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Kaiser-Raspaud Conjecture on Cubic Graphs

with few vertices.

J.L. Fouquet and J.M. Vanherpe

L.I.F.O., Faculté des Sciences, B.P. 6759
Université d’Orléans, 45067 Orléans Cedex 2, FR

Abstract

A conjecture of Kaiser and Raspaud [6] asserts (in a special form due to Mác̆ajová
and S̆koviera) that every bridgeless cubic graph has two perfect matchings whose
intersection does not contain any odd edge cut. We prove this conjecture for graphs
with few vertices and we give a stronger result for traceable graphs.
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1 Introduction

The following conjecture first appeared in [5] is known as The Berge-Fulkerson
Conjecture, see [9].

Conjecture 1 If G is a bridgeless cubic graph, then there exist 6 perfect
matchings M1, . . . , M6 of G with the property that every edge of G is con-
tained in exactly two of M1, . . . , M6.

Fan and Raspaud [3] conjectured that any bridgeless cubic graph can be pro-
vided with three perfect matchings with empty intersection (we shall say also
non intersecting perfect matchings).

Conjecture 2 [3] Every bridgeless cubic graph contains perfect matching M1,
M2, M3 such that

M1 ∩ M2 ∩ M3 = ∅

A join in a graph G is a set J ⊆ E(G) such that the degree of every vertex in
G has the same parity as its degree in the graph (V (G), J). A perfect matching
being a particular join in a cubic graph Kaiser and Raspaud conjectured in
[6]
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Conjecture 3 [6] Every bridgeless cubic graph admits two perfect matching
M1, M2 and a join J such that

M1 ∩ M2 ∩ J = ∅

If true Conjecture 1 implies Conjecture 2 which itself implies Conjecture 3.
Those conjectures being obviously true for cubic graphs with chromatic index
3, it is usefull to consider the following parameter for cubic graphs. The oddness
of a cubic graph G is the minimum number of odd circuits in a 2-factor of G.
In [6] Kaiser and Raspaud proved that Conjecture 3 holds true for bridgeless
cubic graph of oddness two.

In this paper, we consider Conjecture 3 and an equivalent form due to Mác̆ajová
and S̆koviera ([8], see Conjecture 5). We prove that a minimal counter example
to Conjecture 5 must have at least 50 vertices.
The cyclic edge connectivity is the size of a smallest edge cut in a graph such
that at least two of the connected components contain cycles. We prove that
Conjecture 5 holds true while the order of the graph is less than a function of
the cyclic edge connectivity.
In addition, we consider cubic bridgeless traceable graphs. A graph G is said to
be traceable whenever G has an Hamiltonian path that is a path which visits
each vertex exactly once. As we will see later the oddness of those graphs is
either 0 or 2, thus Conjecture 3 holds true. We prove a stronger result for
cubic bridgeless traceable graphs with chromatic index 4.

When A is a set of edges, V (A) will denote the set of vertices which are an
end-point of some edge in A. If M is a perfect matching of a cubic graph
G = (V, E), we denote GM the 2-factor GM = (V, E − M). When X is a set
of vertices, δX denotes the set of edges with precisely one end in X. An edge
cut is a set of edges whose removal renders the graph disconnected and which
is inclusion-wise minimal with this property. For basic graph-theoretic terms,
we refer the reader to Bondy and Murty [1].

2 Preliminary results

2.1 Fractional perfect matchings

The following results belongs to folklore

Theorem 4 Let G be a cubic bridgeless graph. G is 3-edge colorable if and
only if there is a perfect matching in G that does not contain any odd edge
cut.
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Proof Assume that G has a 3-edge coloring using colors α, β and γ. Let
Mα be the set of edges colored with α, if Mα contains an odd edge-cut, there
must be a partition (V1, V2) of V (G) into two odd sets such that the edges
of X have one end in V1 and the other end in V2. Since all the edges of X

are colored with α, the set of edges in V1 colored with β must be a perfect
matching in V1, a contradiction since V1 has an odd number of vertices.

