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In a graph G of maximum degree ∆ let γ denote the largest fraction of edges that can be ∆ edge-coloured. Albertson and Haas showed that γ ≥ 13 15 when G is cubic . We show here that this result can be extended to graphs with maximum degree 3 with the exception of a graph on 5 vertices. Moreover, there are exactly two graphs with maximum degree 3 (one being obviously the Petersen graph) for which γ = 13 15 . This extends a result given by Steffen. These results are obtained by using structural properties of the so called δ-minimum edge colourings for graphs with maximum degree 3.

Introduction

Throughout this paper, we shall be concerned with connected graphs with maximum degree 3. We know by Vizing's theorem [START_REF] Vizing | On an estimate of the chromatic class of a p-graph[END_REF] that these graphs can be edge-coloured with 4 colours. Let φ : E(G) → {α, β, γ, δ} be a proper edgecolouring of G. It is often of interest to try to use one colour (say δ) as few as possible. When it is optimal following this constraint, we shall say that such a parsimonious edge-colouring φ is δminimum. In [START_REF] Fouquet | Graphes cubiques d'indice chromatique quatre[END_REF] we gave without proof (in French, see [START_REF] Fouquet | Tools for parsimonious edge-colouring of graphs with maximum degree three[END_REF] for a translation) results on δminimum edge-colourings of cubic graphs. Some of them have been obtained later and independently by Steffen [START_REF] Steffen | Classifications and characterizations of snarks[END_REF][START_REF] Steffen | Measurements of edge-uncolorability[END_REF]. Some other results which were not stated formally in [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] are needed here. The purpose of Section 2 is to give those results as structural properties of δ-minimum edge-colourings as well as others which will be useful in Section 3.

An edge colouring of G using colours α, β, γ, δ is said to be δ-improper provided that adjacent edges having the same colours (if any) are coloured with δ. It is clear that a proper edge colouring (and hence a δ-minimum edge-colouring) of G is a particular δ-improper edge colouring. For a proper or δ-improper edge colouring φ of G, it will be convenient to denote E φ (x) (x ∈ {α, β, γ, δ}) the set of edges coloured with x by φ. For x, y ∈ {α, β, γ, δ},x = y, φ(x, y) is the partial subgraph of G spanned by these two colours, that is E φ (x) ∪ E φ (y) (this subgraph being a union of paths and even cycles where the colours x and y alternate). Since any two δ-minimum edge-colourings of G have the same number of edges coloured δ we shall denote by s(G) this number (the colour number as defined by Steffen in [START_REF] Steffen | Classifications and characterizations of snarks[END_REF]).

As usual, for any undirected graph G, we denote by V (G) the set of its vertices and by E(G) the set of its edges and we suppose that |V (G)| = n and |E(G)| = m. Moreover, V i (G) denotes the set of vertices of G of degree i, and when no confusion is possible we shall write V i instead of V i (G). A strong matching C in a graph G is a matching C such that there is no edge of E(G) connecting any two edges of C, or, equivalently, such that C is the edge-set of the subgraph of G induced on the vertex-set V (C).

On δ-minimum edge-colouring

The graph G considered in this section will have maximum degree 3.

Lemma 1 Let φ be a δ-improper colouring of G then there exists a proper colouring of G φ ′ such that E φ ′ (δ) ⊆ E φ (δ)
Proof Let φ be a δ-improper edge colouring of G. If φ is a proper colouring, we are done. Hence, assume that uv and uw are coloured δ. If d(u) = 2 we can change the colour of uv to α, β or γ since v is incident to at most two colours in this set.

If d(u) = 3 assume that the third edge uz incident to u is also coloured δ, then we can change the colour of uv for the same reason as above.

If uz is coloured with α, β or γ, then v and w are incident to the two remaining colours of the set {α, β, γ} otherwise one of the edges uv, uw can be recoloured with the missing colour. W.l.o.g., consider that uz is coloured α then v and w are incident to β and γ. Since u has degree 1 in φ(α, β) let P be the path of φ(α, β) which ends on u. We can assume that v or w (say v) is not the other end vertex of P . Exchanging α and β along P does not change the colours incident to v. But now uz is coloured α and we can change the colour of uv with β.

