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Abstract. We study repeated interactions of the quantized electromagnetic field in a cavity
with single two-levels atoms. Using the Markovian nature ofthe resulting quantum evolution
we study its large time asymptotics. We show that, whenever the atoms are distributed ac-
cording to the canonical ensemble at temperatureT > 0 and some generic non-degeneracy
condition is satisfied, the cavity field relaxes towards someinvariant state. Under some more
stringent non-resonance condition, this invariant state is thermal equilibrium at some renor-
malized temperatureT ∗. Our result is non-perturbative in the strength of the atom-field cou-
pling. The relaxation process is slow (non-exponential) due to the presence of infinitely many
metastable states of the cavity field.

1 Introduction

Open systems. During the last years there has been a growing interest for the rigorous de-
velopment of the quantum statistical mechanics of open systems. Such a system consists in a
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confined subsystemS in contact with an environment made of one or several extended sub-
systemsR1, . . . usually called reservoirs. We refer the reader to [AJP] and in particular to the
review article [AJPP1] for a modern introduction to the subject.

Two different approaches have been used to study open systems: Hamiltonian and Markovian.
The first one is fundamental. It is based on a complete description of the microscopic dynamics
of the coupled systemS + R1 + · · · . One uses traditional tools of quantum mechanics –
spectral analysis and scattering theory – to study this dynamics. So far, most results obtained
in this way are perturbative in the system-reservoir coupling and, for technical reasons, limited
to small systemsS described by a finite dimensional Hilbert space (e.g.,N -level atoms).

In the Markovian approach, one gives up the microscopic description of the reservoirs and tries
to describe directly the effective dynamics of the “small” systemS under the influence of its
environment. This evolution is governed by a quantum masterequation which defines a semi-
group of completely positive, trace preserving maps on the state space ofS (see Definition 4.1
below). There are two ways to justify such a Markovian dynamics: as a scaling limit of the
microscopic dynamics of the coupled systemS+R1 · · · (e.g.,the van Hove weak coupling limit
[D1, D2, DJ2, DF]), or as the result of driving the systemS with stochastic forces (quantum
Langevin equation [HP]).

Equilibrium vs. nonequilibrium. When the environment is in thermal equilibrium, the basic
problem is thermal relaxation: does the small subsystemS return to a state of thermal equilib-
rium? In the cases whenS has a a finite dimensional Hilbert space and the environment consists
of an ideal quantum gas, this question has been extensively investigated in [JP1, BFS, DJ1, FM].

Open systems become more interesting when their environment is not in thermal equilib-
rium. Suppose for example thatS is brought into contact with several reservoirs, each of
them being in a thermal equilibrium state but with differentintensive thermodynamic param-
eters. Then one expects the joint systemS + R1 + · · · to relax towards a non-equilibrium
steady states (NESS). Such states have been constructed in [Ru1, AH, JP2, APi, OM, MMS,
CDNP, CNZ]. They carry currents, have non vanishing entropy production rate,. . . These
transport properties were investigated in [FMU, CJM, AJPP2,N]. The linear response the-
ory (Green-Kubo formula, Onsager reciprocity relations, central limit theorem) was developed
in [FMU],[JOP1]-[JOP4],[JPP1]. Moreover, current fluctuations and related problems (Evans-
Searles and Gallavotti-Cohen symmetries) were studied in [TM, dR, DMdR].

Repeated interactions. Motivated by several new physical applications as well as bytheir
attractive mathematical structure, a class of open systemshas recently become very popular in
the literature: repeated interaction (RI) systems. There, the environment consists in a sequence
E1, E2, . . . of independent subsystems. The “small” subsystemS interacts withE1 during the
time interval[0, τ1[, then withE2 during the interval[τ1, τ1 + τ2[, etc...While S interacts with
Em, the other elements of the sequence evolve freely accordingto their intrinsic (uncoupled)
dynamics. Thus, the evolution of the joint systemS + E1 + · · · is completely determined by
the sequenceτ1, τ2, . . ., the individual dynamics of eachEm and the coupled dynamics of each
pairS + Em.
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In the simplest RI models eachEm is a copy of someE , τm ≡ τ , and the dynamics ofEm

andS + Em are independent ofm, generated by some HamiltoniansHE , HSE . Such models
have been analyzed in [BJM1, WBKM] (see also [BJM2] for a random setting). It was shown
in [BJM1] that the RI dynamics gives rise to a Markovian effective dynamics on the system
S and drives the latter to an asymptotic state, at an exponential rate (providedS has a finite
dimensional Hilbert space). The limitτ → 0 with appropriate rescaling of the interaction
HamiltonianHSE was studied in [APa, AJ2]. In this scaling limit, RI systems become con-
tinuous interaction systems and the effective dynamics onS converges towards a continuous
semigroup of completely positive maps associated with a quantum Langevin equation. Related
results pertaining to various other scaling limits of RI systems have also been investigated in
[AJ1] with similar results.

Due to their particular structure, RI systems are both Hamiltonian (with a time-dependent
Hamiltonian) and Markovian (the effective dynamics ofS is described by a discrete semigroup
of completely positive maps, see Subsection 2.2 for the precise meaning of this statement). For
that reason, we believe that these models provide a useful framework to develop our under-
standing of various aspects of the quantum statistical mechanics of open systems.

In the physical paradigm of a RI system,S is the quantized electromagnetic field of a cavity
through which a beam of atoms, theEm, is shot in such a way that no more thanone atomis
present in the cavity at any time. Such systems play a fundamental role in the experimental
and theoretical investigations of basic matter-radiationprocesses. They are also of practical
importance in quantum optics and quantum state engineering[MWM, WVHW, WBKM, RH,
VAS]. So-called “One-Atom Masers”, where the beam is tuned in such a way that at each given
moment a single atom is inside a microwave cavity and the interaction timeτ is the same for
each atom, have been experimentally realized in laboratories [MWM, WVHW].

In this paper we start the mathematical analysis of a specificmodel of RI system describing
the one-atom maser experiment mentioned above (a precise description of the model is given
in Section 2). We consider here the first natural question, namely that of thermal relaxation:
is it possible to thermalize a mode of a QED cavity by means of2-level atoms if the latter
are initially at thermal equilibrium? The non-equilibriumsituation (NESS, entropy production,
fluctuation symmetries) will be considered in [BP]. We would like to emphasize that in our
situation the Hilbert space of the small systemS is notfinite dimensional. Moreover, we do not
make use of any perturbation theory,i.e.,our results do not restrict to small coupling constants.

The paper is organized as follows: The precise description of the model is given in Section 2
and the main results are stated and discussed in Section 3. Proofs will be found in Section 4.

Acknowledgements.C.-A.P. is grateful to J. Dereziński, V. Jakšíc and A. Joye for useful dis-
cussions and to the Institute for Mathematical Sciences of the National University of Singapore
for hospitality during the final stage of this work and financial support. L.B. thanks the Erwin
Schrödinger Institute of Vienna for hospitality and financial support.
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2 Description of the model

2.1 The Jaynes–Cummings atom–field dynamics

We consider the situation where atoms of the beam are prepared in a stationary mixture of
two states with energiesE0 < E1 and we assume the cavity to be nearly resonant with the
transitions between these two states. Neglecting the non-resonant modes of the cavity, we
can describe its quantized electromagnetic field by a singleharmonic oscillator of frequency
ω ≃ ω0 ≡ E1 − E0.

