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Abstract

We present the multipolar potentials at large intermolecular distances for the 18 doubly-

degenerate spin-orbit states arising from the interaction between the two open-shell systems, C(3P)

and OH(X2Π). With OH fixed at its ground vibrational state averaged distance r0, the long-range

potentials are two-dimensional potential energy surfaces (PESs) that depend on the intermolecular

distance R and the angle γ between R and r. The 18 × 18 diabatic potential matrix elements

are built up from the perturbation theory up to second order and from a two-center expansion

of the coulombic interaction potential, resulting in a multipolar expansion of the potential matrix

expressed as a series of terms varying in R−n. The expressions for the long-range coefficients of

the expansion are explicitly given in terms of monomer properties such as permanent multipole

moments, static and dynamic polarizabilities. Accurate values for the monomer properties are used

to properly determine the long-range interaction coefficients. The diagonalization of the full 18 ×

18 potential matrix generates adiabatic long-range PESs in good agreement with their ab initio

counterparts.
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I. INTRODUCTION

Reactions with OH are relevant to the chemistry of planetary atmospheres and interstellar

medium. Indeed, the hydroxyl radical reacts with a lot of compounds and, despite its very

short lifetime, it acts as a cleaner of the Earth atmosphere since it can transform active

species into inactive ones, and inversely. Nevertheless, there are only few experimental

results for this class of reactions as experiments with two radicals are difficult to perform or

impossible to achieve in practice [1–4]. So theoretical studies are needed in order to predict

rate constants or to confirm the measured ones, in particular at low temperatures of interest

for the interstellar dense clouds (10 K - 30 K). In radical-radical reactions, there often are no

barrier to reaction for optimal angles of approach, and, hence, low energy collisions generally

assume great importance. In such a case, an accurate knowledge of the long-range potential

surfaces is crucial to get a proper description of the dynamics at low temperatures. At large

separations, the interaction potential between two neutral systems can be expressed in terms

of inverse powers of the intermolecular distance, R. The long-range interaction coefficients of

such an expansion are a valuable tool for predicting very accurately the asymptotic behavior

of the PESs. For open-shell systems the situation is further complicated as the adiabatic

states correlate to degenerate states of the fragments (such as the atomic P and diatomic Π

states in the present case), giving rise generally to a breakdown of the Born-Oppenheimer

(BO) approximation. A solution to this problem was suggested by Smith[3], who proposed

the concept of diabatic states, linear combinations of adiabatic states. The introduction of

diabatic states is at the expense of dealing with a non-diagonal PES matrix.

Fine structure splitting can either greatly control the kinetics of such reactions, as tran-

sitions may occur among the multiple states correlating to different reactant fine-structure

levels. Indeed, for exoergic reaction driven by a barrierless PES, the influence of fine-

structure populations on reactivity is highly dependent on the adiabaticity of the collision.

However, in our previous studies [5–7] and in the vast majority of reaction dynamics, the

assumption is made that transitions do not occur between states correlating with different

fine-structure levels. Populations are assumed to partition adiabatically onto reactive or

non reactive PESs as the reactants approach each other and so, thermal rate constants in-

clude this effect through a simple multiplicative factor corresponding with the probability

of initiating a collision on a given reactive PES. The behavior of rate constants with the

2



temperature is then greatly modified according to this Maxwell-Boltzmann factor as can be

seen on Fig.4 of Ref.[5]. In particular, the role of fine structure effects in the C+OH reaction

will be important in nonthermal environments such as diffuse interstellar clouds.

Either, the dynamics of ultracold collisions is governed by long-range interactions, as the

intermolecular forces between the reactants are much larger than their initial kinetic energy.

Therefore, there is a need to precisely describe the interaction potentials at the very long

range of the intermolecular distance. Since the long-range interactions are determined by

intrinsic properties of each reactive specie, such as the permanent multipole moments and

polarizabilities, these quantities must be evaluated with extreme accuracy.

The interaction between an open-shell (such as OH) and a closed shell system is already

an interesting case of study, as the closed-shell system lifts the degeneracy of the open-shell

(2Π for OH) electronic state [8–12]. The interaction between two open-shell systems is even

more challenging due to the size increase of the interaction matrix, and scarce works exist

in such cases [8, 13, 14]. Indeed, the interaction of C(3P)+ OH(X2Π) gives rise to 18 doubly

degenerate states when fine-structure levels are considered (12 electronic states if spin-orbit

couplings are neglected) and long-range studies of open-shell atom + OH systems have been

investigated, to our knowledge, at the electrostatic energy level only[8] or within a state

averaged approximation [14].

