On parcimonious edge-colouring of graphs with maximum degree three
 Jean-Luc Fouquet, Jean-Marie Vanherpe

To cite this version:

Jean-Luc Fouquet, Jean-Marie Vanherpe. On parcimonious edge-colouring of graphs with maximum degree three. 2010. hal-00325253v4

HAL Id: hal-00325253
https://hal.science/hal-00325253v4
Preprint submitted on 15 Jul 2010 (v4), last revised 28 Jan 2012 (v6)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On parsimonious edge-colouring of graphs with maximum degree three

J.L. Fouquet and J.M. Vanherpe
L.I.F.O., Faculté des Sciences, B.P. 6759
Université d'Orléans, 45067 Orléans Cedex 2, FR

Abstract

In a graph G of maximum degree Δ let γ denote the largest fraction of edges that can be Δ edge-coloured. Albertson and Haas showed that $\gamma \geq \frac{13}{15}$ when G is cubic 1 . We show here that this result can be extended to graphs with maximum degree 3 with the exception of a graph on 5 vertices. Moreover, there are exactly two graphs with maximum degree 3 (one being obviously the Petersen graph) for which $\gamma=\frac{13}{15}$. This extends a result given in 14]. These results are obtained by giving structural properties of the so called δ-minimum edge colourings for graphs with maximum degree 3 .

Keywords : Cubic graph; Edge-colouring;
Mathematics Subject Classification (2010) : 05C15.

1 Introduction

Throughout this paper, we shall be concerned with connected graphs with maximum degree 3. We know by Vizing's theorem [15] that these graphs can be edge-coloured with 4 colours. Let $\phi: E(G) \rightarrow\{\alpha, \beta, \gamma, \delta\}$ be a proper edgecolouring of G. It is often of interest to try to use one colour (say δ) as few as possible. When an edge colouring is optimal, following this constraint, we shall say that ϕ is δ-minimum. In [3] we gave without proof (in French, see [5] for a translation) results on δ-minimum edge-colourings of cubic graphs. Some of them have been obtained later and independently by Steffen 13, 14. Some other results which were not stated formally in 4 are needed here. The purpose of Section 2 is to give those results as structural properties of δ-minimum edge-colourings as well as others which will be useful in Section 3.

An edge colouring of G using colours $\alpha, \beta, \gamma, \delta$ is said to be δ-improper provided that adjacent edges having the same colours (if any) are coloured with δ. It is clear that a proper edge colouring (and hence a δ-minimum edge-colouring) of G is a particular δ-improper edge colouring. For a proper or δ-improper edge colouring ϕ of G, it will be convenient to denote $E_{\phi}(x)(x \in\{\alpha, \beta, \gamma, \delta\})$ the set of edges coloured with x by ϕ. For $x, y \in\{\alpha, \beta, \gamma, \delta\}, x \neq y, \phi(x, y)$ is the partial subgraph of G spanned by these two colours, that is $E_{\phi}(x) \cup E_{\phi}(y)$ (this subgraph being a union of paths and even cycles where the colours x and y alternate). Since any two δ-minimum edge-colourings of G have the same number of edges coloured δ we shall denote by $s(G)$ this number (the colour number as defined in (13]).

As usual, for any undirected graph G, we denote by $V(G)$ the set of its vertices and by $E(G)$ the set of its edges and we suppose that $|V(G)|=n$ and $|E(G)|=m$. A strong matching C in a graph G is a matching C such that there is no edge of $E(G)$ connecting any two edges of C, or, equivalently, such that C is the edge-set of the subgraph of G induced on the vertex-set $V(C)$.

2 On δ-minimum edge-colouring

The graph G considered in the following series of Lemmas will have maximum degree 3.

Lemma 1 [3, 4, 因] Any 2-factor of G contains at least $s(G)$ disjoint odd cycles.
Lemma 2 [3, 4, 5l Let ϕ be a δ-minimum edge-colouring of G. Any edge in $E_{\phi}(\delta)$ is incident to α, β and γ. Moreover each such edge has one end of degree 2 and the other of degree 3 or the two ends of degree 3 .

Lemma 3 Let ϕ be a δ-improper colouring of G then there exists a proper colouring of $G \phi^{\prime}$ such that $E_{\phi^{\prime}}(\delta) \subseteq E_{\phi}(\delta)$

Proof Let ϕ be a δ-improper edge colouring of G. If ϕ is a proper colouring, we are done. Hence, assume that $u v$ and $u w$ are coloured δ. If $d(u)=2$ we can change the colour of $u v$ to α, β or γ since v is incident to at most two colours in this set.

If $d(u)=3$ assume that the third edge $u z$ incident to u is also coloured δ, then we can change the colour of $u v$ for the same reason as above.

If $u z$ is coloured with α, β or γ, then v and w are incident to the two remaining colours of the set $\{\alpha, \beta, \gamma\}$ otherwise one of the edges $u v, u w$ can be recoloured with the missing colour. W.l.o.g., consider that $u z$ is coloured α then v and w are incident to β and γ. Since u has degree 1 in $\phi(\alpha, \beta)$ let P be the path of $\phi(\alpha, \beta)$ which ends on u. We can assume that v or w (say v) is not the other end vertex of P. Exchanging α and β along P does not change the colours incident to v. But now $u z$ is coloured α and we can change the colour of $u v$ with β.

In each case, we get hence a new δ-improper edge colouring ϕ_{1} with $E_{\phi_{1}}(\delta) \subsetneq$ $E_{\phi}(\delta)$. Repeating this process leads us to construct a proper edge colouring of G with $E_{\phi^{\prime}}(\delta) \subseteq E_{\phi}(\delta)$ as claimed.

Proposition 4 Let $v_{1}, v_{2} \ldots, v_{k} \in V(G)$ such that $G-\left\{v_{1}, v_{2}, \ldots v_{k}\right\}$ is 3-edge colourable. Then $s(G) \leq k$.

