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Abstract  

Within the framework of coherent noise attenuation, this paper describes an original filtering approach 

based on the dynamical system theory. The reconstructed phase space is used to interpret dynamical 

behavior of image measurements, i.e. of local pixel amplitudes. Originaly developed for time series, the 

method of delays allows reconstructing steady-state trajectories from measurements of a physical system. 

This contribution suggests a method of delays adapted to the 2D data issue. The phase space of an image 

is defined as vectors-axes in a Cartesian plane, containing the pixel amplitude at spatially delayed 

coordinates, the latter selected according to a directional neighborhood criterion. The space proposed 

helps to evaluate the statistical properties of local structures within the image. Structures with similar 

local dynamics occupy nearby locations in phase space. These dynamical properties allow modelling 

local periodic patterns corrupting the image, such as the coherent noise. The Average Phase Space (APS) 

is a modified frequency distribution map that consists of the amplitude mean of trajectories points. For the 

proposed filter, each pixel value of the output image corresponds directly to the APS magnitude at the 

location associated with the original pixel image. APS method is applied to synthetic and real noisy 

images. Findings indicate that APS filtering is a low-cost algorithm for coherent noise attenuation that 

preserves the quality of edges in images.  
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1. Introduction 

One of the most complex challenges in image processing is noise attenuation, while preserving 

underlying data features. Noise appears as a result of various physical processes which impair the image 

quality. Unfortunately, such noise diversity demands the use of specialized processing approaches. Image 

processing methods, used in particular on seismic, tomographic, optical and radar data, resort to statistical 

tools to attenuate coherent noise. 

Coherent noise (CN) is a structured noise observed in an image as repetitive and periodic patterns 

and it is a common problem in applications associated with the use of switching power supplies, which 

are on-board detection devices. Sinusoidal CN components and harmonics are observed scattered 

throughout the frequency spectrum. Indeed, a Discrete Fourier Transform (DFT) analysis would show 

frequency, phase, and magnitude of CN components varying over time [1]. Given its nature, CN cannot 

be effectively attenuated by simple averaging techniques.  

CN attenuation is a critical step in several applications. One straightforward method for reducing 

coherent noise is a band-pass filter applied to radial traces [2]. Radial trace concept comes from 3-D 

geophysics data analysis and depicts the use of vertical series of voxels as 1-D signals. Radial Trace 

Transform operates over the juxtaposed traces and the stacked sections of 3D-data, transforming the 

familiar horizontal distance and the travel time (X-T) domain into the domain of apparent velocity and 

travel time [3][4]. Other approaches introduce filtering methods based on Prediction Error Filters (PEF), 

estimated either by approximating an inverse covariance matrix or by modeling the coherent noise. Both 

strategies are based on the spectral whitening properties of PEFs. The first strategy makes use of the 

fundamentals of inverse theory [5][6]; whereas the second consists of modeling CN by diagonal 

operators, estimated using least-squares methods [7]. Gockenbach and Symes [8] proposed a filtering 

approach to coherent noise rejection based on velocity analysis, formulated as an inverse problem. More 

recently, Guitton [9] obtained excellent results in the distance-time domain by implementing non-

stationary PEFs to cope with the variability of seismic data as a function of time, offset, and shot position. 

Nevertheless, residual coherent noise remains in his findings. Another approach that makes use of 

velocity analysis is the f-k transformation [10], a common method for separating seismic reflections from 

noise by a 2D Fourier transformation. The x-axis is transformed to the wavenumber domain. The number 

of wavelengths per meter along the horizontal axis indicates the wavenumbers, k. Therefore, the slope of 
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a line in f-k domain is the apparent velocity, va, since the relation between the frequency domain and the 

wavenumber domain is f = vak. More general filters, such as the orientation adaptive (OA) Gaussian 

filters introduced by Bakker [11], exploit spatial redundancy in images. The OA Gaussian approach uses 

the Gradient Structure Tensor (GST) to estimate orientation, gradient energy and anisotropy [12]. 

Nonetheless, this method depends on the quality of orientation estimations and it tends to produce false 

structures (“brushstrokes”). To cope with this weakness, O’Malley and Kakadiaris [13] proposed  the 

orientation-isotropy adaptive (OIA) Gaussian filter, which considers the well-oriented texture of an image 

in order to take advantage of OA Gaussian properties.  

