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Abstract. We study repeated interactions of the quantized electraptagfield in a cavity
with single two-levels atoms. Using the Markovian naturéhaf resulting quantum evolution
we study its large time asymptotics. We show that, whendweratoms are distributed ac-
cording to the canonical ensemble at temperaifure 0 and some generic non-degeneracy
condition is satisfied, the cavity field relaxes towards samaariant state. Under some more
stringent non-resonance condition, this invariant statthérmal equilibrium at some renor-
malized temperaturé™. Our result is non-perturbative in the strength of the afmid cou-
pling. The relaxation process is slow (non-exponentia§ ttuthe presence of infinitely many
metastable states of the cavity field.

1 Introduction

Open systems. During the last years there has been a growing interest éorigforous de-
velopment of the quantum statistical mechanics of operesyst Such a system consists in a
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confined subsyster§ in contact with an environment made of one or several exetisdé-
systemsR, ... usually called reservoirs. We refer the reader to [AJP] anphirticular to the
review article [AJPP1] for a modern introduction to the sabj

Two different approaches have been used to study open sysktamiltonian and Markovian.
The first one is fundamental. It is based on a complete desmripf the microscopic dynamics
of the coupled systen§ + R; + ---. One uses traditional tools of quantum mechanics —
spectral analysis and scattering theory — to study thismyeg So far, most results obtained
in this way are perturbative in the system-reservoir cagpéind, for technical reasons, limited
to small systems described by a finite dimensional Hilbert spaeeg(, N-level atoms).

In the Markovian approach, one gives up the microscopicrigggm of the reservoirs and tries
to describe directly the effective dynamics of the “smaifst&emsS under the influence of its
environment. This evolution is governed by a quantum masjaation which defines a semi-
group of completely positive, trace preserving maps on tée space of (see Definition 4.1
below). There are two ways to justify such a Markovian dyramias a scaling limit of the
microscopic dynamics of the coupled systém7R, - - - (e.g.,the van Hove weak coupling limit
[D1, D2, DJ2, DF]), or as the result of driving the systéhwith stochastic forces (quantum
Langevin equation [HP]).

Equilibrium vs. nonequilibrium.  When the environment is in thermal equilibrium, the basic
problem is thermal relaxation: does the small subsysta®turn to a state of thermal equilib-
rium? In the cases whehhas a a finite dimensional Hilbert space and the environnuedists

of an ideal quantum gas, this question has been extensiwagtigated in [JP1, BFS, DJ1, FM].

Open systems become more interesting when their enviranmamot in thermal equilib-
rium. Suppose for example th&t is brought into contact with several reservoirs, each of
them being in a thermal equilibrium state but with differertensive thermodynamic param-
eters. Then one expects the joint systém- R, + --- to relax towards a non-equilibrium
steady states (NESS). Such states have been constructedlin4H, JP2, APi, OM, MMS,
CDNP, CNZ]. They carry currents, have non vanishing entromdgpction rate,... These
transport properties were investigated in [FMU, CIM, AJPRR, The linear response the-
ory (Green-Kubo formula, Onsager reciprocity relatiores)tcal limit theorem) was developed
in [FMU],[JOP1]-[JOP4],[JPP1]. Moreover, current fludioas and related problems (Evans-
Searles and Gallavotti-Cohen symmetries) were studiedvh iR, DMdR].

Repeated interactions. Motivated by several new physical applications as well ashiay
attractive mathematical structure, a class of open systasisecently become very popular in
the literature: repeated interaction (RI) systems. Thaegeghvironment consists in a sequence
&1, &, ... of independent subsystems. The “small” subsysfemteracts with€; during the
time interval|0, 7 [, then with&, during the intervalr, 71 + [, etc... While S interacts with
En, the other elements of the sequence evolve freely accotditigeir intrinsic (uncoupled)
dynamics. Thus, the evolution of the joint systém- £ + - - - is completely determined by
the sequence;, 7, . . ., the individual dynamics of ead), and the coupled dynamics of each
pairS + &,,.
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In the simplest RI models ead, is a copy of some, 7,,, = 7, and the dynamics of,,
andS + &, are independent of,, generated by some Hamiltoniahg, Hse. Such models
have been analyzed in [BIJM1, WBKM] (see also [BIJMZ2] for a randottingg. It was shown
in [BJM1] that the RI dynamics gives rise to a Markovian effeetdynamics on the system
S and drives the latter to an asymptotic state, at an expaleate (providedS has a finite
dimensional Hilbert space). The limit — 0 with appropriate rescaling of the interaction
Hamiltonian Hse was studied in [APa, AJ2]. In this scaling limit, Rl systemsdme con-
tinuous interaction systems and the effective dynamic$ @onverges towards a continuous
semigroup of completely positive maps associated with aiguma Langevin equation. Related
results pertaining to various other scaling limits of Rl sys$ have also been investigated in
[AJ1] with similar results.

Due to their particular structure, Rl systems are both Hamidgin (with a time-dependent
Hamiltonian) and Markovian (the effective dynamicsSis described by a discrete semigroup
of completely positive maps, see Subsection 2.2 for thaggeneaning of this statement). For
that reason, we believe that these models provide a useimefvork to develop our under-
standing of various aspects of the quantum statistical ar@ch of open systems.

In the physical paradigm of a RI systet,is the quantized electromagnetic field of a cavity
through which a beam of atoms, tlg, is shot in such a way that no more thane atonis
present in the cavity at any time. Such systems play a fundehmle in the experimental
and theoretical investigations of basic matter-radiapoocesses. They are also of practical
importance in quantum optics and quantum state enginepviigM, WVHW, WBKM, RH,
VAS]. So-called “One-Atom Masers”, where the beam is tumeslich a way that at each given
moment a single atom is inside a microwave cavity and theaot®n timer is the same for
each atom, have been experimentally realized in laboest WM, WVHW].

In this paper we start the mathematical analysis of a spauifidel of RI system describing
the one-atom maser experiment mentioned above (a preasem®n of the model is given
in Section 2). We consider here the first natural questiomatya that of thermal relaxation:
is it possible to thermalize a mode of a QED cavity by mean3-lgivel atoms if the latter
are initially at thermal equilibrium? The non-equilibritsituation (NESS, entropy production,
fluctuation symmetries) will be considered in [BP]. We woukklto emphasize that in our
situation the Hilbert space of the small syst&ns notfinite dimensional. Moreover, we do not
make use of any perturbation theoi., our results do not restrict to small coupling constants.