Proof Let us consider a 3-edge colouring of $G-\left\{v_{1}, v_{2}, \ldots v_{k}\right\}$ with α, β and γ and let us colour the edges incident to $v_{1}, v_{2} \ldots, v_{k}$ with δ. We get a δ-improper edge colouring ϕ of G. Lemma 3 gives a proper colouring of $G \phi^{\prime}$ such that $E_{\phi^{\prime}}(\delta) \subseteq E_{\phi}(\delta)$. Hence ϕ^{\prime} has at most k edges coloured with δ and $s(G) \leq k$

Proposition above has been obtained by Steffen for cubic graphs.

Lemma 5 Let ϕ be a δ－improper colouring of G then $\left|E_{\phi}(\delta)\right| \geq s(G)$
Proof Applying Lemma 3，let ϕ^{\prime} be a proper edge colouring of G such that $E_{\phi^{\prime}}(\delta) \subseteq E_{\phi}(\delta)$ ．We clearly have $\left|E_{\phi}(\delta)\right| \geq\left|E_{\phi^{\prime}}(\delta)\right| \geq s(G)$

Lemma 6 ［3，4，5］Let ϕ be a δ－minimum edge－colouring of G ．For any edge $e=u v \in E_{\phi}(\delta)$ there are two colours x and y in $\{\alpha, \beta, \gamma\}$ such that the connected component of $\phi(x, y)$ containing the two ends of e is an even path joining these two ends．

Remark 7 An edge of $E_{\phi}(\delta)$ is in A_{ϕ} when its ends can be connected by a path of $\phi(\alpha, \beta), B_{\phi}$ by a path of $\phi(\beta, \gamma)$ and C_{ϕ} by a path of $\phi(\alpha, \gamma)$ ．It is clear that A_{ϕ}, B_{ϕ} and C_{ϕ} are not necessarily pairwise disjoint since an edge of $E_{\phi}(\delta)$ with one end of degree 2 is contained in 2 such sets．Assume indeed that $e=u v \in E_{\phi}(\delta)$ with $d(u)=3$ and $d(v)=2$ then，if u is incident to α and β and v is incident to γ we have an alternating path whose ends are u and v in $\phi(\alpha, \gamma)$ as well as in $\phi(\beta, \gamma)$ ．Hence e is in $A_{\phi} \cap B_{\phi}$ ．When $e \in A_{\phi}$ we can associate to e the odd cycle $C_{A_{\phi}}(e)$ obtained by considering the path of $\phi(\alpha, \beta)$ together with e ．We define in the same way $C_{B_{\phi}}(e)$ and $C_{C_{\phi}}(e)$ when e is in B_{ϕ} or C_{ϕ} ．In the following lemma we consider an edge in A_{ϕ} ，an analogous result holds true whenever we consider edges in B_{ϕ} or C_{ϕ} as well．

Lemma 8 ［3，4，烏 Let ϕ be a δ－minimum edge－colouring of G and let e be an edge in A_{ϕ} then for any edge $e^{\prime} \in C_{A_{\phi}}(e)$ there is a δ－minimum edge－colouring ϕ^{\prime} such that $E_{\phi^{\prime}}(\delta)=E_{\phi}(\delta)-\{e\} \cup\left\{e^{\prime}\right\}, e^{\prime} \in A_{\phi^{\prime}}$ and $C_{A_{\phi}}(e)=C_{A_{\phi^{\prime}}}\left(e^{\prime}\right)$ ． Moreover，each edge outside $C_{A_{\phi}}(e)$ but incident with this cycle is coloured γ ， ϕ and ϕ^{\prime} only differ on the edges of $C_{A_{\phi}}(e)$ ．

For each edge $e \in E_{\phi}(\delta)$（where ϕ is a δ－minimum edge－colouring of G ）we can associate one or two odd cycles following the fact that e is in one or two sets among A_{ϕ}, B_{ϕ} or C_{ϕ} ．Let \mathcal{C} be the set of odd cycles associated to edges in $E_{\phi}(\delta)$ ．

Lemma 9 ，4，For each cycle $C \in \mathcal{C}$ ，there are no two consecutive vertices with degree two．

Lemma 10 凋，4，因 Let $e_{1}, e_{2} \in E_{\phi}(\delta)$ and let $C_{1}, C_{2} \in \mathcal{C}$ be such that $C_{1} \neq C_{2}$ ， $e_{1} \in E\left(C_{1}\right)$ and $e_{2} \in E\left(C_{2}\right)$ then C_{1} and C_{2} are（vertex）disjoint．

By Lemma 8 any two cycles in \mathcal{C} corresponding to edges in distinct sets A_{ϕ}, B_{ϕ} or C_{ϕ} are at distance at least 2．Assume that $C_{1}=C_{A_{\phi}}\left(e_{1}\right)$ and $C_{2}=C_{A_{\phi}}\left(e_{2}\right)$ for some edges e_{1} and e_{2} in A_{ϕ} ．Can we say something about the subgraph of G whose vertex set is $V\left(C_{1}\right) \cup V\left(C_{2}\right)$ ？In general，we have no answer to this problem．However，when G is cubic and any vertex of G lies on some cycle of \mathcal{C}（we shall say that \mathcal{C} is spanning），we have a property which will be useful later．Let us remark first that whenever \mathcal{C} is spanning， we can consider that G is edge－coloured in such a way that the edges of the cycles of \mathcal{C} are alternatively coloured with α and β（except one edge coloured δ ）and the remaining perfect matching is coloured with γ ．For this δ－minimum edge－colouring of G we have $B_{\phi}=\emptyset$ as well as $C_{\phi}=\emptyset$ ．