The Hilbert space for a single atom isHE ≡ C2 which, for notational convenience, we identify
with Γ−(C), the Fermionic Fock space overC. Without loss of generality we setE0 = 0. The
Hamiltonian of a single atom is thus

HE ≡ ω0b
∗b,

whereb∗, b denote the creation/annihilation operators onHE . Stationary states of the atom
can be parametrized by the inverse temperatureβ ∈ R and are given by the density matrices
ρβ
E ≡ e−βHE/Tr e−βHE .

The Hilbert space of the cavity field isHS ≡ ℓ2(N) = Γ+(C), the Bosonic Fock space overC.
Its Hamiltonian is

HS ≡ ωN ≡ ωa∗a,

wherea∗, a are the creation/annihilation operators onHS satisfying the commutation relation
[a, a∗] = I. Normal states ofS are density matrices, positive trace class operatorsρ onHS with
Trρ = 1. We will use the notationρ(A) ≡ Tr(ρA) for A ∈ B(HS). These are the only states
we shall consider onS. Therefore, in the following, “state” always means “normalstate” or
equivalently “density matrix”. Moreover, we will say that astate is diagonal if it is represented
by a diagonal matrix in the eigenbasis ofHS .

In the dipole approximation, an atom interacts with the the cavity field through its electric
dipole moment. The full dipole coupling is given by(λ/2)(a+a∗)⊗(b+b∗), acting onHS⊗HE ,
whereλ ∈ R is a coupling constant. Neglecting the counter rotating term a⊗ b+a∗⊗ b∗ in this
coupling (this is the so calledrotating wave approximation) leads to the well known Jaynes-
Cummings Hamiltonian

H ≡ HS ⊗ 1lE + 1lS ⊗ HE + λV, V ≡ 1

2
(a∗ ⊗ b + a ⊗ b∗), (2.1)

for the coupled systemS + E (seee.g.,[Ba, CDG, Du]). The operatorH has a distinguished
property which allows for its explicit diagonalisation: itcommutes with the total number oper-
ator

M ≡ a∗a + b∗b. (2.2)

An essential feature of the dynamics generated byH are Rabi oscillations. In the presence
of n photons, the probability for the atom to make a transition from its ground state to its



Thermal relaxation of a QED cavity 5

excited state is a periodic function of time. The circular frequency of this oscillation is given
by
√

λ2n + (ω0 − ω)2, a fact easily derived from the propagator formula (4.2) below. Thus, in
our units,λ is the one photon Rabi-frequency of the atom in a perfectly tuned cavity.

The rotating wave approximation, and thus the dynamics generated by the Jaynes-Cummings
Hamiltonian, is known to be in good agreement with experimental datas as long as the detuning
parameter∆ ≡ ω − ω0 satisfies|∆| ≪ min(ω0, ω) and the coupling is small|λ| ≪ ω0.
However, we are not aware of any mathematically precise statement about this approximation.

2.2 Repeated interaction dynamics

Given an interaction timeτ > 0, the systemS successively interacts with different copies of the
systemE , each interaction having a durationτ . The issue is to understand the asymptotic be-
havior of the systemS when the number of such interactions tends to+∞ (which is equivalent
to timet going to+∞). The Hilbert space describing the entire systemS + C then writes

H ≡ HS ⊗HC, HC ≡
⊗

n≥1

HEn ,

whereHEn are identical copies ofHE . During the time interval[(n − 1)τ, nτ), the system
S interacts only with then-th element of the chain. The evolution is thus described by the
HamiltonianHn which acts asH onHS ⊗HEn and as the identity on the other factorsHEk

.

Remark. A priori we should also include the free evolution of the non-interacting elements of
C. However, since we shall take the various elements ofC to be initially in thermal equilibrium,
this free evolution will not play any role.

Given any initial stateρ onS and assuming that all the atoms are in the stationary stateρβ
E , the

state of the total repeated interaction system aftern interactions is thus given by

e−iτHn · · · e−iτH1

(
ρ ⊗

⊗

k≥1

ρβ
E

)
eiτH1 · · · eiτHn .

To obtain the stateρn of the systemS after thesen interactions we take the partial trace over
the chainC, i.e.,

ρn = TrHC

[
e−iτHn · · · e−iτH1

(
ρ ⊗

⊗

k≥1

ρβ
E

)
eiτH1 · · · eiτHn

]
. (2.3)

It is easy to make sense of this formal expression (we deal here with countable tensor products).
Indeed, at timenτ only then first elements of the chain have played a role so that we can replace⊗

k≥1 ρβ
E by ρ

β (n)
E ≡⊗n

k=1 ρβ
E and the partial trace over the chain by the partial trace overthe

finite tensor productH(n)
C ≡⊗n

k=1 HEk
.

The very particular structure of the repeated interaction systems allows us to rewriteρn in a
much more convenient way. The two main characteristics of these repeated interaction systems
are:
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1. The various elements ofC do not interact directly (only via the systemS),

2. The systemS interacts only once with each element ofC, and with only one at any time.

It is therefore easy to see that the evolution of the systemS is Markovian: the stateρn only
depends on the stateρn−1 and then-th interaction. More precisely, one can write (see also
[AJ1, BJM1])

ρn = Tr
H

(n)
C

[
e−iτHn · · · e−iτH1

(
ρ ⊗ ρ

β (n)
E

)
eiτH1 · · · eiτHn

]

= TrHEn

[
e−iτHn

(
Tr

H
(n−1)
C

[
e−iτHn−1 · · · e−iτH1

(
ρ ⊗ ρ

β (n−1)
E

)
eiτH1 · · · eiτHn−1

]
⊗ ρβ

E

)
eiτHn

]

= TrHEn

[
e−iτHn

(
ρn−1 ⊗ ρβ

E

)
eiτHn

]
,

that is
ρn = Lβ(ρn−1),

with
Lβ(ρ) ≡ TrHE

[
e−iτH(ρ ⊗ ρβ

E) eiτH
]
. (2.4)

Definition 2.1 The mapLβ defined on the setJ1(HS) of trace class operators onHS by (2.4)
is called the reduced dynamics. The state ofS evolves according to the discrete semigroup
{Ln

β |n ∈ N} generated by this map:

ρn = Ln
β(ρ).

In particular, a stateρ is invariant iffLβ(ρ) = ρ.

Note thatLβ is clearly a contraction. To understand the asymptotic behavior of ρn, we shall
study its spectral properties. In particular, we will be interested in its peripheral eigenvalues
eiθ, for θ ∈ R.

Remark. When the atom-field coupling is turned off, the reduced dynamics is nothing but the
free evolution ofS, i.e.,Lβ(ρ) = e−iτHSρeiτHS . Note thatJ1(HS) = ⊕d∈Z J (d)

1 (HS) where
each subspace

J (d)
1 (HS) ≡ {X ∈ J1(HS) | e−iθNXeiθN = eiθdX for all θ ∈ R}, (2.5)

is infinite dimensional (it is the set of bounded operatorsX which, in the canonical basis of
HS = ℓ2(N), have a matrix representationXnm = xn δn+d,m with

∑
n≥0 |xn| < ∞). Thus, for

λ = 0, the spectrum ofLβ is pure point

sp(Lβ) = sppp(Lβ) = {eiτωd | d ∈ Z}.

