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On parsimonious edge-colouring of graphs with

maximum degree three

J.L. Fouquet and J.M. Vanherpe

L.I.F.O., Faculté des Sciences, B.P. 6759

Université d’Orléans, 45067 Orléans Cedex 2, FR

Abstract

In a graph G of maximum degree ∆ let γ denote the largest fraction
of edges that can be ∆ edge-coloured. Albertson and Haas showed that
γ ≥ 13

15
when G is cubic [1]. We show here that this result can be extended

to graphs with maximum degree 3 with the exception of a graph on 5
vertices. Moreover, there are exactly two graphs with maximum degree 3
(one being obviously the Petersen graph) for which γ = 13

15
. This extends

a result given in [14]. These results are obtained by giving structural
properties of the so called δ−minimum edge colourings for graphs with
maximum degree 3.
Keywords : Cubic graph; Edge-colouring;
Mathematics Subject Classification (2010) : 05C15.

1 Introduction

Throughout this paper, we shall be concerned with connected graphs with max-
imum degree 3. We know by Vizing’s theorem [15] that these graphs can be
edge-coloured with 4 colours. Let φ : E(G) → {α, β, γ, δ} be a proper edge-
colouring of G. It is often of interest to try to use one colour (say δ) as few as
possible. When an edge colouring is optimal, following this constraint, we shall
say that φ is δ −minimum. In [3] we gave without proof (in French, see [5] for
a translation) results on δ −minimum edge-colourings of cubic graphs. Some
of them have been obtained later and independently by Steffen [13, 14]. Some
other results which were not stated formally in [4] are needed here. The pur-
pose of Section 2 is to give those results as structural properties of δ−minimum
edge-colourings as well as others which will be useful in Section 3.

An edge colouring of G using colours α, β, γ, δ is said to be δ-improper pro-
vided that adjacent edges having the same colours (if any) are coloured with δ.
It is clear that a proper edge colouring (and hence a δ−minimum edge-colouring)
of G is a particular δ-improper edge colouring. For a proper or δ-improper edge
colouring φ of G, it will be convenient to denote Eφ(x) (x ∈ {α, β, γ, δ}) the
set of edges coloured with x by φ. For x, y ∈ {α, β, γ, δ},x 6= y, φ(x, y) is the
partial subgraph of G spanned by these two colours, that is Eφ(x)∪Eφ(y) (this
subgraph being a union of paths and even cycles where the colours x and y
alternate). Since any two δ−minimum edge-colourings of G have the same
number of edges coloured δ we shall denote by s(G) this number (the colour
number as defined in [13]).
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As usual, for any undirected graph G, we denote by V (G) the set of its
vertices and by E(G) the set of its edges and we suppose that |V (G)| = n and
|E(G)| = m. A strong matching C in a graph G is a matching C such that there
is no edge of E(G) connecting any two edges of C, or, equivalently, such that C
is the edge-set of the subgraph of G induced on the vertex-set V (C).

2 On δ−minimum edge-colouring

The graph G considered in the following series of Lemmas will have maximum
degree 3.

Lemma 1 [3, 4, 5] Any 2-factor of G contains at least s(G) disjoint odd cycles.

Lemma 2 [3, 4, 5] Let φ be a δ−minimum edge-colouring of G. Any edge in
Eφ(δ) is incident to α, β and γ. Moreover each such edge has one end of degree
2 and the other of degree 3 or the two ends of degree 3.

Lemma 3 Let φ be a δ−improper colouring of G then there exists a proper
colouring of G φ′ such that Eφ′(δ) ⊆ Eφ(δ)

Proof Let φ be a δ-improper edge colouring of G. If φ is a proper colouring,
we are done. Hence, assume that uv and uw are coloured δ. If d(u) = 2 we can
change the colour of uv to α, β or γ since v is incident to at most two colours
in this set.

If d(u) = 3 assume that the third edge uz incident to u is also coloured δ,
then we can change the colour of uv for the same reason as above.

