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On parsimonious edge-colouring of graphs

with maximum degree three

J.L. Fouquet and J.M. Vanherpe

L.I.F.O., Faculté des Sciences, B.P. 6759

Université d’Orléans, 45067 Orléans Cedex 2, FR

Abstract

In a graph G of maximum degree ∆ let γ denote the largest fraction of edges that
can be ∆ edge-coloured. Albertson and Haas showned that γ ≥ 13

15 when G is cubic
[1]. We show here that this result can be extended to graphs with maximum degree
3 with the exception of a graph on 5 vertices. Moreover, there are exactly two graphs
with maximum degree 3 (one being obviously The Petersen graph) for which γ = 13

15 .
This extends a result given in [11]. These results are obtained in giving structural
properties of the so called δ−minimum edge colourings for graphs with maximum
degree 3.
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1 Introduction

Throughout this paper, we shall be concerned with connected graphs with
maximum degree 3. We know by Vizing’s theorem [12] that these graphs can
be edge-coloured with 4 colours. Let φ E(G) → {α, β, γ, δ} be a proper edge-
colouring of G. It is often of interest to try tu use one colour (say δ) as few
as possible. When an edge colouring is optimal, following this constraints, we
shall say that φ is δ −minimum. In [3] we gave without proof (unfortunately
in french) results on δ − minimum edge-colourings of cubic graphs. Some of
them have been obtained later and independently by Steffen [10,11]. We give
in section 2 a translation of these results and their proofs, they are contained
in [4] (excepted for lemma 13 and Proposition 4).

An edge colouring of G with {α, β, γ, δ} is said to be δ-improper whenever we
only allow edges coloured with δ to be incident. It must be clear that a proper
edge colouring (and hence a δ−minimum edge-colouring ) of G is a particular
δ-improper edge colouring. For a proper or δ-improper edge colouring φ of G,
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it will be convenient to denote Eφ(x) (x ∈ {α, β, γ, δ} the set of edges coloured
with x by φ. For x, y ∈ {α, β, γ, δ} φ(x, y) is the partial subgraph of G spanned
by this two colours, that is Eφ(x) ∪ Eφ(y) (this subgraph being an union of
paths and even cycles where the colours x and y alternate). Since any two
δ−minimum edge-colouring of G have the same number of edges coloured δ

we shall denote by s(G) this number (the colour number as defined in [10]).

As usually, for any undirected graph G, we denote by V (G) the set of its
vertices and by E(G) the set of its edges and we consider that |V (G)| = n and
|E(G)| = m. A strong matching C in a graph G is a matching C such that
there is no edge of E(G) connecting any two edges of C, or, equivalently, such
that C is the edge-set of the subgraph of G induced on the vertex-set V (C).

2 On δ−minimum edge-colouring

Our goal, in this section, is to give some structural properties of δ−improper
colourings and δ−minimum edge-colourings . Graphs considered in the follow-
ing series of lemmas will have maximum degree 3.

Lemma 1 Assume that G can be provide with a perfect matching then any
2-factor of G contains at least s(G) disjoint odd cycles.

Proof Assume that we can find a 2-factor of G with k < s(G) odd cycles.
Then let us colour the edges of this two factor with α and β, excepted one edge
(coloured δ) on each odd cycle of our 2-factor and let us colour the remaining
edges by γ (the edges of the 2−factor). We get hence a new edge colouring φ

with Eφ(δ) < s(G), impossible. �

Lemma 2 Let φ be a δ−minimum edge-colouring of G. Any edge in Eφ(δ)
is incident to α, β and γ. Moreover this edge has one end of degree 2 and the
other of degree 3 or the two ends of degree 3.

Proof Any edge of Eφ(δ) is certainly incident to α, β and γ. Otherwise this
edge could be coloured with the missing colour and we should obtain an edge
colouring φ′ with |Eφ′(δ)| < |Eφ(δ)|. �

Lemma 3 Let φ be δ−improper colouring of G then there exists a proper
colouring of G φ′ such that Eφ′(δ) ⊆ Eφ(δ)

Proof Let φ be a δ-improper edge colouring of G. If φ is a proper colouring,
we are done. Hence, assume that uv and uw are coloured δ. If d(u) = 2 we can
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change the colour of uv in α, β or γ since v is incident to at most two colours
in this set.

If d(u) = 3 assume that the third edge uz incident to u is also coloured δ,
then we can change the colour of uv for the same reason as above.

If uz is coloured with α, β or γ, then v and w are incident to the two other
colours otherwise one of them can be recoloured with the missing colour.
W.l.o.g., consider that uz is coloured α then v and w are incident to β and
γ. The path P of φ(α, β) containing uz ends eventually in v or w (since these
vertices have degree 1 in φ(α, β)). We can thus assume that v or w (say v) is
not the other end vertex of P . Exchanging α and β along P does not change
the colours incident to v. But now uz is coloured //β

:

α and we can change the
colour of uv with //α

:

β.