We are presently interested in such radical-radical long-range potentials and their non-

adiabatic couplings in the special case of collision between a ground state carbon atom

C(3P) and a ground state hydroxyl radical OH(X2Π). This reactive collision is a source of

carbon monoxide in the universe (interstellar medium, atmospheres, comets, ...) and a sink

of the hydroxyl radical. Recently, a global PES has been built for the ground X2A′ state[5] of

C+OH based on the multi-reference configuration interaction (MRCI) method, including the

Davidson correction, with Dunning aug-ccpVQZ basis sets. No barrier has been observed

in the entrance channel of the PES. Based on this PES, quasiclassical dynamics studies

have furnished estimations of cross-sections and rate constants of the C(3P) + OH(X2Π) →
CO(X1Σ+) + H(2S) reaction [6, 7].

We present in Sec.II the formalism to evaluate the electrostatic, dispersion and induction

energies of the doubly-degenerate 18 long-range states of C(3P) + OH(X2Π) including the

monomer spin-orbit splittings and in Sec III, the results of the calculations as well as a

discussion of these results. We conclude the paper in Sec IV.
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II. THE C+OH POTENTIAL ENERGY SURFACES

The potential energy surfaces associated with the C(3P) + OH(X2Π) system have been

studied by means of ab initio quantum chemistry calculations [15], globally for the X2A′

ground state [5] and the first excited 2,4A′′ [16] states, and in the region of the entrance

channel for the 2,4A′ [16] states. To date, none of the latter PESs has included an accurate

description of the long-range part. Those long range potentials are described here following

the perturbation theory up to second order and using a two-center expansion of the inter-

molecular coulombic potential, leading to a series of terms varying in 1/Rn. The first order

perturbation will be described in first approximation by quadrupole-dipole and quadrupole-

quadrupole interactions, giving rise to potential matrix elements varying in 1/R4 and 1/R5

respectively. The second order perturbation, leading to the dispersion and induction en-

ergies involving induced multipole moments, will be truncated to terms in 1/R6. Taking

into account the 36 fine structure states dissociating into C(3P) + OH(X2Π) results in a

36×36 diabatic potential matrix, whose diagonalization leads to 18 doubly-degenerate adi-

abatic PESs. To describe the long-range part of such an atom-diatom system we employed

the usual set of Jacobi coordinates, i.e. the intermolecular separation R between carbon

atom and the OH center-of-mass, the intradiatomic distance r, and the angle γ between the

two vectors R and r. The (R, r, θ) set of coordinates previously defined in Ref. [5] relates

with the present one by γ = π − θ and thus, in present work, γ=0◦ corresponds to linear

OHC and γ=180◦ to linear COH. The OH internuclear distance r has been kept fixed at

its ground vibrational state averaged distance r0, and, thus, we are actually dealing with

two-dimensional PESs matrix elements, depending on R and γ only.

A. Formalism for the electrostatic energy

The electrostatic energy between two interacting systems A (carbon atom) and B (hy-

droxyl radical), given by the first order of the perturbation theory, writes

E(1) = 〈Ψ00 |V̂ab |Ψ00〉 (1)

where Ψ00 = Ψ0
aΨ

0
b is the product of the C(Ψ0

a) and OH(Ψ0
b) ground state electronic wave-

functions of each unperturbed system, V̂ab the coulombic interaction potential operator, and
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A and B are considered far enough apart that the overlap between their wavefunctions can

be neglected. In that case, the multipole expansion of V̂ab writes

V̂ab =
∑

lalb

1

Rla+lb+1

l<
∑

m=−l<

gm(la, lb) Q̂m
la Q̂−m

lb
(2)

where l< =min(la, lb) and the factor gm(la, lb) writes

gm(la, lb) = (−1)la
√

2Lab + 1





2Lab

2la





1/2 



la lb Lab

m −m 0



 δLab,la+lb (3)

where
(

a
b

)

is a binomial coefficient. The multipole moment operators Q̂m
l associated with

each monomer are defined such as

Q̂m
l =

√

4π

2l + 1

N
∑

i=1

qir
l
iY

m
l (θ, φ) (4)

where N equals the number electrons plus the nucleus of each monomer. In the above

equations, we have aligned the intermolecular axis R along the z-axis of the space-fixed

(SF) coordinate frame so that the body-fixed (BF) z-axis and the SF z-axis coincides.