If uz is coloured with α, β or γ, then v and w are incident to the two re-
maining colours of the set {α, β, γ} otherwise one of the edges uv, uw can be
recoloured with the missing colour. W.l.o.g., consider that uz is coloured α then
v and w are incident to β and γ. Since u has degree 1 in φ(α, β) let P be the
path of φ(α, β) which ends on u. We can assume that v or w (say v) is not
the other end vertex of P . Exchanging α and β along P does not change the
colours incident to v. But now uz is coloured α and we can change the colour
of uv with β.

In each case, we get hence a new δ-improper edge colouring φ1 with Eφ1
(δ) (

Eφ(δ). Repeating this process leads us to construct a proper edge colouring of
G with Eφ′(δ) ⊆ Eφ(δ) as claimed. �

Proposition 4 Let v1, v2 . . . , vk ∈ V (G) such that G−{v1, v2, . . . vk} is 3-edge
colourable. Then s(G) ≤ k.

Proof Let us consider a 3-edge colouring of G−{v1, v2, . . . vk} with α, β and γ
and let us colour the edges incident to v1, v2 . . . , vk with δ. We get a δ-improper
edge colouring φ of G. Lemma 3 gives a proper colouring of G φ′ such that
Eφ′(δ) ⊆ Eφ(δ). Hence φ

′ has at most k edges coloured with δ and s(G) ≤ k
�

Proposition 4 above has been obtained by Steffen [13] for cubic graphs.
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Lemma 5 Let φ be a δ−improper colouring of G then |Eφ(δ)| ≥ s(G)

Proof Applying Lemma 3, let φ′ be a proper edge colouring of G such that
Eφ′(δ) ⊆ Eφ(δ). We clearly have |Eφ(δ)| ≥ |Eφ′(δ)| ≥ s(G) �

Lemma 6 [3, 4, 5] Let φ be a δ−minimum edge-colouring of G. For any edge
e = uv ∈ Eφ(δ) there are two colours x and y in {α, β, γ}such that the connected
component of φ(x, y) containing the two ends of e is an even path joining these
two ends.

Remark 7 An edge of Eφ(δ) is in Aφ when its ends can be connected by a
path of φ(α, β), Bφ by a path of φ(β, γ) and Cφ by a path of φ(α, γ). It is
clear that Aφ, Bφ and Cφ are not necessarily pairwise disjoint since an edge of
Eφ(δ) with one end of degree 2 is contained in 2 such sets. Assume indeed that
e = uv ∈ Eφ(δ) with d(u) = 3 and d(v) = 2 then, if u is incident to α and β and
v is incident to γ we have an alternating path whose ends are u and v in φ(α, γ)
as well as in φ(β, γ). Hence e is in Aφ ∩Bφ. When e ∈ Aφ we can associate to e
the odd cycle CAφ

(e) obtained by considering the path of φ(α, β) together with
e. We define in the same way CBφ

(e) and CCφ
(e) when e is in Bφ or Cφ. In

the following lemma we consider an edge in Aφ, an analogous result holds true
whenever we consider edges in Bφ or Cφ as well.

Lemma 8 [3, 4, 5] Let φ be a δ−minimum edge-colouring of G and let e be an
edge in Aφ then for any edge e′ ∈ CAφ

(e) there is a δ−minimum edge-colouring
φ′ such that Eφ′(δ) = Eφ(δ) − {e} ∪ {e′}, e′ ∈ Aφ′ and CAφ

(e) = CAφ′ (e
′).

Moreover, each edge outside CAφ
(e) but incident with this cycle is coloured γ,

φ and φ′ only differ on the edges of CAφ
(e).

For each edge e ∈ Eφ(δ) (where φ is a δ−minimum edge-colouring of G) we
can associate one or two odd cycles following the fact that e is in one or two
sets among Aφ, Bφ or Cφ. Let C be the set of odd cycles associated to edges in
Eφ(δ).

Lemma 9 [3, 4, 5] For each cycle C ∈ C, there are no two consecutive vertices
with degree two.

Lemma 10 [3, 4, 5] Let e1, e2 ∈ Eφ(δ) and let C1, C2 ∈ C be such that C1 6= C2,
e1 ∈ E(C1) and e2 ∈ E(C2) then C1 and C2 are (vertex) disjoint.