Lemma 11 Assume that G is cubic and \mathcal{C} is spanning．Let $e_{1}, e_{2} \in A_{\phi}$ and let $C_{1}, C_{2} \in \mathcal{C}$ such that $C_{1}=C_{A_{\phi}}\left(e_{1}\right)$ and $C_{2}=C_{A_{\phi}}\left(e_{2}\right)$ ．Then at least one of the followings is true
（i）C_{1} and C_{2} are at distance at least 2
（ii）C_{1} and C_{2} are joined by at least 3 edges
（iii）C_{1} and C_{2} have at least two chords each
Proof Since $e_{1}, e_{2} \in A_{\phi}$ and \mathcal{C} is spanning we have $B_{\phi}=C_{\phi}=\emptyset$ ．Let $C_{1}=v_{0} v_{1} \ldots v_{2 k_{1}}$ and $C_{2}=w_{0} w_{1} \ldots w_{2 k_{2}}$ ．Assume that C_{1} and C_{2} are joined by the edge $v_{0} w_{0}$ ．By Lemma 6 ，we can consider a δ－minimum edge－colouring ϕ such that $\phi\left(v_{0} v_{1}\right)=\phi\left(w_{0} w_{1}\right)=\delta, \phi\left(v_{1} v_{2}\right)=\phi\left(w_{1} w_{2}\right)=\beta$ and $\phi\left(v_{0} v_{2 k_{1}}\right)=$ $\phi\left(w_{0} w_{2 k_{2}}\right)=\alpha$ ．Moreover each edge of G（in particular $v_{0} w_{0}$ ）incident with these cycles is coloured γ ．We can change the colour of $v_{0} w_{0}$ in β ．We obtain thus a new δ－minimum edge－colouring ϕ^{\prime} ．Performing that exchange of colours on $v_{0} w_{0}$ transforms the edges coloured $\delta v_{0} v_{1}$ and $w_{0} w_{1}$ in two edges of $C_{\phi^{\prime}}$ lying on odd cycles C_{1}^{\prime} and C_{2}^{\prime} respectively．We get hence a new set $\mathcal{C}^{\prime}=$ $\mathcal{C}-\left\{C_{1}, C_{2}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}\right\}$ of odd cycles associated to δ－coloured edges in ϕ^{\prime} ．

From Lemma $8 C_{1}^{\prime}\left(C_{2}^{\prime}\right.$ respectively）is at distance at least 2 from any cycle in $\mathcal{C}-\left\{C_{1}, C_{2}\right\}$ ．Hence $V\left(C_{1}^{\prime}\right) \cup V\left(C_{2}^{\prime}\right) \subseteq V\left(C_{1}\right) \cup V\left(C_{2}\right)$ ．It is an easy task to check now that（ii）or（iii）above must be verified．

Lemma 12 珹，因，可 Let $e_{1}=u v_{1}$ be an edge of $E_{\phi}(\delta)$ such that v_{1} has degree 2 in G ．Then v_{1} is the only vertex in $N(u)$ of degree 2 and for any edge $e_{2}=$ $u_{2} v_{2} \in E_{\phi}(\delta),\left\{e_{1}, e_{2}\right\}$ induces a $2 K_{2}$ ．

Lemma 13 ［3，4，国 Let e_{1} and e_{2} be two edges of $E_{\phi}(\delta)$ ．If e_{1} and e_{2} are contained in two distinct sets of A_{ϕ}, B_{ϕ} or C_{ϕ} then $\left\{e_{1}, e_{2}\right\}$ induces a $2 K_{2}$ otherwise e_{1}, e_{2} are joined by at most one edge．

Lemma 14 ［3，4，因］Let e_{1}, e_{2} and e_{3} be three distinct edges of $E_{\phi}(\delta)$ contained in the same set A_{ϕ}, B_{ϕ} or C_{ϕ} ．Then $\left\{e_{1}, e_{2}, e_{3}\right\}$ induces a subgraph with at most four edges．

3 Applications and problems

3．1 On a result by Payan

In 10］Payan showed that it is always possible to edge－colour a graph of max－ imum degree 3 with three maximal matchings（with respect to the inclusion） and introduced henceforth a notion of strong－edge colouring where a strong edge－colouring means that one colour is a strong matching while the remaining colours are usual matchings．Payan conjectured that any d－regular graph has d pairwise disjoint maximal matchings and showed that this conjecture holds true for graphs with maximum degree 3 ．

The following result has been obtained first by Payan［10］，but his technique does not exhibit explicitly the odd cycles associated to the edges of the strong matching and their properties．

Theorem 15 Let G be a graph with maximum degree at most 3. Then G has a δ-minimum edge-colouring ϕ where $E_{\phi}(\delta)$ is a strong matching and, moreover, any edge in $E_{\phi}(\delta)$ has its two ends of degree 3 in G.

Proof Let ϕ be a δ-minimum edge-colouring of G. From Lemma 13, any two edges of $E_{\phi}(\delta)$ belonging to distinct sets from among A_{ϕ}, B_{ϕ} and C_{ϕ} induce a strong matching. Hence, we have to find a δ-minimum edge-colouring where each set A_{ϕ}, B_{ϕ} or C_{ϕ} induces a strong matching (with the supplementary property that the end vertices of these edges have degree 3). That means that we can work on each set A_{ϕ}, B_{ϕ} and C_{ϕ} independently. Without loss of generality, we only consider A_{ϕ} here.

Assume that $A_{\phi}=\left\{e_{1}, e_{2}, \ldots e_{k}\right\}$ and $A_{\phi}^{\prime}=\left\{e_{1}, \ldots e_{i}\right\}(1 \leq i \leq k-1)$ is a strong matching and each edge of A_{ϕ}^{\prime} has its two ends with degree 3 in G. Consider the edge e_{i+1} and let $C=C_{e_{i+1}}(\phi)=\left(u_{0}, u_{1} \ldots u_{2 p}\right)$ be the odd cycle associated to this edge (Lemma (6).