In each case, we get hence a new δ-improper edge colouring φ 1 with E φ1 (δ) E φ (δ). Repeating this process leads us to construct a proper edge colouring of

G with E φ ′ (δ) ⊆ E φ (δ) as claimed. Proposition 2 Let v 1 , v 2 , . . . , v k ∈ V (G) be such that G -{v 1 , v 2 , . . . , v k } is 3-edge colourable. Then s(G) ≤ k.
Proof Let us consider a 3-edge colouring of G -{v 1 , v 2 , . . . v k } with α, β and γ and let us colour the edges incident to v 1 , v 2 , . . . , v k with δ. We get a δ-improper edge colouring φ of G. Lemma 1 gives a proper colouring of G φ ′ such that E φ ′ (δ) ⊆ E φ (δ). Hence φ ′ has at most k edges coloured with δ and s(G) ≤ k.

Proposition 2 above has been obtained by Steffen [START_REF] Steffen | Classifications and characterizations of snarks[END_REF] for cubic graphs.

Lemma 3 Let φ be a δ-improper colouring of G then |E φ (δ)| ≥ s(G).
Proof Applying Lemma 1, let φ ′ be a proper edge colouring of G such that

E φ ′ (δ) ⊆ E φ (δ). We clearly have |E φ (δ)| ≥ |E φ ′ (δ)| ≥ s(G).
Theorem 4 [START_REF] Fouquet | Tools for parsimonious edge-colouring of graphs with maximum degree three[END_REF] Let G be a graph of maximum degree 3 and φ be a δ-minimum colouring of G.Then the following hold. An edge of E φ (δ) is in A φ when its ends can be connected by a path of φ(α, β), B φ by a path of φ(β, γ) and C φ by a path of φ(α, γ). From Lemma 5 it is clear that if d(u) = 3 and d(v) = 2 for an edge e = uv ∈ E φ (δ), the A φ , B φ and C φ are not pairwise disjoint; indeed, if the colour γ is present at the vertex v, then e ∈ A φ ∩ B φ .

When e ∈ A φ we can associate to e the odd cycle C A φ (e) obtained by considering the path of φ(α, β) together with e. We define in the same way

C B φ (e) and C C φ (e) when e is in B φ or C φ .
For each edge e ∈ E φ (δ) (where φ is a δ-minimum edge-colouring of G) we can associate one or two odd cycles following the fact that e is in one or two sets among A φ , B φ or C φ . Let C be the set of odd cycles associated to edges in E φ (δ).

By Theorem 4 any two cycles in C corresponding to edges in distinct sets A φ , B φ or C φ are at distance at least 2. Assume that C 1 = C A φ (e 1 ) and C 2 = C A φ (e 2 ) for some edges e 1 and e 2 in A φ . Can we say something about the subgraph of G whose vertex set is V (C 1 ) ∪ V (C 2 ) ? In general, we have no answer to this problem. However, when G is cubic and any vertex of G lies on some cycle of C (we shall say that C is spanning), we have a property which will be useful later. Let us remark first that whenever C is spanning, we can consider that G is edge-coloured in such a way that the edges of the cycles of C are alternatively coloured with α and β (except one edge coloured δ) and the remaining perfect matching is coloured with γ. For this δ-minimum edge-colouring of G we have B φ = ∅ as well as

C φ = ∅. Lemma 6 Assume that G is cubic and C is spanning. Let e 1 , e 2 ∈ A φ and let C 1 , C 2 ∈ C such that C 1 = C A φ (e 1 ) and C 2 = C A φ (e 2 )
. Then at least one of the following is true:

(i) C 1 and C 2 are at distance at least 2.
(ii) C 1 and C 2 are joined by at least 3 edges.

(iii) C 1 and C 2 have at least two chords each.