By Lemma 8 any two cycles in C corresponding to edges in distinct sets
Aφ, Bφ or Cφ are at distance at least 2. Assume that C1 = CAφ

(e1) and
C2 = CAφ

(e2) for some edges e1 and e2 in Aφ. Can we say something about
the subgraph of G whose vertex set is V (C1) ∪ V (C2) ? In general, we have
no answer to this problem. However, when G is cubic and any vertex of G
lies on some cycle of C (we shall say that C is spanning), we have a property
which will be useful later. Let us remark first that whenever C is spanning,
we can consider that G is edge-coloured in such a way that the edges of the
cycles of C are alternatively coloured with α and β (except one edge coloured
δ) and the remaining perfect matching is coloured with γ. For this δ−minimum
edge-colouring of G we have Bφ = ∅ as well as Cφ = ∅.
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Lemma 11 Assume that G is cubic and C is spanning. Let e1, e2 ∈ Aφ and let
C1, C2 ∈ C such that C1 = CAφ

(e1) and C2 = CAφ
(e2). Then at least one of the

followings is true

(i) C1 and C2 are at distance at least 2

(ii) C1 and C2 are joined by at least 3 edges

(iii) C1 and C2 have at least two chords each

Proof Since e1, e2 ∈ Aφ and C is spanning we have Bφ = Cφ = ∅. Let
C1 = v0v1 . . . v2k1 and C2 = w0w1 . . . w2k2 . Assume that C1 and C2 are joined
by the edge v0w0. By Lemma 6, we can consider a δ−minimum edge-colouring
φ such that φ(v0v1) = φ(w0w1) = δ, φ(v1v2) = φ(w1w2) = β and φ(v0v2k1) =
φ(w0w2k2 ) = α. Moreover each edge of G (in particular v0w0) incident with
these cycles is coloured γ. We can change the colour of v0w0 in β. We obtain
thus a new δ−minimum edge-colouring φ′. Performing that exchange of colours
on v0w0 transforms the edges coloured δ v0v1 and w0w1 in two edges of Cφ′

lying on odd cycles C′
1 and C′

2 respectively. We get hence a new set C′ =
C − {C1, C2} ∪ {C′

1, C
′
2} of odd cycles associated to δ−coloured edges in φ′.

From Lemma 8 C′
1 (C′

2 respectively) is at distance at least 2 from any cycle
in C − {C1, C2}. Hence V (C′

1) ∪ V (C′
2) ⊆ V (C1) ∪ V (C2). It is an easy task to

check now that (ii) or (iii) above must be verified. �

Lemma 12 [3, 4, 5] Let e1 = uv1 be an edge of Eφ(δ) such that v1 has degree
2 in G. Then v1 is the only vertex in N(u) of degree 2 and for any edge e2 =
u2v2 ∈ Eφ(δ), {e1, e2} induces a 2K2.

Lemma 13 [3, 4, 5] Let e1 and e2 be two edges of Eφ(δ). If e1 and e2 are
contained in two distinct sets of Aφ, Bφ or Cφ then {e1, e2} induces a 2K2

otherwise e1, e2 are joined by at most one edge.

Lemma 14 [3, 4, 5] Let e1, e2 and e3 be three distinct edges of Eφ(δ) contained
in the same set Aφ, Bφ or Cφ. Then {e1, e2, e3} induces a subgraph with at most
four edges.

3 Applications and problems

3.1 On a result by Payan

In [10] Payan showed that it is always possible to edge-colour a graph of max-
imum degree 3 with three maximal matchings (with respect to the inclusion)
and introduced henceforth a notion of strong-edge colouring where a strong
edge-colouring means that one colour is a strong matching while the remaining
colours are usual matchings. Payan conjectured that any d−regular graph has
d pairwise disjoint maximal matchings and showed that this conjecture holds
true for graphs with maximum degree 3.

The following result has been obtained first by Payan [10], but his technique
does not exhibit explicitly the odd cycles associated to the edges of the strong
matching and their properties.
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Theorem 15 Let G be a graph with maximum degree at most 3. Then G has a
δ−minimum edge-colouring φ where Eφ(δ) is a strong matching and, moreover,
any edge in Eφ(δ) has its two ends of degree 3 in G.