This spectrum is finite ifτω ∈ 2πQ and densely fills the unit circle in the opposite case. In
both cases, all the eigenvalues (and in particular1) are infinitely degenerate. This explains why
perturbation theory inλ fails for this model.
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3 Results

To formulate our main results we need a notion of Rabi resonance. Such a resonance occurs
when the interaction timeτ is an integer multiple of the period of a Rabi oscillation. Here and
in the following we will use the dimensionless detuning parameter and coupling constant

η ≡
(

∆τ

2π

)2

, ξ ≡
(

λτ

2π

)2

,

to parametrize our model.

Definition 3.1 Letn be a positive integer. We shall say thatn is a Rabi resonance if

ξn + η = k2, (3.1)

for some positive integerk and denote byR(η, ξ) the set of Rabi resonances.

The following elementary lemma (see Subsection 4.10 for a discussion) shows that, depending
on η andξ, the system has either no, one or infinitely many Rabi resonances. We shall say
accordingly that it is non-resonant, simply resonant or fully resonant. A fully resonant system
will be called degenerate if there existn ∈ {0} ∪ R(η, ξ) andm ∈ R(η, ξ) such thatn < m
andn + 1,m + 1 ∈ R(η, ξ).

Lemma 3.2 1. If η and ξ are both irrational then the system can be either non-resonant or
simply resonant.
2. If one of them is rational and the other not, then the systemis non-resonant.
3. If they are both rational, write their irreducible representations asη = a/b, ξ = c/d, denote
bym the least common multiple ofb andd and set

X ≡ {x ∈ {0, . . . , ξm − 1} |x2m ≃ ηm(mod ξm)}.

The system is non-resonant ifX is empty. In the opposite case it is fully resonant and

R(η, ξ) = {(k2 − η)/ξ | k = jmξ + x, j ∈ N, x ∈ X} ∩ N∗.

4. A necessary condition for the system to be degenerate is that bothξ andη be integers such
that η > 0 is a quadratic residue moduloξ, i.e., there exists an integery such thatη = y2

moduloξ.

The Hilbert spaceHS has a decomposition

HS =
r⊕

k=1

H(k)
S , (3.2)
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wherer is the number of Rabi resonances,H(k)
S ≡ ℓ2(Ik) and{Ik | k = 1, . . . , r} is the partition

of N induced by the resonances. More precisely we set

I1 ≡ N if R(η, ξ) is empty,
I1 ≡ {0, . . . , n1 − 1}, I2 ≡ {n1, n1 + 1, . . .} if R(η, ξ) = {n1},
I1 ≡ {0, . . . , n1 − 1}, I2 ≡ {n1, . . . , n2 − 1}, . . . if R(η, ξ) = {n1, n2, . . .}.

We shall say thatH(k)
S is the k-th Rabi sector, denote byPk the corresponding orthogonal

projection and setlk ≡ dimH(k)
S .

Thermal relaxation is an ergodic property of the mapLβ and of its invariant states. For any
density matrixρ, we denote the orthogonal projection on the closure ofRan ρ by s(ρ), the
support ofρ. We also writeµ ≪ ρ whenevers(µ) ≤ s(ρ).

A stateρ is ergodic (respectively mixing) for the semigroup generated byLβ whenever

lim
N→∞

1

N

N∑

n=1

(
Ln

β(µ)
)
(A) = ρ(A), (3.3)

(respectively)
lim

n→∞

(
Ln

β(µ)
)
(A) = ρ(A), (3.4)

holds for all statesµ ≪ ρ and allA ∈ B(HS). ρ is exponentially mixing if the convergence in
(3.4) is exponential,i.e., if

∣∣(Ln
β(µ)

)
(A) − ρ(A)

∣∣ ≤ CA,µ e−αn,

for some constantCA,µ which may depend onA andµ and someα > 0 independent ofA and
µ. A mixing state is ergodic and an ergodic state is clearly invariant.

A stateρ is faithful iff ρ > 0, that iss(ρ) = I. Thus, ifρ is a faithful ergodic (resp. mixing)
state the convergence (3.3) (resp. (3.4)) holds for every stateµ and one has global relaxation.
In this case,ρ is easily seen to be the only ergodic state ofLβ. Conversely, one can show (see
Theorem 4.4) that ifLβ has a unique faithful invariant state, this state is ergodic.

We need some notations to formulate our main result. Forβ ∈ R we setβ∗ ≡ βω0/ω and to
each Rabi sectorH(k)

S we associate the state

ρ
(k) β∗

S ≡ e−β∗HSPk

Tr e−β∗HSPk

=
e−βω0NPk

Tr e−βω0NPk

.

Theorem 3.3 1. If the system is non-resonant thenLβ has no invariant state forβ ≤ 0 and
the unique ergodic state

ρβ∗

S =
e−β∗HS

Tr e−β∗HS

for β > 0. In the latter case any initial state relaxes in the mean to the thermal equilibrium
state at inverse temperatureβ∗.
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2. If the system is simply resonant thenLβ has the unique ergodic stateρ(1) β∗

S if β ≤ 0 and two
ergodic statesρ(1) β∗

S , ρ
(2) β∗

S if β > 0. In the latter case, for any stateµ, one has

lim
N→∞

1

N

N∑

n=1

(
Ln

β(µ)
)
(A) = µ(P1) ρ

(1) β∗

S (A) + µ(P2) ρ
(2) β∗

S (A), (3.5)

for all A ∈ B(HS).

3. If the system is fully resonant then for anyβ ∈ R, Lβ has infinitely many ergodic states
ρ

(k) β∗

S , k = 1, 2, . . . Moreover, if the system is non-degenerate,

lim
N→∞

1

N

N∑

n=1

(
Ln

β(µ)
)
(A) =

∞∑

k=1

µ(Pk) ρ
(k) β∗

S (A), (3.6)

holds for any stateµ and allA ∈ B(HS).

4. If the system is non-degenerate, any invariant state is diagonal and can be represented as a
convex linear combination of ergodic states.

Remarks. 1. Notice the renormalizationβ → β∗ of the equilibrium temperature when the
detuning parameterη in non-zero.

2. In the non-degenerate cases, our result implies some weakform of decoherence in the energy
eigenbasis of the cavity field: the time averaged off-diagonal part of the stateLn

β(µ) decays with
time.

3. Assertion 4 shows in particular that in the non-degenerate cases an ergodic decomposition
theorem holds. Note that, in contrast with classical dynamical systems, this is not necessarily
the case for quantum systems.

4. If the system is degenerate, (3.6) and the conclusions of Assertion 4 still hold provided a
further non-resonance condition is satisfied. Namely, we will show that there is a non-empty set
D ⊂ N∗ such that the peripheral eigenvalues ofLβ with non-diagonal eigenvectors are given
by ei(τω+ξπ)d, d ∈ D (see Lemma 4.6 below for details). Ifei(τω+ξπ)d 6= 1 for all d ∈ D, none
of these eigenvalue equals1 and all eigenvectors ofLβ to the eigenvalue1 are diagonal.

