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Practical Characterisation of the Friction Force for the Positioning and
Orientation of Micro-Components

Mickaël Paris and Yassine Haddab and Philippe Lutz and Patrick Rougeot

Abstract— This paper deals with the description of a method
for the measurement of friction force between a very small
object (80 to 300 µm) and a support. The goal is to design
a feeder based on controlled mechanical vibrations in order
to drive microcomponents by breaking the friction force. The
contact model is based on the Hertz theory and the Greenwood-
Williamson multi-asperity model. The amplitude of the static
friction force is measured in a clean environment with an
AFM (Atomic Force Microscope) whose cantilever is placed
in the vertical position. Using this setup and the modeling,
we have estimated the interfacial shear stress between the
microcomponent and the support.

I. INTRODUCTION

In order to perform micro-assembly tasks, micro-assembly
systems must be able to carry out three main functions:
handling, joining and feeding. In the microfactory concept,
feeding systems are taking a great importance to move and
drive the components between and inside the assembly cells.
To obtain a good efficiency, the feeding system have to be
modular (at the architectural and control level) and must
allow automatic control of the position and the orientation
of the micro-objects.

In the literature some microsystems like conveyors and
feeders based on different approaches are presented. Some
of them use various fields in order to move an object or
a pallet. In [1] a pneumatic conveyance is used, in [2]
and [3] magnetic conveyors are developed, and in [4] an
electric field is used to control the displacement step. The
concept of ciliary micromotion is also developed in [5]; the
ciliary micro-actuators cooperate in order to move the micro-
components. Ultrasonic field is also used like [6] and [7].

One approach is to use mechanical vibration, implemented
notably in the vibrating bowls [6] or step feeders where
the vibrations drive a component to a particular place.
However, these systems are often dedicated to particular
microcomponents with sizes > 1 mm3.

In [6], a table is moved along a vertical direction by
a piezoelectric actuator, and it allows only to break the
friction and surface forces. However, the positioning of the
parts is obtained by the electrostatic fields produced by four
electrodes.

Our objective is to design a feeder based on controlled
mechanical vibrations and well adapted for very small size
components by breaking the adhesion forces, very present
at the small scale (< 500µm), and drive them at the right
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position with a very good level of precision. We propose a
planar system where there is no prestressing action on the
micro-component and the step is induced by using inertial
force.

The displacement of the moving plate along the horizontal
direction is realized by a piezo-electric stack actuator Fig. 1.
It enables to get enough dynamics to break the adhesion
forces and the friction forces. The result is a displacement of

Fig. 1. Feeder by inertial force

the micro-object in the opposite direction and so, the inertial
force acting on the micro-object is defined by ∑

−→
F = m.−→a

where F , is the tangential or inertial force, m the micro-
object’s mass and a the acceleration of the plate. Moreover,
understanding the interactions between the surfaces of the
micro-objects and the feeder is critical to control the motion.
So, the plate’s acceleration will be adapted for an automatic
control. Friction and surface forces depend on the roughness
of both surfaces. This roughness influences the contact
between them. The study of roughness parameters and the
contact between two flat surfaces will allow to evaluate the
friction and the interfacial strengths.

II. STATE OF THE ART ON CONTACT

The static friction was first estimated by Leonardo da
Vinci, Charles Augustine Coulomb, and Guillaume Amon-
tons. The first results are known under the name of Laws of
Amontons-Coulomb:

1) The force of friction is directly proportional to the
applied load.

2) The force of friction is independent of the nominal area
of contact.

It is in 1950 that David Tabor and Frank P. Bowden showed
that the friction force Ff depends on the real area (“Ar”)
of contact as Ff = τAr, where τ is the friction stress which



is independent of the contact surface. The friction depends
on three factors: the real area, the strength of interfacial
bonds, and the deformation processes involved when these
interfacial bonds are broken during sliding. This first model
has been completed by Greenwood and Williamson [8] in
order to take into account all asperities in contact between
the two surfaces (Fig. 2). Each surface is characterized by the

Fig. 2. Two rough surfaces in contact

geometry of its summits, which is considered as spherical,
and all summits have the same radius Ri Furthermore, the
height of these asperities varies randomly according to a law
φi(z).

These two surfaces are represented by an equivalent rough
surface and a perfect smooth rigid surface in contact sepa-
rated by a distance d (Fig. 3). The equivalent rough surface
is characterised by the shape of asperities and the height
distribution. All asperity summits have the same radius R,

1
R

=
1

R1
+

1
R2

, (1)

where R1 and R2 are the mean radius of asperities of the
two surfaces in contact, respectively, and their heights vary
randomly following a Gaussian probability density function
φ(z):
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1√

2πσ
exp

[
−0.5

(
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σ

)2
]

, (2)

where σ is the standard deviation of asperity heights:

σ =
√

σ2
1 +σ2

2 , (3)

σ1 and σ2 are the standard deviation of height distribution
of asperities for the two surfaces, and µ the mean height
asperities of the rough equivalent surface.

