherwise. Given an odd set of vertices, say $X, \delta X$ is an odd edge cut which intersects M in a odd number of edges, since $\delta X \nsubseteq M, w$ is a fractional perfect matching. By Lemma 6 there is a perfect matching M^{\prime} such that

$$
\text { c. } \chi^{M^{\prime}} \geqslant c . w=\frac{1}{2} \times \frac{2}{3} \times|E|=\frac{n}{2} .
$$

Since c. $\chi^{M^{\prime}}=\left|M^{\prime} \backslash M\right|$ we have $\left|M^{\prime} \backslash M\right|=\frac{n}{2}=\left|M^{\prime}\right|$ and thus $M \cap M^{\prime}=\emptyset$. It follows that $\chi^{\prime}(G)=3$.

2.2 Balanced perfect matchings

Let M be a perfect matching of a cubic graph and let $\mathcal{C}=\left\{C_{1}, C_{2} \ldots C_{k}\right\}$ be the 2 -factor $G_{M} . A \subseteq M$ is a balanced M-matching whenever there is a perfect matching M^{\prime} such that $M \cap M^{\prime}=A$. That means that each odd cycle of \mathcal{C} is incident to at least one edge in A and the sub-paths determined by the ends of M^{\prime} on the cycles of \mathcal{C} incident to A have odd lengths.

Lemma 7 Let M be a perfect matching of a cubic graph G. A matching A is a M-balanced matching if and only if the connected components of $G_{M}-V(A)$ are either odd paths or even cycles.

Proof Since G_{M} is a 2-factor of G, the connected components of the subgraph $G_{M}-V(A)$ must be cycles or paths. Since A is a M-balanced matching, $M-A$ is a perfect matching of $G_{M}-V(A)$, thus the connected components of this graph must be even cycles or odd paths.

Conversely, assume that the connected components of $G_{M}-V(A)$ are paths or even cycles. Let A^{\prime} be a perfect matching of $G_{M}-V(A)$, we set $M^{\prime}=A \cup A^{\prime}$ and we are done.

3 On cubic graphs with few vertices

We first prove that Conjecture 5 holds true for bridgeless cubic graphs having less than 50 vertices

Theorem 8 Let G be a bridgeless cubic graph of order $n<50$. There is perfect matchings M and M^{\prime} such that $M \cap M^{\prime}$ does not contain any edge cut.

Proof We know from [7]that there must exist a perfect matching M which intersects all edge cuts of size 3 into a single edge and a perfect matching M^{\prime} such that $\left|M \cap M^{\prime}\right| \leq \frac{n}{10}$. It is assumed $n<50$, thus $\left|M \cap M^{\prime}\right|<5$. An odd edge cut, say C in $M \cap M^{\prime}$ must be of size 3 , but a such edge cut cannot exist since M intersects C in precisely one edge.

Let us now consider cyclic edge connectivity in cubic graphs.
Theorem 9 Let G be a cubic graph of order n with cyclic edge connectivity k. One of the following holds.
(1) There are two perfect matchings M and M^{\prime} such that $\left|M \cap M^{\prime}\right| \leq \frac{n}{2\left(2\left\lfloor\frac{k}{2}\right\rfloor+3\right)}$.
(2) For all perfect matching M there is an edge cut of size $2\left\lfloor\frac{k}{2}\right\rfloor+1$ entirely contained in M.

Proof For convenience we denote $s=2\left\lfloor\frac{k}{2}\right\rfloor+3$. Let M be a perfect matching that does not contain any edge cut of size $s-2$. The graph being cyclically k-edge connected $s-2$ is the minimum size of an odd edge cut in G. We set $w(e)=\frac{1}{s}$ when $e \in M$ and $w(e)=\frac{s-1}{2 s}$ otherwise. If X is an odd set of vertices, δX is an odd edge cut of size at least $s-2$. When $|\delta X| \geq s, w(\delta X) \geq 1$, when $|\delta X|=s-2$ there is at least 2 edges of δX that does not belong to M, thus $w(\delta X) \geq 1$ again and w is a fractional perfect matching.

Thus we apply Lemma 6 with $c=1-\chi^{M}$ and there is a perfect matching, say M^{\prime} such that c. $\chi^{M^{\prime}} \geq c . w=n \times \frac{s-1}{2 s}$.

Since c. $\chi^{M^{\prime}}=\left|M^{\prime}-M\right|$ and $\left|M^{\prime}\right|=\frac{n}{2}$ it follows that $\left|M \cap M^{\prime}\right| \leq \frac{n}{2 s}$.