Proof Let φ be a δ−minimum edge-colouring of G. From Lemma 13, any two
edges of Eφ(δ) belonging to distinct sets from among Aφ, Bφ and Cφ induce a
strong matching. Hence, we have to find a δ−minimum edge-colouring where
each set Aφ, Bφ or Cφ induces a strong matching (with the supplementary prop-
erty that the end vertices of these edges have degree 3). That means that we
can work on each set Aφ, Bφ and Cφ independently. Without loss of generality,
we only consider Aφ here.

Assume that Aφ = {e1, e2, . . . ek} and A′
φ = {e1, . . . ei} (1 ≤ i ≤ k − 1) is

a strong matching and each edge of A′
φ has its two ends with degree 3 in G.

Consider the edge ei+1 and let C = Cei+1
(φ) = (u0, u1 . . . u2p) be the odd cycle

associated to this edge (Lemma 6).
Let us mark any vertex v of degree 3 on C with a + whenever the edge of

colour γ incident to this vertex has its other end which is a vertex incident to an
edge of A′

φ and let us mark v with − otherwise. By Lemma 9 a vertex of degree
2 on C has its two neighbours of degree 3 and by Lemma 12 these two vertices
are marked with a −. By Lemma 14 we cannot have two consecutive vertices
marked with a +. Hence, C must have two consecutive vertices of degree 3
marked with − whatever is the number of vertices of degree 2 on C.

Let uj and uj+1 be two vertices of C of degree 3 marked with − (j being
taken modulo 2p + 1). We can transform the edge colouring φ by exchanging
colours on C uniquely, in such a way that the edge of colour δ of this cycle is
ujuj+1. In the resulting edge colouring φ1 we have Aφ1

= Aφ−{ei+1}∪{ujuj+1}
and A′

φ1
= A′

φ∪{ujuj+1} is a strong matching where each edge has its two ends
of degree 3. Repeating this process we are left with a new δ−minimum colouring
φ′ where Aφ′ is a strong matching. �

Corollary 16 Let G be a graph with maximum degree 3 then there are s(G)
vertices of degree 3 pairwise non-adjacent v1 . . . vs(G) such that G−{v1 . . . vs(G)}
is 3-colourable.

Proof Pick a vertex on each edge coloured δ in a δ-minimum colouring φ of G
where Eφ(δ) is a strong matching (Theorem 15). We get a subset S of vertices
satisfying our corollary. �

Steffen [13] obtained Corollary 16 for bridgeless cubic graphs.

3.2 Parsimonious edge colouring

Let χ′(G) be the classical chromatic index of G. For convenience let

c(G) = max{|E(H)| : H ⊆ G ,χ′(H) = 3}

γ(G) =
c(G)

|E(G)|

Staton [12] (and independently Locke [9]) showed that whenever G is a cubic
graph distinct from K4 then G contains a bipartite subgraph (and hence a 3-
edge colourable graph, by König’s theorem [8]) with at least 7

9 of the edges of

5



G. Bondy and Locke [2] obtained 4
5 when considering graphs with maximum

degree at most 3.
In [1] Albertson and Haas showed that whenever G is a cubic graph, we have

γ(G) ≥ 13
15 while for graphs with maximum degree 3 they obtained γ(G) ≥ 26

31 .
Our purpose here is to show that 13

15 is a lower bound for γ(G) when G has
maximum degree 3, with the exception of the graph G5 depicted in Figure 1
below.

Figure 1: G5

Lemma 17 Let G be a graph with maximum degree 3 then γ(G) = 1− s(G)
m

.

Proof Let φ be a δ−minimum edge-colouring of G. The restriction of φ
to E(G) − Eφ(δ) is a proper 3-edge-colouring, hence c(G) ≥ m − s(G) and

γ(G) ≥ 1− s(G)
m

.
If H is a subgraph of G with χ(H) = 3, consider a proper 3-edge-colouring

φ : E(H) → {α, β, γ} and let ψ : E(G) → {α, β, γ, δ} be the continuation of
φ with ψ(e) = δ for e ∈ E(G) − E(H). By Lemma 3 there is a proper edge-
colouring ψ′ of G with Eψ′(δ) ⊆ Eψ(δ) so that |E(H)| = |E(G) − Eψ(δ)| ≤

|E(G)− Eψ′(δ)| ≤ m− s(G), c(G) ≤ m− s(G) and γ(G) ≤ 1− s(G)
m

. �

In [11], Rizzi shows that for triangle free graphs of maximum degree 3,
γ(G) ≥ 1 − 2

3godd(G) (where the odd girth of a graph G, denoted by godd(G), is

the minimum length of an odd cycle).