The paper is organized as follows: The precise descriptidheomodel is given in Section 2
and the main results are stated and discussed in Sectioo@sRvill be found in Section 4.

Acknowledgements.C.-A.P. is grateful to J. Derezski, V. Jak& and A. Joye for useful dis-
cussions and to the Institute for Mathematical SciencelseoNational University of Singapore
for hospitality during the final stage of this work and final@upport. L.B. thanks the Erwin
Schrédinger Institute of Vienna for hospitality and fina@upport.
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2 Description of the model

2.1 The Jaynes—Cummings atom—field dynamics

We consider the situation where atoms of the beam are prépare stationary mixture of
two states with energieB, < F; and we assume the cavity to be nearly resonant with the
transitions between these two states. Neglecting the esorant modes of the cavity, we
can describe its quantized electromagnetic field by a singtenonic oscillator of frequency
w~wy=F — E.

The Hilbert space for a single atom7& = C? which, for notational convenience, we identify
with I"_(C), the Fermionic Fock space ov€r Without loss of generality we séf, = 0. The
Hamiltonian of a single atom is thus

Hg = u}()b*b,

whereb*, b denote the creation/annihilation operators¥p. Stationary states of the atom
can be parametrized by the inverse temperature R and are given by the density matrices
P = e PHe Ty e~ Pl

The Hilbert space of the cavity field #¢s = ¢*(N) = I' (C), the Bosonic Fock space ov€r
Its Hamiltonian is
Hs =wN = wa*a,

wherea*, a are the creation/annihilation operators’ g satisfying the commutation relation
la,a*] = I. Normal states of are density matrices, positive trace class operatorsHs with
Trp = 1. We will use the notatiop(A) = Tr(pA) for A € B(Hs). These are the only states
we shall consider o. Therefore, in the following, “state” always means “norrstdte” or
equivalently “density matrix”. Moreover, we will say thastate is diagonal if it is represented
by a diagonal matrix in the eigenbasisi@f.

In the dipole approximation, an atom interacts with the theity field through its electric
dipole moment. The full dipole coupling is given by/2)(a+a*)® (b+0*), acting onHs @ He,
where) € R is a coupling constant. Neglecting the counter rotatingnie® b + «* ® b* in this
coupling (this is the so calletbtating wave approximatigneads to the well known Jaynes-
Cummings Hamiltonian

H=Hs® g+ 1s® He + AV, V==(a"®b+a®Db"), (2.1)
for the coupled syster§ + £ (seee.qg.,[Ba, CDG, Du]). The operatoH has a distinguished
property which allows for its explicit diagonalisation:commutes with the total number oper-

ator
M = a*a+ b*D. (2.2)

An essential feature of the dynamics generateddbgre Rabi oscillations. In the presence
of n photons, the probability for the atom to make a transitiamfrits ground state to its
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excited state is a periodic function of time. The circul@guwency of this oscillation is given
by \/A2n + (wo — w)?2, a fact easily derived from the propagator formula (4.2pbelThus, in
our units, )\ is the one photon Rabi-frequency of the atom in a perfectlgdusavity.

The rotating wave approximation, and thus the dynamics rgée@ by the Jaynes-Cummings
Hamiltonian, is known to be in good agreement with experitaletatas as long as the detuning
parameterA = w — wy satisfies|A| < min(wy,w) and the coupling is small\| < wp.
However, we are not aware of any mathematically precisersiatt about this approximation.

2.2 Repeated interaction dynamics

Given an interaction time > 0, the systend successively interacts with different copies of the
systemé, each interaction having a duratien The issue is to understand the asymptotic be-
havior of the systens when the number of such interactions tends-te (which is equivalent

to timet going to+oc). The Hilbert space describing the entire systeém C then writes

H=Hs® He, HCE®H&”
n>1

whereH,, are identical copies df{s. During the time interva[(n — 1)7,n7), the system
S interacts only with the:-th element of the chain. The evolution is thus describedhey t
Hamiltonian#,, which acts ag? on’Hs ® Hg, and as the identity on the other factats, .

Remark. A priori we should also include the free evolution of the rinteracting elements of
C. However, since we shall take the various elementstofbe initially in thermal equilibrium,
this free evolution will not play any role.

Given any initial statey on S and assuming that all the atoms are in the stationary ﬁﬁaﬂae
state of the total repeated interaction system aft@teractions is thus given by

eszHn . eszHl (p ® ® pg> ezTH1 . ez‘an'

k>1

To obtain the state,, of the systemsS after these: interactions we take the partial trace over
the chairC, i.e.,

pTL = Tr'Hc

e~ . giTH <p ®® p?) T . eH] . (2:3)

k>1
It is easy to make sense of this formal expression (we dealkign countable tensor products).

Indeed, at timer7 only then first elements of the chain have played a role so that we céaaep
Ry P2 by pi™ = ®p_, p? and the partial trace over the chain by the partial trace theer
finite tensor producH” = ®7_, He, .

The very particular structure of the repeated interactysiesns allows us to rewritg, in a

much more convenient way. The two main characteristicsedehrepeated interaction systems
are:
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1. The various elements 6fdo not interact directly (only via the systef),

2. The systend interacts only once with each elementifand with only one at any time.

It is therefore easy to see that the evolution of the sysbeis Markovian: the state,, only
depends on the stajg,_; and then-th interaction. More precisely, one can write (see also
[AJ1, BIM1))

P = T, [e—ian ... e—iTH (p 2 pg (n)) oiTHL eiTHn:|

C
— Tngn |:ef7,'THn <T1"H((:n71) |:efi7'Hn—1 L efi‘rHl (p ® pg (n71)> eiTH1 L ei‘an_1:| R pg> eiTHn]
— Tngn |:e—i7'Hn <pn_1 ® pg) eiTHnj| ,

that is
Pn = Eﬁ(pnfl)a
with
Ls(p) = Try, [e—”H(p ® pl) e ] . (2.4)

Definition 2.1 The mapC; defined on the sef; (Hs) of trace class operators oHs by (2.4)
is called the reduced dynamics. The stateSoévolves according to the discrete semigroup
{£% |n € N} generated by this map:

In particular, a statep is invariant iff L5(p) = p.