Theorem 10 Let G be a cubic graph of order n with cyclic edge connectivity $k \geq 4$. If $n<2\left(2\left\lfloor\frac{k}{2}\right\rfloor+3\right)\left(2\left\lfloor\frac{k}{2}\right\rfloor+1\right)$ then there are two perfect matchings whose intersection does not contain any odd edge cut.

Proof Once again we denote $s=2\left\lfloor\frac{k}{2}\right\rfloor+3$. We can assume that there is an edge cut of size $s-2$ entirely contained in every perfect matching, otherwise,
from Theorem 9 there is two perfect matchings whose intersection contains less than $s-2$ edges and we are done since any odd edge cut contains at least $s-2$ edges.

Let M be a perfect matching of G. We set $w(e)=\frac{1}{s-2}$ when $e \in M$ and $w(e)=\frac{s-3}{2(s-2)}$ otherwise. The weight of an edge being at least $\frac{1}{s-2}$, an odd edge cut having at least $s-2$ edges w is a fractional perfect matching. If $c=1-\chi^{M}$, by Lemma 6 there is a perfect matching M^{\prime} which intersects in a single edge every edge cut C such that $w(C)=1$.

In addition we know that c. $\chi^{M^{\prime}} \geq c . w$, in other words $\left|M \cap M^{\prime}\right| \geq \frac{2}{3} \times|E| \times$ $\frac{s-3}{2(s-2)}=\frac{n}{2} \times \frac{s-3}{s-2}$. Consequently $\left|M \cap M^{\prime}\right| \leq \frac{n}{2(s-2)}$. Since $n<2 s(s-2)$ we have that $\left|M \cap M^{\prime}\right| \leq s$.

Assume that $M \cap M^{\prime}$ contains an odd edge cut C. By the above relation $|C|=s-2$ and then $w(C)=1$, a contradcition since M^{\prime} intersects the edge cuts of size $s-2$ in a single edge.

An example of consequence of Theorem 10 is that Conjecture 5 and therefore Conjecture 3 hold true for cyclically 4-edge-connected graphs having less than 70 vertices.

4 On cubic traceable graphs

In the following we prove a stronger result for cubic bridgeless traceable graphs.

4.1 Edge-coloring, notations

In this section we consider a cubic bridgeless traceable graph G which is not 3 edge-colorable, we provide a 4 edge-coloring of G which shows that the oddness of this graph is 2 , we give some notations and describe the construction of an auxiliary graph H, a usefull tool that will be used in Theorem 11 in the next section.

Let $P=a_{1} a_{2} \ldots a_{n-1} a_{n}$ be an Hamiltonian path of G. For $i=1 \ldots n-1$ we set $e_{i}=a_{i} a_{i+1}$. For convenience, a vertex will be denoted with it's index in the Hamiltonian path P and a chord of the path P connecting the vertex i to the vertex j will be denoted $i j$. Observe that the edge of the Hamiltonian path P connecting the vertex i to the vertex $i+1$ is denoted e_{i}.

An edge-coloring of G. We color the edge-set of G with a proper edgecoloring using four colors, namely $\alpha, \beta, \gamma, \delta$ as follows:

- Let e_{i} be colored with α when e_{i} is odd and with β when e_{i} is even.
- Let $e_{\delta} \neq e_{1}$ be an edge adjacent to 1 and $e_{\delta}^{\prime} \neq e_{n-1}$ be an edge adjacent to a_{n}, those two edges are colored with δ.
- All remaining edges of G being colored with γ.

Observe that the set M_{α} containing all the edges colored with α is a perfect matching. Let $C_{1}, C_{2}, \ldots C_{k}$ be the connected components of the 2-factor $G_{M_{\alpha}}$. The components of this 2 -factor which do not contain the edge e_{δ} nor the edge e_{δ}^{\prime} are even cycles since their edges are either colored with β or with γ. Since the 2 -factor $G_{M_{\alpha}}$ contains an even number of odd cycles the edges e_{δ} and e_{δ}^{\prime} must belong to distinct odd cycles of the 2 -factor. Thus without loss of generality, we assume that e_{δ} is an edge of C_{1} while e_{δ}^{\prime} is an edge of C_{k}.

The above observation shows that those graphs have oddness 2 .