Proof Since e 1 , e 2 ∈ A φ and C is spanning we have

B φ = C φ = ∅. Let C 1 = v 0 v 1 . . . v 2k1 and C 2 = w 0 w 1 . . . w 2k2 .
Assume that C 1 and C 2 are joined by the edge v 0 w 0 . By Theorem 4, up to a re-colouring of the edges in C 1 and C 2 , we can consider a δ-minimum edge-colouring φ such that φ(v

0 v 1 ) = φ(w 0 w 1 ) = δ, φ(v 1 v 2 ) = φ(w 1 w 2 ) = β and φ(v 0 v 2k1 ) = φ(w 0 w 2k2 ) = α.
Moreover each edge of G (in particular v 0 w 0 ) incident with these cycles is coloured γ. We can change the colour of v 0 w 0 in β. We obtain thus a new δ-minimum edge-colouring φ ′ . Performing that exchange of colours on v 0 w 0 transforms the edges coloured δ v 0 v 1 and w 0 w 1 in two edges of C φ ′ lying on odd cycles C ′ 1 and C ′ 2 respectively. We get hence a new set

C ′ = C -{C 1 , C 2 } ∪ {C ′ 1 , C ′ 2 } of odd cycles associated to δ-coloured edges in φ ′ . From Theorem 4 C ′ 1 (C ′ 2 respectively) is at distance at least 2 from any cycle in C -{C 1 , C 2 }. Hence V (C ′ 1 ) ∪ V (C ′ 2 ) ⊆ V (C 1 ) ∪ V (C 2 ).
It is an easy task to check now that (ii) or (iii) above must be verified.

Lemma 7 [START_REF] Fouquet | Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF] Let e 1 = uv 1 be an edge of E φ (δ) such that v 1 has degree 2 in G. Then v 1 is the only vertex in N (u) of degree 2 and for any other edge e 2 ∈ E φ (δ), {e 1 , e 2 } induces a 2K 2 .

Applications

On a result by Payan

In [START_REF] Payan | Sur quelques problèmes de couverture et de couplage en combinatoire[END_REF] Payan showed that it is always possible to edge-colour a graph of maximum degree 3 with three maximal matchings (with respect to the inclusion) and introduced henceforth a notion of strong-edge colouring where a strong edge-colouring means that one colour is a strong matching while the remaining colours are usual matchings. Payan conjectured that any d-regular graph has d pairwise disjoint maximal matchings and showed that this conjecture holds true for graphs with maximum degree 3.

The following result has been obtained first by Payan [START_REF] Payan | Sur quelques problèmes de couverture et de couplage en combinatoire[END_REF], but his technique does not exhibit explicitly the odd cycles associated to the edges of the strong matching and their properties.

Theorem 8 Let G be a graph with maximum degree at most 3. Then G has a δ-minimum edge-colouring φ where E φ (δ) is a strong matching and, moreover, any edge in E φ (δ) has its two ends of degree 3 in G.

Proof Let φ be a δ-minimum edge-colouring of G. From Theorem 4, any two edges of E φ (δ) belonging to distinct sets from among A φ , B φ and C φ are at least at distance 2 and thus induce a strong matching. Hence, we have to find a δ-minimum edge-colouring where each set A φ , B φ or C φ induces a strong matching (with the supplementary property that the end vertices of these edges have degree 3). That means that we can work on each set A φ , B φ and C φ independently. Without loss of generality, we only consider A φ here.

Assume that A φ = {e 1 , e 2 , . . . e k } and

A ′ φ = {e 1 , . . . e i } (1 ≤ i ≤ k -1
) is a strong matching and each edge of A ′ φ has its two ends with degree 3 in G. Consider the edge e i+1 and let C = C ei+1 (φ) = u 0 , u 1 . . . u 2p be the odd cycle associated to this edge (Theorem 4).