Note thatL; is clearly a contraction. To understand the asymptotic Wiehaf p,,, we shall
study its spectral properties. In particular, we will besheisted in its peripheral eigenvalues
e, for g € R.

Remark. When the atom-field coupling is turned off, the reduced dyeans nothing but the
free evolution ofS, i.e., £5(p) = e~™Hspei™s_ Note that7,(Hs) = Bacz T\ (Hs) Where
each subspace

TV (Hs) = {X € Ti(Hs)|e VXN = "X forall 6 € R}, (2.5)

is infinite dimensional (it is the set of bounded operat&rsvhich, in the canonical basis of
Hs = (*(N), have a matrix representatiofy,,,, = x,, d,+a,m With ano |z,| < 00). Thus, for
A = 0, the spectrum of 5 is pure point

SP(L3) = spyp(Ls) = {7 |d € Z).

This spectrum is finite ifw € 27Q and densely fills the unit circle in the opposite case. In
both cases, all the eigenvalues (and in particlijare infinitely degenerate. This explains why
perturbation theory in fails for this model.
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3 Results

To formulate our main results we need a notion of Rabi resanaBcich a resonance occurs
when the interaction time is an integer multiple of the period of a Rabi oscillation. &land
in the following we will use the dimensionless detuning paeter and coupling constant

_ AT\ 2 _ A\ 2
=(5) =)

Definition 3.1 Letn be a positive integer. We shall say thats a Rabi resonance if

to parametrize our model.

&n+n =k, (3.1)

for some positive integer and denote by?(7, £) the set of Rabi resonances.

The following elementary lemma (see Subsection 4.10 foseudision) shows that, depending
onn andé, the system has either no, one or infinitely many Rabi res@santé/e shall say
accordingly that it is non-resonant, simply resonant dyftésonant. A fully resonant system
will be called degenerate if there existc {0} U R(n,&) andm € R(n,§) such thath < m
andn+1,m+1 € R(n,§&).

Lemma 3.2 1. If » and ¢ are both irrational then the system can be either non-resbma
simply resonant.

2. If one of them is rational and the other not, then the syssamon-resonant.

3. If they are both rational, write their irreducible repres@ations as; = a/b, ¢ = ¢/d, denote
by m the least common multiple 6fandd and set

X={re{0,...,6m—1}|2*m ~ npm(mod ¢Em)}.
The system is non-resonaniifis empty. In the opposite case it is fully resonant and
R(n,&) ={(k* —n)/¢| k = jm& +x,j € N,w € X} NN".
4. A necessary condition for the system to be degeneratatibtith¢ andr be integers such

thatn > 0 is a quadratic residue modulg, i.e., there exists an integey such thaty = 32
modulof.

The Hilbert spacé{s has a decomposition

Hs = P, (3-2)
k=1
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wherer is the number of Rabi resonancésg"’) = (*(I;) and{I; |k = 1,...,r} isthe partition
of N induced by the resonances. More precisely we set

I, =N if R(n,§)is empty
L={0,....n1 =1}, L={n;,n +1,...} ?f R(n, &) = {1},
115{07...,'&1—1}7 [25{7L1,...,7L2-1}7... if R(n,ﬁ):{nl,ng,...}.

We shall say thaﬂ-lg“) is the k-th Rabi sector, denote b¥, the corresponding orthogonal
projection and seff, = dim Hg“).

Thermal relaxation is an ergodic property of the mapand of its invariant states. For any
density matrixp, we denote the orthogonal projection on the closur®aefi p by s(p), the
support ofp. We also writeu < p whenevers(u) < s(p).

A statep is ergodic (respectively mixing) for the semigroup geneddiy £ whenever

Jim = S (£50) (4) = p(A), (3.3)
(respectively)
lim (L3(1) (A) = p(A), (3.4)

n—oo

holds for all stateg. < p and allA € B(Hs). p is exponentially mixing if the convergence in
(3.4) is exponential, e., if

[(£3(1) (A) = p(A)] < Cayem,

for some constant’, , which may depend oA and, and somex > 0 independent oA and
1. A mixing state is ergodic and an ergodic state is clearlgiiant.

A statep is faithful iff p > 0, thatiss(p) = I. Thus, ifp is a faithful ergodic (resp. mixing)
state the convergence (3.3) (resp. (3.4)) holds for evaitg gtand one has global relaxation.
In this casep is easily seen to be the only ergodic stateCgf Conversely, one can show (see
Theorem 4.4) that iz has a unique faithful invariant state, this state is ergodic

We need some notations to formulate our main result. Fer R we sets* = fuw,/w and to
each Rabi sectdtigk) we associate the state

wo_ e sP _ e PN p,
Ps' = Ty opHs P, TrePwoNp~

Theorem 3.3 1. If the system is non-resonant thép has no invariant state fo < 0 and
the unique ergodic state

e~ P Hs
Tr e=P"Hs
for 3 > 0. In the latter case any initial state relaxes in the mean ® tihermal equilibrium
state at inverse temperatug¥.

pa =
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2. If the system is simply resonant thénhas the unique ergodic sta;txél)ﬁ* if 5 < 0andtwo

ergodic state$)fgl)ﬁ*, pf? 7if B > 0. In the latter case, for any staje one has

1 N

lim <> (L5(w)) (4) = n(P) P57 (A) + u(P) p8'7 (A), (3.5)

N—oo
n=1

forall A € B(Hs).

3. If the system is fully resonant then for afyc R, L5 has infinitely many ergodic states
pg“) k= 1,2, ... Moreover, if the system is non-degenerate,

lim 57 (2300) (4) = S (P o0 (4), (3.6)

N—oo IV

holds for any state. and all A € B(H.s).

4. If the system is non-degenerate, any invariant statesigatial and can be represented as a
convex linear combination of ergodic states.

Remarks. 1. Notice the renormalization — 3* of the equilibrium temperature when the
detuning parameterin non-zero.