The edges $e_{\min (C)}$ and $e_{\max (C)}$. For $C \in\left\{C_{1}, C_{2} \ldots C_{k}\right\}$ we denote $\max (C)$ the greatest index i such that e_{i} is an edge of C, similarly $\min (C)$ denotes the smallest index i such that e_{i} belongs to C. Observe that $\max (C)$ and $\min (C)$ are even numbers and that the corresponding edges are colored with β. Moreover the endpoints of $e_{\min (C)}$ are $\min (C)$ and $\min (C)+1$ as well as the end points of $e_{\max (C)}$ are $\max (C)$ and $\max (C)+1$

Observe that $\min (C)$ and $\max (C)$ are always defined and that $\min (C)=$ $\max (C)$ if and only if C is a triangle.

The sequence $\left(\Gamma_{j}\right)_{j=1 \ldots h}$. We define a sequence $\left(\Gamma_{j}\right)_{j=1 \ldots h}, 2 \leq h \leq k$ of members of $\left\{C_{1}, \ldots C_{k}\right\}$ as follows:

- We set $\Gamma_{1}=C_{1}$.
- If $\max \left(\Gamma_{j}\right)<\min \left(C_{k}\right)$, since the edge $e_{\max \left(\Gamma_{j}\right)}$ is not a bridge there is a cycle C in $G_{M_{\alpha}}$ with $\min (C)<\max \left(\Gamma_{j}\right)<\max (C)$. Among all such cycles, let us denote as Γ_{j+1} the cycle C for which $\max (C)$ is maximum.
- If $\max \left(\Gamma_{j}\right)>\min \left(C_{k}\right)$, we set $h=j+1$ and $\Gamma_{h}=C_{k}$.

Observe that by construction :
When $h=2,1<\min \left(C_{k}\right)<\max \left(C_{1}\right)=\max \left(\Gamma_{1}\right)<n$.
When $h>2$, for $1<j<h, \min \left(\Gamma_{j}\right)<\max \left(\Gamma_{j-1}\right)<\min \left(\Gamma_{j+1}\right)<\max \left(\Gamma_{j}\right)$ and for $j=h, \min \left(\Gamma_{h}\right)<\min \left(C_{k}\right)<\max \left(\Gamma_{h}\right)<n$.

An auxiliary graph H. We consider an auxiliary graph H, the vertex set of which being $V(G)$ we define the edge set of H from $E(G)$ as follows (see Figure 4.1) :

Fig. 1. An auxiliary graph (with $h>2$)

- First, we delete the edges $e_{\max \left(\Gamma_{1}\right)}$ and $e_{\min \left(\Gamma_{h}\right)}$.
- For each cycle $\Gamma_{j}(2<j<h)$ we delete the edges $e_{\min \left(\Gamma_{j}\right)}$ and $e_{\max \left(\Gamma_{j}\right)}$.
- Since Γ_{j} is an even cycle, when deleting the edges $e_{\min \left(\Gamma_{j}\right)}$ and $e_{\max \left(\Gamma_{j}\right)}$, we got two odd paths with one end in $\left\{\min \left(\Gamma_{j}\right), \min \left(\Gamma_{j}\right)+1\right\}$ and the other end in $\left\{\max \left(\Gamma_{j}\right), \max \left(\Gamma_{j}\right)+1\right\}$, namely P_{j} and P_{j}^{\prime}. We put in $E(H)$ two new edges (denoted in the following as additional edges) one edge connecting the endpoints of P_{j} while the endpoints of the other edge are the endpoints of P_{j}^{\prime}. We will say in the following that the first edge represents the path P_{j} while the other one represents the path P_{j}^{\prime}
- Finally, we delete all the edges of G being colored with γ and δ (that is the chords of P).

All the vertices of H have degree 2 except 6 vertices, namely $1, \max \left(\Gamma_{1}\right)$, $\max \left(\Gamma_{1}\right)+1, \min \left(\Gamma_{h}\right), \min \left(\Gamma_{h}\right)+1, n$ which have degree 1 . Thus the connected components of H are precisely 3 paths whose end points are members of $\left\{1, \max \left(\Gamma_{1}\right), \max \left(\Gamma_{1}\right)+1, \min \left(\Gamma_{h}\right), \min \left(\Gamma_{h}\right)+1, n\right\}$