Let us mark any vertex v of degree 3 on C with a + whenever the edge of colour γ incident to this vertex has its other end which is a vertex incident to an edge of A_{ϕ}^{\prime} and let us mark v with - otherwise. By Lemma 9 a vertex of degree 2 on C has its two neighbours of degree 3 and by Lemma 12 these two vertices are marked with a - . By Lemma 14 we cannot have two consecutive vertices marked with a + . Hence, C must have two consecutive vertices of degree 3 marked with - whatever is the number of vertices of degree 2 on C.

Let u_{j} and u_{j+1} be two vertices of C of degree 3 marked with $-(j$ being taken modulo $2 p+1$). We can transform the edge colouring ϕ by exchanging colours on C uniquely, in such a way that the edge of colour δ of this cycle is $u_{j} u_{j+1}$. In the resulting edge colouring ϕ_{1} we have $A_{\phi_{1}}=A_{\phi}-\left\{e_{i+1}\right\} \cup\left\{u_{j} u_{j+1}\right\}$ and $A_{\phi_{1}}^{\prime}=A_{\phi}^{\prime} \cup\left\{u_{j} u_{j+1}\right\}$ is a strong matching where each edge has its two ends of degree 3 . Repeating this process we are left with a new δ-minimum colouring ϕ^{\prime} where $A_{\phi^{\prime}}$ is a strong matching.

Corollary 16 Let G be a graph with maximum degree 3 then there are $s(G)$ vertices of degree 3 pairwise non-adjacent $v_{1} \ldots v_{s(G)}$ such that $G-\left\{v_{1} \ldots v_{s(G)}\right\}$ is 3 -colourable.

Proof Pick a vertex on each edge coloured δ in a δ-minimum colouring ϕ of G where $E_{\phi}(\delta)$ is a strong matching (Theorem 15). We get a subset S of vertices satisfying our corollary.

Steffen 13 obtained Corollary 16 for bridgeless cubic graphs.

3.2 Parsimonious edge colouring

Let $\chi^{\prime}(G)$ be the classical chromatic index of G. For convenience let

$$
\begin{gathered}
c(G)=\max \left\{|E(H)|: H \subseteq G, \chi^{\prime}(H)=3\right\} \\
\gamma(G)=\frac{c(G)}{|E(G)|}
\end{gathered}
$$

Staton (12] (and independently Locke (9) showed that whenever G is a cubic graph distinct from K_{4} then G contains a bipartite subgraph (and hence a 3edge colourable graph, by König's theorem [8]) with at least $\frac{7}{9}$ of the edges of
G. Bondy and Locke [2] obtained $\frac{4}{5}$ when considering graphs with maximum degree at most 3 .

In [1] Albertson and Haas showed that whenever G is a cubic graph, we have $\gamma(G) \geq \frac{13}{15}$ while for graphs with maximum degree 3 they obtained $\gamma(G) \geq \frac{26}{31}$. Our purpose here is to show that $\frac{13}{15}$ is a lower bound for $\gamma(G)$ when G has maximum degree 3, with the exception of the graph G_{5} depicted in Figure 11 below.

Figure 1: G_{5}

Lemma 17 Let G be a graph with maximum degree 3 then $\gamma(G)=1-\frac{s(G)}{m}$.
Proof Let ϕ be a δ-minimum edge-colouring of G. The restriction of ϕ to $E(G)-E_{\phi}(\delta)$ is a proper 3-edge-colouring, hence $c(G) \geq m-s(G)$ and $\gamma(G) \geq 1-\frac{s(G)}{m}$.

If H is a subgraph of G with $\chi(H)=3$, consider a proper 3-edge-colouring $\phi: E(H) \rightarrow\{\alpha, \beta, \gamma\}$ and let $\psi: E(G) \rightarrow\{\alpha, \beta, \gamma, \delta\}$ be the continuation of ϕ with $\psi(e)=\delta$ for $e \in E(G)-E(H)$. By Lemma 3 there is a proper edgecolouring ψ^{\prime} of G with $E_{\psi^{\prime}}(\delta) \subseteq E_{\psi}(\delta)$ so that $|E(H)|=\left|E(G)-E_{\psi}(\delta)\right| \leq$ $\left|E(G)-E_{\psi^{\prime}}(\delta)\right| \leq m-s(G), c(G) \leq m-s(G)$ and $\gamma(G) \leq 1-\frac{s(G)}{m}$.

In 11, Rizzi shows that for triangle free graphs of maximum degree 3, $\gamma(G) \geq 1-\frac{2}{3 g_{\text {odd }}(G)}$ (where the odd girth of a graph G, denoted by $g_{\text {odd }}(G)$, is the minimum length of an odd cycle).

Theorem 18 Let G be a graph with maximum degree 3 then $\gamma(G) \geq 1$ $\frac{2}{3 g_{\text {odd }}(G)}$.

Proof Let ϕ be a δ-minimum edge-colouring of G and $E_{\phi}(\delta)=\left\{e_{1}, e_{2} \ldots e_{s(G)}\right\}$. \mathcal{C} being the set of odd cycles associated to edges in $E_{\phi}(\delta)$, we write $\mathcal{C}=$ $\left\{C_{1}, C_{2} \ldots C_{s(G)}\right\}$ and suppose that for $i=1,2 \ldots s(G), e_{i}$ is an edge of C_{i}. We know by Lemma 10 that the cycles of \mathcal{C} are vertex-disjoint.

Let us write $\mathcal{C}=\mathcal{C}_{2} \cup \mathcal{C}_{3}$, where \mathcal{C}_{2} denotes the set of odd cycles of \mathcal{C} which have a vertex of degree 2 , while \mathcal{C}_{3} is for the set of cycles in \mathcal{C} whose all vertices have degree 3 . Let $k=\left|\mathcal{C}_{2}\right|$, obviously we have $0 \leq k \leq s(G)$ and $\mathcal{C}_{2} \cap \mathcal{C}_{3}=\emptyset$.