In this paper, we propose a new approach to characterize and to reduce coherent noise, using a 

dynamical representation known as phase space [14].  Initially introduced by Poincaré [15], phase space 

provides a geometric approach for analyzing qualitatively the global state from insoluble differential 

equations of dynamical systems. In the original version, phase space represents a Cartesian plane where 

the principal state-variables, such as a body’s position and momentum (velocity), form the coordinate 

axes. Poincaré established a general classification of solutions in two-dimensional phase space in terms of 

singular points, such as centers, saddle points, nodes, and foci. His major finding was that among all the 

curves not ending in a singular point, some are periodic (they are limit-cycles): all others wrap themselves 

asymptotically around limit-cycles. Every curve in this space denotes a trajectory, i.e. an evolution-state 

of the dynamical systems. Phase Space (PS) has been a useful tool in mathematics and physics for 

visualizing the changes in the dynamics of a system. Applications of phase space representations extend 

to hydrodynamics, the stability of laminar flows [16] , turbulence analysis [17], automatic control and 

regulation [18]. The study of stabilization of oscillatory phenomena, resonance, and feedback loops by 

phase space has also played an important role [19], in particular for cybernetics.  

Takens [17], Packard [20] and Sauer [21] proposed a reconstruction theorem based on the embedding 

dimension. This leads to obtaining the phase space of those systems for which their state equations are not 

available. Hence, the reconstruction theorem has made it possible to analyze the dynamic information of 

processes described by temporal signals. The most frequently used reconstruction technique for time 

series is the Method Of Delays [22], which uses instantaneous and differential values of a signal to define 

the coordinate axes in the new phase space. 
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In this paper, we suggest characterizing the dynamic behavior of CN in images by a reconstructed 

phase space approach. In section 2, an original method is introduced, based on the embedding theory to 

solve the reconstruction problem of phase space from 1D to 2D data. Section 3 presents the statistical 

measures proposed to emphasize periodic and repetitive patterns in the phase space reconstructed from 

noise-corrupted images. Section 4 describes the image filtering method based the phase space. A 

comparative analysis in section 5 illustrates the performance of our approach when applied to synthetic 

and tomographic images. Finally, a summary relating main aspects of this contribution is available in 

section 5. 

 

2. The Reconstructed Phase Space from an Image  

Most of the specialized work on the reconstruction theorem has been defined exclusively for 1D data 

[22]. This is the case for temporal series ( )sk kTxx =  in Euclidean space mR , for the Nk ,,1K=  

samples and Ts the sampling time. In this section, the reconstruction of phase space from data with 

multidimensional information, e.g. image data is performed. Dynamical information in 1D-signals is 

obtained from magnitude and time values. In images, however, the dynamic information also involves 

properties such as local amplitude and spatial coordinates of pixels. Moreover, image information 

depends not only on multi-spectral properties, but also on local context, defined by the pixel 

neighborhood. Therefore this work considers a reconstructed phase space that associates amplitude value 

and the definition of neighborhood of image pixels.  

Literature shows that one-dimensional time series can be unfolded into an m-dimensional phase 

space. According to Takens theorem [17], if the number m denoting the dimension of reconstructed phase 

space is large enough, the phase space is homeomorphic to the state-space that generated the time series, 

i.e. the phase space contains the same information as the original state space. Given a time series, kx , the 

Method of Delays used to reconstruct the phase space considers m- vector axes containing the time 

delayed values of the signal scalar measurements [14]: 

( )[ ]Tmkkk
m
k xxxX αα 1,,, −++= K     (1) 

where α is a time delay or gap and m is the embedding dimension. For this reason, the reconstructed 

phase space is also known as embedding space. The definition of time lag and embedding dimension that 
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ensure proper reconstruction is an open problem in dynamics analysis. The embedding dimension 

requires a priori knowledge about experimental data that is not often available. A common algorithm used 

to estimate m dimension is based on the false nearest neighbors approach [24]. On the contrary, Holzfuss 

and Mayer-Kress [25] proposed an approach based on mutual information to choose the α -factor. The 

first local minimum in the autocorrelation function determines a well-adapted α time delay value.  