Notations \prec_{W} and $W(z, t)$, concatenation of sub-walks. Let W be a walk of G. Writing $W=x \ldots y$ induces a natural order on the vertices of W, let us denote \prec_{W} this order. When $W=x \ldots y, W$ will be said to start with x and to end with y. When z and t are vertices of W such that $z \prec_{W} t$, the subwalk $z \ldots t$ of W whose endpoints are z and t will be denoted $W(z, t)$. When a walk $W(W=W(x, y))$ and a walk $W^{\prime}\left(W^{\prime}=W^{\prime}\left(x^{\prime}, y^{\prime}\right)\right)$ have a common vertex, say a, we can concatenate the sub-walks $W(x, a)$ and $W^{\prime}\left(a, y^{\prime}\right)$ in order to obtain another walk say $W^{\prime \prime}$, also denoted $W(x, a)+W^{\prime}\left(a, y^{\prime}\right)$, such that $W^{\prime \prime}(x, a)=W(x, a)$ and $W^{\prime \prime}\left(a, y^{\prime}\right)=W^{\prime}\left(a, y^{\prime}\right)$.

4.2 The main result

Conjecture 3 is known to be verified for bridgeless cubic graphs of oddness 2 (see [6]), Theorem 11 gives a stronger result for cubic bridgeless traceable graphs of chromatic index 4.

Theorem 11 Let G be a cubic bridgeless traceable graph of chromatic index 4. Then there exists four perfect matchings M_{α}, M_{1}, M_{2} and M_{3} such that $M_{\alpha} \cap M_{i}$ does not contain any odd cut set, for $i \in\{1,2 ? 3\}$. Moreover, for $i \in\{1,2,3\}$ one can associate to M_{i} two joins J_{i} and J_{i}^{\prime} such that $M_{\alpha} \cap M_{i} \cap$ $J_{i}=M_{\alpha} \cap M_{i} \cap J_{i}^{\prime}=\emptyset$.

Proof We are in a position to use the notations and tools presented in section 4.1, in particular we consider a 4 edge-coloring of G with colors α, β, γ and δ; the set M_{α} of edges colored with α is a perfect matching while $\left\{C_{1}, C_{2} \ldots C_{k}\right\}$ denotes the set of cycles of the 2 -factor $G-M_{\alpha}$ together with the edges $\min (C)$ and $\max (C)$ defined for any cycle C of this 2 -factor. Moreover we consider the sequence $\left(\Gamma_{j}\right)_{j=1 \ldots h}, 2 \leq h \leq k$ of members of $\left\{C_{1}, \ldots C_{k}\right\}$ as well as the auxiliary graph H described in Figure 4.1.

Claim 1 The connected components of H are odd paths with one end in $\left\{1, \max \left(\Gamma_{1}\right), \max \left(\Gamma_{1}\right)+1\right\}$ and the other end in $\left\{\min \left(\Gamma_{h}\right), \min \left(\Gamma_{h}\right)+1, n\right\}$.

Proof As a matter of fact, when $h=2, H$ is reduced to 3 sub-paths of P, namely: $Q_{1}: 1 \ldots \min \left(\Gamma_{2}\right), Q_{2}: \min \left(\Gamma_{2}\right)+1 \ldots . \max \left(\Gamma_{1}\right)$ and $Q_{3}: \max \left(\Gamma_{1}\right)+1 \ldots n$ We can thus suppose that $h>2$

Let $Q=q_{1} \ldots q_{r}$ be a connected component of H with its endpoint q_{1} in $\left\{1, \max \left(\Gamma_{1}\right), \max \left(\Gamma_{1}\right)+1\right\}$, we will prove that the other endpoint q_{r} of Q belongs to $\left\{\min \left(\Gamma_{h}\right), \min \left(\Gamma_{h}\right)+1, n\right\}$. Let x be the maximum index in $\{1, \ldots n\}$ of a vertex of Q.

FACT $x>\max \left(\Gamma_{1}\right)$ and for $1<j<h-1$, if $x>\max \left(\Gamma_{j-1}\right)$ then $x>$ $\max \left(\Gamma_{j}\right)$.

Proof If not, the vertex x must be a vertex of one of the 2 sub-paths $\max \left(\Gamma_{j-1}\right)+1 \ldots \min \left(\Gamma_{j+1}\right)$ or $\min \left(\Gamma_{j+1}\right) \ldots \max \left(\Gamma_{j}\right)$ of P, thus $x=\min \left(\Gamma_{j+1}\right)$ or $x=\max \left(\Gamma_{j}\right)$. In both cases, since $j<h-1$ there must be in Q one vertex of $\left\{\max \left(\Gamma_{j+1}\right), \max \left(\Gamma_{j+1}\right)+1\right\}$. But those vertices have an index greater than x, a contradiction.