Theorem 18 Let G be a graph with maximum degree 3 then γ(G) ≥ 1 −
2

3godd(G) .

Proof Let φ be a δ−minimum edge-colouring ofG andEφ(δ) = {e1, e2 . . . es(G)}.
C being the set of odd cycles associated to edges in Eφ(δ), we write C =
{C1, C2 . . . Cs(G)} and suppose that for i = 1, 2 . . . s(G), ei is an edge of Ci.
We know by Lemma 10 that the cycles of C are vertex-disjoint.

Let us write C = C2 ∪ C3, where C2 denotes the set of odd cycles of C which
have a vertex of degree 2, while C3 is for the set of cycles in C whose all vertices
have degree 3. Let k = |C2|, obviously we have 0 ≤ k ≤ s(G) and C2 ∩ C3 = ∅.

If Ci ∈ C2, we may assume that ei has a vertex of degree 2 (see Lemma 8)
and we can associate to ei another odd cycle say C

′

i (Remark 7) whose edges

distinct from ei form an even path using at least godd(G)
2 edges which are not

6



edges of Ci. Hence, Ci ∪ C
′

i contains at least 3
2godd(G) edges. Consequently

there are at least 3
2 × k × godd(G) edges in

⋃

Ci∈C2

(Ci ∪ C
′

i).

When Ci ∈ C3, Ci contains at least godd(G) edges, moreover, each vertex of

Ci being of degree 3, there are s(G)−k
2 × godd(G) additionnal edges which are

incident to a vertex of
⋃

Ci∈C3

Ci.

Since Ci ∩ Cj = ∅ and C
′

i ∩Cj = ∅ (1 ≤ i, j ≤ s(G), i 6= j), we have

m ≥
3

2
godd(G)×k+(s(G)−k)×godd(G)+

s(G) − k

2
×godd(G) =

3

2
×s(G)×godd(G).

Consequently γ(G) = 1− s(G)
m

≥ 1− 2
3godd(G) .

�

Lemma 19 [1] Let G be a graph with maximum degree 3. Assume that v ∈
V (G) is such that d(v) = 1 then γ(G) > γ(G− v).

A triangle T = {a, b, c} is said to be reducible whenever its neighbours are
distinct. When T is a reducible triangle in G (G having maximum degree 3) we
can obtain a new graph G′ with maximum degree 3 by shrinking this triangle
into a single vertex and joining this new vertex to the neighbours of T in G.

Lemma 20 [1] Let G be a graph with maximum degree 3. Assume that T =
{a, b, c} is a reducible triangle and let G′ be the graph obtained by reduction of
this triangle. Then γ(G) > γ(G′).

Theorem 21 Let G be a graph with maximum degree 3,V2 be the set of vertices

with degree 2 in G and V3 those of degree 3. If G 6= G5 then γ(G) ≥ 1−
2
15

1+ 2
3

|V2|

|V3|

.

Proof From Lemma 19 and Lemma 20 we can consider that G has only vertices
of degree 2 or 3 and that G contains no reducible triangle.

Assume that we can associate a set Pe of at least 5 distinct vertices of V3 for
each edge e ∈ Eφ(δ) in a δ−minimum edge-colouring φ of G. Assume moreover
that

∀e, e′ ∈ Eφ(δ) Pe ∩ Pe′ = ∅ (1)

Then

γ(G) = 1−
s(G)

m
= 1−

s(G)
3
2 |V3|+ |V2|

≥ 1−
|V3|
5

3
2 |V3|+ |V2|

Hence

γ(G) ≥ 1−
2
15

1 + 2
3
|V2|
|V3|

It remains to see how to construct the sets Pe satisfying Property (1). Let
C be the set of odd cycles associated to edges in Eφ(δ) (see Lemma 10). Let
e ∈ Eφ(δ), assume that e is contained in a cycle C ∈ C of length 3. By Lemma
10, the edges incident to that triangle have the same colour in {α, β, γ}. This
triangle is hence reducible, impossible. We can thus consider that each cycle of
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C has length at least 5. By Lemma 2 and Lemma 12, we know that whenever
such a cycle contains vertices of V2, their distance on this cycle is at least 3.
Which means that every cycle C ∈ C contains at least 5 vertices in V3 as soon
as C has length at least 7 or C has length 5 but does not contain a vertex of
V2. For each edge e ∈ Eφ(δ) contained in such a cycle we associate Pe as any
set of 5 vertices of V3 contained in the cycle.