2. Inthe non-degenerate cases, our result implies somefamalof decoherence in the energy
eigenbasis of the cavity field: the time averaged off-diagpart of the stat€7; (1) decays with
time.

3. Assertion 4 shows in particular that in the non-degeperases an ergodic decomposition
theorem holds. Note that, in contrast with classical dyrcahsystems, this is not necessarily
the case for quantum systems.

4. If the system is degenerate, (3.6) and the conclusionsseérion 4 still hold provided a
further non-resonance condition is satisfied. Namely, wiesivow that there is a non-empty set
D c N* such that the peripheral eigenvaluesfofwith non-diagonal eigenvectors are given
by el("+émd q ¢ D (see Lemma 4.6 below for details). df™+¢™4 £ 1 for all d € D, none
of these eigenvalue equdlsind all eigenvectors af 5 to the eigenvalué are diagonal.

The following result brings some additional information tire relaxation process in finite
dimensional Rabi sectors.

Theorem 3.4 Whenever the staté)’ " is ergodic it is also exponentially mixing if the sector
Hfgk) is finite dimensional.

Remark. Numerical experiments support the conjecture that all tgedic states are mixing.
However, our analysis does not provide a proof of this cdu'redeg“) Is infinite dimensional.

In fact, we will see in Subsection 4.5 that has an infinite number of metastable states in the
non-resonant and simply resonant cases. As a result, wetesipgy (.e., non-exponential)
relaxation (see Paragraph 4.5.4 for illustrations).
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4 Proofs

4.1 Preliminaries

The mapL; acts on the set of density matrices®g, but its definition (2.4) obviously extends
to the space7; (Hs) of trace class operators diis. Let us first recall some definitions and
important results concerning linear maps on trace ideadsréfer to [Kr, Sch, St] for detailed

expositions).

Definition 4.1 Let¢ : J,(H) — J1(H) be a linear map.

1. ¢ is positive if it leaves the cong , () of positive trace class operators invariant.
2. ¢ is n-positive if the extended mapsw I acting on7, (H) ® B(C") is positive.
3. ¢ completely positive (CP) if it is-positive for alln € N.

4. ¢ is trace preserving ifflr(¢(p)) = Tr(p) for anyp € J1(H).

Given a linear map on J;(H), we denote by-(¢) its spectral radiusup{|z|| z € sp(¢)}
which, by a result of Gelfand [G], is equal tan,, ... ||¢™[|*/™.

Theorem 4.2 Let¢ be a positive map oy (H).
1. ¢ is bounded.
2. If ¢ is CP there exists an at most countable fanily);. ; of bounded operators oK such
that

0<> ViVi<I,

ieJ’

for any finiteJ’ C J and

d(p) =Y _VipVy, (4.1)

i€J

foranyp € J1(H).
3. If ¢ is CP and trace preserving theti¢) = ||¢|| = 1.

A decomposition (4.1) of a CP map is called a Kraus repredgentabuch a representation is
not necessarily unique.

The following result due to Schrader ([Sch], Theorem 4.19us main tool for the spectral
analysis ofCg.

Theorem 4.3 Let ¢ be a2-positive map on7,(H) such thatr(¢) = [|¢||. If X is a peripheral
eigenvalue ofp with eigenvectorX, i.e., ¢(X) = AX, X # 0, |A\| = r(¢), then|X] is an
eigenvector ob to the eigenvalue(¢): ¢(|X|) = r(¢)| X].

Finally, the following theorem reduces the problem of tharnelaxation “in the mean” (in the
sense of (3.3)) to the existence and uniqueness of a faitiviattiant .
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Theorem 4.4 Let¢ be a CP trace preserving map o (H). If ¢ has a faithful invariant state
Pstar @Nd 1 is a simple eigenvalue afthenpy;.; is ergodic.

This result is most probably known, at least for stronglytoarous semigroups of CP trace
preserving maps. Since we are not aware of any reference idisiarete case we provide a
proof in Subsection 4.9.

4.2 Strategy
Using Theorem 4.2, the following proposition follows ditlgdrom the definition (2.4) ofCs.

Proposition 4.5 L5 is a completely positive, trace preserving map®nHs). In particular
one has(L3) = ||Ls]| = 1.

In order to prove Theorems 3.3 and 3.4 we will derive an exkfficaus representation af 3

in Subsection 4.3. In Subsection 4.4 we will show tidatleaves the subspaceé(d)(Hg)
invariant. Using the Kraus representationfofwe will then derive a convenient formula for its
action on the subspagél(o) (Hs) of diagonal matrices. With this formula we will construct al
diagonal invariant states in Subsection 4.5. Investigate block structure of ; associated
to Rabi sectors (Subsection 4.6) will allow us to invoke Tleeo#d.3 in Subsection 4.7. In this
way we reduce the peripheral eigenvalue prob2yX) = ¢ X, 6 € R, to diagonal matrices.
In subsection 4.8 the result of this analysis will allow ugémclude the proof.

4.3 Kraus representation ofL;

Denote by|—) and|+) the ground state and the excited state of the afoffhis orthonormal
basis ofH allows us to identifyH = Hs®H¢ with Hs @B H . Using the fact that/ commutes
with the total number operatadv/ (recall (2.2)), an elementary calculation shows that, ia th
representation, the unitary groap™# is given by

‘ e*i(Tu)N*i’TW]l/Q) C(N) _iefi(TwN+7rn1/2)S(N> a*
e T — , (4.2)
_iefi(m(NH)erl/?)S(N +1)a e i(Tw(N+1)+mn'/?) C(N +1)*
where
i N
C(N) = cos(m/EN + 1) + /2 Sm(ﬂszé — ),
n

1/2 sin(mv/EN +1n)
EN+n

S(N)=¢
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with the conventiorsin(0)/0 = 1 to avoid any ambiguity in the case= 0. Letwg(o) =
(o|peslo) = (1 + e“P+0)~! denotes the Gibbs distribution of the atoms. The definingtitle
(2.4) yields

Ls(p) =Y _(ole” ™ |o)ws(o)p(ole™ o) ZVM/J s (4.3)

where the operatons,., are given by
V. = UJﬁ(—)l/Z efiTwN C(N), V,+ — w5(+)1/2 efirwN S(N) CL*,

(4.4)
Vi =ws(=)"2e ™ N S(N +1)a, Vip =ws(+)?e ™NCO(N +1)*.