Thus $x>\max \left(\Gamma_{h-2}\right)$ and either $x=\min \left(\Gamma_{h}\right)=q_{r}$ or $x=\max \left(\Gamma_{h-1}\right)$, in which case $q_{r}=\min \left(\Gamma_{h}\right)+1$ or $x=n=q_{r}$.

Consequently no connected component of H can be a path with both ends in $\left\{1, \max \left(\Gamma_{1}\right), \max \left(\Gamma_{1}\right)+1\right\}$, the Claim follows.
To a path, say $Q_{s}(s \in\{1,2,3\})$, of H we can associate an odd walk R_{s} of G as follows :

- Let q_{s} be the last vertex of Q_{s} that belongs to C_{1} when running on Q_{s} from its endpoint in $\left\{1, \max \left(C_{1}\right), \max \left(C_{1}\right)+1\right\}$. Similarly let q_{s}^{\prime} be the last vertex of Q_{s} that belongs to C_{k} when running on Q_{s} from its endpoint in $\left\{n, \min \left(C_{k}\right), \min \left(C_{k}\right)+1\right\}$. Let R_{s} be the sub-path of Q_{s} whose endpoints are q_{s} and q_{s}^{\prime}.
- Each additionnal edge of Q_{s} represents some odd sub-path $\left(P_{j}\right.$ or $\left.P_{j}^{\prime}\right)$ of some cycle Γ_{j}. We replace this edge with the sub-path it represents.

The walks $R_{s}(s \in\{1,2,3\})$ defined above are α-disjoint walks (that is two distinct walks do not share any edge colored with α). Moreover those walks have one end which belongs to C_{1} and the other end which belongs to C_{k}, have no edge of C_{1} nor of C_{k} while their end-edges are colored with α.

When C denotes an even cycle of $G_{M_{\alpha}}$ and X denotes a set of vertices of C, X will be said a γ-chain (resp. a β-chain) when X induces on C a path whose end-edges are colored with γ (resp. β). A set Y of vertices of G will be said to well-intersect C if and only if $V(C) \cap Y$ determines on C a set of γ-chains. Observe that whenever a set Y well-intersects C, the set $V(C)-Y$ well-intersects C too.

We intend to apply Lemma 7 on some matching $A \subset M_{\alpha}$. Since we may have even paths among the connected components of $G_{M}-V\left(R_{s}\right), s \in\{1,2,3\}$, in order to obtain a matching A for which Lemma 7 applies we will derive from R_{1} or R_{2} or R_{3} a suitable walk.

Claim 2 There is three α-disjoint walks S_{1}, S_{2}, S_{3} such that:
(1) when S denotes a walk of $\left\{S_{1}, S_{2}, S_{3}\right\}$, one end point of S belongs to $\left\{q_{1}, q_{2}, q_{3}\right\}$ while the other end is in $\left\{q_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}\right\}$;
(2) for a fixed $i_{0} \in\{1,2,3\}$ and for all even cycle C of $\left\{\Gamma_{2}, \ldots \Gamma_{h-1}\right\}$ such that $V(C) \cap V\left(S_{i_{0}}\right) \neq \emptyset, V(C) \cap V\left(S_{i_{0}}\right)$ well-intersects C.

Proof Observe that the walks R_{1}, R_{2} and R_{3} are α-disjoints and verify Property (1) of Claim 2. Let us set, in a first stage, $R_{1}^{\prime}=R_{1}, R_{2}^{\prime}=R_{2}$ and $R_{3}^{\prime}=R_{3}$, in addition we fix w.l.o.g $i_{0}=1$.

Assume by induction that there is a (possibly empty) sequence a_{1}, \ldots, a_{j} of vertices of R_{1}^{\prime} such that:

- $a_{1} \prec_{R_{1}^{\prime}} \ldots \prec_{R_{1}^{\prime}} a_{j}$;
- Each vertex a of this sequence is the first vertex of R_{1}^{\prime} that meets some cycle, say C_{a} in $\left\{\Gamma_{2}, \ldots, \Gamma_{h-1}\right\}$ (in other words $R_{1}^{\prime}\left(q_{1}, a\right) \cap C_{a}=\{a\}$);

Fig. 2. The walks W and W^{\prime} which intersect $C_{a_{j+1}}$.

Fig. 3. Either $W\left(y_{j+1}, y\right)$ or $W^{\prime}\left(y_{j+1}^{\prime}, y^{\prime}\right)$ does not intersect $C_{a_{j+1}}$.