Conversely, consider a perfect matching M which does not contain any odd
edge-cut. Suppose that the 2-factor GM contains an odd cycle C, thus δC is
an odd edge cut entirely contained in M , a contradiction. Consequently GM

does not contain any odd cycle, it follows that G is 3-edge colorable. �

This result is related to the following, an equivalent form of Conjecture 3 due
to Mác̆ajová and S̆koviera.

Conjecture 5 Every bridgeless cubic graph has two perfect matchings M1,
M2 so that M1 ∩ M2 does not contain an odd edge cut.

Equivalence comes from the fact that a set of edges contains a join if and only
if this set intersects all odd edge cuts([8]).

In order to prove this conjecture for bridgeless cubic graphs with few vertices,
we will consider the notion of fractional perfect matching as used in [7].

For a graph G = (V, E), a vector w of RE is said to be a fractional perfect
matching whenever w satisfies the following properties (the entry of w corre-
sponding to e ∈ E being denoted w(e) and w(A) = Σe∈Aw(e), for A ⊆ E) :
• 0 ≤ w(e) ≤ 1 for each edge e of G

• w(δ{v}) = 1 for each vertex v of G

• w(δX) ≥ 1 for each X ⊆ V of odd cardinality.

The perfect matching polytope is the convex hull of the set of incidence vectors
of perfect matchings of G. In [2] Edmonds showed that a vector w ∈ RE

belongs to the perfect matching polytope of G if and only if it is a fractional
perfect matching

Moreover, when χA denotes the characteristic vector of the edge set A we will
use the following tool :

Lemma 6 [7] If w is a fractional perfect matching in a graph G = (V,E)
and c ∈ RE, then G has a perfect matching M such that c.χM ≥ c.w where .

denotes the scalar product. Moreover, there exists such a perfect matching M

that contains exactly one edge of each cut C with w(C) = 1.
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It is shown in [7], among other results, there must exist a perfect matching
M1 which intersects all edge cuts of size 3 into a single edge and a perfect
matching M2 such that |M2 − M1| ≥

4
15
|E(G)|. Since the size of a perfect

matching is precisely n
2
, it must be pointed out that |M1 ∩ M2| ≤

n
10

.

Observe that there is an alternate proof of Theorem 4 in terms of fractional
perfect matchings :
Consider a perfect matching M that does not contain any odd edge cut. We
define a fractional perfect matching as follows : w(e) = 0 when e ∈ M and
w(e) = 1

2
otherwise. Given an odd set of vertices, say X, δX is an odd edge cut

which intersects M in a odd number of edges, since δX * M , w is a fractional
perfect matching. By Lemma 6 there is a perfect matching M ′ such that

c.χM ′

> c.w =
1

2
×

2

3
× |E| =

n

2
.

Since c.χM ′

= |M ′\M | we have |M ′\M | = n
2

= |M ′| and thus M ∩M ′ = ∅. It
follows that χ′(G) = 3.

2.2 Balanced perfect matchings

Let M be a perfect matching of a cubic graph and let C = {C1, C2 . . . Ck}
be the 2-factor GM . A ⊆ M is a balanced M−matching whenever there is a
perfect matching M ′ such that M ∩M ′ = A. That means that each odd cycle
of C is incident to at least one edge in A and the sub-paths determined by the
ends of M ′ on the cycles of C incident to A have odd lengths.

Lemma 7 Let M be a perfect matching of a cubic graph G. A matching A is
a M-balanced matching if and only if the connected components of GM −V (A)
are either odd paths or even cycles.

Proof Since GM is a 2-factor of G, the connected components of the subgraph
GM −V (A) must be cycles or paths. Since A is a M-balanced matching, M−A

is a perfect matching of GM − V (A), thus the connected components of this
graph must be even cycles or odd paths.