By analogy, we propose to reconstruct the phase space associated with image matrix I(N,M), as an 

Euclidean space mR  defined by the m-dimensional reconstructed state vectors: 

)])1(),((,),),((),,([, ββ −++= mjiIjiIjiIGm
ji K     (2)  

where I(i,j) is the amplitude of a pixel at the (i,j)-spatial coordinate, and β is a spatial-delay factor along a 

chosen direction in the image. The Cartesian coordinate system in the proposed phase space yields vector-

axes that contain the amplitude of such pixels selected according to a precise directional choice. We 

choose a two dimensional phase space, m=2, to depict the dynamic behavior of images. We further 

consider a 4-neighborhood to describe the β -factor, i.e. pixels above, below, to the left and to the right of 

the central pixel correspond respectively to { })0,();0,();,0();,0( ααααβ −−= . The scalar value α 

indicates the coordinate gap of the spatial-delay. Figure 1 illustrates the 4-neighbour local information of 

a pixel with local amplitude ‘g’, located at the (i,j)-spatial coordinate in the image I(M,N). We denote 

“locus” the location of points in the phase space. A pixel intensity at the (i,j)-coordinate in the original 

image data has a projection at [k,l]-locus in the reconstructed phase space. 

Figure 2 presents a synthetic image and its reconstructed phase space. In this case, abscissa and 

ordinate are the amplitude vectors of pixels I(i,j) and I(i,j+1) respectively. They denote the vectors (eq. 2) 

established using a mono-directional choice, i.e. one spatial-delay vector ),0( αβ =  with 1=α . Locus 

notation in this figure is [k,l]=[I(i,j), I(i,j+1)]=[g, gS]. Note that the phase space in figure 2b shows a 

limit-cycle trajectory associated with the vertical periodic component in the image. However, harmonic 

components added to this image generate trajectories with embedded loops (figure 3), which depict quasi-

periodic limit sets [23].  

2.1. Directional choice 

Directional choice depends on the orientation of the phenomenon to be analyzed in the image. As 

illustrated in figures 2 and 3, mono-directional choice helps to study respectively horizontal and vertical 
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image patterns. However, more complex patterns require considering multi-directional neighborhoods. 

We propose an arithmetic mean operator to define 2-neighbors connectivity for each phase space axis. 

For instance, we define a [k,l]-locus combining 4-neighborhoods: 

2
,

2
WNES gglggk +

=
+

=      (3) 

Figure 4 shows a grey-level image with repetitive patterns and the corresponding phase spaces 

estimated using two distinct directional neighbor configurations. In these images, we observe that each 

neighbor configuration characterizes a particular viewpoint of the same dynamical phenomenon (fig. 4b 

and 4c).  

For 3D images, the directional choice must incorporate the additional dimension, i.e. upper and lower 

voxels, Ug  and Dg  respectively. Figure 5 shows the neighborhood of a voxel. We suggest projecting the 

3D information into a locus according to this criterion: 

2
,

2
UWNDES ggglgggk ++

=
++

=     (4) 

In the case of a 3D phase space (m = 3), the choice of coordinate vectors [k,l,h] becomes: 

,
2

,
2

,
2

DUSNEW gghgglggk +
=

+
=

+
=     (5) 

 

 

3. The Coherent Noise characterization in the reconstructed phase space 

In the phase space, data with local periodic behaviors shows trajectories such as limit-cycles and 

embedding loops. Structures with similar local information occupy nearby loci in phase space. As a 

result, coherent information will clearly show groups of points following a geometric structure in the 

phase space. Figure 6 illustrates the phase space for Gaussian and coherent noises. Note that periodic and 

repetitive characteristics of coherent noise delineate trajectories (figure 6d), which are quasi-periodic limit 

sets, in the phase space. Conversely, the Gaussian noise shows scattering in phase space (figure 6c). 

The frequency distribution of each local structure is considered as measuring the repetitiveness of the 

coherent noise. We define ),( lkLf  as the cumulative (statistical) frequency relative to locus ),( lkL , i.e. the 

number of pixels in the original image projected on the same locus in the phase space. Figure 7 is a 3D 
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histogram that displays the repetitiveness ),( lkLf , associated with pixels projected to each locus ),( lkL  of 

the figure 4a.  

 

4. Filtering Method: The Average Phase Space 

4.1. Data 

We develop 2D techniques analogous to classical image processing, such as the averaging operator, 

based on phase space representation. The statistical locus information from phase space is used to design 

a nonlinear average filter. We exercise the proposed method on synthetic and real images. 