The following result brings some additional information onthe relaxation process in finite
dimensional Rabi sectors.

Theorem 3.4 Whenever the stateρ(k) β∗

S is ergodic it is also exponentially mixing if the sector
H(k)

S is finite dimensional.

Remark. Numerical experiments support the conjecture that all the ergodic states are mixing.
However, our analysis does not provide a proof of this conjecture ifH(k)

S is infinite dimensional.
In fact, we will see in Subsection 4.5 thatLβ has an infinite number of metastable states in the
non-resonant and simply resonant cases. As a result, we expect slow (i.e., non-exponential)
relaxation (see Paragraph 4.5.4 for illustrations).
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4 Proofs

4.1 Preliminaries

The mapLβ acts on the set of density matrices onHS , but its definition (2.4) obviously extends
to the spaceJ1(HS) of trace class operators onHS . Let us first recall some definitions and
important results concerning linear maps on trace ideals (we refer to [Kr, Sch, St] for detailed
expositions).

Definition 4.1 Letφ : J1(H) → J1(H) be a linear map.

1. φ is positive if it leaves the coneJ1+(H) of positive trace class operators invariant.

2. φ is n-positive if the extended mapsφ ⊗ I acting onJ1(H) ⊗ B(Cn) is positive.

3. φ completely positive (CP) if it isn-positive for alln ∈ N.

4. φ is trace preserving ifTr(φ(ρ)) = Tr(ρ) for anyρ ∈ J1(H).

Given a linear mapφ on J1(H), we denote byr(φ) its spectral radiussup{|z| | z ∈ sp(φ)}
which, by a result of Gelfand [G], is equal tolimn→∞ ‖φn‖1/n.

Theorem 4.2 Letφ be a positive map onJ1(H).
1. φ is bounded.
2. If φ is CP there exists an at most countable family(Vi)i∈J of bounded operators onH such
that

0 ≤
∑

i∈J ′

V ∗
i Vi ≤ I,

for any finiteJ ′ ⊂ J and
φ(ρ) =

∑

i∈J

Vi ρV ∗
i , (4.1)

for anyρ ∈ J1(H).
3. If φ is CP and trace preserving thenr(φ) = ‖φ‖ = 1.

A decomposition (4.1) of a CP map is called a Kraus representation. Such a representation is
not necessarily unique.

The following result due to Schrader ([Sch], Theorem 4.1) isour main tool for the spectral
analysis ofLβ.

Theorem 4.3 Letφ be a2-positive map onJ1(H) such thatr(φ) = ‖φ‖. If λ is a peripheral
eigenvalue ofφ with eigenvectorX, i.e., φ(X) = λX, X 6= 0, |λ| = r(φ), then |X| is an
eigenvector ofφ to the eigenvaluer(φ): φ(|X|) = r(φ)|X|.

Finally, the following theorem reduces the problem of thermal relaxation “in the mean” (in the
sense of (3.3)) to the existence and uniqueness of a faithfulinvariant .
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Theorem 4.4 Letφ be a CP trace preserving map onJ1(H). If φ has a faithful invariant state
ρstat and1 is a simple eigenvalue ofφ thenρstat is ergodic.

This result is most probably known, at least for strongly continuous semigroups of CP trace
preserving maps. Since we are not aware of any reference in the discrete case we provide a
proof in Subsection 4.9.

4.2 Strategy

Using Theorem 4.2, the following proposition follows directly from the definition (2.4) ofLβ.

Proposition 4.5 Lβ is a completely positive, trace preserving map onJ1(HS). In particular
one hasr(Lβ) = ‖Lβ‖ = 1.

In order to prove Theorems 3.3 and 3.4 we will derive an explicit Kraus representation ofLβ

in Subsection 4.3. In Subsection 4.4 we will show thatLβ leaves the subspacesJ (d)
1 (HS)

invariant. Using the Kraus representation ofLβ we will then derive a convenient formula for its
action on the subspaceJ (0)

1 (HS) of diagonal matrices. With this formula we will construct all
diagonal invariant states in Subsection 4.5. Investigating the block structure ofLβ associated
to Rabi sectors (Subsection 4.6) will allow us to invoke Theorem 4.3 in Subsection 4.7. In this
way we reduce the peripheral eigenvalue problemLβ(X) = eiθX, θ ∈ R, to diagonal matrices.
In subsection 4.8 the result of this analysis will allow us toconclude the proof.

4.3 Kraus representation ofLβ

Denote by|−〉 and|+〉 the ground state and the excited state of the atomE . This orthonormal
basis ofHE allows us to identifyH = HS⊗HE with HS⊕HS. Using the fact thatH commutes
with the total number operatorM (recall (2.2)), an elementary calculation shows that, in this
representation, the unitary groupe−iτH is given by

e−iτH =




e−i(τωN+πη1/2) C(N) −ie−i(τωN+πη1/2)S(N) a∗

−ie−i(τω(N+1)+πη1/2)S(N + 1) a e−i(τω(N+1)+πη1/2) C(N + 1)∗


 , (4.2)

where

C(N) ≡ cos(π
√

ξN + η) + iη1/2 sin(π
√

ξN + η)√
ξN + η

,

S(N) ≡ ξ1/2 sin(π
√

ξN + η)√
ξN + η

,
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with the conventionsin(0)/0 = 1 to avoid any ambiguity in the caseη = 0. Let wβ(σ) ≡
〈σ|ρEβ|σ〉 = (1 + eσβω0)−1 denotes the Gibbs distribution of the atoms. The defining identity
(2.4) yields

Lβ(ρ) =
∑

σ,σ′

〈σ′|e−iτH |σ〉wβ(σ)ρ〈σ|eiτH |σ′〉 =
∑

σ,σ′

Vσ′σρV ∗
σ′σ, (4.3)

where the operatorsVσ′σ are given by

V−− = wβ(−)1/2 e−iτωN C(N), V−+ = wβ(+)1/2 e−iτωN S(N) a∗,

V+− = wβ(−)1/2 e−iτωN S(N + 1) a, V++ = wβ(+)1/2 e−iτωN C(N + 1)∗.

(4.4)

The above formulas give us an explicit Kraus representationof the CP mapLβ.

4.4 Action ofLβ on diagonal states

Using the facts that[H,M ] = [HE , ρ
β
E ] = 0, one easily shows from the definition (2.4) that

Lβ(e−iθNXeiθN) = e−iθNLβ(X)eiθN ,

holds for anyX ∈ J1(HS) andθ ∈ R. This is of course also evident from the above Kraus
representation ofLβ. However, it is not clear there what properties of the systemare responsible
for this invariance. It follows thatLβ leaves the subspacesJ (d)

1 (HS) (see Equ. (2.5)) invariant,
and hence admits a decomposition

Lβ =
⊕

d∈Z

L(d)
β . (4.5)

We shall be particularly interested in the action ofLβ on diagonal matrices,i.e., in L(0)
β . To

understand why, note that ifρ ∈ J1(HS) is an invariant state thenρ ≥ 0, Tr(ρ) = 1 and
Lβ(ρ) = ρ. It follows from (4.5) that its diagonal partρ(0) ∈ J (0)

1 (HS) satisfiesρ(0) ≥ 0,
Tr(ρ(0)) = 1 andL(0)

β (ρ(0)) = ρ(0), i.e.,ρ(0) is also an invariant state. The problem of existence

of an invariant state therefore completely reduces to the existence of the eigenvalue1 of L(0)
β .