The above formulas give us an explicit Kraus representatidghe CP mapC;.

4.4 Action of L3 on diagonal states

Using the facts thatH, M| = [Hg, pg] = 0, one easily shows from the definition (2.4) that
Eﬁ(e—iGNXeiGN) — e_ieNEB(X)eigN,
holds for anyX € J,(Hs) andf € R. This is of course also evident from the above Kraus

representation of 3. However, it is not clear there what properties of the sysiemresponsible

for this invariance. It follows thaf ; leaves the subspacgéd) (Hs) (see Equ. (2.5)) invariant,
and hence admits a decomposition

Ly =PLy. (4.5)

deZ

We shall be particularly interested in the action®f on diagonal matriceg,e., in ﬁ(ﬁo). To
understand why, note that if € J;(Hs) is an invariant state them > 0, Tr(p) = 1 and
Ls(p) = p. It follows from (4.5) that its diagonal papt® € J7° (Hs) satisfiesp©@ > 0,
Tr(p®) =1 andﬁ(ﬁo)(p(o)) = p0 i.e., p is also an invariant state. The problem of existence
of an invariant state therefore completely reduces to tistence of the eigenvalueof E(ﬁo).

Denoting byz, the diagonal elements of € jl(o) (Hs), we can identif}Ul(O) (Hs) with ¢1(N).
The Kraus representation derived in the previous subsettimediately yields

(E,(Go)x)n -t [ <COSZ(7T\/€TZ +n) 4+ e 0 cos?(my/E(n 4 1) + 77)) Ty

1+ eBwo
+sin2(7r\/§n +1n)
§n 41
sin?(my/E(m+ 1) +n)
E(n+1) +1

(771:” + efﬁ“’oémzn,l)

(e Ponz, + &(n + 1)$n+1)] .
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To rewrite this expression in a more convenient form let iauce the number operator
(Nz), = nw,,

as well as the finite difference operators

| forn =0, . o
(Vz), = { v forn>1 (V*2), = 2y — xpqq (forn > 0),

on/!(N). A simple algebra then leads to

LY =1 - V*D(N)e 0N yeiuol, (4.6)
where
_ EN
D(N)= —— sin?(m/¢éN . 4.7

4.5 Diagonal invariant states

We are now in position to determine all the diagonal invargtates and more generally all
eigenvectors ot(ﬁo) to the eigenvalué. Settingu = e PN veloN 5 and using formula (4.6),
we can rewrite the eigenvalue equation as

V*D(N)u = 0.

SinceV* is clearly injective, this mean®(/N)u = 0 and hence:,, = 0 unlessD(n) = 0, that
isn is a Rabi resonance. At this stage, we have to distinguisheéscas

45.1 The non-resonant case

If the system is non-resonant, it follows from (4.7) thagn) = 0 if and only if » = 0 and
hence our eigenvalue equation reduces to

7Bw0pn71 = 07

Up = Pp — €
for n > 1. We conclude that there is a unique diagonal invariant state

e—ﬂwoN

Tr e PwolN

* l *
=2 =057,

if 5> 0andnoneif3 <0.
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4.5.2 The simply resonant case

If the system is simply resonant there existse N* such thatD(n) = 0 if and only ifn = 0
orn = n,. The eigenvalue equation then splits into two decouplea&ops

P+l = e_ﬁwopna ne -[1 = {07 ceey N — ]-}7
Pr+1 :e—ﬁwopn’ nGIQE {nl,n1+1,...}.
The first one yields the invariant state

e_/@(—UONPI B p(l) B*
Tr e_BWONPI S ’

forany 3 € R. The second equation gives another invariant state

e ol py _ @p
Tre-BwoNp, IS 7

providedg > 0.

4.5.3 The fully resonant case

If the system is fully resonar®(n) has an infinite sequeneg = 0 < n; < ny < --- of zeros.
The eigenvalue equation now splits into an infinite numbdmite dimensional problems

Prgr =€ Pp nel, = {np_y,...,np— 1},
wherek = 1,2, .... Foranys € R, we thus have an infinite number of invariant states

e_BWONPk B p(k) ﬁ*
Tr e_’GWONPk S ’

one for each Rabi sector.

45.4 Metastable states

If the system is non-resonant we say thatc N* is a Rabi quasi-resonance if it satisfies
D(m) < D(m + 1). Let (my)ren+ be the strictly increasing sequence of quasi-resonantes. |
is straightforward to show thd®(m;) = O(k2) ask — oo. Setting

[0 if n € {my,my,...},
Do(n) = { D(n) otherwise

andﬁg?()) = [ — V*Dy(N)e PN yefeoN one immediately concludes that

LY =+ T, (4.8)
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Figure 1. The metastable cascade (notice the log-log skale !

where7 is a trace class operator. The above analysis of the fulyn@ast case shows thais
an infinitely degenerate eigenvaluezb(j%. The corresponding positive eigenvectors

ﬁ(k) o _ e—ﬁwoNﬁk
s Tr e—BwoN P,

whereP,, denotes the orthogonal projection oi#¢{0, . .., m;, — 1}), are metastable states of
the systems. Because of these almost invariant states oib@l gélaxation process is extremely
slow in the non-resonant and simply resonant cases. Inrgpéetms, (4.8) shows thdtis
always in the essential spectrum ©f. It follows that relaxation can not be exponential in
infinite dimensional Rabi sectors.

As an illustration, we have computed the evolution of the finstastable stal;éfsl)ﬁ " and the

relative entropies
(n) = —Ent (£ (787 | 407

in a typical, non-resonant one-atom maser situation (asridbesl in [WVHW]) with atoms in
equilibrium at room temperature. We recall that the entropg stateu relative to the state
is defined by

Ent(p|v) = Tru(log u — log v).
Itis a measure of the “distance” betweeandr and is also called Kullback—Leibler divergence
in information theory. Its main property iSnt(x | v) < 0 where the equality holds iff = v.
Figure 1, show®,(n) as a function of. for k = 2, 3, ... on alog-log scale. It clearly describes
the cascade of3(53’”") through the sequence of metastable sta@é — 53" — -
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Figure 2: Cooling the cavity: 5000 interactions.