If $C_{i} \in \mathcal{C}_{2}$, we may assume that e_{i} has a vertex of degree 2 (see Lemma 8) and we can associate to e_{i} another odd cycle say C_{i}^{\prime} (Remark 7) whose edges distinct from e_{i} form an even path using at least $\frac{g_{\text {odd }}(G)}{2}$ edges which are not
edges of C_{i}. Hence, $C_{i} \cup C_{i}^{\prime}$ contains at least $\frac{3}{2} g_{o d d}(G)$ edges. Consequently there are at least $\frac{3}{2} \times k \times g_{\text {odd }}(G)$ edges in $\bigcup_{C_{i} \in \mathcal{C}_{2}}\left(C_{i} \cup C_{i}^{\prime}\right)$.

When $C_{i} \in \mathcal{C}_{3}, C_{i}$ contains at least $g_{\text {odd }}(G)$ edges, moreover, each vertex of C_{i} being of degree 3, there are $\frac{s(G)-k}{2} \times g_{\text {odd }}(G)$ additionnal edges which are incident to a vertex of $\bigcup_{C_{i} \in \mathcal{C}_{3}} C_{i}$.

Since $C_{i} \cap C_{j}=\emptyset$ and $C_{i}^{\prime} \cap C_{j}=\emptyset(1 \leq i, j \leq s(G), i \neq j)$, we have
$m \geq \frac{3}{2} g_{\text {odd }}(G) \times k+(s(G)-k) \times g_{\text {odd }}(G)+\frac{s(G)-k}{2} \times g_{\text {odd }}(G)=\frac{3}{2} \times s(G) \times g_{\text {odd }}(G)$.
Consequently $\gamma(G)=1-\frac{s(G)}{m} \geq 1-\frac{2}{3 g_{o d d}(G)}$.

Lemma 19 [1] Let G be a graph with maximum degree 3. Assume that $v \in$ $V(G)$ is such that $d(v)=1$ then $\gamma(G)>\gamma(G-v)$.

A triangle $T=\{a, b, c\}$ is said to be reducible whenever its neighbours are distinct. When T is a reducible triangle in G (G having maximum degree 3) we can obtain a new graph G^{\prime} with maximum degree 3 by shrinking this triangle into a single vertex and joining this new vertex to the neighbours of T in G.

Lemma 20 [1] Let G be a graph with maximum degree 3. Assume that $T=$ $\{a, b, c\}$ is a reducible triangle and let G^{\prime} be the graph obtained by reduction of this triangle. Then $\gamma(G)>\gamma\left(G^{\prime}\right)$.

Theorem 21 Let G be a graph with maximum degree $3, V_{2}$ be the set of vertices with degree 2 in G and V_{3} those of degree 3 . If $G \neq G_{5}$ then $\gamma(G) \geq 1-\frac{\frac{2}{15}}{1+\frac{2}{3} \frac{V_{2}}{V V_{3} \mid}}$.

Proof From Lemma 19 and Lemma 20 we can consider that G has only vertices of degree 2 or 3 and that G contains no reducible triangle.

Assume that we can associate a set P_{e} of at least 5 distinct vertices of V_{3} for each edge $e \in E_{\phi}(\delta)$ in a δ-minimum edge-colouring ϕ of G. Assume moreover that

$$
\begin{equation*}
\forall e, e^{\prime} \in E_{\phi}(\delta) \quad P_{e} \cap P_{e^{\prime}}=\emptyset \tag{1}
\end{equation*}
$$

Then

$$
\gamma(G)=1-\frac{s(G)}{m}=1-\frac{s(G)}{\frac{3}{2}\left|V_{3}\right|+\left|V_{2}\right|} \geq 1-\frac{\frac{\left|V_{3}\right|}{5}}{\frac{3}{2}\left|V_{3}\right|+\left|V_{2}\right|}
$$

Hence

$$
\gamma(G) \geq 1-\frac{\frac{2}{15}}{1+\frac{2}{3} \frac{\left|V_{2}\right|}{\left|V_{3}\right|}}
$$

It remains to see how to construct the sets P_{e} satisfying Property (11). Let \mathcal{C} be the set of odd cycles associated to edges in $E_{\phi}(\delta)$ (see Lemma 10). Let $e \in E_{\phi}(\delta)$, assume that e is contained in a cycle $C \in \mathcal{C}$ of length 3. By Lemma 10, the edges incident to that triangle have the same colour in $\{\alpha, \beta, \gamma\}$. This triangle is hence reducible, impossible. We can thus consider that each cycle of
\mathcal{C} has length at least 5. By Lemma 2 and Lemma 12, we know that whenever such a cycle contains vertices of V_{2}, their distance on this cycle is at least 3 . Which means that every cycle $C \in \mathcal{C}$ contains at least 5 vertices in V_{3} as soon as C has length at least 7 or C has length 5 but does not contain a vertex of V_{2}. For each edge $e \in E_{\phi}(\delta)$ contained in such a cycle we associate P_{e} as any set of 5 vertices of V_{3} contained in the cycle.

There may exist edges in $E_{\phi}(\delta)$ contained in a 5 -cycle of \mathcal{C} having exactly one vertex in V_{2}. Let $C=a_{1} a_{2} a_{3} a_{4} a_{5}$ be such a cycle and assume that $a_{1} \in V_{2}$. By Lemma 2 and Lemma 14, a_{1} is the only vertex of degree 2 and by exchanging colours along this cycle, we can suppose that $a_{1} a_{2} \in E_{\phi}(\delta)$. Since $a_{1} \in V_{2}$, $e=a_{1} a_{2}$ is contained in a second cycle C^{\prime} of \mathcal{C} (see Remark (7). If C^{\prime} contains a vertex $x \in V_{3}$ distinct from a_{2}, a_{3}, a_{4} and a_{5} then we set $P_{e}=\left\{a_{2}, a_{3}, a_{4}, a_{5}, x\right\}$. Otherwise $C^{\prime}=a_{1} a_{2} a_{4} a_{3} a_{5}$ and G is isomorphic to G_{5}, impossible.