The multipole moment operators Q̂m
l are defined in the SF coordinate frame, m being the

projection of the l angular momentum along the SF z-axis and ω̂ = (φ, θ, 0) defines the set of

Euler angles of each monomer in the SF frame. Since we are dealing with a triatomic system,

we furthermore choose the xz-plane of the BF frame to be coincident with the xz-plane of

the SF frame so that φa = φb=0.

The zero-order ground state wavefunction of the OH diatom is labelled |Ψ0(OH)〉 =

|Λ, Σ〉 = | ± 1,± 1
2

〉

or | ∓ 1,±1
2

〉

, where Λ and Σ are the projection of the molecular orbital

and spin angular momenta along the OH intradiatomic axis r, respectively. For a diatomic

molecule, they are good quantum numbers that lets define Ω = Λ + Σ as the projection of

the total angular momentum along the intradiatomic axis.

The zero-order ground state wavefunction of the carbon atom is labelled |Ψ0(C)〉 =

|LSMLMS〉 in the LS coupling case (if spin-orbit coupling is neglected), and |JMJ〉 in JJ

coupling case (when spin-orbit coupling is accounted for). ML is the projection of the L

electronic orbital momentum of the carbon atom along the BF z-axis, S and MS are the

total spin and spin projection along the BF z-axis, J is the total L+S angular momentum
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and MJ its projection along the BF z-axis. The |JMJ〉 (coupled) basis states are related to

the |LSMLMS〉 (uncoupled) ones by

|JMJ〉 =
∑

MLMS

|LSMLMS〉 〈LSMLMS | JMJ〉 (5)

where 〈LSMLMS | JMJ〉 is a Clebsch-Gordan coefficient and MJ = ML + MS . The eigen-

functions |JMJ〉 and |LSMLMS〉 have been tabulated for the (p2)3P state of carbon atom

by Gentry and Giese (see Table 3 of Ref.[17]).

The multipole moments Q̂m
l of Eq. 2 are defined with respect to a SF frame. In order

to get potential matrix elements with an explicit γ dependence, it is preferable to deal with

multipole moments q̂m′

l defined relative to molecular-fixed axis. Let ω̂ = (φb, γ, 0) be the

Euler angles of the OH intradiatomic axis r relative to the SF frame. In such a case, the

multipole moment operators defined relative to the SF and OH bond axis are related by:

Q̂m
l =

∑

m′

q̂m′

l

[

Dl
mm′(ω̂)

]∗
(6)

where Dl
mm′(ω̂) is the Wigner rotation matrix between the SF and molecular-fixed frames.

Furthermore, since φb=0, we have Dl
mm′(0, γ, 0) = dl

mm′(γ), where dl
mm′(γ) is a reduced

Wigner rotation matrix. Using Eqs. 2 and 6, the electrostatic energy expressed in the

|JMJ〉 |Λ, Σ〉 diabatic basis set then writes:

E
JMJJ ′M ′

J
ΛΣΛ′Σ′

elec =
∑

lalb

1

Rla+lb+1
gm(la, lb) 〈JMJ |Q̂m

la |J ′M ′
J〉 〈Λ| q̂m′

lb
|Λ′〉 dlb

−mm′(γ)δΣΣ′ (7)

where 〈JMJ |Q̂m
la
|J ′M ′

J〉 and 〈Λ |q̂m′

lb
|Λ′〉 represent the 2lb-pole of C and OH, respectively.

From the Wigner-Eckart theorem, it follows that the latter matrix elements are zero unless

m = MJ − M ′
J and m′ = Λ − Λ′.