Figure 3: Cooling the cavity: 50000 interactions.
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22F 3

Figure 4: Cooling the cavity: average photon number.

Another way to see metastable states in action consistsoiimgahe cavity with cold atoms.
Figure 2 shows the result of such a calculation. The soliel isnthe initial state of the cavity
which we chose to be thermal equilibrium with an average @houmber of 22. The dashed
line is the stationary staw.g*, thermal equilibrium with an average of 7 photons. The bnoke
line is the state of the cavity after 5000 interactions. Tésival dashed lines mark the positions
of the Rabi quasi-resonances.. The picture shows clearly that local equilibrium is ackigv
in each intervalm,,, m,, 1 [: the slope of the broken line agrees with that of the invastate on
these intervals. However only the first three intervals haaehed a common equilibrium. The
average photon number at this stage is still slightly latigen 17. It requires 50000 interactions
for this number to drop under 10. Figure 3 shows the corredipgrstate of the cavity. A gross
picture of the relaxation process is provided by Figure 4retibe average photon number is
plotted against the number of interactions.

4.6 Rabiresonances and the block structure of 5

To understand the RI dynamics of Rabi-resonant systems we toeiedlestigate the block
structure of the magf; in the presence aof such resonances, ... The decomposition (3.2)
of Hs into Rabi sectors induces a decomposition

Ti(Ms) = @@ TP Hs), T (Hs) = Ph(Hs)P = H(HE HS)),  (4.9)

k,p=1
where each term itself decomposes into

Npt1—ni—1

TP = P AT, (4.10)

d=np—np41+1
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with
TEPD (Hs) = (X € TFP (Hg) | e N XN = X for all § € R}.

It easily follows from the fact that(n) = 0 for n € R(n, ) that
Voro P = PpVyro P = PV, VP = BV, Py = PV,
hold for anyo, o’ and any Rabi projectiof,. Therefore, one has
BiLy(p) By = Ls(Prephy),
i.e.,the mapl; further decomposes into

Np1—np—1

k, k, k.p,d
Lo=P s, = P oL, (4.11)
k,p=1 d=np-—mnp41+1
Whereﬁ(ﬁk’p’d) is the restriction of 5 to the subspacél(k””d) (Hs). It will be useful to visualize

the elements of this subspacelas [, matrices (with respect to the canonical basig#f of
the form

0 0z 0 0
0 0 0 2o 0
X=10 00 0

Recall that,, is the dimension of the-th Rabi sector.

4.7 The peripheral point spectrum of Lz

We have obtained all the diagonal eigenvectors to the eajeet of L3 in the Subsection
4.5. In this subsection we further investigate the perighgpectrum ofL 3, more precisely the
eigenvalue problem

Ls(X)=e"X, (4.12)
with # € R. The following lemma shows that in almost all cases the orlypheral eigenvalue
is 1 and that all the corresponding eigenvectors are diagonalother words, they are no
solutions to (4.12) except for multiples of those obtainethe Subsection 4.5.

Lemma 4.6 1. The only peripheral eigenvalue ﬁfao) is1.

2. If the system is not degenerate, then the only periphegaingalue ofLs is 1 and the
corresponding eigenvectors are diagonal.

3. If the system is degenerate we dendte), &) = {n € {0} UR(n,&)|n+1 € R(n,&)}
andD(n,&) = {d = n—m|n,m € N(n,§),n # m} . In this case the set of peripheral
eigenvalues of 5 is given by

{1} u {0 d € D(1,€)}.

More precisely, for any:, p € N* such thatc # p one has:
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(i) 1isthe only peripheral eigenvalue ﬁfg’“’k) and the corresponding eigenvectors are diag-
onal.

(i) £(ﬁk’p) has no peripheral eigenvalue exceptjf andn, both belong taV(n, £) in which
case it has the unique and simple eigenvafife +¢”¢ whered = n, — n..

Proof. According to the decomposition (4.11) it suffices to consitiec jl(k’p D (Hs) satisfy-
ing (4.12). We note thak* € 77"~ (Hs) then satisfie€5(X*) = e~ X*. It follows from
Theorem 4.3 that = (X*X)/2 ¢ 7""Y(Hs) aswell asZ = (X X*)/2 € 70 (Hs) are
positive diagonal eigenvectors 6f; to the eigenvalué.

If 3 < 0 andl, = oo (respectivelyl, = oo) it follows from Subsection 4.5 tha¥ = 0
(respectivelyY” = 0) and henceX = 0. In the remaining cases on h&s = )\pg’) 7 and
Z = up®?" for some, 11 > 0. We consider four cases.

Case I, # 1, (X is not a square matrix). Without loss of generality (intemeging.X and

X*) we may assume that > [, and in particular that, is finite. ThenZ is a diagonal;, x I
matrix whose rank does not excekd It follows that at least one of its diagonal entry is zero.

Sincepfgk) 7 > 0 we conclude that, = 0 and henceX = 0.
Case Il.l;, = 1, andd # n, — ny (X is square but not diagonal). In this case we can assume

(again by interchanging and X*) thatd > n, — n;. Then the kernel oX is non-trivial and
we can apply the same argument than in case |I.

Case lll:l;, = |, > 1 andd = n, — n;, (X is diagonal). In this case we can assutne 0. The
diagonal elements oX can be written as

—Bwon

i
T, = e ;€ {ng, ... ngy — 1},

for somep € C andy; € R. Assumingu # 0 and using the Kraus representation (4.3), (4.4),
the eigenvalue equation (4.12) writes

em—wd

— —Bwo—— ip
1+ e fwo [(an@nra + e TGriansar) €

+ bpbpra€ ! + e_ﬁwobn+1bn+d+1eiwn“] = ellten), (4.13)
forn € {ny,...,nk 1 — 1} where
a, =C(n), b,=+v/nS(n).