Denoting byxn the diagonal elements ofX ∈ J (0)
1 (HS), we can identifyJ (0)

1 (HS) with ℓ1(N).
The Kraus representation derived in the previous subsection immediately yields

(L(0)
β x)n =

1

1 + e−βω0

[(
cos2(π

√
ξn + η) + e−βω0 cos2(π

√
ξ(n + 1) + η)

)
xn

+
sin2(π

√
ξn + η)

ξn + η

(
ηxn + e−βω0ξnxn−1

)

+
sin2(π

√
ξ(n + 1) + η)

ξ(n + 1) + η

(
e−βω0ηxn + ξ(n + 1)xn+1

)
]

.
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To rewrite this expression in a more convenient form let us introduce the number operator

(Nx)n ≡ nxn,

as well as the finite difference operators

(∇x)n ≡
{

x0 for n = 0,
xn − xn−1 for n ≥ 1,

(∇∗x)n ≡ xn − xn+1 (for n ≥ 0),

on ℓ1(N). A simple algebra then leads to

L(0)
β = I −∇∗D(N)e−βω0N∇eβω0N , (4.6)

where

D(N) ≡ 1

1 + e−βω0
sin2(π

√
ξN + η)

ξN

ξN + η
. (4.7)

4.5 Diagonal invariant states

We are now in position to determine all the diagonal invariant states and more generally all
eigenvectors ofL(0)

β to the eigenvalue1. Settingu = e−βω0N∇eβω0Nρ and using formula (4.6),
we can rewrite the eigenvalue equation as

∇∗D(N)u = 0.

Since∇∗ is clearly injective, this meansD(N)u = 0 and henceun = 0 unlessD(n) = 0, that
is n is a Rabi resonance. At this stage, we have to distinguish 3 cases.

4.5.1 The non-resonant case

If the system is non-resonant, it follows from (4.7) thatD(n) = 0 if and only if n = 0 and
hence our eigenvalue equation reduces to

un = ρn − e−βω0ρn−1 = 0,

for n ≥ 1. We conclude that there is a unique diagonal invariant state

e−βω0N

Tr e−βω0N
= ρβ∗

S = ρ
(1) β∗

S ,

if β > 0 and none ifβ ≤ 0.
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4.5.2 The simply resonant case

If the system is simply resonant there existsn1 ∈ N∗ such thatD(n) = 0 if and only if n = 0
or n = n1. The eigenvalue equation then splits into two decoupled equations

ρn+1 = e−βω0ρn, n ∈ I1 ≡ {0, . . . , n1 − 1},
ρn+1 = e−βω0ρn, n ∈ I2 ≡ {n1, n1 + 1, . . .}.

The first one yields the invariant state

e−βω0NP1

Tr e−βω0NP1

= ρ
(1) β∗

S ,

for anyβ ∈ R. The second equation gives another invariant state

e−βω0NP2

Tr e−βω0NP2

= ρ
(2) β∗

S ,

providedβ > 0.

4.5.3 The fully resonant case

If the system is fully resonantD(n) has an infinite sequencen0 = 0 < n1 < n2 < · · · of zeros.
The eigenvalue equation now splits into an infinite number offinite dimensional problems

ρn+1 = e−βω0ρn, n ∈ Ik ≡ {nk−1, . . . , nk − 1},

wherek = 1, 2, . . .. For anyβ ∈ R, we thus have an infinite number of invariant states

e−βω0NPk

Tr e−βω0NPk

= ρ
(k) β∗

S ,

one for each Rabi sector.

4.5.4 Metastable states

If the system is non-resonant we say thatm ∈ N∗ is a Rabi quasi-resonance if it satisfies
D(m) < D(m ± 1). Let (mk)k∈N∗ be the strictly increasing sequence of quasi-resonances. It
is straightforward to show thatD(mk) = O(k−2) ask → ∞. Setting

D0(n) ≡
{

0 if n ∈ {m1,m2, . . .},
D(n) otherwise,

andL(0)
β,0 = I −∇∗D0(N)e−βω0N∇eβω0N one immediately concludes that

L(0)
β = L(0)

β,0 + T , (4.8)
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Figure 1: The metastable cascade (notice the log-log scale !).

whereT is a trace class operator. The above analysis of the fully resonant case shows that1 is
an infinitely degenerate eigenvalue ofL(0)

β,0. The corresponding positive eigenvectors

ρ̃
(k) β∗

S =
e−βω0N P̃k

Tr e−βω0N P̃k

whereP̃k denotes the orthogonal projection ontoℓ2({0, . . . ,mk − 1}), are metastable states of
the systems. Because of these almost invariant states, the global relaxation process is extremely
slow in the non-resonant and simply resonant cases. In spectral terms, (4.8) shows that1 is
always in the essential spectrum ofLβ. It follows that relaxation can not be exponential in
infinite dimensional Rabi sectors.

As an illustration, we have computed the evolution of the first metastable statẽρ(1) β∗

S and the
relative entropies

Dk(n) ≡ −Ent
(
Ln

β

(
ρ̃

(1) β∗

S

) ∣∣∣ ρ̃
(k) β∗

S

)
,

in a typical, non-resonant one-atom maser situation (as described in [WVHW]) with atoms in
equilibrium at room temperature. We recall that the entropyof a stateµ relative to the stateν
is defined by

Ent(µ | ν) = Tr µ(log µ − log ν).

It is a measure of the “distance” betweenµ andν and is also called Kullback–Leibler divergence
in information theory. Its main property isEnt(µ | ν) ≤ 0 where the equality holds iffµ = ν.
Figure 1, showsDk(n) as a function ofn for k = 2, 3, . . . on a log-log scale. It clearly describes
the cascade ofLn

β(ρ̃
(1) β∗

S ) through the sequence of metastable statesρ̃
(2) β∗

S → ρ̃
(3) β∗

S → · · ·
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Figure 2: Cooling the cavity: 5000 interactions.
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Figure 3: Cooling the cavity: 50000 interactions.
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Figure 4: Cooling the cavity: average photon number.

Another way to see metastable states in action consists in cooling the cavity with cold atoms.
Figure 2 shows the result of such a calculation. The solid line is the initial state of the cavity
which we chose to be thermal equilibrium with an average photon number of 22. The dashed
line is the stationary stateρβ∗

S , thermal equilibrium with an average of 7 photons. The broken
line is the state of the cavity after 5000 interactions. The vertical dashed lines mark the positions
of the Rabi quasi-resonancesmk. The picture shows clearly that local equilibrium is achieved
in each interval[mk,mk+1[: the slope of the broken line agrees with that of the invariant state on
these intervals. However only the first three intervals havereached a common equilibrium. The
average photon number at this stage is still slightly largerthan 17. It requires 50000 interactions
for this number to drop under 10. Figure 3 shows the corresponding state of the cavity. A gross
picture of the relaxation process is provided by Figure 4 where the average photon number is
plotted against the number of interactions.