- R_{1}^{\prime} well-intersects the cycles $C_{a_{1}}, \ldots, C_{a_{j}}$.

Assume that there is a vertex in $R_{1}^{\prime}\left(a_{j}, q_{1}^{\prime}\right)$ say a_{j+1} and a cycle in $\left\{\Gamma_{2}, \ldots, \Gamma_{h-1}\right\}$, say $C_{a_{j+1}}$, such that $R_{1}^{\prime}\left(q_{1}, a_{j+1}\right) \cap C_{a_{j+1}}=\left\{a_{j+1}\right\}$.
By construction $a_{j} \prec_{R_{1}^{\prime}} a_{j+1}$ and a_{j+1} is the first vertex of R_{1}^{\prime} that meets $C_{a_{j+1}}$. We will show that, up to some modifications on $R_{1}^{\prime}\left(a_{j+1}, q_{1}^{\prime}\right)$ and on R_{2}^{\prime} or R_{3}^{\prime}, the walk R_{1}^{\prime} well-intersects $C_{a_{j+1}}$ while R_{2}^{\prime} and R_{3}^{\prime} remain to verify Property (1) of Claim 2.

Observe that there is at least two walks in $\left\{R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}\right\}$ that share vertices with $C_{a_{j+1}}$. We know that R_{1}^{\prime} intersects with $C_{a_{j+1}}$. Without loss of generality assume that R_{2}^{\prime} also shares vertices with $C_{a_{j+1}}$. In order to simplify our discussion we denote those walks W and W^{\prime}, moreover we write $W=W(x, y)$ and $W^{\prime}=W^{\prime}\left(x^{\prime}, y^{\prime}\right)$ where $\left\{x, x^{\prime}\right\}=\left\{q_{1}, q_{2}\right\}$ and $\left\{y, y^{\prime}\right\}=\left\{q_{1}^{\prime}, q_{2}^{\prime}\right\}$.

More precisely, by construction of W and W^{\prime} we write (see Figure 2) :
$W=W\left(x, x_{j+1}\right)+W\left(x_{j+1}, y_{j+1}\right)+W\left(y_{j+1}, y\right)$ and
$W^{\prime}=W\left(x^{\prime}, x_{j+1}^{\prime}\right)+W\left(x_{j+1}, y_{j+1}^{\prime}\right)+W\left(y_{j+1}^{\prime}, y^{\prime}\right)$ where x_{j+1} and x_{j+1}^{\prime} are the end-points of the edge $\min \left(C_{a_{j+1}}\right)$ while y_{j+1} and y_{j+1}^{\prime} are the end-points of the edge $\max \left(C_{a_{j+1}}\right)$. Observe that at least one walk of $W\left(y_{j+1}, y\right)$ or $W^{\prime}\left(y_{j+1}^{\prime}, y^{\prime}\right)$ does not intersect $C_{a_{j+1}}$, see Figure 3. Suppose w.l.o.g that the vertex a_{j+1} belongs to $W\left(x_{j+1}, y_{j+1}\right)$. Let b be the neighbor of a_{j+1} such that the edge $a_{j+1} b$ is colored with β. From now on we distinguish two cases.

Case 1: $b \prec_{W} a_{j+1}$.
Case 1.1 If $W\left(y_{j+1}, y\right)$ does not intersect $C_{a_{j+1}}$ we set:

$$
R_{1}^{\prime}=R_{1}^{\prime}\left(q_{1}, a_{j+1}\right)+W\left(a_{j+1}, y_{j+1}\right)+W\left(y_{j+1}, y\right) \text { and } R_{2}^{\prime}=W^{\prime} \text { or } R_{2}^{\prime}=
$$