In each case, we get hence a new δ-improper edge colouring φ1 with Eφ1
(δ) ⊆

Eφ(δ). Repeating this process leads us to construct a proper edge colouring of
G with Eφ′(δ) ⊆ Eφ(δ) as claimed. �

Proposition 4 Let v1, v2 . . . , vk ∈ V (G) such that G−{v1, v2, . . . vk} is 3-edge
colourable. Then s(G) ≤ k.

Proof Let us consider a 3-edge colouring of G − {v1, v2, . . . vk} with α, β

and γ and let us colour the edges incident to v1, v2 . . . , vk with δ. We get a
δ-improper edge colouring φ of G. Lemma 3 gives a proper colouring of G φ′

such that Eφ′(δ) ⊆ Eφ(δ). Hence φ′ has at most k edges coloured with δ and
s(G) ≤ k

�

Proposition 4 above has been obtained by Steffen [10] for cubic graphs.

Lemma 5 Let φ be δ−improper colouring of G then |Eφ(δ)| ≥ s(G)

Proof Applying Lemma 3, let φ′ be a proper edge colouring of G such that
Eφ′(δ) ⊆ Eφ(δ). We clearly have |Eφ(δ)| ≥ |Eφ′(δ)| ≥ s(G) �

Lemma 6 Let φ be a δ−minimum edge-colouring of G. For any edge e =
uv ∈ Eφ(δ) there are two colours x and y in {α, β, γ}such that the connected
component of φ(x, y) containing the two ends of e is an even path joining this
two ends.
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Proof Without loss of generality assume that u is incident to α and β and
v is incident to γ (see Lemma 2). In any case (v has degree 3 or degree 2)
u and v are contained in paths of φ(α, γ) or φ(β, γ). Assume that they are
contained in paths of φ(α, γ). If these paths are disjoint then we can exchange
the two colours on the path containing u, e will be incident hence to only two
colours β and γ in this new edge-colouring and e could be recoloured with α,
a contradiction since we consider a δ−minimum edge-colouring. �

An edge of Eφ(δ) is in Aφ when its ends can be connected by a path of φ(α, β),
Bφ by a path of φ(β, γ) and Cφ by a path of φ(α, γ).

Lemma 7 If G is a cubic graph then |AΦ| ≡ |BΦ| ≡ |CΦ| ≡ s(G) (mod2).

Proof φ(α, β) contains 2|AΦ| + |BΦ| + |CΦ| vertices of degree 1 and must
be even. Hence we get |BΦ| ≡ |CΦ| (mod2). In the same way we get |AΦ| ≡
|BΦ| (mod2) leading to |AΦ| ≡ |BΦ| ≡ |CΦ| ≡ C(G) (mod2) �

Remark 8 It must be clear that Aφ, Bφ and Cφ are not necessarily pairwise
disjoint since an edge of Eφ(δ) with one end of degree 2 is contained into 2
such sets. Assume indeed that e = uv ∈ Eφ(δ) with d(u) = 3 and d(v) = 2
then, if u is incident to α and β and v is incident to γ we have an alternating
path whose ends are u and v in φ(α, γ) as well as in φ(β, γ). Hence e is in
Aφ ∩ Bφ.

When e ∈ Aφ we can associate to e the odd cycle CAφ
(e) obtained in consid-

ering the path of φ(α, β) together with e. We define in the same way CBφ
(e)

and CCφ
(e) when e is in Bφ or Cφ. In the following lemma we consider en edge

in Aφ, an analogous result holds true whenever we consider edges in Bφ or Cφ

as well.

Lemma 9 Let φ be a δ−minimum edge-colouring of G and let e be an edge
in Aφ (Bφ, Cφ) then for any edge e′ ∈ CAφ

(e) there is a δ−minimum edge-
colouring φ′ such that Eφ′(δ) = Eφ(δ)−e+e′, e′ ∈ Aφ′ and CAφ

(e) = CAφ′
(e′).

Moreover, each edge outside CAφ
(e) but incident with this cycle is coloured γ.

Proof In exchanging colours δ and α and δ and β successively along the cycle
CAφ

(e), we are sure to obtain an edge colouring preserving the number of edges
coloured δ. Since we have supposed that φ is δ-minimum, at each step, the
resulting edge colouring is proper and δ-minimum (Lemma 3). Hence, there is
no edge coloured δ incident with CAφ

(e), which means that every such edge is
coloured with γ.
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We can perform these exchanges until e′ is coloured δ. In the δ−minimum
edge-colouring φ′ hence obtained, the two ends of e′ are joined by a path of
φ(α, β). Which means that e′ is in Aφ and CAφ

(e) = CAφ′
(e′). �

For each edge e ∈ Eφ(δ) (where φ is a δ−minimum edge-colouring of G) and
we can associate one or two odd cycles following the fact that e is in one or
two sets among Aφ, Bφ or Cφ. Let C be the set of odd cycles associated to
edges in Eφ(δ).