The 4×4 matrix 〈ΛΣ |q̂m′

lb
|Λ′Σ′〉 for OH reduces to a 2×2 doubly-degenerate

〈Λ |q̂m′

lb
|Λ′〉 δΣ,Σ′ matrix due to the δΣ,Σ′ factor. Diagonal elements (Λ − Λ′ = 0) will de-

pend on q̂0
1(OH)=µ̂OH and q̂0

2(OH), the dipole and quadrupole moment operators of OH,

respectively (note that in Ref. [8], QOH = 2q0
2(OH) is used instead). For diatomics in a Π

state, Λ − Λ′ = 0,±2, so that matrix elements of q̂±1
l are all zero. Extra-diagonal matrix

elements (Λ−Λ′ = ±2) will depend on q̂±2
2 (OH) only (noted Qc(OH) in Ref. [8]). An explicit
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γ-dependence of the 2×2 potential matrix is given by Eq.(14) of Ref. [8]. But, it is worth to

note that the definition of the Q̂m
l (GW) multipole moments is not the same as that given

by Eq. 4 of present work. Both definitions are related by

Q̂m
l (Eq. (4)) = (−1)m−|m|

√

(l − m)!

(l + |m|)!Q̂
m
l (GW). (8)

The 〈JMJ |Q̂m
la
|J ′M ′

J〉 matrix elements for carbon atom build up a 9×9 matrix. Since

Qm
1 dipole moments are zero for atoms, the first non zero permanent multipole moments of

carbon will be the quadrupole moment (la = 2). According to Graff and Wagner [8], the

〈JMJ |Q̂m
2 |J ′M ′

J〉 matrix elements can be expressed as proportional to the quantity Q2(C)=

2〈L0 |Q̂0
2 |L0〉. We present those relations in Appendix A for the 〈JMJ |Q̂m

2 |J ′M ′
J〉 matrix

elements of carbon, with m=0,1 and 2, as they differ slightly from the ones of Ref. [8].

Using Eq. 5, the electrostatic energies of Eq. 7 can also be rewritten as a function of the

〈LML |Q̂m
la
|LM ′

L〉 matrix elements as

E
JMJJ ′M ′

J
ΛΣΛ′Σ′

elec =
∑

lalb

1

Rn

∑

MLMSM ′

L
M ′

S

〈LSMLMS | JMJ〉 〈LSM ′
LM ′

S | J ′M ′
J〉

×δMSM ′

S
δΣΣ′

ii′jj′

V elec
nlbMaMb

dlb
−MaMb

(γ) (9)

where the electrostatic interaction coefficients ii′jj′

V elec
nlbMaMb

write

ii′jj′

V elec
nlbMaMb

= gm(la, lb) 〈LML |Q̂m
la |LM ′

L〉 〈Λ |qm′

lb
|Λ′〉 δMa,mδMb,m′ (10)

and n = la + lb + 1. To simplify the notation, i stands for {LML} and i′ for {L′M ′
L} for

carbon , j = {Λ} and j ′ = {Λ′} for OH. In present work, we have considered the electrostatic

energies of Eq. 9 including the dipole-quadrupole (la = 2, lb = 1) and quadrupole-quadrupole

(la = lb = 2) interactions. In such a case, the permanent dipole and quadrupole moments of

OH as well as the permanent quadrupole moment of carbon atom are required to evaluate

the interaction coefficients of Eq. 10.

B. Formalism for the dispersion energy

From second-order perturbation theory, the dispersion energy results from induced-

multipole induced-multipole interactions and can be written as
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E
JMJJ ′M ′

J
ΛΣΛ′Σ′

disp = −
∑

lalbl′al′
b

1

Rn

∑

MLMSM ′

L
M ′

S

〈LSMLMS | JMJ〉 〈LSM ′
LM ′

S | J ′M ′
J〉 δMSM ′

S
δΣΣ′

×
l<

∑

m=−l<

gm(la, lb)

l′<
∑

m′=−l′<

gm′(l′a, l
′
b)

∑

kbk
′

b

dlb
−mkb

(γ)d
l′
b

−m′k′

b

(γ) (11)

×
∑

Γ′′

aΓ′′

b

〈LML |Q̂m
la
|L′′M ′′

L〉 〈L′′M ′′
L |Q̂m′

l′a
|L′M ′

L〉 〈Λ |q̂kb

lb
|Λ′′〉 〈Λ′′ |q̂k′

b

l′
b

|Λ′〉
ε′′a + ε′′b

where n = la + l′a + lb + l′b + 2 and ε′′ = EΓ′′ − E0 is the energy difference between the

ground and excited-states labelled Γ′′ = {γ′′L′′M ′′
L} or {γ′′Λ′′}, where γ′′ stands for all other

quantum numbers necessary to define the monomer state.