 Figure 8a illustrates a synthetic textured image which includes a fault line. Moreover, the bottom-

right corner of this image is corrupted using a repetitive pattern. In this test, the goal of the filtering 

method is to reduce the noise while preserving the sharpness of the artificial “fault line”.  

Figure 9 results from the section of a 3D tomographic block. It shows structures of a fiber-reinforced 

composite material. A reconstruction artifact shaped as concentric circles, as well as various noise 

sources, corrupt the block. For this type of exercise, the goal is to attenuate coherent noise, while 

preserving the quality of object boundaries inside the material. 

4.2. Method 

The proposed method operates in two stages: noise characterization and filtering. In the first step, the 

phase space of image I is reconstructed using the pixel intensity vectors of a pre-selected neighborhood. 

The orientation of artifact to be filtered is considered in order to establish the directional neighborhood. 

Thereafter the frequency distribution map, Lf  is computed as explained in section 2. Furthermore, the 

Average Phase Space (APS) is defined as a modified frequency distribution map that includes the 

amplitude mean of each locus L(k,l). That is:  

),(

),(
),(

),(

lkL

lkL
lkL f

jiI

APS
∑

=      (6) 

Note that locus L(k,j) is computed using the neighbors of pixel I(i,j) according to directional 

considerations (eq. 3). Figure 10 shows the APS calculated from the image in figure 4a. The final stage 
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uses the APS to produce the filtered output image. Each pixel value of the output image directly 

corresponds to the APS magnitude at the locus associated with original pixel image { (i,j)  [k,l] }.   

),(),( lkLOUT APSjiI =      (7) 

where ),( jiIOUT is the filtered ),( ji -pixel value. Finally, the APS results are compared with those of the 

OIA filter [13]. 

 

5. Results and Discussion 

5.1. Synthetic data 

In figure 11, APS approach is applied to a synthetic coherent noised-contaminated image. Figures 

11a and 11b respectively show the original image and its phase space. The corrupted image and its phase 

space are presented in figures 11c and 11d. The APS filtering is illustrated in figures 11e and 11f. It 

should be observed that the APS filter preserves zones associated with loci with low statistical frequency, 

such as in the vicinity of the fault line.  

5.2. Textured image 

With the careful choice of the neighborhood, the APS filter can be used as a directional filter. For 

instance in figure 12a, the horizontal line patterns of the Brodatz texture image D51 [26] are observed. 

The APS filter estimated from this image considers two mono-directional neighborhood choices, either 

exclusively horizontal (Fig. 12b) or exclusively vertical (Fig. 12c). In figure b, the APS filter preserves 

the horizontal lines, whereas in (Fig. 12e). the horizontal lines have been smoothed. 

5.2. Tomographic data 

The low computing cost of the APS filters makes it particularly worthwhile for 3D data processing. Image 

in figure 13b was obtained using an OIA Gaussian filter on a 200×200×198 tomographic block (figure 

13a). Figure 13c shows the image filtered by the APS method using 3D information and a 3D phase space 

(eq. 5). Both filters attenuate coherent noise although the OIA Gaussian method introduces artifacts (see 

zooming in figures 14b and 14c). For this block, the OIA filter takes, on average, 30 minutes, compared 

to 30 seconds taken by APS filtering after two iterations. 
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5. Summary 

The dynamical systems theory, widely used in numerous 1D applications, was extended in this work 

to the image processing field. Taken’s theorem was adapted to the problem of the phase space 

reconstruction from 1D to 2D data, by a spatial-delay mapping approach. Phase space shows geometrical 

trajectories associated with the image dynamics, grouping periodic structures such as coherent noise into 

ordered regions. Hence, similar patterns can be observed in nearby loci. Phase space provides valuable 

information for filtering purposes. Coherent-noise features, such as the repetitiveness, including statistical 

characteristics can be characterized in the reconstructed phase space. A frequency distribution map was 

used here to design a nonlinear average image filter. The APS filter presents a very low computing cost, 

which proves to be well-adapted for processing large data. The APS methods combine neighborhood 

analysis and statistical processing in images; consequently the overall performance of this method grows 

with the size of data samples analyzed in the phase space. 

Future improvements to this approach will consider studies about efficiency of the algorithm as a 

function of image size, the tuning of the parameters (m and α values), and automatic neighborhood 

determination. Generally, the proposed image processing technique should be worthwhile for the study of 

chaotic phenomena in 2D and 3D data. 
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