Remark 10 Since each edge coloured with δ in a δ−minimum edge-colouring
is contained in a cycle. These edges cannot be bridges of G.

Lemma 11 For each cycle C ∈ C, there are no two consecutive vertices with
degree two.

Proof Otherwise, we exchange colours along C in order to put the colour δ on
the corresponding edge and, by Lemma 2, this is impossible in a δ−minimum
edge-colouring . �

Lemma 12 Let e1, e2 ∈ Eφ(δ) and let C1, C2 ∈ C such that e1 ∈ E(C1) and
e2 ∈ E(C2) then C1 and C2 are disjoint.

Proof If e1 and e2 are contained in the same set Aφ, Bφ or Cφ, we are done
since their respective ends are joined by an alternating path of φ(x, y) for some
two colours x and y in {α, β, γ}.

Without loss of generality assume that e1 ∈ Aφ and e2 ∈ Bφ. Assume more-
over that there exists an edge e such that e ∈ C1 ∩C2. We have hence an edge
f ∈ C1 with exactly one end on C2. We can exchange colours on C1 in order
to put the colour δ on f . Which is impossible by Lemma 9. �

By Lemma 9 any two cycles in C corresponding to edges in distinct sets Aφ, Bφ

or Cφ are at distance at least 2. Assume that C1 = CAφ
(e1) and C2 = CAφ

(e2)
for some edges e1 and e2 in Aφ. Can we say something about the subgraph of
G whose vertex set is V (C1) ∪ V (C2) ? In general, we have no answer to this
problem. However, when G is cubic and any vertex of G lies on some cycle of C
(we shall say that C is spanning), we have a property which will be useful after.
Let us remark first that whenever C is spanning, we can consider that G is
edge-coloured in such a way that the edges of the cycles of C are alternatively
coloured with α and β (excepted one edge coloured δ) and the remaining
perfect matching is coloured with γ. For this δ−minimum edge-colouring of
G we have Bφ = ∅ as well as Cφ = ∅.
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Lemma 13 Assume that G is cubic and C is spanning. Let e1, e2 ∈ Aφ and
let C1, C2 ∈ C such that C1 = CAφ

(e1) and C2 = CAφ
(e2). Then at least one of

the followings is true

(i) C1 and C2 are at distance at least 2
(ii) C1 and C2 are joined by at least 3 edges
(iii) C1 and C2 have at least two chords each

Proof Since e1, e2 ∈ Aφ and C is spanning we have Bφ = Cφ = ∅.
Let C1 = v0v1 . . . v2k1

and C2 = w0w1 . . . w2k2
. Assume that C1 and C2 are

joined by the edge v0w0. By lemma 6, we can consider a δ−minimum edge-
colouring φ such that φ(v0v1) = φ(w0w1) = δ, φ(v1v2) = φ(w1w2) = β and
φ(v0v2k1

) = φ(w0w2k2
) = α. Moreover each edge of G (in particular v0w0)

incident with these cycles is coloured γ. We can change the colour of v0w0

in β. We obtain thus a new δ−minimum edge-colouring φ′. Performing that
exchange of colours on v0w0 transforms the edges coloured δ v0v1 and w0w1 in
two edges of Cφ′ lying on odd cycles C ′

1 and C ′
2 respectively. We get hence a

new set C′ = C − {C1, C2} + {C ′
1, C

′
2} of odd cycles associated to δ−coloured

edges in φ′.

From Lemma 9 C ′
1 (C ′

2 respectively) is at distance at least 2 from any cycle
in C − {C1, C2}. Hence V (C ′

1)∪ V (C ′
2) ⊆ V (C1)∪ V (C2). It is an easy task to

check now that (ii) or (iii) above must be verified. �

Lemma 14 Let e1 = uv1 be an edge of Eφ(δ) such that v1 has degree 2 in G.
Then v1 is the only vertex in N(u) of degree 2.