Conversely, assume that the connected components of GM − V (A) are paths
or even cycles. Let A′ be a perfect matching of GM −V (A), we set M ′ = A∪A′

and we are done. �
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3 On cubic graphs with few vertices

We first prove that Conjecture 5 holds true for bridgeless cubic graphs having
less than 50 vertices

Theorem 8 Let G be a bridgeless cubic graph of order n < 50. There is
perfect matchings M and M ′ such that M ∩M ′ does not contain any edge cut.

Proof We know from [7]that there must exist a perfect matching M which
intersects all edge cuts of size 3 into a single edge and a perfect matching M ′

such that |M ∩ M ′| ≤ n
10

. It is assumed n < 50, thus |M ∩ M ′| < 5. An odd
edge cut, say C in M ∩M ′ must be of size 3, but a such edge cut cannot exist
since M intersects C in precisely one edge. �

Let us now consider cyclic edge connectivity in cubic graphs.

Theorem 9 Let G be a cubic graph of order n with cyclic edge connectivity
k. One of the following holds.

(1) There are two perfect matchings M and M ′ such that |M∩M ′| ≤ n

2(2⌊k
2
⌋+3)

.

(2) For all perfect matching M there is an edge cut of size 2⌊k
2
⌋ + 1 entirely

contained in M .

Proof For convenience we denote s = 2⌊k
2
⌋+3. Let M be a perfect matching

that does not contain any edge cut of size s − 2. The graph being cyclically
k-edge connected s − 2 is the minimum size of an odd edge cut in G. We set
w(e) = 1

s
when e ∈ M and w(e) = s−1

2s
otherwise. If X is an odd set of vertices,

δX is an odd edge cut of size at least s−2. When |δX| ≥ s, w(δX) ≥ 1, when
|δX| = s − 2 there is at least 2 edges of δX that does not belong to M , thus
w(δX) ≥ 1 again and w is a fractional perfect matching.

Thus we apply Lemma 6 with c = 1 − χM and there is a perfect matching,
say M ′ such that c.χM ′

≥ c.w = n × s−1
2s

.

Since c.χM ′

= |M ′ − M | and |M ′| = n
2

it follows that |M ∩ M ′| ≤ n
2s

. �

Theorem 10 Let G be a cubic graph of order n with cyclic edge connectivity
k ≥ 4. If n < 2(2⌊k

2
⌋+3)(2⌊k

2
⌋+1) then there are two perfect matchings whose

intersection does not contain any odd edge cut.

Proof Once again we denote s = 2⌊k
2
⌋ + 3. We can assume that there is an

edge cut of size s− 2 entirely contained in every perfect matching, otherwise,
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from Theorem 9 there is two perfect matchings whose intersection contains
less than s− 2 edges and we are done since any odd edge cut contains at least
s − 2 edges.

Let M be a perfect matching of G. We set w(e) = 1
s−2

when e ∈ M and

w(e) = s−3
2(s−2)

otherwise. The weight of an edge being at least 1
s−2

, an odd
edge cut having at least s − 2 edges w is a fractional perfect matching. If
c = 1− χM , by Lemma 6 there is a perfect matching M ′ which intersects in a
single edge every edge cut C such that w(C) = 1.

In addition we know that c.χM ′

≥ c.w, in other words |M ∩ M ′| ≥ 2
3
× |E| ×

s−3
2(s−2)

= n
2
× s−3

s−2
. Consequently |M ∩ M ′| ≤ n

2(s−2)
. Since n < 2s(s − 2) we

have that |M ∩ M ′| ≤ s.

Assume that M ∩ M ′ contains an odd edge cut C. By the above relation
|C| = s − 2 and then w(C) = 1, a contradcition since M ′ intersects the edge
cuts of size s − 2 in a single edge. �

An example of consequence of Theorem 10 is that Conjecture 5 and therefore
Conjecture 3 hold true for cyclically 4-edge-connected graphs having less than
70 vertices.

4 On cubic traceable graphs

In the following we prove a stronger result for cubic bridgeless traceable graphs.