4.6 Rabi resonances and the block structure ofLβ

To understand the RI dynamics of Rabi-resonant systems we needto investigate the block
structure of the mapLβ in the presence ofr such resonancesn1, . . . The decomposition (3.2)
of HS into Rabi sectors induces a decomposition

J1(HS) =
r⊕

k,p=1

J (k,p)
1 (HS), J (k,p)

1 (HS) = PkJ1(HS)Pp = J1(H(p)
S ,H(k)

S ), (4.9)

where each term itself decomposes into

J (k,p)
1 (HS) =

np+1−nk−1⊕

d=np−nk+1+1

J (k,p,d)
1 (HS), (4.10)



18 L. Bruneau, C.-A. Pillet

with
J (k,p,d)

1 (HS) ≡ {X ∈ J (k,p)
1 (HS) | e−iθNXeiθN = eiθdX for all θ ∈ R}.

It easily follows from the fact thatS(n) = 0 for n ∈ R(η, ξ) that

Vσ′σPk = PkVσ′σPk = PkVσ′σ, V ∗
σ′σPk = PkV

∗
σ′σPk = PkV

∗
σ′σ,

hold for anyσ, σ′ and any Rabi projectionPk. Therefore, one has

PkLβ(ρ)Pp = Lβ(PkρPp),

i.e., the mapLβ further decomposes into

Lβ =
r⊕

k,p=1

L(k,p)
β , L(k,p)

β =

np+1−nk−1⊕

d=np−nk+1+1

L(k,p,d)
β , (4.11)

whereL(k,p,d)
β is the restriction ofLβ to the subspaceJ (k,p,d)

1 (HS). It will be useful to visualize
the elements of this subspace aslk × lp matrices (with respect to the canonical basis ofHS) of
the form

X =




0 · · · 0 x1 0 0 · · ·
0 · · · 0 0 x2 0 · · ·
0 · · · 0 0 0 x3 · · ·
...

...
...

...
...

.. .


 .

Recall thatln is the dimension of then-th Rabi sector.

4.7 The peripheral point spectrum ofLβ

We have obtained all the diagonal eigenvectors to the eigenvalue1 of Lβ in the Subsection
4.5. In this subsection we further investigate the peripheral spectrum ofLβ, more precisely the
eigenvalue problem

Lβ(X) = eiθX, (4.12)

with θ ∈ R. The following lemma shows that in almost all cases the only peripheral eigenvalue
is 1 and that all the corresponding eigenvectors are diagonal. In other words, they are no
solutions to (4.12) except for multiples of those obtained in the Subsection 4.5.

Lemma 4.6 1. The only peripheral eigenvalue ofL(0)
β is 1.

2. If the system is not degenerate, then the only peripheral eigenvalue ofLβ is 1 and the
corresponding eigenvectors are diagonal.

3. If the system is degenerate we denoteN(η, ξ) ≡ {n ∈ {0} ∪ R(η, ξ) |n + 1 ∈ R(η, ξ)}
andD(η, ξ) ≡ {d = n − m |n,m ∈ N(η, ξ), n 6= m} . In this case the set of peripheral
eigenvalues ofLβ is given by

{1} ∪ {ei(τω+ξπ)d | d ∈ D(η, ξ)}.

More precisely, for anyk, p ∈ N∗ such thatk 6= p one has:
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(i) 1 is the only peripheral eigenvalue ofL(k,k)
β and the corresponding eigenvectors are diag-

onal.

(ii) L(k,p)
β has no peripheral eigenvalue except ifnk andnp both belong toN(η, ξ) in which

case it has the unique and simple eigenvalueei(τω+ξπ)d whered = np − nk.

Proof. According to the decomposition (4.11) it suffices to consider X ∈ J (k,p,d)
1 (HS) satisfy-

ing (4.12). We note thatX∗ ∈ J (p,k,−d)
1 (HS) then satisfiesLβ(X∗) = e−iθX∗. It follows from

Theorem 4.3 thatY = (X∗X)1/2 ∈ J (p,p,0)
1 (HS) as well asZ = (XX∗)1/2 ∈ J (k,k,0)

1 (HS) are
positive diagonal eigenvectors ofLβ to the eigenvalue1.

If β ≤ 0 and lk = ∞ (respectivelylp = ∞) it follows from Subsection 4.5 thatZ = 0

(respectivelyY = 0) and henceX = 0. In the remaining cases on hasY = λρ
(p) β∗

S and
Z = µρ

(k) β∗

S for someλ, µ ≥ 0. We consider four cases.

Case I:lk 6= lp (X is not a square matrix). Without loss of generality (interchangingX and
X∗) we may assume thatlk > lp and in particular thatlp is finite. ThenZ is a diagonallk × lk
matrix whose rank does not exceedlp. It follows that at least one of its diagonal entry is zero.
Sinceρ

(k) β∗

S > 0 we conclude thatµ = 0 and henceX = 0.

Case II:lk = lp andd 6= np − nk (X is square but not diagonal). In this case we can assume
(again by interchangingX andX∗) thatd > np − nk. Then the kernel ofX is non-trivial and
we can apply the same argument than in case I.

Case III:lk = lp > 1 andd = np − nk (X is diagonal). In this case we can assumed ≥ 0. The
diagonal elements ofX can be written as

xn = µ eiϕn−βω0n, n ∈ {nk, . . . , nk+1 − 1},

for someµ ∈ C andϕj ∈ R. Assumingµ 6= 0 and using the Kraus representation (4.3), (4.4),
the eigenvalue equation (4.12) writes

eiτωd

1 + e−βω0

[(
anan+d + e−βω0an+1an+d+1

)
eiϕn

+ bnbn+de
iϕn−1 + e−βω0bn+1bn+d+1e

iϕn+1
]

= ei(θ+ϕn), (4.13)

for n ∈ {nk, . . . , nk+1 − 1} where

an ≡ C(n), bn ≡
√

nS(n).

One easily checks that|an|2 + |bn|2 = 1. The resonance condition atnk andnp = nk + d is
bnk

= bnp = 0 and hence|ank
| = |anp| = 1. Settingz ≡ eβω0 andα ≡ τωd − θ we can recast

Equation (4.13) as
z(An − 1) = 1 − Bn, (4.14)

where

An = eiαanan+d + eiα−i(ϕn−ϕn−1)bnbn+d,

Bn = eiαan+d+1an+1 + eiα+i(ϕn+1−ϕn)bn+d+1bn+1.
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The Cauchy-Schwarz inequality yieldsRe An ≤ |An| ≤ 1, Re Bn ≤ |Bn| ≤ 1 and hence

Re z(An − 1) ≤ 0, Re (1 − Bn) ≥ 0.

It follows that (4.14) is equivalent toAn = Bn = 1. In order for equality to hold in the
Cauchy-Schwarz inequalityRe An ≤ 1, we must have

an+d = eiαan, bn+d = eiα−i(ϕn−ϕn−1)bn. (4.15)

Similarly, to get equality in the inequalityRe Bn ≤ 1 requires

an+d+1 = e−iαan+1, bn+d+1 = e−iα−i(ϕn+1−ϕn)bn+1. (4.16)

If d = 0 the first equation in (4.15) and the fact thatank
6= 0 imply eiα = 1. Henceeiθ =

eiτωd = 1 andX is a multiple of the invariant stateρ(k) β∗

S . We can therefore assume thatd > 0
and hencenp > 0. Sincebnk+1 6= 0 andbnp+1 6= 0, comparing the second equations in (4.15)
atn = nk + 1 and (4.16) atn = nk allows us to conclude thateiα is real.