Proof We have seen in Lemma 2 that uv1 has one end of degree 3 while
the other has degree 2 or 3. Hence, we have d(u) = 3 and d(v1) = 2. Let v2

and v3 the other neighbors of u. From Remark 8, we know that v2 and v3 are
not pendent vertices. Assume that d(v2) = 2 and uv2 is coloured α, uv3 is
coloured β and, finally v1 is incident to an edge coloured γ. The alternating
path of φ(β, γ) using the edge uv3 ends with the vertex v1 (see Lemma 6),
then, exchanging the colours along the component of φ(β, γ) containing v2

allows us to colour uv2 with γ and uv1 with α. The new edge colouring φ′ so
obtained is such that |Eφ′(δ)| ≤ |Eφ(δ)| − 1, impossible. �

Lemma 15 Let e1 and e2 two edges of Eφ(δ) contained into two distinct sub-
sets of Aφ, Bφ or Cφ. Then {e1, e2} induces a 2K2.

Proof Without loss of generality assume that e1 ∈ Aφ and e2 ∈ Bφ. Since
Ce1

(φ) and Ce2
(φ) are disjoint by Lemma 12, we can consider that e1 and
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e2 have no common vertex. The edges having exactly one end in Ce1
(φ) are

coloured γ while those having exactly one end in Ce2
(φ) are coloured α. Hence

there is no edge between e1 and e2 as claimed. �

Lemma 16 Let e1 and e2 two edges of Eφ(δ) contained into the same subset
Aφ, Bφ or Cφ. Then {e1, e2} are joined by at most one edge

Proof Without loss of generality assume that e1 = u1v1, e2 = u2v2 ∈ Aφ.
Since Ce1

(φ) and Ce2
(φ) are disjoint by Lemma 12, we can consider that e1

and e2 have no common vertex. The edges having exactly one end in Ce1
(φ) (or

Ce2
(φ)) are coloured γ. Assume that u1u2 and v1v2 are edges of G. In exchang-

ing eventually colours α and β on Ce1
(φ) and Ce2

(φ) we can consider that u1

and u2 are incident to α while v1 and v2 are incident to β. We know that u1u2

and v1v2 are coloured γ. Let us colour e1 and e2 with γ and u1u2 with β and
v1v2 with α. We get a new edge colouring φ′ where |Eφ′(δ)| ≤ |Eφ(δ)| − 2,
contradiction since φ is a δ−minimum edge-colouring . �

Lemma 17 Let e1, e2 and e3 three edges of Eφ(δ) contained into the same
subset Aφ, Bφ or Cφ. Then {e1, e2, e3} induces a subgraph with at most four
edges.

Proof Without loss of generality assume that e1 = u1v1, e2 = u2v2 and
e3 = u3v3 ∈ Aφ. From Lemma 16 we have just to suppose that (up to the
names of vertices) u1u3 ∈ E(G) and v1v2 ∈ E(G). In exchanging eventually
the colours α and β along the 3 disjoint paths of φ(α, β) joining the ends
of each edge e1, e2 and e3, we can suppose that u1 and u3 are incident to β

while v1 and v2 are incident to α. Let φ′ be obtained from φ when u1u3 is
coloured with α, v1v2 with β and u1v1 with γ. It is easy to check that φ′ is a
proper edge-colouring with |Eφ′(δ)| ≤ |Eφ(δ)| − 1, contradiction since φ is a
δ−minimum edge-colouring . �

Lemma 18 Let e1 = u1v1 be an edge of Eφ(δ) such that v1 has degree 2 in G.
Then for any edge e2 = u2v2 ∈ Eφ(δ) {e1, e2} induces a 2K2.

Proof From Lemma 15 we have to consider that e1 and e2 are contained
in the same subset Aφ, Bφ or Cφ. Assume without loos of generality that they
are contained in Aφ. From Lemma 16 we have just to consider that there is a
unique edge joining these two edges and we can suppose that u1u2 ∈ E(G).
In exchanging eventually the colours α and β along the 2 disjoint paths of
φ(α, β) joining the ends of each edge e1, e2, we can suppose that u1 and u2

are incident to β while v1 and v2 are incident to α. We know that u1u2 is
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coloured γ. Let φ′ be obtained from φ when u1u2 is coloured with α and u1v1

is coloured with γ. It is easy to check that φ′ is a proper edge-colouring with
|Eφ′(δ)| ≤ |Eφ(δ)|−1, contradiction since φ is a δ−minimum edge-colouring . �

3 Applications and problems

3.1 On a result by Payan

In [8] Payan showed that it is always possible to edge-colour a graph of maxi-
mum degree 3 with three maximal matchings (for the inclusion) and introduces
henceforth a notion of strong-edge colouring where a strong edge-colouring
means that one colour is a strong matching while the remaining colours are
usual matchings. Payan conjectured that any d−regular graph has d pairwise
disjoint maximal matchings and showed that this conjecture holds true for
graphs with maximum degree 3.

Theorem 19 Let G be a graph with maximum degree at most 3. Then G

has δ−minimum edge-colouring φ where Eφ(δ) is a strong matching and,
moreover, any edge in Eφ(δ) has its two ends of degree 3 in G.