4.1 Edge-coloring, notations

In this section we consider a cubic bridgeless traceable graph G which is not 3
edge-colorable, we provide a 4 edge-coloring of G which shows that the oddness
of this graph is 2, we give some notations and describe the construction of an
auxiliary graph H , a usefull tool that will be used in Theorem 11 in the next
section.

Let P = a1a2 . . . an−1an be an Hamiltonian path of G. For i = 1 . . . n − 1 we
set ei = aiai+1. For convenience, a vertex will be denoted with it’s index in
the Hamiltonian path P and a chord of the path P connecting the vertex i

to the vertex j will be denoted ij. Observe that the edge of the Hamiltonian
path P connecting the vertex i to the vertex i + 1 is denoted ei.
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An edge-coloring of G. We color the edge-set of G with a proper edge-
coloring using four colors, namely α, β, γ, δ as follows :
• Let ei be colored with α when ei is odd and with β when ei is even.
• Let eδ 6= e1 be an edge adjacent to 1 and e′δ 6= en−1 be an edge adjacent to
an, those two edges are colored with δ.
• All remaining edges of G being colored with γ.

Observe that the set Mα containing all the edges colored with α is a perfect
matching. Let C1, C2, . . . Ck be the connected components of the 2-factor GMα

.
The components of this 2-factor which do not contain the edge eδ nor the edge
e′δ are even cycles since their edges are either colored with β or with γ. Since
the 2-factor GMα

contains an even number of odd cycles the edges eδ and
e′δ must belong to distinct odd cycles of the 2-factor. Thus without loss of
generality, we assume that eδ is an edge of C1 while e′δ is an edge of Ck.

The above observation shows that those graphs have oddness 2.

The edges emin(C) and emax(C). For C ∈ {C1, C2 . . . Ck} we denote max(C)
the greatest index i such that ei is an edge of C, similarly min(C) denotes
the smallest index i such that ei belongs to C. Observe that max(C) and
min(C) are even numbers and that the corresponding edges are colored with
β. Moreover the endpoints of emin(C) are min(C) and min(C) + 1 as well as
the end points of emax(C) are max(C) and max(C) + 1

Observe that min(C) and max(C) are always defined and that min(C) =
max(C) if and only if C is a triangle.

The sequence (Γj)j=1...h. We define a sequence (Γj)j=1...h, 2 ≤ h ≤ k of
members of {C1, . . . Ck} as follows :
• We set Γ1 = C1.
• If max(Γj) < min(Ck), since the edge emax(Γj ) is not a bridge there is a cycle
C in GMα

with min(C) < max(Γj) < max(C). Among all such cycles, let us
denote as Γj+1 the cycle C for which max(C) is maximum.
• If max(Γj) > min(Ck), we set h = j + 1 and Γh = Ck.
Observe that by construction :
When h = 2, 1 < min(Ck) < max(C1) = max(Γ1) < n.
When h > 2, for 1 < j < h, min(Γj) < max(Γj−1) < min(Γj+1) < max(Γj)
and for j = h, min(Γh) < min(Ck) < max(Γh) < n.

An auxiliary graph H. We consider an auxiliary graph H , the vertex set
of which being V (G) we define the edge set of H from E(G) as follows (see
Figure 4.1) :
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1
n

min(Γ2)

min(Γ2) + 1

min(Γj)

min(Γj) + 1

min(Γh)

min(Γj+1)

min(Γj+1) + 1

max(Γ1)

max(Γ1) + 1

max(Γj)

max(Γj−1)

max(Γj−1) + 1

max(Γh−1)

max(Γh−1) + 1

min(Γh) + 1

max(Γj) + 1

Fig. 1. An auxiliary graph (with h > 2)

• First, we delete the edges emax(Γ1) and emin(Γh).
• For each cycle Γj (2 < j < h) we delete the edges emin(Γj) and emax(Γj ).
• Since Γj is an even cycle, when deleting the edges emin(Γj) and emax(Γj ), we
got two odd paths with one end in {min(Γj), min(Γj) + 1} and the other
end in {max(Γj), max(Γj) + 1}, namely Pj and P ′

j . We put in E(H) two new
edges (denoted in the following as additional edges) one edge connecting the
endpoints of Pj while the endpoints of the other edge are the endpoints of P ′

j .
We will say in the following that the first edge represents the path Pj while
the other one represents the path P ′

j

• Finally, we delete all the edges of G being colored with γ and δ (that is the
chords of P ).