Let us mark any vertex v of degree 3 on C with a + whenever the edge of colour γ incident to this vertex has its other end which is a vertex incident to an edge of A ′ φ and let us mark v withotherwise. By Theorem 4, no consecutive vertices on C have degree 2, that means that a vertex of degree 2 on C has its two neighbours of degree 3 and by Lemma 7 these two vertices are marked with a -. By Theorem 4 we cannot have two consecutive vertices marked with a +, otherwise we would have three edges of E φ (δ) inducing a subgraph with more than 4 edges, a contradiction. Hence, C must have two consecutive vertices of degree 3 marked withwhatever is the number of vertices of degree 2 on C.

Let u j and u j+1 be two vertices of C of degree 3 marked with -(j being taken modulo 2p + 1). We can transform the edge colouring φ by exchanging colours on C uniquely, in such a way that the edge of colour δ of this cycle is u j u j+1 . In the resulting edge colouring φ 1 we have A φ1 = A φ -{e i+1 }∪{u j u j+1 } and A ′ φ1 = A ′ φ ∪ {u j u j+1 } is a strong matching where each edge has its two ends of degree 3. Repeating this process we are left with a new δ-minimum colouring φ ′ where A φ ′ is a strong matching.

Corollary 9 Let G be a graph with maximum degree 3 then there are s(G)

vertices of degree 3 pairwise non-adjacent v 1 . . . v s(G) such that G-{v 1 . . . v s(G) } is 3-colourable.
Proof Pick a vertex on each edge coloured δ in a δ-minimum colouring φ of G where E φ (δ) is a strong matching (Theorem 8). We get a subset S of vertices satisfying our corollary.

Steffen [START_REF] Steffen | Classifications and characterizations of snarks[END_REF] obtained Corollary 9 for bridgeless cubic graphs.

Parsimonious edge colouring

Let χ ′ (G) be the classical chromatic index of G. For convenience let

c(G) = max{|E(H)| : H ⊆ G , χ ′ (H) = 3} γ(G) = c(G) |E(G)|
Staton [START_REF] Staton | Edge deletions and the chromatic number[END_REF] (and independently Locke [START_REF] Locke | Maximum k-colourable subgraphs[END_REF]) showed that whenever G is a cubic graph distinct from K 4 then G contains a bipartite subgraph (and hence a 3edge colourable graph, by König's theorem [START_REF] König | Über Graphen und ihre Anwendung auf Determinantentheorie un Mengenlehre[END_REF]) with at least 7 9 of the edges of G. Bondy and Locke [2] obtained 4 5 when considering graphs with maximum degree at most 3.

In [START_REF] Albertson | Parsimonious edge colouring[END_REF] Albertson and Haas showed that whenever G is a cubic graph, we have γ(G) ≥ 13 15 while for graphs with maximum degree 3 they obtained γ(G) ≥ 26 31 . Our purpose here is to show that 13 15 is a lower bound for γ(G) when G has maximum degree 3, with the exception of the graph G 5 depicted in Figure 1 below. m . If H is a subgraph of G with χ(H) = 3, consider a proper 3-edge-colouring φ : E(H) → {α, β, γ} and let ψ : E(G) → {α, β, γ, δ} be the continuation of φ with ψ(e) = δ for e ∈ E(G) -E(H). By Lemma 1 there is a proper edgecolouring

ψ ′ of G with E ψ ′ (δ) ⊆ E ψ (δ) so that |E(H)| = |E(G) -E ψ (δ)| ≤ |E(G) -E ψ ′ (δ)| ≤ m -s(G), c(G) ≤ m -s(G) and γ(G) ≤ 1 -s(G) m .
In [START_REF] Rizzi | Approximating the maximum 3-edge-colorable subgraph problem[END_REF], Rizzi shows that for triangle-free graphs of maximum degree 3, γ(G) ≥ 1 -2 3go(G) (where the odd girth of a graph G, denoted by g o (G), is the minimum length of an odd cycle in G). If C i ∈ C 2 we suppose without loss of generality that C i ∈ A φ and we have |C i | ≥ g o (G). Moreover, since any edge in C i can be coloured δ (Theorem 4), we may assume that e i has a vertex of degree 2. We can associate to e i another odd cycle say C ′ i ∈ B φ (Lemma 5) whose edges distinct from e i form an even path of φ(α, γ) using at least go(G)-1 2 edges, coloured γ, which are not edges of C i .