The sets $\left\{P_{e} \mid e \in E_{\phi}(\delta)\right\}$ are pairwise disjoint since any two cycles of \mathcal{C} associated to distinct edges in $E_{\phi}(\delta)$ are disjoint. Hence property 1 holds and the proof is complete.

Albertson and Haas [1] proved that $\gamma(G) \geq \frac{26}{31}$ when G is a graph with maximum degree 3 and Rizzi [11] obtained $\gamma(G) \geq \frac{6}{7}$. From Theorem 21 we get immediately $\gamma(G) \geq \frac{13}{15}$, a better bound. Let us remark that we get also $\gamma(G) \geq \frac{13}{15}$ by Theorem 18 as soon as $g_{o d d} \geq 5$.

Lemma 22 Let G be a cubic graph which can be factored into $s(G)$ cycles of length 5 and without reducible triangle. Then every 2 -factor of G contains $s(G)$ cycles of length 5 .

Proof Since G has no reducible triangle, all cycles in a 2-factor have length at least 4 . Let \mathcal{C} be any 2 -factor of G. Let us denote n_{4} the number of cycles of length $4, n_{5}$ the number of cycles of length 5 and n_{6+} the number of cycles on at least 6 vertices in \mathcal{C}. We have $5 n_{5}+6 n_{6+} \leq 5 s(G)-4 n_{4}$.

When $n_{4}+n_{6+}>0$, if $n_{6+}>0$ then $n_{5}+n_{6+}<n_{5}+\frac{6 n_{6+}}{5} \leq \frac{5 s(G)-4 n_{4}}{5} \leq s(G)$ and if $n_{6+}=0$, we have $n_{4}>0$ and $n_{5} \leq \frac{5 s(G)-4 n_{4}}{5}<s(G)$. A contradiction in both cases with Lemma if.

Corollary 23 Let G be a graph with maximum degree 3 such that $\gamma(G)=\frac{13}{15}$. Then G is a cubic graph which can be factored into $s(G)$ cycles of length 5 . Moreover every 2-factor of G has this property.
Proof The optimum for $\gamma(G)$ in Theorem 21 is obtained whenever $s(G)=\frac{\left|V_{3}\right|}{5}$ and $\left|V_{2}\right|=0$. That is, G is a cubic graph admitting a 2-factor of $s(G)$ cycles of length 5. Moreover by Lemma $20 G$ has no reducible triangle, the result comes from Lemma 22.

As pointed out by Albertson and Haas [1], the Petersen graph with $\gamma(G)=$ $\frac{13}{15}$ supplies an extremal example for cubic graphs. Steffen 14 proved that the only cubic bridgeless graph with $\gamma(G)=\frac{13}{15}$ is the Petersen graph. In fact, we can extend this result to graphs with maximum degree 3 where bridges are allowed (excluding the graph G_{5}). Let P^{\prime} be the cubic graph on 10 vertices
obtained from two copies of G_{5} (Figure 11) by joining by an edge the two vertices of degree 2 .

Theorem 24 Let G be a connected graph with maximum degree 3 such that $\gamma(G)=\frac{13}{15}$. Then G is isomorphic to the Petersen graph or to P^{\prime}.
Proof Let G be a graph with maximum degree 3 such that $\gamma(G)=\frac{13}{15}$.
From Corollary 23, we can consider that G is cubic and G has a 2 -factor of cycles of length 5 . Let $\mathcal{C}=\left\{C_{1} \ldots C_{s(G)}\right\}$ be such a 2 -factor (\mathcal{C} is spanning). Let ϕ be a δ-minimum edge-colouring of G induced by this $2-$ factor.

Without loss of generality consider two cycles in \mathcal{C}, namely C_{1} and C_{2}, and let us denote $C_{1}=v_{1} v_{2} v_{3} v_{4} v_{5}$ while $C_{2}=u_{1} u_{2} u_{3} u_{4} u_{5}$ and assume that $v_{1} u_{1} \in G$. From Lemma 11, C_{1} and C_{2} are joined by at least 3 edges or each of them has two chords. If $s(G)>2$ there is a cycle $C_{3} \in \mathcal{C}$. Without loss of generality, G being connected, we can suppose that C_{3} is joined to C_{1} by an edge. Applying once more time Lemma 11, C_{1} and C_{3} have two chords or are joined by at least 3 edges, contradiction with the constraints imposed by C_{1} and C_{2}. Hence $s(G)=2$ and G has 10 vertices and no 4 -cycle, which leads to a graph isomorphic to P^{\prime} or the Petersen graph as claimed.

We can construct cubic graphs with chromatic index 4 (snarks in the literature) which are cyclically 4- edge connected and having a 2 -factor of C_{5} 's.

Indeed, let G be a cubic cyclically 4 -edge connected graph of order n and M be a perfect matching of $G, M=\left\{x_{i} y_{i} \left\lvert\, i=1 \ldots \frac{n}{2}\right.\right\}$. Let $P_{1} \ldots P_{\frac{n}{2}}$ be $\frac{n}{2}$ copies of the Petersen graph. For each $P_{i}\left(i=1 \ldots \frac{n}{2}\right)$ we consider two edges at distance 1 apart e_{i}^{1} and e_{i}^{2}. Let us observe that $P_{i}-\left\{e_{i}^{1}, e_{i}^{2}\right\}$ contains a 2-factor of two C_{5} 's $\left(C_{i}^{1}\right.$ and $\left.C_{i}^{2}\right)$.