The GW model considers the cumulative effect of the
actions of individual local asperities, in other words, the
effect of each individual asperity in contact do not affect
the behavior of the nearby asperities. When an asperity is
in contact, depending on its height, it is then more or less
flattened and according to Hertz theory the compliance is:
δ = z−d.

Chang et al. [9] extended the elastic GW model into the
elastic-plastic contact regime (the CEB model). In [10], the
effect of adhesion was included by using the DMT model
[11] for contacting asperities and the Lennard-Jones potential
between non-contacting asperities. Finally a model for cal-
culating the coefficient of friction was given in [12]. Fuller
and Tabor [13] developed a theoretical model which use the
JKR [14] model of adhesion with a Gaussian distribution of
asperity heights. Adams and Müftü model [15], [16] includes

Fig. 3. GW model of contact mechanics

the effects of adhesion, and the height-dependent radius of
curvature using the Maugis model and extends the Hurtado
and Kim single asperity friction model [17] to a multi-
asperity friction model.

III. CONTACT MODEL

For two real surfaces separated by a distance d (defined
from the average height of the asperities) the number of
contacting asperities n is :

n = N
∫ ∞

d
φ(z)dz (4)

where N = ηAn, is the number of all asperities, η the density
of asperities per unit area, An the nominal contact area, z
the height coordinate measured from the average height of
asperities. The real area is defined by:

Ar = N
∫ ∞

d
A(δ )φ(z)dz (5)

A(δ ) being the area of a single asperity in contact and P(δ )
the corresponding asperity load. So the total load is :

Pr = N
∫ ∞

d
P(δ )φ(z)dz (6)

The total shear force Fr acting on the real surface, is
determined by integrating the force acting on each single
asperity:

Fr = N
∫ ∞

d
A(δ )τφ(z)dz, (7)

where τ is the interfacial shear stress. As we can see, Fr
depends on the area of a single asperity in contact A(δ ),
consequently, it depends on the choice of the model of
contact.

The real surface and A(δ ) depend on the load and the
surface forces. These forces induce an additional surface dS
on each asperity and we consider in this first work that their
effects as negligible on. Thus only the load is taken into
account and the contact model is based on the Hertz theory.



So P(δ ) and A(δ ) for a single asperity in contact is expressed
by:

P(δ ) =
4
3

E∗R
1
2 δ

3
2 =

4
3

E∗R
1
2 (z−d)

3
2 , (8)

where E∗ is the effective elastic modulus, and

A(δ ) = πa2
δ = πδR = π(z−d)R, (9)

where aδ is the contact radius. If we combine (6) and (8)
we can evaluate the separation distance d (Fig.9) since the
total load is the weight of the micro-object.

Pr =
4
3

NE∗R
1
2

∫ ∞

d
(z−d)

3
2 φ(z)dz (10)

N and R are evaluated from the scanning of the surfaces. In
order to find numerically the value of d we use a function
Pr(d) defined piecewise on two intervals; on [µ,zmax[, it
is defined by (10); on [zmax,∞[, it is the constant 0. zmax
represents the highest asperity height of the equivalent rough
surface. Physically, d exist only if two surfaces are in contact,
then d cannot be bigger than zmax.

Pr(d) =




4
3 NE∗R

1
2

∫ zmax

d
(z−d)

3
2 φ(z)dz ifd ∈ [µ,zmax[,

0 otherwise.

Since we can find d, we are able to find the real contact
area between the two surfaces, by using the equations (5)
and (9):

Ar = NπR
∫ ∞

d
(z−d)φ(z)dz (11)

IV. FORCES MEASUREMENT

To analyse the validity of the micro-force modeling,
experimental force measurements are necessary. This part
deals with the presentation of the micro-force measurement
system. The interactions between the micro-objects and the
surface are measured by a specifically developed system
called AMIS-2 (AFM based MIcromanipulation System,
second version).

A. Surfaces in contact

Two kinds of objects are used: micro-objects and supports.
Both of them are cut in a silicon wafer. In the experiments
the micro-objects are put on the support, and we study
the interactions between these two objects. Two kinds of
supports have been built: flat supports and supports with
grooves allowing to reduce the surface by half, see Fig. 4.
Let p be the period and h the step height. The nominal
area between the micro-object and the support is decreased
from 100% to 50%. Each micro-object is a cuboid, and
the Table(I) shows their different characteristics (density of
silicon : 2330kg/m3 ). We are able to vary two parameters:
the contact area between the micro-object and the support
and the weight of the micro-objects.