There may exist edges in Eφ(δ) contained in a 5-cycle of C having exactly one
vertex in V2. Let C = a1a2a3a4a5 be such a cycle and assume that a1 ∈ V2. By
Lemma 2 and Lemma 14, a1 is the only vertex of degree 2 and by exchanging
colours along this cycle, we can suppose that a1a2 ∈ Eφ(δ). Since a1 ∈ V2,
e = a1a2 is contained in a second cycle C′ of C (see Remark 7). If C′ contains a
vertex x ∈ V3 distinct from a2, a3, a4 and a5 then we set Pe = {a2, a3, a4, a5, x}.
Otherwise C′ = a1a2a4a3a5 and G is isomorphic to G5, impossible.

The sets {Pe| e ∈ Eφ(δ)} are pairwise disjoint since any two cycles of C
associated to distinct edges in Eφ(δ) are disjoint. Hence property 1 holds and
the proof is complete. �

Albertson and Haas [1] proved that γ(G) ≥ 26
31 when G is a graph with

maximum degree 3 and Rizzi [11] obtained γ(G) ≥ 6
7 . From Theorem 21 we

get immediately γ(G) ≥ 13
15 , a better bound. Let us remark that we get also

γ(G) ≥ 13
15 by Theorem 18 as soon as godd ≥ 5.

Lemma 22 Let G be a cubic graph which can be factored into s(G) cycles of
length 5 and without reducible triangle. Then every 2-factor of G contains s(G)
cycles of length 5.

Proof Since G has no reducible triangle, all cycles in a 2-factor have length
at least 4. Let C be any 2-factor of G. Let us denote n4 the number of cycles of
length 4, n5 the number of cycles of length 5 and n6+ the number of cycles on
at least 6 vertices in C. We have 5n5 + 6n6+ ≤ 5s(G)− 4n4.

When n4+n6+ > 0, if n6+ > 0 then n5+n6+ < n5+
6n6+

5 ≤ 5s(G)−4n4

5 ≤ s(G)

and if n6+ = 0, we have n4 > 0 and n5 ≤ 5s(G)−4n4

5 < s(G). A contradiction in
both cases with Lemma 1. �

Corollary 23 Let G be a graph with maximum degree 3 such that γ(G) = 13
15 .

Then G is a cubic graph which can be factored into s(G) cycles of length 5.
Moreover every 2-factor of G has this property.

Proof The optimum for γ(G) in Theorem 21 is obtained whenever s(G) = |V3|
5

and |V2| = 0. That is, G is a cubic graph admitting a 2-factor of s(G) cycles of
length 5. Moreover by Lemma 20 G has no reducible triangle, the result comes
from Lemma 22. �

As pointed out by Albertson and Haas [1], the Petersen graph with γ(G) =
13
15 supplies an extremal example for cubic graphs. Steffen [14] proved that the
only cubic bridgeless graph with γ(G) = 13

15 is the Petersen graph. In fact,
we can extend this result to graphs with maximum degree 3 where bridges
are allowed (excluding the graph G5). Let P

′ be the cubic graph on 10 vertices
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obtained from two copies of G5 (Figure 1) by joining by an edge the two vertices
of degree 2.

Theorem 24 Let G be a connected graph with maximum degree 3 such that
γ(G) = 13

15 . Then G is isomorphic to the Petersen graph or to P ′.

Proof Let G be a graph with maximum degree 3 such that γ(G) = 13
15 .

From Corollary 23, we can consider that G is cubic and G has a 2-factor of
cycles of length 5. Let C = {C1 . . . Cs(G)} be such a 2-factor ( C is spanning).
Let φ be a δ−minimum edge-colouring of G induced by this 2−factor.