All the vertices of H have degree 2 except 6 vertices, namely 1, max(Γ1),
max(Γ1)+1, min(Γh), min(Γh)+1, n which have degree 1. Thus the connected
components of H are precisely 3 paths whose end points are members of
{1, max(Γ1), max(Γ1) + 1, min(Γh), min(Γh) + 1, n}

Notations ≺W and W (z, t), concatenation of sub-walks. Let W be a
walk of G. Writing W = x . . . y induces a natural order on the vertices of W ,
let us denote ≺W this order. When W = x . . . y, W will be said to start with x

and to end with y.When z and t are vertices of W such that z ≺W t, the sub-
walk z . . . t of W whose endpoints are z and t will be denoted W (z, t). When
a walk W (W = W (x, y)) and a walk W ′ (W ′ = W ′(x′, y′)) have a common
vertex, say a, we can concatenate the sub-walks W (x, a) and W ′(a, y′) in order
to obtain another walk say W ′′, also denoted W (x, a) + W ′(a, y′), such that
W ′′(x, a) = W (x, a) and W ′′(a, y′) = W ′(a, y′).

8



4.2 The main result

Conjecture 3 is known to be verified for bridgeless cubic graphs of oddness
2 (see [6]), Theorem 11 gives a stronger result for cubic bridgeless traceable
graphs of chromatic index 4.

Theorem 11 Let G be a cubic bridgeless traceable graph of chromatic index
4. Then there exists four perfect matchings Mα, M1, M2 and M3 such that
Mα ∩ Mi does not contain any odd cut set, for i ∈ {1, 2?3}. Moreover, for
i ∈ {1, 2, 3} one can associate to Mi two joins Ji and J ′

i such that Mα ∩Mi ∩
Ji = Mα ∩ Mi ∩ J ′

i = ∅.

Proof We are in a position to use the notations and tools presented in section
4.1, in particular we consider a 4 edge-coloring of G with colors α, β, γ and δ ;
the set Mα of edges colored with α is a perfect matching while {C1, C2 . . . Ck}
denotes the set of cycles of the 2-factor G−Mα together with the edges min(C)
and max(C) defined for any cycle C of this 2-factor. Moreover we consider
the sequence (Γj)j=1...h, 2 ≤ h ≤ k of members of {C1, . . . Ck} as well as the
auxiliary graph H described in Figure 4.1.

Claim 1 The connected components of H are odd paths with one end in
{1, max(Γ1), max(Γ1) + 1} and the other end in {min(Γh), min(Γh) + 1, n}.

Proof As a matter of fact, when h = 2, H is reduced to 3 sub-paths of P ,
namely: Q1: 1...min(Γ2),Q2: min(Γ2) + 1....max(Γ1) and Q3:max(Γ1) + 1....n
We can thus suppose that h > 2

Let Q = q1 . . . qr be a connected component of H with its endpoint q1 in
{1, max(Γ1), max(Γ1) + 1}, we will prove that the other endpoint qr of Q

belongs to {min(Γh), min(Γh)+1, n}. Let x be the maximum index in {1, . . . n}
of a vertex of Q.

Fact x > max(Γ1) and for 1 < j < h − 1, if x > max(Γj−1) then x >

max(Γj).