Proof Let φ be a δ−minimum edge-colouring of G. From Lemma 15, any
two edges of Eφ(δ) belonging to distinct subsets in Aφ, Bφ and Cφ induce a
strong matching. Hence, we have to find a δ−minimum edge-colouring where
each subset Aφ, Bφ or Cφ induces a strong matching (with the supplementary
property that the end vertices of these edges have degree 3). That means that
we can work on each subset Aφ, Bφ and Cφ independently. Without loss of
generality, we only consider Aφ here.

Assume that Aφ = {e1, e2, . . . ek} and A′
φ = {e1, . . . ei} (1 ≤ i ≤ k − 1) is a

strong matching and each edge of A′
φ has its two ends with degree 3 in G.

Consider the edge ei+1 and let C = Cei+1
(φ) = (u0, u1 . . . u2p) be the odd cycle

associated to this edge (Lemma 6).

Let us mark any vertex v of degree 3 on C with a + whenever the edge of
colour γ incident to this vertex has its other end which is a vertex incident to
an edge of A′

φ and let us mark v with − otherwise. By Lemma 11 a vertex of
degree 2 on C has its two neighbors of degree 3 and by Lemma 18 these two
vertices are marked with a −. By Lemma 17 we cannot have two consecutive
vertices marked with a +. Hence, C must have two consecutive vertices of
degree 3 marked with − whatever is the number of vertices of degree 2 on C.
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Let uj and uj+1 be two vertices of C of degree 3 marked with − (j being taken
module 2p+1). We can transform the edge colouring φ by exchanging colours
on C uniquely, in such a way that the edge of colour δ of this cycle is ujuj+1.
In the resulting edge colouring φ1 we have Aφ1

= Aφ − ei+1 + ujuj+1 and
A′

φ1
= A′

φ + ujuj+1 is a strong matching where each edge has its two ends of
degree 3. Repeating this process we are left with a new δ−minimum colouring
φ′ where Aφ′ is a strong matching. �

This result has been obtained first by Payan [8], but his technique does not
exhibit explicitly the odd cycles associated to the edges of Eφ(δ) and their
properties. It appears in [4] with this proof.

Corollary 20 Let G be a graph with maximum degree 3 then there are s(G)
vertices of degree 3 pairwise non-adjacent v1 . . . vs(G) such that G−{v1 . . . vs(G)}
is 3-colourable.

Proof Pick a vertex on each edge coloured δ in a δ-minimum colouring φ

of G where Eφ(δ) is a strong matching (Theorem 19). We get a subset S of
vertices satisfying our corollary. �

Steffen [10] obtained Corollary 20 for bridgeless cubic graphs.

3.2 Parsimonious edge colouring

Let χ′(G) be the classical chromatic index of G. For convenience let

c(G) = max{|E(H)| : H ⊆ G χ′(H) = 3}

γ(G) =
c(G)

E(G)

Staton [9] (and independently Locke [7]) showed that whenever G is a cubic
graph distinct from K4 then G contains a bipartite subgraph (and hence a
3-edge colourable graph, by König’s theorem [6]) with at least 7

9
of the edges

of G. Bondy and Locke [2] obtained 4
5

when considering graphs with maximum
degree at most 3.

In [1] Albertson and Haas showed that whenever G is a cubic graph, we have
γ(G) ≥ 13

15
while for graphs with maximum degree 3 they obtained γ(G) ≥ 26

31
.

Our purpose here is to show that 13
15

is a lower bound for γ(G) when G has
maximum degree 3, with the exception of the graph G5 depicted in Figure 1
below.
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Fig. 1. G5

Lemma 21 Let G be a graph with maximum degree 3 then γ(G) = 1 − s(G)
m

.

Proof Let φ be a δ−minimum edge-colouring we need to colour s(G) edges
of G with δ by Lemma 12. We have thus m − s(G) edges coloured with α, β

and γ. The results follows. �

Lemma 22 [1] Let G be a graph with maximum degree 3. Assume that v ∈
V (G) is such that d(v) = 1 then γ(G) > γ(G − v).

Proof We have certainly s(G− v) = s(G) since v is not incident to an edge
coloured δ in a δ−minimum edge-colouring of G by Lemma 2. We have thus

γ(G) = 1 −
s(G)

m
> 1 −

s(G − v)

m − 1
= γ(G − v)

as claimed. �

A triangle T = {a, b, c} is said to be reducible whenever its neighbors are
distinct. When T is a reducible triangle in G (G having maximum degree
3) we can obtain a new graph G′ with maximum degree 3 in shrinking this
triangle into a single vertex and joining this new vertex to the neighbors of T

in G.