We shall now consider separately the two casesη = 0 andη 6= 0. In the first case, the first
equation in (4.16) implies

cos2 π
√

ξ(np + 1) = cos2 π
√

ξ(nk + 1)

and therefore √
ξ(np + 1) + ε

√
ξ(nk + 1) = r, (4.17)

for someε ∈ {±1} and some integerr > 0. Using the resonance condition

ξnp = q2,

for some integerq > 0, we can rewrite (4.17) as

ε

√
nk + 1

np

=
r

q
−
√

np + 1

np

.

Squaring both sides of this equality leads to

nk + 1

np

=
r2

q2
+

np + 1

np

− 2r

q

√
np + 1

np

,

which leads to a contradiction since the square root on the right hand side of the last equality is
always irrational.

If η 6= 0, rewriting the imaginary part of the first equation in (4.15)as

η1/2 sin π
√

ξ(n + d) + η√
ξ(n + d) + η

= ± η1/2 sin π
√

ξn + η√
ξn + η

,
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and comparing it with the second equation in (4.15)

√
ξ(n + d)

sin π
√

ξ(n + d) + η√
ξ(n + d) + η

= ±e−i(ϕn−ϕn−1)
√

ξn
sin π

√
ξn + η√

ξn + η
,

we get
√

ξ(n + d) = e−i(ϕn−ϕn−1)
√

ξn which contradicts our hypothesisd > 0.

Case IV:lk = lp = 1 andd = np − nk (X is scalar). We follow the same argument as in case
III. Now the second equations in (4.15), (4.16) are trivially satisfies and only the two equations

anp = eiαank
, anp+1 = e−iαank+1. (4.18)

survive. In the cased = 0 one can conclude, as in case III, thateiθ = 1. We can therefore
assume thatd > 0 andnp > 0, which means that(nk, nk + 1), (np, np + 1) are two distinct
pairs of consecutive resonances,i.e., that the system is degenerate. In this case, Equations
(4.18) are easily seen to be satisfied witheiθ = (−1)ξdeiτωd. 2

4.8 Ergodicity and relaxation

4.8.1 Proof of Theorem 3.3

It is now easy to prove that the diagonal invariant states obtained in Subsection 4.5 are ergodic.
Each such state is of the formρ = ρ

(k) β∗

S for somek and hence its support is a Rabi projection
Pk. Any stateµ such thatµ ≪ ρ is an element ofJ (k,k)

1 (HS) = J1(H(k)
S ). In particular

Lβ(µ) = L(k,k)
β (µ) and it is therefore sufficient to prove ergodicity ofρ with respect to the

semigroup generated byL(k,k)
β . Lemma 4.6 implies thatρ(k) β∗

S is the unique faithful invariant
state for this semigroup. Ergodicity follows from Theorem 4.4.

1. In the non-resonant case the unique ergodic stateρ
(1) β∗

S = ρβ∗

S is faithful and hence one has

lim
N→∞

1

N

N∑

n=0

(
Ln

β(µ)
)
(A) = ρβ∗

S ,

for all statesµ and allA ∈ B(HS).

2. In the simply resonant cases we shall first consider initial statesµ ∈ ⊕|k|≤d J (k)
1 (HS) for

finite d ∈ N. According to (4.9), (4.10), such a state can be decomposed into a finite sum

µ = µ(1,1) ⊕ µ(2,2) ⊕
(

d⊕

j=1

µ(1,2,j)

)
⊕
(

−1⊕

j=−d

µ(2,1,j)

)

and hence

Ln
β(µ) = L(1,1) n

β (µ(1,1))⊕L(2,2) n
β (µ(2,2))⊕

(
d⊕

j=1

L(1,2,j) n
β (µ(1,2,j))

)
⊕
(

−1⊕

j=−d

L(2,1,j) n
β (µ(2,1,j))

)
.



22 L. Bruneau, C.-A. Pillet

Since the operatorsL(1,2,j)
β andL(2,1,j)

β act on finite dimensional spaces they have a finite number
of eigenvalues which, by Lemma 4.6, all lie strictly inside the unit disk. It follows that the
corresponding terms in the above sum decay (exponentially)asn → ∞. The first two terms
in this sum can be handled as in the non-resonant case since the two Rabi sectorsH(1)

S and
H(2)

S are equipped with unique faithful invariant statesρ
(1) β∗

S andρ
(2) β∗

S . Therefore, for any
A ∈ B(HS), we have

lim
N→∞

1

N

N∑

n=0

(
Ln

β(µ)
)
(A) = µ(1,1)(I) ρ

(1) β∗

S (A) + µ(2,2)(I) ρ
(2) β∗

S (A), (4.19)

and Equ. (3.5) follows from the fact thatµ(k,k)(I) = µ(Pk). On the left hand side of (4.19)
the Cesàro mean is uniformly continuous inµ (with respect toN ) while the right hand side
is continuous. Equ. (4.19) therefore extends by continuityto any stateµ in the closure of
∪d∈N(⊕|k|≤d J (k)

1 (HS)). The next lemma shows that this is all ofJ1(HS).

Lemma 4.7 For any stateµ there exists a sequence(µk)k∈N in J1+(HS) such that

µk ∈
⊕

|d|≤k

J (d)
1 (HS)

and limk→∞ µk = µ in J1(HS).

Proof. We first note thatθ 7→ µ(θ) ≡ e−iθNµeiθN is a continuous,2π-periodic function fromR

to J1+(HS) with Fourier coefficients

µ(d) ≡
∫ 2π

0

µ(θ) e−iθd dθ

2π
.

By (2.5), one hasµ(d) ∈ J (d)
1 (HS) and hence

µk−1 ≡
1

k

k−1∑

j=0

(
j∑

d=−j

µ(d)eiθd

)
∈
⊕

|d|≤k−1

J (d)
1 (HS).

By Fejér’s integral formula (seee.g.,[Ti])

µk−1 =

∫ π

0

Fk(θ) (µ(θ) + µ(−θ)) dθ,

where

Fk(θ) ≡
1

2πk

sin2(kθ/2)

sin2(θ/2)
,

is Fejér’s kernel. SinceFk ≥ 0, it follows thatµk ≥ 0. Finally, from

µk − µ =

∫ π

0

Fk(θ) (µ(θ) + µ(−θ) − 2µ) dθ,
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we obtain the estimate

‖µk − µ‖1 ≤
∫ π

0

Fk(θ) ‖µ(θ) + µ(−θ) − 2µ‖1 dθ,

whose right hand side vanishes ask → ∞ by Fejér’s convergence theorem (see the proof of
Theorem 13.32 in [Ti]). 2

3. In the fully resonant, non-degenerate case we start with an arbitrary stateµ and introduce a
cutoff by means of the orthogonal projections

P≤n ≡
n∑

j=1

Pj.