When

|C i | > g o (G) or |C ′ i | > g o (G) there are either at least g o (G) + 2 edges in C i or at least go(G)-1 2 + 1 edges coloured γ in C ′ i . If |C i | = |C ′ i | = g o (G
) there is at least one edge coloured α in C ′ i that is not an edge of C i , otherwise all the edges coloured γ of C ′ i would be chords of C i , a contradiction since a such chord would form with vertices of C i an odd cycle of length smaller than g o (G).

Hence,

C i ∪ C ′ i contains at least g o (G) + go(G)-1 2 + 1 > 3 2 g o (G) edges. Consequently there are at least 3 2 × k × g o (G) edges in Ci∈C2 (C i ∪ C ′ i ).
When C i ∈ C 3 , C i contains at least g o (G) edges, moreover, each vertex of C i being of degree 3, there are at least s(G)-k 2 × g o (G) additionnal edges which are incident to a vertex of

Ci∈C3 C i . Since C i ∩ C j = ∅ and C ′ i ∩ C j = ∅ (1 ≤ i, j ≤ s(G), i = j), we have m ≥ 3 2 g o (G) × k + (s(G) -k) × g o (G) + s(G) -k 2 × g o (G) = 3 2 × s(G) × g o (G). Consequently γ(G) = 1 -s(G) m ≥ 1 -2 3go(G) .
As a matter of fact, γ(G) > 1 -2 3go(G) when the graph G contains vertices of degree 2. In a further work (see [START_REF] Fouquet | A new bound for parsimonious edge-colouring of graphs with maximum degree three[END_REF]) we refine the bound and prove that γ(G) ≥ 1 -2 3go(G)+2 when G is a graph of maximal degree 3 distinct from the Petersen graph.

Lemma 12 [START_REF] Albertson | Parsimonious edge colouring[END_REF] Let G be a graph with maximum degree 3.

Assume that v ∈ V (G) is such that d(v) = 1 then γ(G) > γ(G -v).
A triangle T = {a, b, c} is said to be reducible whenever its neighbours are distinct. When T is a reducible triangle in G (G having maximum degree 3) we can obtain a new graph G ′ with maximum degree 3 by shrinking this triangle into a single vertex and joining this new vertex to the neighbours of T in G.

Lemma 13 [START_REF] Albertson | Parsimonious edge colouring[END_REF] Let G be a graph with maximum degree 3. Assume that T = {a, b, c} is a reducible triangle and let G ′ be the graph obtained by reduction of this triangle. Then γ(G) > γ(G ′ ).

Theorem 14 Let G be a graph with maximum degree 3.

If G = G 5 then γ(G) ≥ 1 - 2 15 1+ 2 3 |V 2 | |V 3 | .
Proof From Lemma 12 and Lemma 13 we can consider that G has only vertices of degree 2 or 3 and that G contains no reducible triangle.

Assume that we can associate a set P e of at least 5 distinct vertices of V 3 for each edge e ∈ E φ (δ) in a δ-minimum edge-colouring φ of G. Assume moreover that ∀e, e ′ ∈ E φ (δ)

P e ∩ P e ′ = ∅ (1) 
Then

γ(G) = 1 - s(G) m = 1 - s(G) 3 2 |V 3 | + |V 2 | ≥ 1 - |V3| 5 3 2 |V 3 | + |V 2 | Hence γ(G) ≥ 1 - 2 15 1 + 2 3 |V2| |V3|
It remains to see how to construct the sets P e satisfying Property [START_REF] Albertson | Parsimonious edge colouring[END_REF]. Let C be the set of odd cycles associated to edges in E φ (δ). Let e ∈ E φ (δ), assume that e is contained in a cycle C ∈ C of length 3. By Theorem 4, the edges incident to that triangle have the same colour in {α, β, γ}. This triangle is hence reducible, impossible. We can thus consider that each cycle of C has length at least 5. By Lemma 7, we know that whenever such a cycle contains vertices of V 2 , their distance on this cycle is at least 3. Which means that every cycle C ∈ C contains at least 5 vertices in V 3 as soon as C has length at least 7 or C has length 5 but does not contain a vertex of V 2 . For each edge e ∈ E φ (δ) contained in such a cycle we associate P e as any set of 5 vertices of V 3 contained in the cycle.