Lemma 23 [1] Let G be a graph with maximum degree 3. Assume that T =
{a, b, c} is a reducible triangle and let G′ be the graph obtained by reduction of
this triangle. Then γ(G) > γ(G′).

Proof Assume that s(G) = s(G′) then

γ(G) = 1 −
s(G)

m
> 1 −

s(G′)

m − 3
= γ(G′)

and we are done.
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Hence, we have just to prove that s(G) = s(G′). It is a classical task to trans-
form an edge colouring of G′ into an edge colouring of G without increasing
the number of edges coloured δ. We get immediately that s(G′) ≥ s(G). Let φ

be a δ−minimum edge-colouring of G. Using Theorem 19 we can suppose that
we have at most one edge coloured δ involved in T and the incident edges to
T . When considering G′, we get eventually a a δ-improper colouring φ1, where
v is eventually the only vertex incident to 2 or 3 edges coloured δ. Leading to
s(G), s(G)+1 or s(G)+2 edges in Eφ1

(δ). This colouring can be transformed
in a proper colouring φ′ with colouring φ′ with Lemma 3 in order to eliminate
the colour δ appearing on one or two edges incident to v if necessary. Since
this operation does not modify the colour of the edges coloured δ which are
not incident with v, we have s(G) ≥ s(G′). �

Lemma 24 Let G be a cubic graph which can be factored into s(G) cycles
of length 5 and without reducible triangle. Then every 2-factor of G contains
s(G) cycles of length 5.

Proof Since G has no reducible triangle, all cycles in a 2-factor have length
at least 4. Let C be any 2-factor of G. When n5 denotes the number of cycles
of length 5 and n> denotes the number of cycles on at least 6 vertices in C,
there is an edge-colouring of G which uses at most n5 + n> edges of colour δ.
In addition, since C is a spanning subgraph we have 5s(G) ≥ 5n5 + 6n> and
if n> 6= 0, s(G) > n5 + n>, a contradiction. Thus n> = 0 and n5 = s(G), the
result follows. �

Theorem 25 Let G be a graph with maximum degree 3 and G 6= G5 then
γ(G) ≥ 13

15
.

Proof From Lemma 22 and Lemma 23
::::::::

JMV:
::::::::::

Vrifier
:::::::::

numro, we can
consider that G has only vertices of degree 2 or 3 and that G contains no
reducible triangle. Let V2 be the set of vertices with degree 2 in G and V3

those of degree 3.

Assume that we can associate a set Pe of at least 5 distinct vertices of V3

for each edge e ∈ Eφ(δ) in a δ−minimum edge-colouring φ of G. Assume
moreover that

∀e, e′ ∈ Eφ(δ) Pe ∩ P ′
e = ∅ (1)

Then

γ(G) = 1 −
s(G)

m
= 1 −

s(G)
3
2
|V3| + |V2|

≥ 1 −
|V3|
5

3
2
|V3| + |V2|

Hence

γ(G) ≥ 1 −
2
15

1 + 2
3
|V2|
|V3|
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Which leads to γ(G) ≥ 13
15

as claimed.

It remains to see how to construct the sets Pe satisfying Property (1). Let C
be the set of odd cycles associated to edges in Eφ(δ) (see Lemma 12). Let
e ∈ Eφ(δ), assume that e is contained in a cycle C ∈ C of length 3. By Lemma
12, the edges incident to that triangle have the same colour in α, β or γ. This
triangle is hence reducible, impossible. We can thus consider that each cycle of
C has length at least 5. By Lemma 2 and Lemma 14, we know that whenever
such a cycle contains vertices of V2, their distance on this cycle is at least 3.
Which means that every cycle C ∈ C contains at least 5 vertices in V3 as soon
as C has length at least 7 or C has length 5 but does not contain a vertex of
V2. For each edge e ∈ Eφ(δ) contained in such a cycle we associate Pe as any
set of 5 vertices of V3 contained in the cycle.

It remains eventually edges in Eφ(δ) which are contained in a C5 of C using
a (unique) vertex of V2. Let C = a1a2a3a4a5 be such a cycle and assume that
a1 ∈ V2. By Lemma 2 and Lemma 17, a1 is the only vertex of degree 2 and
in exchanging colours along this cycle, we can suppose that a1a2 ∈ Eφ(δ).
Since a1 ∈ V2, e = a1a2 is contained into a second cycle C ′ of C (see Remark
8). If C ′ contains a vertex x ∈ V3 distinct from a2, a3, a4 and a5 then we set
Pe = {a2, a3, a4, a5, x}. Otherwise C ′ = a1a2a4a3a5 and G is isomorphic to G5,
impossible.