Using the following definition for the imaginary frequency-dependent polarizabilities as-

sociated with each monomer

ii′αlml′m′(iω) =
∑

Ψ′′

2ε′′ 〈Ψi
0 |Q̂m

l |Ψ′′〉 〈Ψ′′ |Q̂m′

l′ |Ψi′

0

〉

ε′′2 + ω2
(12)

where i, i′ stand for {LML}, {L′M ′
L} for carbon or {Λ}, {Λ′} for OH, and using the Casimir-

Polder integral transformation, one has

Dii′jj′

lal′amlbl′
b
kb

=
∑

Γ′′

aΓ′′

b

〈LML |Q̂m
la
|L′′M ′′

L〉 〈L′′M ′′
L |Q̂m′

l′a
|L′M ′

L〉 〈Λ |q̂kb

lb
|Λ′′〉 〈Λ′′ |q̂k′

b

l′
b

|Λ′〉
ε′′a + ε′′b

=
1

2π

∫ ∞

0

dω ii′αlaml′am′(iω) jj′

αlbkbl
′

b
k′

b
(iω). (13)

The integrals Dii′jj′

lal′amlbl
′

b
kb

are zero unless m′ = ML−M ′
L−m and k′

b = Λ−Λ′−kb, so that the

quantum numbers m′ and k′
b have been omitted in the label of these quantities. Following

Spelsberg et al. [18], coupled quantities can either be defined as

Dii′jj′

(lal′a)LaMa(lbl′
b
)LbMb

=
∑

mm′kbk′

b

〈laml′am
′ | LaMa〉 〈lbkbl

′
bk

′
b | LbMb〉Dii′jj′

lal′amlbl
′

b
kb

=
1

2π

∫ ∞

0

dω ii′α(lal′a)LaMa
(iω) jj′

α(lbl′
b
)LbMb

(14)

where the coupled dynamic polarizabilities are defined as
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ii′α(ll′)LM (iω) =
∑

mm′

〈lml′m′ | LM〉 ii′αlml′m′(iω). (15)

From the Clebsch-Gordan coefficients of Eqs. 14 and 15, it follows that the coupled Casimir-

Polder integrals are zero unless Ma = m+m′ = ML−M ′
L for carbon and Mb = kb+k′

b = Λ−Λ′

for OH. Furthermore, we use the following contraction scheme

dlb
−mkb

(γ)d
l′
b

−m′k′

b

(γ) =
∑

LbMMb

〈lbkbl
′
bk

′
b | LMb〉 〈lb − ml′b − m′ | L − M〉 dLb

−MMb
(γ). (16)

from which it follows that M = m + m′ = Ma from above.

Using Rels. 11,13, 14 and 16, the final expression for the dispersion energy matrix elements

in the |JMJ〉 |Λ, Σ〉 diabatic basis set writes

E
JMJJ ′M ′

J
ΛΣΛ′Σ′

disp = −
∑

lalbl′al′
b

1

Rn

∑

MLMSM ′

L
M ′

S

〈LSMLMS | JMJ〉 〈LSM ′
LM ′

S | J ′M ′
J〉 δMSM ′

S
δΣΣ′

×
∑

LaLbMaMb

g2(la, l
′
a, lb, l

′
b, La, Lb, Ma)D

ii′jj′

(lal′a)LaMa(lbl′
b
)LbMb

dLb

−MaMb
(γ) (17)

where n = la + l′a + lb + l′b + 2 and the g2 coefficient (defined by Rel.(10) of Ref. [10]) reads

g2(la, l
′
a, lb, l

′
b, La, Lb, Ma) =

∑

mm′λ

gm(la, lb)gm′(l′a, l
′
b) 〈lb − ml′b − m′ | Lb − Ma〉 〈laml′am

′ | LaMa〉

= (−1)lb+l′
b









2Lab

2la









2L′
ab

2l′a









1/2

[(2Lab + 1)(2L′
ab + 1)(2La + 1)(2Lb + 1)]

1/2

×〈Lab0L
′
ab0 | λ0〉 〈LaMaLb − Ma | λ0〉



















la l′a La

lb l′b Lb

Lab L′
ab λ



















δLab,la+lbδL′

ab
,l′a+l′

b
(18)