There may exist edges in E φ (δ) contained in a 5-cycle of C having exactly one vertex in V 2 . Let C = a 1 a 2 a 3 a 4 a 5 be such a cycle and assume that a 1 ∈ V 2 . By Lemma 7, a 1 is the only vertex of degree 2 and by exchanging colours along this cycle, we can suppose that a 1 a 2 ∈ E φ (δ). Since a 1 ∈ V 2 , e = a 1 a 2 is contained in a second cycle C ′ of C (see Remark ??). If C ′ contains a vertex x ∈ V 3 distinct from a 2 , a 3 , a 4 and a 5 then we set P e = {a 2 , a 3 , a 4 , a 5 , x}. Otherwise C ′ = a 1 a 2 a 4 a 3 a 5 and G is isomorphic to G 5 , impossible.

The sets {P e | e ∈ E φ (δ)} are pairwise disjoint since any two cycles of C associated to distinct edges in E φ (δ) are disjoint. Hence Property 1 holds and the proof is complete.

Albertson and Haas [START_REF] Albertson | Parsimonious edge colouring[END_REF] proved that γ(G) ≥ 26 31 when G is a graph with maximum degree 3 and Rizzi [START_REF] Rizzi | Approximating the maximum 3-edge-colorable subgraph problem[END_REF] obtained γ(G) ≥ 6 7 . From Theorem 14 we get immediately for all graphs G = G 5 γ(G) ≥ 13 15 , a better bound. Let us remark that we get also γ(G) ≥ 13 15 by Theorem 11 as soon as g o (G) ≥ 5.

Lemma 15 Let G be a cubic graph which can be factored into s(G) cycles of length 5 and has no reducible triangle. Then every 2-factor of G contains s(G) cycles of length 5.

Proof Since G has no reducible triangle, all cycles in a 2-factor have length at least 4. Let C be any 2-factor of G. Let us denote n 4 the number of cycles of length 4, n 5 the number of cycles of length 5 and n 6+ the number of cycles on at least 6 vertices in C. We have 5n

5 + 6n 6+ ≤ 5s(G) -4n 4 . If n 4 + n 6+ = 0, then n 5 = s(G). If n 4 + n 6+ > 0, then the number of odd cycles in C is at most n 5 + n 6+ ≤ 5s(G)-4n4-n6 + 5 = 5s(G)-(n4+n6 + )-3n4 5 
< s(G). A contradiction since a 2-factor of G contains at least s(G) odd cycles.

Corollary 16 Let G be a graph with maximum degree 3 such that γ(G) = 13 15 . Then G is a cubic graph which can be factored into s(G) cycles of length 5. Moreover every 2-factor of G has this property. As a first step towards the resolution of this Problem we propose the following Theorem. Recall that a permutation graph is a cubic graph having some 2-factor with precisely 2 odd cycles.

Theorem 19 Let G be a cubic graph which can be factored into s(G) induced odd cycles of length at least 5, then G is a permutation graph. Moreover, if G has girth 5 then G is the Petersen graph.

Proof Let F be a 2-factor of s(G) cycles of length at least 5 in G, every cycle of F being an induced odd cycle of G. We consider the δ-minimum edge-colouring φ such that the edges of all cycles of F are alternatively coloured α and β except for exactly one edge per cycle which is coloured with δ, all the remaining edges of G being coloured γ. By construction we have B φ = C φ = ∅ and A φ = F .