Without loss of generality consider two cycles in C, namely C1 and C2,
and let us denote C1 = v1v2v3v4v5 while C2 = u1u2u3u4u5 and assume that
v1u1 ∈ G. From Lemma 11, C1 and C2 are joined by at least 3 edges or each
of them has two chords. If s(G) > 2 there is a cycle C3 ∈ C. Without loss of
generality, G being connected, we can suppose that C3 is joined to C1 by an
edge. Applying once more time Lemma 11, C1 and C3 have two chords or are
joined by at least 3 edges, contradiction with the constraints imposed by C1

and C2. Hence s(G) = 2 and G has 10 vertices and no 4-cycle, which leads to
a graph isomorphic to P ′ or the Petersen graph as claimed. �

We can construct cubic graphs with chromatic index 4 (snarks in the liter-
ature) which are cyclically 4- edge connected and having a 2-factor of C5’s.

Indeed, let G be a cubic cyclically 4-edge connected graph of order n and
M be a perfect matching of G, M = {xiyi|i = 1 . . . n2 }. Let P1 . . . Pn

2
be n

2
copies of the Petersen graph. For each Pi (i = 1 . . . n2 ) we consider two edges at
distance 1 apart e1i and e

2
i . Let us observe that Pi−{e1i , e

2
i } contains a 2-factor

of two C5’s (C
1
i and C2

i ).
We construct then a new cyclically 4-edge connected cubic graph H with

chromatic index 4 by applying the well known operation dot-product (see Figure
2 for a description and [7] for a formal definition) on {e1i , e

2
i } and the edge xiyi

(i = 1 . . . n2 ). We remark that the vertices of G vanish in the operation and the
resulting graph H has a 2 factor of C5, namely {C1

1 , C
2
1 , . . . C

1
i , C

2
i , . . . C

1
n
2
, C2

n
2
}.

We do not know example an of a cyclically 5-edge connected snark (except
the Petersen graph) with a 2-factor of induced cycles of length 5.

Problem 25 Is there any cyclically 5-edge connected snark distinct from the
Petersen graph with a 2-factor of C5’s ?

As a first step towards the resolution of this Problem we propose the fol-
lowing Theorem. Recall that a permutation graph is a cubic graph having some
2-factor with precisely 2 odd cycles.

Theorem 26 Let G be a cubic graph which can be factored into s(G) induced
odd cycles of length at least 5, then G is a permutation graph. Moreover, if G
has girth 5 then G is the Petersen graph.

Proof Let F be a 2-factor of s(G) cycles of length at least 5 in G, every
cycle of F being an induced odd cycle of G. We consider the δ−minimum edge-
colouring φ such that the edges of all cycles of F are alternatively coloured α
and β except for exactly one edge per cycle which is coloured with δ, all the
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Figure 2: The dot product operation on graphs G1, G2.
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remaining edges of G being coloured γ. By construction we have Bφ = Cφ = ∅
and Aφ = F .

Let xy be an edge connecting two distinct cycles of F , say C1 and C2 (x ∈ C1,
y ∈ C2). By Lemma 8 we may assume that there is an edge in C1, say e1,
adjacent to x and coloured with δ, similarly there is on C2 an edge e2 adjacent
to y and coloured with δ. Let z be the neighbour of y on C2 such that e2 = yz
and let t be the neighbour of z such that zt is coloured with γ. If t /∈ C1, there
must be C3 6= C1 such that t ∈ C3, by Lemma 8 again there is an edge e3 of
C3, adjacent to t and coloured with δ. But now {e1, e2, e3} induces a subgraph
with at least 5 edges, a contradiction with Lemma 14.

It follows that C contains exactly two induced cycles of equal . Consequently
G is a permutation graph. When this cycles have length 5, G is obviously the
Petersen graph. �

Comments: The index s(G) used here is certainly not greater than o(G) the
oddness of G used by Huck and Kochol [6]. The oddness o(G) is the minimum
number of odd cycles in any 2-factor of a cubic graph (assuming that we consider
graphs with that property). Obviously o(G) is an even number and it is an easy
task to construct a cubic graph G with s(G) odd which satisfies 0 < s(G) <
o(G). We can even construct cyclically-5-edge-connected cubic graphs with that
property with s(G) = k for any integer k 6= 1 (see [4] and [14]). It can be pointed
out that, using a parity argument (see [13]) in a graph of oddness at least 2 the
colour of minimum frequency is certainly used at least twice. In other words,
o(G) = 2 ⇔ s(G) = 2.