The sets {Pe| e ∈ Eφ(δ)} are pairwise disjoint since any two cycle of C asso-
ciated to distinct edges in Eφ(δ) are disjoint. Hence property 1 holds and the
proof is complete. �

Albertson and Haas [1] proved that γ(G) ≥ 26
31

when G is a graph with maxi-
mum degree 3. The bound given in Theorem 25 is better.

Corollary 26 Let G be a graph with maximum degree 3 such that γ(G) = 13
15

.
Then G is a cubic graph which can be factored into s(G) cycles of length 5.
Moreover every 2-factor of G has this property.

Proof The optimal for γ(G) in Theorem 25 is obtained whenever s(G) = |V3|
5

and |V2| = 0. That is, G is a cubic graph together with a 2-factor of s(G)
cycles of length 5. Moreover by Lemma 23 G has no reducible triangle, the
result comes from Lemma 24. �

As pointed out by Albertson and Haas [1], the Petersen graph with γ(G) = 13
15

supplies the extremal example for cubic graphs. Steffen [11] proved that the
only cubic bridgeless graph with γ(G) = 13

15
is the Petersen graph. In fact, we

can extend this result to graphs with maximum degree 3 where bridges are

12



allowed (excluding the graph G5). Let P ′ be the cubic graph on 10 vertices
obtained from two copies of G5 (Figure 1) in joining by an edge the two vertices
of degree 2.

Theorem 27 Let G be a connected graph with maximum degree 3 such that
γ(G) = 13

15
. Then G is isomorphic to the Petersen graph or to P ′.

Proof Let G be a graph with maximum degree 3 such that γ(G) = 13
15

. From
Corollary 26, we can consider that G is cubic and G has a 2-factor of cycles
of length 5. Let C = {C1 . . . Cs(G)} be such a 2-factor ( C is spanning). Let φ

be a δ−minimum edge-colouring of G induced by this 2−factor.

Without loss of generality consider two cycles in C, namely C1 and C2, and let
us denote C1 = v1v2v3v4v5 while C2 = u1u2u3u4u5 and assume that v1u1 ∈ G.
From Lemma 13 C1 and C2 are joined by at least 3 edges or ///////have///2 each
of them has two chords. If S(G) > 2 there is a cycle C3 ∈ C. Without loss
of generality, G being connected, we can suppose that C3 is joined to C1 by
an edge. Applying once more time Lemma 13, C1 and C3 have two chords or
are joined by at least 3 edges, contradiction with the constraints imposed by
C1 and C2. Hence s(G) = 2 and G has 10 vertices, which leads to a graph
isomorphic to P ′ or the Petersen graph as claimed. �

We can construct cubic graphs with chromatic index 4 (snarks in the literra-
ture) which are cyclically 4- edge connected and having a 2-factor of C5’s.

Indeed, let G be a cubic cyclically 4-edge connected graph of size n and M

be a perfect matching of G, M = {xiyi|i = 1 . . . n
2
}. Let P1 . . . Pn

2
be n

2
copies

of the Petersen graph. For each Pi (i = 1 . . . n
2
)we consider two non adjacent

edges e1
i and e2

i . Let us observe that Pi − {e1
i , e

2
i } contains a 2-factor of two

C5’s (C1
i and C2

i ).

We construct then a new cyclically 4-edge connected cubic graph H with index
chromatic 4 by applying the well known operation dot-product on {e1

i , e
2
i }

and the edge xiyi (i = 1 . . . n
2
). We remark that the vertices of G vanish

in the operation and the resulting graph H has a 2 factor of C5, namely
{C1

1 , C
2
1 , . . . C

1
i , C2

i , . . . c
1
n
2

, C2
n
2

}.

We do not know example of cyclically 5-edge connected snarks (excepted the
Petersen graph) with a 2-factor of induced cycles of length 5.

Problem 28 Is there any 5-edge connected snark distinct from the Petersen
graph with a 2-factor of C5’s ?

As a first step towards the resolution of this Problem we propose :
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Theorem 29 Let G be a cubic graph which can be factored into s(G) induced
cycles of length 5, then G is the Petersen graph.

Proof Let F be a 2-factor of s(G) cycles of length 5 in G, every cycle of
F being an induced cycle of G. We consider the δ−minimum edge-colouring
φ such that the edges of all cycles of F are alternatively coloured α and
β excepted for exactly one edge per cycle which is coloured with δ, all the
remaining edges of G being coloured γ. By construction we have Bφ = Cφ = ∅
and Aφ = F .