Fig. 4. Modifications of R_{1}^{\prime}, Case 1.
$W\left(x, x_{j+1}\right)+x_{j+1} x_{j+1}^{\prime}+W^{\prime}\left(x_{j+1}^{\prime}, y^{\prime}\right)$ according to the fact that $q_{2}=x^{\prime}$ or $q_{2}=x$.
Case 1.2 When $W\left(y_{j+1}, y\right)$ intersects $C_{a_{j+1}}$ we have to consider an edge of $W\left(y_{j+1}, y\right)$ colored with β that belongs to the sub-path of $C_{a_{j+1}}$ with a_{j+1} and y_{j+1} as end-points which contains b (see Figure 4). Among such edges let $a^{\prime} b^{\prime}\left(a^{\prime} \prec_{W} b^{\prime}\right)$ be such that the sub-path $a_{j+1} \ldots a^{\prime}$ which does not contain b has minimum length.
If $a^{\prime} \prec_{W^{\prime}} b^{\prime}$, let P be the subpath of $C_{a_{j+1}}$ whose end-points are a_{j+1} and b^{\prime} which does not contain b. We set $R_{1}^{\prime}=R_{1}^{\prime}\left(q_{1}, a_{j+1}\right)+P+W\left(b^{\prime}, y\right)$ and $R_{2}^{\prime}=W^{\prime}$ or $R_{2}^{\prime}=W\left(x, x_{j+1}\right)+x_{j+1} x_{j+1}^{\prime}+W^{\prime}\left(x_{j+1}^{\prime}, y^{\prime}\right)$ according to the fact that $q_{2}=x^{\prime}$ or $q_{2}=x$.
If $b^{\prime} \prec_{W^{\prime}} a^{\prime}$ we set $R_{1}^{\prime}=R_{1}^{\prime}\left(q_{1}, a_{j+1}\right)+W\left(a_{j+1}, y_{j+1}\right)+W\left(y_{j+1}, a^{\prime}=\right.$ $+W^{\prime}\left(a^{\prime}, y^{\prime}\right)$ and $R_{2}^{\prime}=W^{\prime}\left(x^{\prime}, b^{\prime}\right)+W\left(b^{\prime}, y\right)$ or $R_{2}^{\prime}=W\left(x, x_{j+1}\right)+x_{j+1} x_{j+1}^{\prime}+$ $W^{\prime}\left(x_{j+1}^{\prime}, b^{\prime}\right)+W\left(b^{\prime}, y\right)$ according to the fact that $q_{2}=x^{\prime}$ or $q_{2}=x$.

Case 2: $a_{j+1} \prec_{W} b$. Let $P=a_{j+1} \ldots y_{j+1}^{\prime}$ be the sub-path of $C_{a_{j+1}}$ whose end-points are a_{j+1} and y_{j+1}^{\prime} which avoids b.

Case 2.1 If $W^{\prime}\left(y_{j+1}^{\prime}, y^{\prime}\right)$ does not intersect $C_{a_{j+1}}$ we set:
$R_{1}^{\prime}=R_{1}^{\prime}\left(q_{1}, a_{j+1}\right)+P+W^{\prime}\left(y_{j+1}^{\prime}, y^{\prime}\right)$ and $R_{2}^{\prime}=W$ or $R_{2}^{\prime}=W^{\prime}\left(x^{\prime}, x_{j+1}^{\prime}\right)+$ $x_{j+1}^{\prime} x_{j+1}+W\left(x_{j+1}, y\right)$ according to the fact that $q_{2}=x$ or $q_{2}=x^{\prime}$.
Case 2.2 When $W^{\prime}\left(y_{j+1}^{\prime}, y^{\prime}\right)$ intersects $C_{a_{j+1}}$ we have to consider an edge of $W^{\prime}\left(y_{j+1}^{\prime}, y^{\prime}\right)$ colored with β that belongs to $W\left(b, y_{j+1}\right)$ (see Figure 5). Among such edges let $a^{\prime} b^{\prime}\left(a^{\prime} \prec_{W^{\prime}} b^{\prime}\right)$ be such that the sub-path $a_{j+1} \ldots a^{\prime}$ which contains b has minimum length.

Fig. 5. Modifications of R_{1}^{\prime}, Case 2.
If $a^{\prime} \prec_{W} b^{\prime}$, we write $R_{1}^{\prime}=R_{1}^{\prime}\left(q_{1}, a_{j+1}\right)+P+y_{j+1}^{\prime} y_{j+1}+W\left(y_{j+1}, b^{\prime}\right)+W^{\prime}\left(b^{\prime}, y^{\prime}\right)$ and $R_{2}^{\prime}=W$ or $R_{2}^{\prime}=W^{\prime}\left(x^{\prime}, x_{j+1}^{\prime}\right)+x_{j+1}^{\prime} x_{j+1}+W\left(x_{j+1}, y\right)$ according to the fact that $q_{2}=x$ or $q_{2}=x^{\prime}$.
If $b^{\prime} \prec_{W} a^{\prime}$ we write $R_{1}^{\prime}=R_{1}^{\prime}\left(q_{1}, a_{j+1}\right)+P+W^{\prime}\left(y_{j+1}^{\prime}, a^{\prime}\right)+W\left(a^{\prime}, y\right)$ and $R_{2}^{\prime}=W\left(x, x_{j+1}\right)+W\left(x_{j+1}, b^{\prime}\right)+W^{\prime}\left(b^{\prime}, y^{\prime}\right)$ or $R_{2}^{\prime}=W^{\prime}\left(x^{\prime}, x_{j+1}^{\prime}\right)+x_{j+1}^{\prime} x_{j+1}+$ $W\left(x_{j+1}, b^{\prime}\right)+W^{\prime}\left(b^{\prime}, y^{\prime \prime}\right)$ according to the fact that $q_{2}=x$ or $q_{2}=x^{\prime}$.