The dispersion energy matrix elements can also be expanded as

E
JMJJ ′M ′

J
ΛΣΛ′Σ′

disp = −
∑

lalbl′al′
b

1

Rn

∑

MLMSM ′

L
M ′

S

〈LSMLMS | JMJ〉 〈LSM ′
LM ′

S | J ′M ′
J〉

×δMSM ′

S
δΣΣ′

∑

LbMaMb

ii′jj′

V disp
nLbMaMb

dLb

−MaMb
(γ) (19)

where the dispersion interaction coefficients ii′jj′

V disp
nLbMaMb

write

ii′jj′

V disp
nLbMaMb

=
∑

La

g2(la, l
′
a, lb, l

′
b, La, Lb, Ma)D

ii′jj′

(lal′a)LaMa(lbl′
b
)LbMb

(20)
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and are zero unless Ma = ML − M ′
L and Mb = Λ− Λ′. In present work, we have considered

the dipole-induced dipole-induced interactions (la = lb = l′a = l′b = 1) and truncated the

expansion of Eq. 19 after terms in R−6. In such a case, the dipole dynamic polarizabilities

of C and OH are needed to evaluate the interaction coefficients of Eq. 20.

C. Formalism for the induction energy

If one of the two monomers has a permanent multipole, second-order perturbation theory

leads to the induction energy, which results from the interaction between a permanent

multipole and an induced-multipole. It can be written as

E
JMJJ ′M ′

J
ΛΣΛ′Σ′

ind = −
∑

lalbl′al′
b

1

Rn

∑

MLMSM ′

L
M ′

S

〈LSMLMS | JMJ〉 〈LSM ′
LM ′

S | J ′M ′
J〉 δMSM ′

S
δΣΣ′

×
l<

∑

m=−l<

gm(la, lb)

l′<
∑

m′=−l′<

gm′(l′a, l
′
b)

∑

kbk
′

b

dlb
−mkb

(γ)d
l′
b

−m′k′

b

(γ) (21)

×
∑

Γ′′

a

〈LML |Q̂m
la
|L′′M ′′

L〉 〈L′′M ′′
L |Q̂m′

l′a
|L′M ′

L〉
ε′′a

〈Λ |q̂kb

lb
|Λ′〉 〈Λ′ |q̂k′

b

l′
b

|Λ〉

where, again, n = la + l′a + lb + l′b + 2. The Wigner-Eckart theorem implies that kb = −k′
b =

Λ − Λ′ = 0,±2 (for a Π state diatom).

Using the following definition for the atomic static polarizability

LMLLM ′

Lαlml′m′ = 2
∑

Γ′′

〈LML |Q̂m
l |L′′M ′′

L〉 〈L′′M ′′
L |Q̂m′

l′ |LM ′
L〉

ε′′
(22)

and using the contraction scheme given by Eq. 16, then Eq. 21 reads

E
JMJJ ′M ′

J
ΛΣΛ′Σ′

ind = −
∑

lalbl′al′
b

1

Rn

∑

MLMSM ′

L
M ′

S

〈LSMLMS | JMJ〉 〈LSM ′
LM ′

S | J ′M ′
J〉

×δMSM ′

S
δΣΣ′

∑

Lb

ii′jj′

V ind
nLbMa0 dLb

−Ma0(γ) (23)
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where the induction interaction coefficients ii′jj′

V ind
nLbMa0 read

ii′jj′

V ind
nLbMa0 =

l<
∑

m=−l<

gm(la, lb)

l′<
∑

m′=−l′<

gm′(l′a, l
′
b) (24)

×〈lb(Λ − Λ′)l′b(Λ
′ − Λ) | Lb0〉 〈lb − ml′b − m′ | Lb − Ma〉

× 〈Λ |q̂(Λ−Λ′)
lb

|Λ′〉 〈Λ′ |q̂(Λ′−Λ)
l′
b

|Λ′〉
ii′αlaml′am′

2

where < Λ|q̂kb

lb
|Λ′ > are the permanent multipole moments of monomer B (i.e. OH). Again,

matrix elements of Eq. 24 are zero unless Ma = m+m′ = ML−M ′
L. We have considered here

the dipole dipole-induced contribution (la = lb = l′a = l′b = 1) and truncated the expansion

of Eq. 23 after terms in R−6. The permanent dipole moment of OH and the static dipole

polarizabilities of carbon atom are thus required to determine the interaction coefficients of

Eq. 24.