By Lemma 13 two cycles of F which are connected must be connected with at
least three edges. Consequently a cycle of F cannot be connected by at least
one edge to more than one other cycle of C. It follows that C contains exactly
two induced cycles of length 5. The only graph with 10 vertices and s(G) = 2
with such a 2-factor is the Petersen graph. �

Comments: The index s(G) used here is certainly less than o(G) the oddness
of G used by Huck and Kochol [5]. The oddness o(G) is the minimum number
of odd cycles in any 2-factor of a cubic graphs (assuming that we consider
graphs with that property). Obviously o(G) is an even number and it is an
easy task to construct a cubic graph G with s(G) odd which ensures that
0 < s(G) < o(G). We can even construct cyclically-5-edge-connected cubic
graphs with that property with s(G) = k for any integer k 6= 1 (see [4] and
[11]). It can be pointed out that, using a parity argument (see 7 or [10]) a
graph with oddness at least 2 needs certainly to be edge coloured with at
least 2 edges in the less popular colour. In other words, o(G) = 2 ⇔ s(G) = 2.

When G is a cubic bridgeless planar graph, we know from the 4 colours Theo-
rem that G is 3−edge colourable and hence γ(G) = 1. Albertson and Haas [1]
gave γ(G) ≥ 6

7
− 2

35m
when G is a planar bridgeless graph with maximum degree

3. Our Theorem 25 improves this lower bound (allowing moreover bridges).
On the other hand, they exhibit a family of planar graphs with maximum
degree 3 (bridges are allowed) for which γ(G) = 8

9
− 2

9n
.

As in [11] we denote g(F) = min{V (C)| C is an odd circuit of F}
and g+(G) = max{g(F)| F is a 2 − factor of G}. We suppose that
g+(G) is defined, that is G has at least one 2-factor (when G is a cubic bridge-
less graphs this condition is obviously fulfilled).

When G is cubic bridgeless, Steffen [11] showed that we have :

γ(G) ≥ max{1 −
2

3g+(G)
,
11

12
}

The difficult part being to show that γ(G) ≥ 11
12

. We can remark that whenever

14



g+(G) ≥ 11 we obtain the same result for graphs with maximum degree 3 and
having at most n

3
vertices of degree 1 or 2.

Theorem 30 Let G be a graph with maximum degree 3 and having at least
one 2-factor. Then γ(G) ≥ 1 − 2

3g+(G)
.

Proof We have γ(G) = 1− s(G)
m

where m = 3n
2

and, obviously, s(G) ≤ n
g+(G)

.

Hence γ(G) ≥ 1 − 2
3g+(G)

. �

Theorem 31 Let G be a graph with maximum degree 3 and having at least
one 2-factor. Let Vi (i = 1..3) be the set of vertices of degree i. Assume that
|V2| ≤

n
3

and g+(G) ≥ 11 then γ(G) ≥ max{1 − 2
3g+(G)

, 11
12
}.

Proof Since, by Lemma 22 γ(G) > γ(G − v) we can assume that V1 = ∅.
From Theorem 30 we have just to prove that γ(G) ≥ 11

12
. Following the proof

of Theorem 25, we try to associate a set Pe of at least 8 distinct vertices of V3

for each edge e ∈ Eφ(δ) in a δ−minimum edge-colouring φ of G such that

∀e, e′ ∈ Eφ(δ) Pe ∩ P ′
e = ∅ (2)

Indeed, let F be a 2-factor of G where each odd cycle has length at least 11
and let C1, C2 . . . C2k be its set of odd cycles. We have, obviously s(G) ≤ 2k.
Let V 1...2k

3 and V 1...2k
2 be the sets of vertices of degree 3 and 2 respectively

contained in these odd cycles . As soon as |V 1...2k
3 | ≥ 8s(G) we have

γ(G) = 1 −
s(G)

m
= 1 −

s(G)
3
2
|V3| + |V2|

≥ 1 −
|V 1...2k

3
|

8
3
2
|V3| + |V2|

(3)

which leads to

γ(G) ≥ 1 −

2|V 1...2k
3

|

24|V3|

1 + 2
3
|V2|
|V3|

Since |V3| ≥ |V 1...2k
3 |, we have

γ(G) ≥ 1 −
2
24

1 + 2
3
|V2|
|V3|

and

γ(G) ≥
11

12
as claimed.
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It remains the case where |V 1...2k
3 | < 8s(G). Since each cycle has at least 11

vertices we have |V 1...2k
2 | > 11 × 2k − |V 1...2k

3 | > 3s(G).

γ(G) =
m − s(G)

m
≥

m −
|V 1...2k

2
|

3

m

We have
m −

|V 1...2k
2

|

3

m
≥

11

12
when

m ≥ 4|V 1...2k
2 | (4)

Since |V2| ≤
n
3

we have |V3| ≥
2n
3

and

m = 3
|V3|

2
+ |V2| = 3

n − |V2|

2
+ |V2| = 3

n

2
−

|V2|

2
≥ 4

n

3
≥ 4|V 1...2k

2 | (5)

and the result holds. �
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