Proof If not, the vertex x must be a vertex of one of the 2 sub-paths
max(Γj−1)+1 . . .min(Γj+1) or min(Γj+1) . . .max(Γj) of P , thus x = min(Γj+1)
or x = max(Γj). In both cases, since j < h− 1 there must be in Q one vertex
of {max(Γj+1), max(Γj+1)+1}. But those vertices have an index greater than
x, a contradiction. �

Thus x > max(Γh−2) and either x = min(Γh) = qr or x = max(Γh−1), in
which case qr = min(Γh) + 1 or x = n = qr.
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Consequently no connected component of H can be a path with both ends in
{1, max(Γ1), max(Γ1) + 1}, the Claim follows. �

To a path, say Qs (s ∈ {1, 2, 3}), of H we can associate an odd walk Rs of G

as follows :
• Let qs be the last vertex of Qs that belongs to C1 when running on Qs

from its endpoint in {1, max(C1), max(C1) + 1}. Similarly let q′s be the last
vertex of Qs that belongs to Ck when running on Qs from its endpoint in
{n, min(Ck), min(Ck)+1}. Let Rs be the sub-path of Qs whose endpoints are
qs and q′s.
• Each additionnal edge of Qs represents some odd sub-path (Pj or P ′

j) of
some cycle Γj. We replace this edge with the sub-path it represents.

The walks Rs (s ∈ {1, 2, 3}) defined above are α-disjoint walks (that is two
distinct walks do not share any edge colored with α). Moreover those walks
have one end which belongs to C1 and the other end which belongs to Ck,
have no edge of C1 nor of Ck while their end-edges are colored with α.

When C denotes an even cycle of GMα
and X denotes a set of vertices of

C, X will be said a γ-chain (resp. a β-chain) when X induces on C a path
whose end-edges are colored with γ (resp. β). A set Y of vertices of G will
be said to well-intersect C if and only if V (C) ∩ Y determines on C a set of
γ-chains. Observe that whenever a set Y well-intersects C, the set V (C) − Y

well-intersects C too.

We intend to apply Lemma 7 on some matching A ⊂ Mα. Since we may have
even paths among the connected components of GM −V (Rs), s ∈ {1, 2, 3}, in
order to obtain a matching A for which Lemma 7 applies we will derive from
R1 or R2 or R3 a suitable walk.

Claim 2 There is three α-disjoint walks S1, S2, S3 such that :

(1) when S denotes a walk of {S1, S2, S3}, one end point of S belongs to
{q1, q2, q3} while the other end is in {q′1, q

′
2, q

′
3} ;

(2) for a fixed i0 ∈ {1, 2, 3} and for all even cycle C of {Γ2, . . .Γh−1} such
that V (C) ∩ V (Si0) 6= ∅, V (C) ∩ V (Si0) well-intersects C.

Proof Observe that the walks R1, R2 and R3 are α-disjoints and verify
Property (1) of Claim 2. Let us set, in a first stage, R′

1 = R1, R′
2 = R2 and

R′
3 = R3, in addition we fix w.l.o.g i0 = 1.

Assume by induction that there is a (possibly empty) sequence a1, . . . , aj of
vertices of R′

1 such that :
• a1 ≺R′

1
. . . ≺R′

1
aj ;

• Each vertex a of this sequence is the first vertex of R′
1 that meets some cycle,

say Ca in {Γ2, . . . , Γh−1} (in other words R′
1(q1, a) ∩ Ca = {a}) ;
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y′

y

x

x′

max(Caj+1
)min(Caj+1

)

W

y′

j+1

yj+1xj+1

W ′

x′

j+1

Caj+1

Fig. 2. The walks W and W ′ which intersect Caj+1 .

Caj+1Caj+1

max(Caj+1
)min(Caj+1

)

W ′

W

y′

j+1
yj+1

y

y′

x

x′

xj+1
x′

j+1
x′

j+1

xj+1

x′

x
y′

y

W

W ′

min(Caj+1
) max(Caj+1

)

yj+1 y′

j+1

Fig. 3. Either W (yj+1, y) or W ′(y′j+1, y
′) does not intersect Caj+1 .

• R′
1 well-intersects the cycles Ca1 , . . . , Caj

.

Assume that there is a vertex in R′
1(aj, q

′
1) say aj+1 and a cycle in {Γ2, . . . , Γh−1},

say Caj+1
, such that R′

1(q1, aj+1) ∩ Caj+1
= {aj+1}.