Settingµ≤n ≡ P≤nµP≤n, using the decomposition into a finite sum of finite dimensional blocks

µ≤n =
n⊕

k,p=1




np+1−nk−1⊕

d=np−nk+1+1

µ(k,p,d)


 ,

and proceeding as in the simply resonant case we obtain

lim
N→∞

1

N

N∑

n=0

(
Ln

β(µ≤n)
)
(A) =

n∑

j=1

µ(j,j)(I) ρ
(j) β∗

S (A). (4.20)

Sincelimn→∞ µ≤n = µ in J1(HS) and
∑∞

j=1 µ(j,j)(I) = µ(I) = 1, (4.20) extends toµ, which
proves (3.6).

4. The last assertion of Theorem 3.3 is a direct consequence of Lemma 4.6.

4.8.2 Proof of Theorem 3.4

WhenH(k)
S is finite dimensional, one can say more. By Lemma 4.6 the spectrum of L(k,k)

β

consists in a simple eigenvalue1 with eigenvectorρ(k) β∗

S and finitely many eigenvalues located
in a disk{z ∈ C | |z| ≤ R} of radiusR < 1. This implies that

‖Ln
β(µ) − ρ

(k) β∗

S ‖1 ≤ Cke
−αkn,

for some positive constantsCk, αk and all stateµ ≪ ρ
(k) β∗

S . Thusρ
(k) β∗

S is (exponentially)
mixing.
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4.9 Proof of Theorem 4.4

Theorem 4.4 resembles the von Neumann mean ergodic theorem.However, the latter holds in
full generality only for contractions onreflexiveBanach spaces, which is not the case ofJ1(H).
To bypass this problem, we shall work in a Hilbert space representation.

Let M = B(H) denote the von Neumann algebra of observables onH and(K, π, Ψ) be the
GNS representation ofM associated to the invariant stateρstat (seee.g.,[BR]). On the dense
subspaceK0 ≡ π(M)Ψ ⊂ K we define the map

M : π(A)Ψ 7→ π(φ∗(A))Ψ, (4.21)

whereφ∗ acts onM and is the dual map ofφ. The operatorM implements the mapφ∗ in the
GNS representation. The following lemma is rather general.It actually holds as soon as the
initial map satisfies the Kadison-Schwarz inequality (4.22) (e.g. if it is a2-positive map) and
the reference state is invariant [AHK].

Lemma 4.8 M extends to a contraction onK.

Proof. The mapφ∗ is a completely positive map. Hence it satisfies the Kadison-Schwarz
inequality (see e.g. [Ka])

φ∗(A∗A) ≥ φ∗(A)∗φ∗(A), (4.22)

for all A ∈ B(H). In particular we have, for anyA ∈ B(H),

‖M π(A)Ψ‖2 = 〈Ψ|π(φ∗(A)∗φ∗(A))Ψ〉
= ρstat (φ∗(A)∗φ∗(A))

≤ ρstat(φ
∗(A∗A))

= ρstat(A
∗A)

= ‖π(A)Ψ‖2,

where we have used thatρstat is an invariant state to get the 4th line. The operatorM thus
defines a contraction onK0 and hence extends to a contraction onK. 2

Let ρ be any state. Then there existsΦ ∈ K such thatρ(A) = 〈Φ|π(A)Φ〉 (see e.g. [BR, P]).
It is therefore sufficient to prove that for any normalized vector Φ ∈ K, and any observable
A ∈ M,

lim
N→∞

1

N

N∑

n=1

〈Φ|π (φ∗n(A)) Φ〉 = 〈Ψ|π(A)Ψ〉. (4.23)

Moreover, sinceρstat is faithful, the vectorΨ is also cyclic for the commutant algebraπ(M)′.
We may therefore prove (4.23) only for vectors of the formΦ = B′Ψ whereB′ ∈ π(M)′. For
such vectors, we have

〈Φ|π (φ∗n(A)) Φ〉 = 〈B′∗B′Ψ|π (φ∗n(A)) Ψ〉
= 〈B′∗B′Ψ|Mnπ(A)Ψ〉. (4.24)
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SinceM is a contraction on the Hilbert spaceK, the von Neumann mean ergodic theorem
asserts that

s − lim
N→∞

1

N

N∑

n=1

Mn = P,

whereP is the projection ontoKer(M − I) alongRan(M − I) = Ker(M∗ − I)⊥.

Lemma 4.9 Ker(M∗ − I) = C Ψ.

Proof. Clearly,Ψ ∈ Ker(M∗ − I). Conversely, letΦ ∈ K such thatM∗Φ = Φ. Consider
the linear functionalω : M ∋ A 7→ 〈Φ|π(A)Ψ〉 ∈ C. It is easy to see thatω is normal onM.
Hence, there existsX ∈ J1(H) such thatω(A) = Tr(XA). Moreover, for anyA ∈ M

Tr(XA) =〈Φ|π(A)Ψ〉
=〈M∗Φ|π(A)Ψ〉
=〈Φ|Mπ(A)Ψ〉
=〈Φ|π(φ∗(A))Ψ〉
=Tr(X φ∗(A))

=Tr(φ(X)A).

Thus, X is a trace class operator invariant forφ. Therefore there existsλ ∈ C such that
X = λρstat and we have for anyA ∈ M,

〈Φ|π(A)Ψ〉 = λ〈Ψ|π(A)Ψ〉.

SinceΨ is cyclic forπ(M) this proves thatΦ ∈ CΨ. 2

Using the above lemma, and sinceMΨ = Ψ, the von Neumann mean ergodic theorem asserts
that

s − lim
N→∞

1

N

N∑

n=1

Mn = |Ψ〉〈Ψ|.

Together with (4.24), we get, using the fact thatΦ = B′Ψ is a normalized vector,

lim
N→∞

1

N

N∑

n=1

〈Φ|π (φ∗n(A)) Φ〉 = 〈B′∗B′Ψ|Ψ〉 〈Ψ|π(A)Ψ〉

= 〈Ψ|π(A)Ψ〉,

which concludes the proof.

4.10 The resonance condition

Assertions 1,2 and 3 of Lemma 3.2 are elementary and their proof is left to the reader. To prove
assertion 4 we consider the conditions for consecutive resonances.
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In the perfectly tuned caseη = 0, the only possible consecutive resonances are0 and1. Indeed,
if n > 0 thenn andn + 1 are resonances iffξn = p2 andξ(n + 1) = q2 for positive integersp
andq. It follows that √

n

n + 1
=

p

q
,

which contradicts the irrationality of the square root on the left hand side.

Forη > 0, the conditions for consecutive resonances0 ≤ n < n + 1 ≤ m < m + 1 are

n = 0 or ξn + η = p2, ξ(n + 1) + η = q2,

ξm + η = p′2, ξ(m + 1) + η = q′2,

for positive integersp, p′, q, q′. It easily follows thatξ = q′2−p′2 andη = p′2− ξm from which
we conclude thatξ andη must be integers andη a quadratic residue moduloξ. 2

Remark. Degenerate systems exist, as the following example shows: With ξ = 720, η = 241,
n = 1 andm = 2 one gets

ξ + η = 312, 2ξ + η = 412, 3ξ + η = 492.
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