Fig. 4. Representation of the supports and the objects used.

TABLE I
QUOTATION OF MICRO-OBJECTS

Length (µm) width (µm) height (µm) Weight (N)
80 80 50 7.3143e-09

100 100 50 1.1428e-08
200 200 50 4.5714e-08
300 300 50 1.0285e-07

B. AMIS-2 station and experimental procedures

A view of AMIS-2 is given Fig.5. This system is based
on an Atomic Force Microscope and three linear microp-
ositioning stages. These stages are used to fit the support
under the AFM’s cantilever and to align the micro-object
with the latter. The AFM is installed in a non-conventional
position. The objective is here to place the cantilever in
vertical position to measure its curvature when the object
is in contact. This is why, inside AMIS-2, the AFM is
perpendicularly placed with regard to its “normal” position
as during the scanning of a surface Fig. 6.

Different kinds of rectangular cantilevers are used to adapt
the resolution according to the size of the objects and the
range of the photodiode. Indeed, given that the surface of
objects varies from 90000 µm2 to 6400 µm2, it is necessary
to adapt the stiffness of the cantilever. The table II resumes
the different characteristics of the used cantilevers.

TABLE II
CHARACTERISTIC OF RECTANGULAR CANTILEVERS. THICKNESS,

WIDTH AND LENGTH ARE THE NOMINAL VALUES. THE RESONANCE

FREQUENCY IS FOUND EXPERIMENTALLY BY THE AFM. THE STIFFNESS

IS DETERMINED FROM ITS UNLOADED RESONANT FREQUENCY.

Cantilevers Nanosensors Ultrasharp
TL-FM NSC35/AIBS

Thickness (µm) 3 2
Width (µm) 28 35
Length (µm) 225 130
Stiffness (N/m) 2.08 1.25
Resonance Frequency (kHz) 70,42 105

In order to decrease the influences of the environmental
conditions, we work under a class 100 vertical laminar flow
workstation, and we maintain the temperature at 25°C.

Our set-up is used to obtain experimental force curves
based on the real-time measurement of the AFM cantilever
bending. A force curve is a quasi-static trajectory which
correspond to an “approach and depart” cycle between the



Fig. 5. AMIS-2 station

Fig. 6. AFM positions : (a) Normal, (b) Vertical

cantilever and the micro-object (in x direction) see Fig. 7.
When the support and the object are aligned in y and z

Fig. 7. Example of force curve

directions, the support is moved along the x direction. As
soon as the object touches the cantilever, we observe the
normal force which acts on the cantilever, until a maximal
value. After that, we observe the sliding of the object on
the support. The objective is to find the maximum value of
the static friction, for different objects and different supports
(i.e. roughness parameters: d,R,σ ,µ,N). Before performing
the evaluation of the static friction force, we perform a scan
of the surface topography with the AFM (Fig.8) in order
to evaluate the roughness parameters of the GW equivalent
surface.

Fig. 8. Topography of silicon surface obtained using an AFM.

C. Characteristics of the equivalent surface
We define the total number of asperities for the equivalent

surface, as the sum of the number of asperities for each
surface. When a point resulting from the scanning is higher
than its eight nearest neighbours, it is considered as an
asperity summit. Thus, the mean height of the asperities for
the first surface, µ1, is calculated by :

µ1 =
1
M

M−1

∑
i=0

zi, (12)

where M is the number of asperities from the sample
scanning and zi their respective height. µ2 is calculated with
the same method. So µ for the equivalent surface is the
average of µ1 and µ2. The standard deviation σ defined by
(3), is obtained by estimating the root mean square (RMS)
parameter Sq of each surface and is defined by

Sq =

√
1
M

M−1

∑
i=0

[zi −µ]2. (13)

Equation (3) can be rewritten as:

σ =
√

S2
q1

+S2
q2

. (14)

The mean radius of asperities for each surface is obtained
from a roughness profile. Each asperity is approximated by a
curve fit and the mean radius is the average of all radius. As
all the parameters of equation (2) and (10) are known, it is
possible to calculate the separation distance d by resolving
the equation (10) when Pr(d) is equaled to the weight of the
micro-object. Figure 9 shows the evolution of the distance d
versus the load of a 300× 300 micro-object put on a flat
support and support with grooves. For a given load, the
distance d decreases when the contact surface decreases. In
fact, the number n of asperities in contact decreases, and the
partial load which is supported by each of them is greater.