Let xy be an edge connecting two distinct cycles of F , say C 1 and C 2 (x ∈ C 1 , y ∈ C 2 ). By Theorem 4, since any edge in C 1 or C 2 can be coloured δ, we may assume that there is an edge in C 1 , say e 1 , adjacent to x and coloured with δ, similarly there is on C 2 an edge e 2 adjacent to y and coloured with δ. Let z be the neighbour of y on C 2 such that e 2 = yz and let t be the neighbour of z such that zt is coloured with γ. If t / ∈ C 1 , there must be C 3 = C 1 such that t ∈ C 3 , by Theorem 4 again there is an edge e 3 of C 3 , adjacent to t and coloured with δ. But now {e 1 , e 2 , e 3 } induces a subgraph with at least 5 edges, a contradiction with Theorem 4.

It follows that C contains exactly two induced odd cycles and they are of equal length. Consequently G is a permutation graph. When these cycles have length 5, since G has girth 5 G is obviously the Petersen graph.

When G is a cubic bridgeless planar graph, we know from the Four Colour Theorem that G is 3-edge colourable and hence γ(G) = 1. Albertson and Haas [START_REF] Albertson | Parsimonious edge colouring[END_REF] gave γ(G) ≥ 6 7 -2 35m when G is a planar bridgeless graph with maximum degree 3. Our Theorem 14 improves this lower bound (allowing moreover bridges). On the other hand, they exhibit a family of planar graphs with maximum degree 3 (bridges are allowed) for which γ(G) = 8 9 -2 9n . As Steffen in [START_REF] Steffen | Measurements of edge-uncolorability[END_REF] we denote g(F ) the minimum length of an odd cycle in a 2-factor F and g + (G) the maximum of these numbers over all 2-factors. We suppose that g + (G) is defined, that is G has at least one 2-factor (when G is a cubic bridgeless graphs this condition is obviously fulfilled).

When G is cubic bridgeless, Steffen [START_REF] Steffen | Measurements of edge-uncolorability[END_REF] showed that we have :

γ(G) ≥ max{1 - 2 3g + (G) , 11 12 
}
The difficult part being to show that γ(G) ≥ 11 12 .

Theorem 20 Let G be a graph with maximum degree 3. Then γ(G) ≥ 1 - 

Figure 1 : G 5 Lemma 10

 1510 Figure 1: G 5

Theorem 11

 11 Let G be a graph with maximum degree 3 then γ(G) ≥ 1 -2 3go(G) .Proof Let φ be a δ-minimum edge-colouring of G and E φ (δ) = {e 1 , e 2 . . . , e s(G) }. C being the set of odd cycles associated to edges in E φ (δ), we write C = {C 1 , C 2 . . . , C s(G) } and suppose that for i = 1, 2 . . . , s(G), e i is an edge of C i . We know by Theorem 4 that the cycles of C are vertex-disjoint.Let us write C = C 2 ∪ C 3 , where C 2 denotes the set of odd cycles of C which have a vertex of degree 2, while C 3 is for the set of cycles in C whose all vertices have degree 3. Let k = |C 2 |, obviously we have 0 ≤ k ≤ s(G) and C 2 ∩ C 3 = ∅.

2 Figure 2 :

 22 Figure 2: The dot product operation on graphs G 1 , G 2 .

2n( 2 .
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  1. E φ (δ) = A φ ∪B φ ∪C φ where an edge e in A φ (B φ , C φ respectively) belongs to a uniquely determined cycle C A φ (e) (C B φ (e), C C φ (e) respectively) with precisely one edge coloured δ and the other edges being alternately coloured α and β (β and γ, α and γ respectively). If the edges e 1 , e 2 , e 3 ∈ E φ (δ) all belong to A φ (B φ , C φ respectively), then the set {e 1 , e 2 , e 3 } induces in G a subgraph with at most 4 edges.