By construction aj ≺R′

1
aj+1 and aj+1 is the first vertex of R′

1 that meets Caj+1
.

We will show that, up to some modifications on R′
1(aj+1, q

′
1) and on R′

2 or R′
3,

the walk R′
1 well-intersects Caj+1

while R′
2 and R′

3 remain to verify Property
(1) of Claim 2.

Observe that there is at least two walks in {R′
1, R

′
2, R

′
3} that share vertices

with Caj+1
. We know that R′

1 intersects with Caj+1
. Without loss of generality

assume that R′
2 also shares vertices with Caj+1

. In order to simplify our dis-
cussion we denote those walks W and W ′, moreover we write W = W (x, y)
and W ′ = W ′(x′, y′) where {x, x′} = {q1, q2} and {y, y′} = {q′1, q

′
2}.

More precisely, by construction of W and W ′ we write (see Figure 2) :
W = W (x, xj+1) + W (xj+1, yj+1) + W (yj+1, y) and
W ′ = W (x′, x′

j+1) + W (′xj+1, y
′
j+1) + W (y′

j+1, y
′) where xj+1 and x′

j+1 are the
end-points of the edge min(Caj+1

) while yj+1 and y′
j+1 are the end-points of the

edge max(Caj+1
). Observe that at least one walk of W (yj+1, y) or W ′(y′

j+1, y
′)

does not intersect Caj+1
, see Figure 3. Suppose w.l.o.g that the vertex aj+1

belongs to W (xj+1, yj+1). Let b be the neighbor of aj+1 such that the edge
aj+1b is colored with β. From now on we distinguish two cases.

Case 1 : b ≺W aj+1.

Case 1.1 If W (yj+1, y) does not intersect Caj+1
we set :

R′
1 = R′

1(q1, aj+1) + W (aj+1, yj+1) + W (yj+1, y) and R′
2 = W ′ or R′

2 =
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y′
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max(Caj+1
)min(Caj+1

)
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y′
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γ

a′
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β

R′

1

β

q1

y′

y

max(Caj+1
)min(Caj+1

)

W

y′

j+1

yj+1
xj+1

W ′

x′

j+1
Caj+1

aj+1b

γ

a′
b′

β

R′

1

β

q1

q1q1

y′

y

max(Caj+1
)min(Caj+1

)

W

y′

j+1

yj+1xj+1

W ′

x′

j+1
Caj+1

aj+1b

γ

a′ b′

β

R′

1

β β

R′

1

β

b′a′

γ

baj+1

Caj+1

x′

j+1
W ′

xj+1
yj+1

y′

j+1

W

min(Caj+1
) max(Caj+1

)

y

y′

Fig. 4. Modifications of R′
1, Case 1.

W (x, xj+1) + xj+1x
′
j+1 + W ′(x′

j+1, y
′) according to the fact that q2 = x′ or

q2 = x.
Case 1.2 When W (yj+1, y) intersects Caj+1

we have to consider an edge of
W (yj+1, y) colored with β that belongs to the sub-path of Caj+1

with aj+1

and yj+1 as end-points which contains b (see Figure 4). Among such edges
let a′b′ (a′ ≺W b′) be such that the sub-path aj+1 . . . a′ which does not con-
tain b has minimum length.
If a′ ≺W ′ b′, let P be the subpath of Caj+1

whose end-points are aj+1 and
b′ which does not contain b. We set R′

1 = R′
1(q1, aj+1) + P + W (b′, y) and

R′
2 = W ′ or R′

2 = W (x, xj+1)+xj+1x
′
j+1 +W ′(x′

j+1, y
′) according to the fact

that q2 = x′ or q2 = x.
If b′ ≺W ′ a′ we set R′

1 = R′
1(q1, aj+1) + W (aj+1, yj+1) + W (yj+1, a

′ =
+W ′(a′, y′) and R′

2 = W ′(x′, b′)+W (b′, y) or R′
2 = W (x, xj+1)+xj+1x

′
j+1 +

W ′(x′
j+1, b

′) + W (b′, y) according to the fact that q2 = x′ or q2 = x.