We construct then a new cyclically 4 -edge connected cubic graph H with chromatic index 4 by applying the well known operation dot-product (see Figure 2f for a description and (7] for a formal definition) on $\left\{e_{i}^{1}, e_{i}^{2}\right\}$ and the edge $x_{i} y_{i}$ $\left(i=1 \ldots \frac{n}{2}\right)$. We remark that the vertices of G vanish in the operation and the resulting graph H has a 2 factor of C_{5}, namely $\left\{C_{1}^{1}, C_{1}^{2}, \ldots C_{i}^{1}, C_{i}^{2}, \ldots C_{\frac{n}{2}}^{1}, C_{\frac{n}{2}}^{2}\right\}$.

We do not know example an of a cyclically 5 -edge connected snark (except the Petersen graph) with a 2 -factor of induced cycles of length 5 .

Problem 25 Is there any cyclically 5 -edge connected snark distinct from the Petersen graph with a 2 -factor of C_{5} 's ?

As a first step towards the resolution of this Problem we propose the following Theorem. Recall that a permutation graph is a cubic graph having some 2 -factor with precisely 2 odd cycles.

Theorem 26 Let G be a cubic graph which can be factored into $s(G)$ induced odd cycles of length at least 5 , then G is a permutation graph. Moreover, if G has girth 5 then G is the Petersen graph.

Proof Let \mathcal{F} be a 2 -factor of $s(G)$ cycles of length at least 5 in G, every cycle of \mathcal{F} being an induced odd cycle of G. We consider the δ-minimum edgecolouring ϕ such that the edges of all cycles of \mathcal{F} are alternatively coloured α and β except for exactly one edge per cycle which is coloured with δ, all the

Figure 2: The dot product operation on graphs G_{1}, G_{2}.
remaining edges of G being coloured γ. By construction we have $B_{\phi}=C_{\phi}=\emptyset$ and $A_{\phi}=\mathcal{F}$.

Let $x y$ be an edge connecting two distinct cycles of \mathcal{F}, say C_{1} and $C_{2}\left(x \in C_{1}\right.$, $y \in C_{2}$). By Lemma 8 we may assume that there is an edge in C_{1}, say e_{1}, adjacent to x and coloured with δ, similarly there is on C_{2} an edge e_{2} adjacent to y and coloured with δ. Let z be the neighbour of y on C_{2} such that $e_{2}=y z$ and let t be the neighbour of z such that $z t$ is coloured with γ. If $t \notin C_{1}$, there must be $C_{3} \neq C_{1}$ such that $t \in C_{3}$, by Lemma 8 again there is an edge e_{3} of C_{3}, adjacent to t and coloured with δ. But now $\left\{e_{1}, e_{2}, e_{3}\right\}$ induces a subgraph with at least 5 edges, a contradiction with Lemma 14 .

It follows that \mathcal{C} contains exactly two induced cycles of equal. Consequently G is a permutation graph. When this cycles have length $5, G$ is obviously the Petersen graph.

Comments: The index $s(G)$ used here is certainly not greater than $o(G)$ the oddness of G used by Huck and Kochol [6]. The oddness $o(G)$ is the minimum number of odd cycles in any 2 -factor of a cubic graph (assuming that we consider graphs with that property). Obviously $o(G)$ is an even number and it is an easy task to construct a cubic graph G with $s(G)$ odd which satisfies $0<s(G)<$ $o(G)$. We can even construct cyclically-5-edge-connected cubic graphs with that property with $s(G)=k$ for any integer $k \neq 1$ (see 14 and 14). It can be pointed out that, using a parity argument (see 13]) in a graph of oddness at least 2 the colour of minimum frequency is certainly used at least twice. In other words, $o(G)=2 \Leftrightarrow s(G)=2$.

When G is a cubic bridgeless planar graph, we know from the Four Colour Theorem that G is 3-edge colourable and hence $\gamma(G)=1$. Albertson and Haas [1] gave $\gamma(G) \geq \frac{6}{7}-\frac{2}{35 m}$ when G is a planar bridgeless graph with maximum degree 3. Our Theorem 21 improves this lower bound (allowing moreover bridges). On the other hand, they exhibit a family of planar graphs with maximum degree 3 (bridges are allowed) for which $\gamma(G)=\frac{8}{9}-\frac{2}{9 n}$.

As in 14 we denote $g(\mathcal{F})=\min \{|V(C)|: \quad C \quad$ is an odd cycle of $\mathcal{F}\}$ and $g^{+}(G)=\max \{g(\mathcal{F}) \mid \mathcal{F}$ is a 2 -factor of G$\}$. We suppose that $g^{+}(G)$ is defined, that is G has at least one 2-factor (when G is a cubic bridgeless graphs this condition is obviously fulfilled).

When G is cubic bridgeless, Steffen (14 showed that we have :

$$
\gamma(G) \geq \quad \max \left\{1-\frac{2}{3 g^{+}(G)}, \frac{11}{12}\right\}
$$

The difficult part being to show that $\gamma(G) \geq \frac{11}{12}$.
Theorem 27 Let G be a graph with maximum degree 3 . Let $V_{i}(i=1 . .3)$ be the set of vertices of degree i.
Then $\gamma(G) \geq 1-\frac{2 n}{\left(3 n-\left|V_{2}\right|\right) g^{+}(G)}$.
Proof By Lemma 19, we may assume $V_{1}=\emptyset$. Hence, $m=\frac{1}{2}\left(2\left|V_{2}\right|+3\left|V_{3}\right|\right)$, moreover $n=\left|V_{2}\right|+\left|V_{3}\right|$, henceforth $m=\frac{3 n-\left|V_{2}\right|}{2}$. We have $\gamma(G)=1-\frac{s(G)}{m}$, obviously, $s(G) \leq \frac{n}{g^{+}(G)}$. The result follows.