TABLE III
SUMMARY OF EVALUATION OF TRUE AREA

Micro-objects Real area Real area Area
(µm2) (10−17m2) (10−17m2) ratio

flat support support with
grooves

300×300 4.9734 3.7833 0.76
200×200 2.2104 1.6815 0.76
100×100 0.55259 0.42037 0.76
80×80 0.35366 0.26904 0.76



Fig. 9. Load of 300×300 micro-object vs separation distance d for a flat
support and a support with grooves.

Determining d allows us to evaluate the real area. The
distance d is nearly constant for any micro-object placed on
the flat support (d = 34.638 nm). When the micro-objects
are placed on the supports with grooves, we observe that
d = 34.600 nm. In fact, their weights are so weak that they
can’t change significantly the separation distance. Table III
resumes the obtained results. We notice a constant ratio
between the true areas whatever the dimensions of the micro-
objects are.

V. EXPERIMENTAL RESULTS

A. Force measurement

The micro-objects are initially placed on a flat support and
the Fig.10 illustrates the force curve measured with the AFM
for a 300× 300 micro-object. In this example we notice a
maximum value of friction force Fr = 0.91 µN. When the

Fig. 10. Friction force curve for a 300× 300 micro-object on the flat
support.

micro-object is placed on the surface with grooves Fig. 11,
the maximum value of the friction force decreases and in our
example, Fr = 0.708 µN.

Fig. 11. Friction force curve for a 300×300 micro-object on support with
grooves

TABLE IV
SUMMARY OF FRICTION FORCES MEASURES FOR A 300×300

MICRO-OBJECT PLACED ON FLAT SUPPORT AND ON A SUPPORT WITH

GROOVES.

Friction forces Fr (µN) Fr (µN) Ratio
on flat support on support with grooves

0.9759 0.7078
0.9174 0.6962

Mean 0.94 0.70 0.74

We observe a diminution of the friction force amplitude
when the real area decreases. In this case, the ratio between
the friction force amplitudes is 0.74. This value is close to the
ratio between the real areas. These first results comply the
Tabor’s theory between the friction force and the real area.
The interfacial shear stress τ can be considered as constant at
this scale. From this result we can evaluate the shear stress.

Based on the evaluation of the friction force for a 300×
300 micro-objects the mean value of the interfacial shear
stress is 18.75 (GPa) (see table(VI)). Other experiments have
been performed using micro-objects with various sizes.

TABLE V
EVALUATION OF THE INTERFACIAL SHEAR STRESS τ FOR

MICRO-OBJECTS PLACED ON A FLAT SUPPORT.

micro-objects 300 200 100 80

Real area 10−17(m2) 4.97 2.21 0.552 0.353
Mean Fr 10−6(N) 0.94 0.37 0.17 0.08
τ (GPa) 19.03 16.81 25.33 22.91

Table(V) presents the results. We notice that the shear
factor is between 16.81 < τ < 25.33 (GPa). The obtained
result is 22.18±3.15GPa, that is equivalent to an uncertainty
of 14.2%.

B. Application on the feeding system

First experiments on the feeding system have shown the
validity of using a vibrating system (Fig. 1) for feeding very
small components. The piezoelectric stack is supplied by
a sawtooth voltage of 100 Hz and 200 Vpp. The obtained



TABLE VI
EVALUATION OF THE INTERFACIAL SHEAR STRESS τ FOR A 300×300 MICRO-OBJECT

micro-objects Real area 10−17(m2) Mean Fr 10−6(N) Mean τ (GPa) Real area 10−17(m2) Mean Fr 10−6(N) Mean τ (GPa)
on flat support on flat support on grooves on grooves

300 4.97 0.94 19.03 3.7833 0.70 18.47

displacement for a cuboid of 500× 500 µm2, is about 3.3
µm/step. Figure 12 illustrates the presents results.

Fig. 12. Vibrating experiment.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work, we have presented a method to determine
the friction force for a flat micro-object in contact with a flat
support. This force will be used to control an inertial force
feeding system. The model of contact is based on the Hertz
theory and the Greenwood-Williamson multi-asperity contact
theory. This first approach has permitted to evaluate the
separation distance d between the surface of the micro-object
and the support. Furthermore, for all the micro-objects the
real contact area ratio with the flat support and the support
with grooves is constant. Finally, the interfacial shear stress
have been evaluated experimentally, and the results give a
value of 16.81 < τ < 25.33 (GPa).

The experimental set up has allowed to find the maximum
friction force required to move a micro-object.

B. Future Works

The evaluation of τ and d will allow to elaborate con-
trollers for the designed feeding system. To improve our
approach, we will include the effect of the adhesion forces
inside the contact model by using a model based on the
DMT, JKR or Maugis’s theory. Moreover, experiments with
other types of materials and supports will be performed.
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