One easily checks that,|? + |b,|> = 1. The resonance condition a} andn, = n; + d is
by, = by, = 0 and hencga,, | = |a,,| = 1. Settingz = e anda = Twd — 6§ we can recast
Equation (4.13) as

z(A,—1)=1-B,, (4.14)

where
A, = eio‘an_an+d + eia_i(ﬂon_¢n—l)bnbn+d’

_ P ia+i —
B, = €%y g1y + Ty b
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The Cauchy-Schwarz inequality yiel&s A,, < |A,| <1, Re B, < |B,| < 1and hence
Rez(A, —1) <0, Re(1—-B,) > 0.

It follows that (4.14) is equivalent tel,, = B, = 1. In order for equality to hold in the
Cauchy-Schwarz inequalifige A,, < 1, we must have

Qptd = eiaan’ bn—i—d = eioé_i(‘p7L_<pTL71)lj71- (415)

Similarly, to get equality in the inequalitige B,, < 1 requires

—ia—i(<ﬂn+1—ﬂan)bn+1_ (416)

—ia
Apyd+1 =€ Apiti, bntdr1 =€

If d = 0 the first equation in (4.15) and the fact thgf # 0 imply ¢ = 1. Hencee!’ =
e™? = 1 and X is a multiple of the invariant sta;ésk) 7. We can therefore assume thiat- 0
and hence:, > 0. Sinceb,, ;1 # 0 andb, 1 # 0, comparing the second equations in (4.15)
atn = n;, + 1 and (4.16) at = n,, allows us to conclude thai® is real.

We shall now consider separately the two cages 0 andn # 0. In the first case, the first
equation in (4.16) implies

cos® my/&(ny + 1) = cos® w4 /E(ny, + 1)

Ve, +1) + ey e+ 1) =, (4.17)

for somes € {1} and some integer > 0. Using the resonance condition

and therefore

for some integey > 0, we can rewrite (4.17) as

n,+1 r n, + 1
€ = - — .
Ny q Ny

Squaring both sides of this equality leads to

nk+1:r_2+np+1_% n,+1

2
np q np q Ny

)

which leads to a contradiction since the square root on g hiand side of the last equality is
always irrational.

If  # 0, rewriting the imaginary part of the first equation in (4.85)

2 sinTy\/(n+d)+n ey sinmy/En +n

E(n+d)+n 7 Vén—+mn
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and comparing it with the second equation in (4.15)

\/751n7r\/ (n+d)+ _ poilpn—gu) \/—smm/fn +7 ’
VEn+d) + Vén+n
we gety/E(n +d) = e*i(%*%fﬂ\/gn which contradicts our hypothesis> 0.

Case IVl = |, = 1 andd = n, — n;, (X is scalar). We follow the same argument as in case
[ll. Now the second equations in (4.15), (4.16) are triyigatisfies and only the two equations

ia —ia
Up, = €%y, Uny41 = € “pyq1 (4.18)

P

survive. In the casé = 0 one can conclude, as in case lll, th#t = 1. We can therefore
assume that > 0 andn, > 0, which means thatn, n; + 1), (n,,n, + 1) are two distinct
pairs of consecutive resonance®,, that the system is degenerate. In this case, Equations
(4.18) are easily seen to be satisfied with= (—1)dei74, 0

4.8 Ergodicity and relaxation
4.8.1 Proof of Theorem 3.3

It is now easy to prove that the diagonal invariant stateainbt in Subsection 4.5 are ergodic.
Each such state is of the form= ps)ﬂ for somek and hence its support |s a Rabi projection
P,. Any statey such thaty < p is an element of7** (Hs) = J1(HY). In particular
La(p) = L k’k)( ) and it is therefore sufficient to prove ergodicity @fwith respect to the

semigroup generated b;f’“ *) Lemma 4.6 implies thadi WP s the unique faithful invariant
state for this semigroup. Ergod|C|ty follows from Theorem.4

1. In the non-resonant case the unique ergodic $§é)(@* = ,og* Is faithful and hence one has

N

Jim > (L) (4) = o5

n=0
for all states: and allA € B(Hs).

2. In the simply resonant cases we shall first consider init@tes;. € ®j<q Jfk) (Hs) for
finite d € N. According to (4.9), (4.10), such a state can be decompaosea ifinite sum

d -1
j=1

j=—d

and hence

ﬁn( ) E(ﬂll) ( ) £(22 (@EIZJ 12])) (@ £21] (21])>.

]:1 j—*d
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Since the operaton@(ﬁl’Q’j) andﬁ(;’l’j) act on finite dimensional spaces they have a finite number
of eigenvalues which, by Lemma 4.6, all lie strictly insidhe tunit disk. It follows that the
corresponding terms in the above sum decay (exponentashy) — oco. The first two terms

in this sum can be handled as in the non-resonant case siadad¢hRabi sectorgifgl) and

Hg) are equipped with unique faithful invariant stayésé) 7" and pf,f)ﬁ*. Therefore, for any
A € B(Hs), we have
N
. ]_ n * *
Jim Z_%( 5(1)) (A) = 0D 57 (A) + @21 p@ 7 (4),  (4.29)

and Equ. (3.5) follows from the fact that**)(I) = u(P,). On the left hand side of (4.19)
the Cesaro mean is uniformly continuousir(with respect to/V) while the right hand side
is continuous. Equ. (4.19) therefore extends by contintatany stateu in the closure of
Uden(Djk|<d T (Hs)). The next lemma shows that this is all &f(H.s).

Lemma 4.7 For any stateu there exists a sequen¢gy.)ren in J1+(Hs) such that

me€ @ TV (Hs)

|dI<k
andlimk*)oo U = [ in jl(HS)

Proof. We first note that — 1 (0) = eV ue®Y is a continuous2z-periodic function froniR
to J1+(Hs) with Fourier coefficients

2m ) do
(d) = 0 —ifd P

By (2.5), one hag@ € 7% (Hs) and hence

k—1 7
Z (Z M(d)ei9d> c GB jl(d)(Hs)-
§=0

d=—j |d|<k—1

Hik—1 =

| =

By Fejér’s integral formula (see.g.,[Ti])

ot = / " F0) (1u(6) + u(—0)) o,

where 2( 0/2)
1 sin“(k6/2

F.(0) =
W) =57 sin®(6/2)

is Fejér's kernel. Sincé}, > 0, it follows thaty,, > 0. Finally, from

o — = / " F(0) (u(0) + u(~0) — 241) do,
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we obtain the estimate
o=l < [ Fu@)10(0) + (=) — 21, @0,
0

whose right hand side vanishes/as— oo by Fejér's convergence theorem (see the proof of
Theorem 13.32 in [Ti]). O