Theorem 28 Let G be a graph with maximum degree 3 having at least one 2factor. Let $V_{i}(i=1 . .3)$ be the set of vertices of degree i. Assume that $\left|V_{2}\right| \leq \frac{n}{3}$ and $g^{+}(G) \geq 11$ then $\gamma(G) \geq \quad \max \left\{1-\frac{3}{4 g^{+}(G)}, \frac{11}{12}\right\}$.

Proof By assumption we have $V_{1}=\emptyset$. From Theorem 27 we have just to prove that $\gamma(G) \geq \frac{11}{12}$. Following the proof of Theorem 21, we try to associate a set P_{e} of at least 8 distinct vertices of V_{3} for each edge $e \in E_{\phi}(\delta)$ in a δ-minimum edge-colouring ϕ of G such that

$$
\begin{equation*}
\forall e, e^{\prime} \in E_{\phi}(\delta) \quad P_{e} \cap P_{e^{\prime}}=\emptyset \tag{2}
\end{equation*}
$$

Indeed, let \mathcal{F} be a 2 -factor of G where each odd cycle has length at least 11 and let $C_{1}, C_{2} \ldots C_{2 k}$ be its set of odd cycles. We have, obviously $s(G) \leq 2 k$. Let V_{3}^{\prime} and V_{2}^{\prime} be the sets of vertices of degree 3 and 2 respectively contained in these odd cycles. As soon as $\left|V_{3}^{\prime}\right| \geq 8 s(G)$ we have

$$
\begin{equation*}
\gamma(G)=1-\frac{s(G)}{m}=1-\frac{s(G)}{\frac{3}{2}\left|V_{3}\right|+\left|V_{2}\right|} \geq 1-\frac{\frac{\left|V_{3}^{\prime}\right|}{8}}{\frac{3}{2}\left|V_{3}\right|+\left|V_{2}\right|} \tag{3}
\end{equation*}
$$

which leads to

$$
\gamma(G) \geq 1-\frac{\frac{2\left|V_{3}^{\prime}\right|}{24\left|V_{3}\right|}}{1+\frac{2}{3} \frac{\left|V_{2}\right|}{\left|V_{3}\right|}}
$$

Since $\left|V_{3}\right| \geq\left|V_{3}^{\prime}\right|$, we have

$$
\gamma(G) \geq 1-\frac{\frac{2}{24}}{1+\frac{2}{3} \frac{\left|V_{2}\right|}{\left|V_{3}\right|}}
$$

and

$$
\gamma(G) \geq \frac{11}{12}
$$

as claimed.
It remains the case where $\left|V_{3}^{\prime}\right|<8 s(G)$. Since each odd cycle has at least 11 vertices we have $\left|V_{2}^{\prime}\right|>11 \times 2 k-\left|V_{3}^{\prime}\right|>3 s(G)$.

$$
\gamma(G)=\frac{m-s(G)}{m} \geq \frac{m-\frac{\left|V_{2}^{\prime}\right|}{3}}{m}
$$

We have

$$
\frac{m-\frac{\left|V_{2}^{\prime}\right|}{3}}{m} \geq \frac{11}{12}
$$

when

$$
\begin{equation*}
m \geq 4\left|V_{2}^{\prime}\right| \tag{4}
\end{equation*}
$$

Since $\left|V_{2}\right| \leq \frac{n}{3}$ we have $\left|V_{3}\right| \geq \frac{2 n}{3}$ and

$$
\begin{equation*}
m=3 \frac{\left|V_{3}\right|}{2}+\left|V_{2}\right|=3 \frac{n-\left|V_{2}\right|}{2}+\left|V_{2}\right|=3 \frac{n}{2}-\frac{\left|V_{2}\right|}{2} \geq 4 \frac{n}{3} \geq 4\left|V_{2}^{\prime}\right| \tag{5}
\end{equation*}
$$

and the result holds.

References

[1] M.O. Albertson and R. Haas. Parsimonious edge colouring. Discrete Mathematics, 148:1-7, 1996.
[2] J.A. Bondy and S. Locke. Largest bipartite subgraphs in triangle free graphs with maximum degree three. J. Graph Theory, 10:477-504, 1986.
[3] J-L Fouquet. Graphes cubiques d'indice chromatique quatre. Annals of Discrete Mathematics, 9:23-28, 1980.
[4] J-L Fouquet. Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés. PhD thesis, Université Paris SUD, 1981.
[5] J-L Fouquet and J-M Vanherpe. Tools for parsimonious edge-colouring of graphs with maximum degree three. http://hal.archives-ouvertes.fr/hal00502201/PDF/ToolsForParcimoniousColouring.pdf.
[6] A. Huck and K. Kochol. Five cycle double covers of some cubic graphs. J. Combin. Theory Ser. B, 64:111-125, 1995.
[7] R. Isaacs. Infinite families of non-trivial trivalent graphs which are not Tait colorable. Am. Math. Monthly, 82:221-239, 1975.
[8] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie un Mengenlehre. Math.Ann, 77:453-465, 1916.
[9] S.C. Locke. Maximum k-colourable subgraphs. Journal of Graph Theory, 6:123-132, 1982.
[10] C. Payan. Sur quelques problèmes de couverture et de couplage en combinatoire. Thèse d'état, 1977.
[11] R. Rizzi. Approximating the maximum 3-edge-colorable subgraph problem. Discrete Mathematics, 309(12):4166-4170, 2009.
[12] W. Staton. Edge deletions and the chromatic number. Ars Combin, 10:103106, 1980.
[13] E. Steffen. Classifications and characterizations of snarks. Discrete Mathematics, 188:183-203, 1998.
[14] E. Steffen. Measurements of edge-uncolorability. Discrete Mathematics, 280:191-214, 2004.
[15] V.G. Vizing. On an estimate of the chromatic class of p-graphs. Diskret. Analiz, 3:25-30, 1964.