Case 2 : aj+1 ≺W b. Let P = aj+1 . . . y′
j+1 be the sub-path of Caj+1

whose
end-points are aj+1 and y′

j+1 which avoids b.

Case 2.1 If W ′(y′
j+1, y

′) does not intersect Caj+1
we set :

R′
1 = R′

1(q1, aj+1) + P + W ′(y′
j+1, y

′) and R′
2 = W or R′

2 = W ′(x′, x′
j+1) +

x′
j+1xj+1 + W (xj+1, y) according to the fact that q2 = x or q2 = x′.

Case 2.2 When W ′(y′
j+1, y

′) intersects Caj+1
we have to consider an edge of

W ′(y′
j+1, y

′) colored with β that belongs to W (b, yj+1) (see Figure 5). Among
such edges let a′b′ (a′ ≺W ′ b′) be such that the sub-path aj+1 . . . a′ which
contains b has minimum length.
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W ′

x′

j+1
Caj+1

aj+1
b
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β
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Fig. 5. Modifications of R′
1, Case 2.

If a′ ≺W b′, we write R′
1 = R′

1(q1, aj+1)+P+y′
j+1yj+1+W (yj+1, b

′)+W ′(b′, y′)
and R′

2 = W or R′
2 = W ′(x′, x′

j+1)+x′
j+1xj+1 +W (xj+1, y) according to the

fact that q2 = x or q2 = x′.
If b′ ≺W a′ we write R′

1 = R′
1(q1, aj+1) + P + W ′(y′

j+1, a
′) + W (a′, y) and

R′
2 = W (x, xj+1)+W (xj+1, b

′)+W ′(b′, y′) or R′
2 = W ′(x′, x′

j+1)+x′
j+1xj+1+

W (xj+1, b
′) + W ′(b′, y”) according to the fact that q2 = x or q2 = x′.

It is easy to see that up to the modifications described above on R′
1, on R′

2 and
a renaming of the vertices y or y′ as q′1 or q′2, the walk R′

1 = R1(q1, q
′
1) well-

intersects the cycle Caj+1
. In addition R′

1 and R′
2 remains to be α-disjoints and

R′
2 has one end in C1 and the other end in Ck. The Claim follows by induction.

�

Due to Lemma 7, the set of edges A = Mα ∩ S1 is a Mα-balanced matching,
that is there is a perfect matching M1 such that Mα ∩ M1 = A.
But now, if Mα∩M1 contains an odd cut set, say X, there must be a partition
(V1, V2) of V (G) into two odd sets such that the edges of X have one end in V1

and the other end in V2. Moreover X ⊂ Mα the edges of X are colored with
α, V1 and V2 being odd, each of those sets precisely contains exactly one odd
cycle of Mα. Since S2 and S3 are both connecting a vertex of C1 to a vertex
of Ck, there must be an edge of S1 and an edge of S3 in X, a contradiction
since S1, S2 and S3 are α-disjoint.

Moreover, the set of vertices S1 ∪ S2 − S1 ∩ S2 together with a sub-path of C1

whose endpoints are q1 and q2 and a sub-path of Ck whose endpoints are q′1
and q′2 form a set X of vertices which induce cycles of G. Thus the edgeset J1

of the subgraph induced with V (G)−X is a join which avoids the edges of S1,
in other word Mα∩M1∩J1 = ∅. Similarly we can derive from S1∪S3−S1∩S3

another join J ′
1 with the same property. �

13



A direct consequence of Theorem 11 is :

Corollary 12 Conjecture 5 holds true for cubic bridgeless traceable graphs.

5 Conclusion

As far as we know the technics developed in Theorem 11 do not lead to a
proof of Conjecture 2 for cubic bridgeless traceable graphs.

In a forthcoming paper ([4]), we prove that a minimal counter-example to
Conjecture 2 must have at least 42 vertices.
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