3. In the fully resonant, non-degenerate case we start withlatrary statey and introduce a
cutoff by means of the orthogonal projections

P, =) P
j=1

Settingu<, = P<,1P<y, using the decomposition into a finite sum of finite dimenaldrocks

n Nptl—ny—1

fi<n = @ @ ptkrd) |

kp=1 \d=np—ngy1+1

and proceeding as in the simply resonant case we obtain

N—oo

N n
lim % > (Lhpen)) (A) = p9(1) pd7(A). (4.20)
n=0 7j=1

Sincelimy, .o p1<n = 1 in Ji(Hs) andd_>2, ub9 (1) = p(I) = 1, (4.20) extends tg, which
proves (3.6).

4. The last assertion of Theorem 3.3 is a direct consequenceroiia 4.6.

4.8.2 Proof of Theorem 3.4

When Hfgk) is finite dimensional, one can say more. By Lemma 4.6 the spacof E(ﬂk’k)
consists in a simple eigenvaluevith eigenvectorogk) 7" and finitely many eigenvalues located
inadisk{z € C||z| < R} of radiusR < 1. This implies that

1£5() — p& 7" |l < Cremowm,

for some positive constants,, «;,, and all state: < p%%". Thusp’?" is (exponentially)
mixing.
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4.9 Proof of Theorem 4.4

Theorem 4.4 resembles the von Neumann mean ergodic theblamever, the latter holds in
full generality only for contractions orflexiveBanach spaces, which is not the casgrdfH).
To bypass this problem, we shall work in a Hilbert space regmeation.

Let 9 = B(H) denote the von Neumann algebra of observable${and (K, =, V') be the
GNS representation @t associated to the invariant statg.; (seee.g.,[BR]). On the dense
subspacéC, = 7(IM)¥ C K we define the map

M : m(A)¥ — m(¢*(A)), (4.21)

where¢* acts ond)t and is the dual map af. The operator/ implements the map* in the
GNS representation. The following lemma is rather gendtactually holds as soon as the
initial map satisfies the Kadison-Schwarz inequality (3#.@2g. if it is a2-positive map) and
the reference state is invariant [AHK].

Lemma 4.8 M extends to a contraction of.

Proof. The map¢* is a completely positive map. Hence it satisfies the KadSonwarz
inequality (see e.g. [Ka])
9" (ATA) = ¢ (A)"¢"(A), (4.22)

forall A € B(H). In particular we have, for any € B(H),

M 7 (A)E|* = (¥|r(¢"(A)"¢"(A))¥)
= Pstar (97(A)"¢"(A))

Pstat (97 (A" A))

= pstar(ATA)

= [lm(A)|?,

IA

where we have used that;.; is an invariant state to get the 4th line. The operatbthus
defines a contraction ofd; and hence extends to a contractionon O

Let p be any state. Then there exigtsc K such thatp(A) = (®|r(A)P) (see e.g. [BR, P]).
It is therefore sufficient to prove that for any normalizedtee ® € K, and any observable

A e M,
N

1 *n
lim ;@rw (6™(A4)) @) = (W[r(A)D). (4.23)
Moreover, sincey. is faithful, the vectorl is also cyclic for the commutant algebr&t)’.
We may therefore prove (4.23) only for vectors of the febra= B’V whereB’ € n(90t)'. For

such vectors, we have

(@7 (¢™(A)) @) = (B"B'¥|r(¢™(A))¥)
(B"*B'U|M"m(A)W). (4.24)
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Since M is a contraction on the Hilbert spaée the von Neumann mean ergodic theorem

asserts that
s — lim — Z M"™ =

N—oo
whereP is the projection ontder(M — I) alongRan(M — I) = Ker(M* — I)*.
Lemma 4.9 Ker(M* —I) =C V.

Proof. Clearly, V € Ker(M* — I). Conversely, letb € K such that\M/*® = &. Consider
the linear functionab : 9t 5 A — (®|7(A)¥) € C. Itis easy to see that is normal on.
Hence, there existy” € J;(H) such thatv(A) = Tr(X A). Moreover, for anyAd € 9

Tr(XA) =(®[r(A)V)
(M*®|m(A)T)
(O|Mm(A)Y
=(®[m(¢"(A4))
=Tr(X ¢7(A4))
=Tr(¢p(X)A).

)
w)

Thus, X is a trace class operator invariant for Therefore there exists € C such that
X = Apsiar @nd we have for anyl € 901,

(Blm(A)W) = A(¥[x(A)T).
SinceV is cyclic for 7(90) this proves tha® € CV. O

Using the above lemma, and sink&V = ¥, the von Neumann mean ergodic theorem asserts
that

— lim — M" =
SN—>iom N Z
Together with (4.24), we get, using the fact tlkat= B’V is a normalized vector,

Jim 37 (@] (677(4)) @) = (B” BU|W) (Vr(A)D)
= (W (A)w),

which concludes the proof.

4.10 The resonance condition

Assertions 1,2 and 3 of Lemma 3.2 are elementary and theof rdeft to the reader. To prove
assertion 4 we consider the conditions for consecutivengses.
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In the perfectly tuned case= 0, the only possible consecutive resonancedamd1. Indeed,
if n > 0thenn andn + 1 are resonances iffn = p*> and¢(n + 1) = ¢? for positive integerg

andg. It follows that
no_p
n+l ¢

which contradicts the irrationality of the square root oa lift hand side.

Forn > 0, the conditions for consecutive resonangesn <n+1<m < m+ 1 are

n=0orén+n=p>  &n+1)+n=q,
Em+n=p?  Em+1)+n=q>

for positive integers, p’, ¢, ¢. It easily follows that = ¢ — p’? andn = p"? — ¢&m from which
we conclude thag andn must be integers anga quadratic residue modufo O

Remark. Degenerate systems exist, as the following example shovtk: A= 720, n = 241,
n = 1 andm = 2 one gets

E+n=312 20+n=412, 3¢+1n=49%
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