It is easy to see that up to the modifications described above on R_{1}^{\prime}, on R_{2}^{\prime} and a renaming of the vertices y or y^{\prime} as q_{1}^{\prime} or q_{2}^{\prime}, the walk $R_{1}^{\prime}=R_{1}\left(q_{1}, q_{1}^{\prime}\right)$ wellintersects the cycle $C_{a_{j+1}}$. In addition R_{1}^{\prime} and R_{2}^{\prime} remains to be α-disjoints and R_{2}^{\prime} has one end in C_{1} and the other end in C_{k}. The Claim follows by induction.
.
Due to Lemma 7, the set of edges $A=M_{\alpha} \cap S_{1}$ is a M_{α}-balanced matching, that is there is a perfect matching M_{1} such that $M_{\alpha} \cap M_{1}=A$.
But now, if $M_{\alpha} \cap M_{1}$ contains an odd cut set, say X, there must be a partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ into two odd sets such that the edges of X have one end in V_{1} and the other end in V_{2}. Moreover $X \subset M_{\alpha}$ the edges of X are colored with α, V_{1} and V_{2} being odd, each of those sets precisely contains exactly one odd cycle of M_{α}. Since S_{2} and S_{3} are both connecting a vertex of C_{1} to a vertex of C_{k}, there must be an edge of S_{1} and an edge of S_{3} in X, a contradiction since S_{1}, S_{2} and S_{3} are α-disjoint.

Moreover, the set of vertices $S_{1} \cup S_{2}-S_{1} \cap S_{2}$ together with a sub-path of C_{1} whose endpoints are q_{1} and q_{2} and a sub-path of C_{k} whose endpoints are q_{1}^{\prime} and q_{2}^{\prime} form a set X of vertices which induce cycles of G. Thus the edgeset J_{1} of the subgraph induced with $V(G)-X$ is a join which avoids the edges of S_{1}, in other word $M_{\alpha} \cap M_{1} \cap J_{1}=\emptyset$. Similarly we can derive from $S_{1} \cup S_{3}-S_{1} \cap S_{3}$ another join J_{1}^{\prime} with the same property.

A direct consequence of Theorem 11 is :
Corollary 12 Conjecture 5 holds true for cubic bridgeless traceable graphs.

5 Conclusion

As far as we know the technics developed in Theorem 11 do not lead to a proof of Conjecture 2 for cubic bridgeless traceable graphs.

In a forthcoming paper ([4]), we prove that a minimal counter-example to Conjecture 2 must have at least 42 vertices.

References

[1] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Elsevier, NorthHolland, 1976.
[2] J Edmonds. Maximum matching and a polyhedron with $(0,1)$ vertices. J. Res. Nat. Bur. Standards, B(69):125-130, 1965.
[3] G. Fan and A. Raspaud. Fulkerson's conjecture and circuit covers. J. Comb. Theory Ser. B, 61:133-138, 1994.
[4] J.L Fouquet and J.M Vanherpe. On Fan Raspaud Conjecture. manuscript, 2008.
[5] D.R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Math. Programming, 1:168-194, 1971.
[6] T. Kaiser and A. Raspaud. Non-intersecting perfect matchings in cubic graphs. Electronic Notes in Discrete Mathematics, 28:293-299, 2007.
[7] Tomás Kaiser, Daniel Král, and Serguei Norine. Unions of perfect matchings in cubic graphs. Electronic Notes in DISCRETE MATHEMATICS, 22:341-345, 2005.
[8] E. Màčajová and M. Škoviera. http://garden.irmacs.sfu.ca/?q=op/intersecting two perfect matchings, 2007.
[9] P. Seymour. On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte. Proc. London Math. Soc.(3), 38:423-460, 1979.