	2. Each edge having exactly one vertex in common with some edge in A φ
	(B φ , C φ respectively) is coloured γ (α, β, respectively).
	3. The multiset of colours of edges of C A φ (e) (C B φ (e), C C φ (e) respectively)
	can be permuted to obtain a (proper) δ-minimum edge-colouring of G in
	which the colour δ is moved from e to an arbitrarily prescribed edge.
	4. No two consecutive vertices of C A φ (e) (C B φ (e), C C φ (e) respectively) have
	degree 2.
	5. The cycles from 1 that correspond to distinct edges of E φ (δ) are vertex-
	disjoint.
	6. Lemma 5 [4] Let φ be a δ-minimum edge-colouring of G. For any edge e =
	uv ∈ E φ (δ) with d(v) ≤ d(u) there is a colour x ∈ {α, β, γ} present at v and a
	colour y ∈ {α, β, γ} -{x} present at u such that one of connected components
	of φ(x, y) is a path of even length joining the two ends of e. Moreover, if d(v)
	= 2, then both colours of {α, β, γ} -{x} satisfy the above assertion.
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Proof The optimum for γ(G) in Theorem 14 is obtained whenever s(G) = |V3| 5 and |V 2 | = 0. That is, G is a cubic graph admitting a 2-factor of s(G) cycles of length 5. Moreover by Lemma 13 G has no reducible triangle, the result comes from Lemma 15. As pointed out by Albertson and Haas [START_REF] Albertson | Parsimonious edge colouring[END_REF], the Petersen graph with γ(G) = 13 15 supplies an extremal example for cubic graphs. Steffen [START_REF] Steffen | Measurements of edge-uncolorability[END_REF] proved that the only cubic bridgeless graph with γ(G) = 13 15 is the Petersen graph. In fact, we can extend this result to graphs with maximum degree 3 where bridges are allowed (excluding the graph G 5 ). Let P ′ be the cubic graph on 10 vertices obtained from two copies of G 5 (Figure 1) by joining by an edge the two vertices of degree 2.

Theorem 17 Let G be a connected graph with maximum degree 3 such that γ(G) = 13 15 . Then G is isomorphic to the Petersen graph or to P ′ . Proof Let G be a graph with maximum degree 3 such that γ(G) = 13 15 . From Corollary 16, we can consider that G is cubic and G has a 2-factor of cycles of length 5. Let C = {C 1 . . . C s(G) } be such a 2-factor ( C is spanning). Let φ be a δ-minimum edge-colouring of G induced by this 2-factor.

Without loss of generality consider two cycles in C, namely C 1 and C 2 , and let us denote We can construct cubic graphs with chromatic index 4 (snarks in the litterature) which are cyclically 4-edge connected and having a 2-factor of C 5 's.

Indeed, let G be a cubic cyclically 4-edge connected graph of order n and M be a perfect matching of G, M = {x i y i |i = 1 . . . 2, see Isaacs [START_REF] Isaacs | Infinite families of non-trivial trivalent graphs which are not Tait colorable[END_REF] for a description and for a formal definition) on {e 1 i , e 2 i } and the edge x i y i (i = 1 . . . n 2 ). We remark that the vertices of G vanish in the operation and the resulting graph H has a 2 factor of C 5 , namely

}. We do not know an example of a cyclically 5-edge connected snark (except the Petersen graph) with a 2-factor of induced cycles of length 5.

Problem 18 Is there any cyclically 5-edge connected snark distinct from the Petersen graph with a 2-factor of C 5 's ?

Theorem 21 Let G be a graph with maximum degree 3 having at least one 2-factor. Assume that |V 2 | ≤ n 3 and g + (G) ≥ 11 then γ(G) ≥ max{1 - 11 12 }.

Proof By assumption we have V 1 = ∅. From Theorem 20 we have just to prove that γ(G) ≥ 11 12 . Following the proof of Theorem 14, we try to associate a set P e of at least 8 distinct vertices of V 3 for each edge e ∈ E φ (δ) in a δ-minimum edge-colouring φ of G such that ∀e, e ′ ∈ E φ (δ) P e ∩ P e ′ = ∅

Indeed, let F be a 2-factor of G where each odd cycle has length at least 11 and let C 1 , C 2 . . . C 2k be its set of odd cycles. We have, obviously s(G) ≤ 2k. Let V ′ 3 and V ′ 2 be the sets of vertices of degree 3 and 2 respectively contained in these odd cycles . As soon as |V ′ 3 | ≥ 8s(G) we have