When G is a cubic bridgeless planar graph, we know from the Four Colour
Theorem that G is 3−edge colourable and hence γ(G) = 1. Albertson and Haas
[1] gave γ(G) ≥ 6

7 −
2

35m when G is a planar bridgeless graph with maximum de-
gree 3. Our Theorem 21 improves this lower bound (allowing moreover bridges).
On the other hand, they exhibit a family of planar graphs with maximum degree
3 (bridges are allowed) for which γ(G) = 8

9 − 2
9n .

As in [14] we denote g(F) = min{|V (C)| : C is an odd cycle of F}
and g+(G) = max{g(F)| F is a 2− factor of G}. We suppose that
g+(G) is defined, that is G has at least one 2-factor (when G is a cubic bridge-
less graphs this condition is obviously fulfilled).

When G is cubic bridgeless, Steffen [14] showed that we have :

γ(G) ≥ max{1−
2

3g+(G)
,
11

12
}

The difficult part being to show that γ(G) ≥ 11
12 .

Theorem 27 Let G be a graph with maximum degree 3. Let Vi (i = 1..3) be
the set of vertices of degree i.
Then γ(G) ≥ 1− 2n

(3n−|V2|)g+(G) .

Proof By Lemma 19, we may assume V1 = ∅. Hence, m = 1
2 (2|V2| + 3|V3|),

moreover n = |V2| + |V3|, henceforth m = 3n−|V2|
2 . We have γ(G) = 1 − s(G)

m
,

obviously, s(G) ≤ n
g+(G) . The result follows. �
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Theorem 28 Let G be a graph with maximum degree 3 having at least one 2-
factor. Let Vi (i = 1..3) be the set of vertices of degree i. Assume that |V2| ≤

n
3

and g+(G) ≥ 11 then γ(G) ≥ max{1− 3
4g+(G) ,

11
12}.

Proof By assumption we have V1 = ∅. From Theorem 27 we have just to prove
that γ(G) ≥ 11

12 . Following the proof of Theorem 21, we try to associate a set
Pe of at least 8 distinct vertices of V3 for each edge e ∈ Eφ(δ) in a δ−minimum
edge-colouring φ of G such that

∀e, e′ ∈ Eφ(δ) Pe ∩ Pe′ = ∅ (2)

Indeed, let F be a 2-factor of G where each odd cycle has length at least 11
and let C1, C2 . . . C2k be its set of odd cycles. We have, obviously s(G) ≤ 2k.
Let V ′

3 and V ′
2 be the sets of vertices of degree 3 and 2 respectively contained

in these odd cycles . As soon as |V ′
3 | ≥ 8s(G) we have

γ(G) = 1−
s(G)

m
= 1−

s(G)
3
2 |V3|+ |V2|

≥ 1−
|V ′

3 |
8

3
2 |V3|+ |V2|

(3)

which leads to

γ(G) ≥ 1−

2|V ′
3 |

24|V3|

1 + 2
3
|V2|
|V3|

Since |V3| ≥ |V ′
3 |, we have

γ(G) ≥ 1−
2
24

1 + 2
3
|V2|
|V3|

and

γ(G) ≥
11

12

as claimed.
It remains the case where |V ′

3 | < 8s(G). Since each odd cycle has at least 11
vertices we have |V ′

2 | > 11× 2k − |V ′
3 | > 3s(G).

γ(G) =
m− s(G)

m
≥
m− |V ′

2 |
3

m

We have
m− |V ′

2 |
3

m
≥

11

12

when
m ≥ 4|V ′

2 | (4)

Since |V2| ≤
n
3 we have |V3| ≥

2n
3 and

m = 3
|V3|

2
+ |V2| = 3

n− |V2|

2
+ |V2| = 3

n

2
−

|V2|

2
≥ 4

n

3
≥ 4|V ′

2 | (5)

and the result holds. �
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