III. RESULTS AND DISCUSSION

A. Permanent multipole moments

We present in Table I values for the permanent dipole and quadrupole moments of C(3P )

and OH(X2Π) which have been employed in the present work to derive the C+OH interaction

coefficients. For OH, we have taken the experimental value of Ref. [19] for Q0
1, and the most

recent ab initio values of Ref. [9] for Q0
2 and Q±2

2 , corresponding to MRCI calculations with

aug-cc-pVTZ basis set. For C(3P ), we have taken the Q0
2 experimental value of Ref. [23].

B. Static and dynamic polarizabilities

To evaluate properly the polarization energy (induction plus dispersion contributions),

accurate values of the static (for carbon atom only) and dynamic polarizabilities (for C and

OH) are required. For OH, we have generated the dynamic polarizabilities from the pseudo-

oscillator strengths and pseudo-energies tabulated by Spelsberg in Ref. [10] for xxα±±
lml′m′

and xyα±∓
lml′m′ . Those values were computed by means of single-excitation MRCI calculations

(SE-MRCI) within the averaged coupled pair functional formalism (ACPF) and the basis set

of Ref. [25]. It is worth to note that the polarizabilities of Ref. [10] correspond to electronic

11



wavefunctions and multipole moment operators of definite symmetry with respect to σxz,

the reflection through the xz plane. In such a case, the symmetrized wavefunctions are

labeled |(Λ = 1)+〉 = |Π+〉 = |x〉 and |(Λ = 1)−〉 = |Π−〉 = |y〉. We have also the following

equivalences between the present notation for cartesian polarisabilities and those given in

Ref. [10]: xxαzz =xx α++
1010( [10]), xxαxx =xx α++

1111( [10]), and xxαyy =xx α−−
1111( [10]) for the

|x〉 state (and equivalently for the |y〉 state). The latter cartesian components are reported

in Table II together with literature values. The corresponding dynamic components are

also tabulated in Table II at selected values of the imaginary frequency. Furthermore, while

ab initio calculations furnish cartesian components of the polarizabilities, the associated

spherical components are required to determine the interaction coefficients given by Eq. 20.

Relations between both components are given in Appendix C and result from the inversion

of Rel.(19) of Ref. [10]

Q̂m
l =

√

(1 + δm0)

2
(−σm)m[Q̂+

l|m| + iσmQ̂−
l|m|] (25)

where σm=sign(m) and ± is the parity by reflection through the xz plane. An equivalent

relation is used to relate the complex wavefunctions |Λ = ±1〉 to the real ones |(Λ = 1)±〉
of definite symmetry.

For carbon, the dynamic polarizabilities have been calculated by means of the MCSCF

linear response method [27] as implemented in ab initio quantum chemistry code of Dal-

ton [28]. We performed CASSCF calculations including 13 orbitals (2s, 2p, 3s, 3p, 3d) and 4

electrons in the active space with the aug-cc-pVQZ basis set, which provided a set of Cauchy

moments for each of the ML substate. Then we used analytical continuation techniques fol-

lowing the [n, n − 1]α and [n, n − 1]β Padé approximants procedures defined in Ref. [29] to

get lower and upper bounds to the dynamic polarizabilities LMLαzz(iω). With n = 10, the

associated dispersion coefficients CC−C
6 are found to be converged within 0.02%. Parallel

LMLαzz and perpendicular LMLαxx components of the static polarisability associated with

the ML = 0 substate are reported in Table II together with literature values (for atoms

in a P state LML=±1αzz = LML=0αxx). The corresponding dynamic components are also

tabulated in Table II at selected values of the imaginary frequency. To get the whole set

of spherical components of polarizability needed in Eqs. 20 and 24, we followed Chu et

al. [30] and derived an extention of Eq.(A5) of Ref. [30] including diagonal (ML = M ′
L) and

12



off-diagonal (ML 6= M ′
L) spherical components of polarizability:

LMLLM ′

Lαlml′m′(iω) =
∑

KQ

Lα(ll′)K(iω)(−1)ML+M ′

L
〈lml′m′ | KQ〉 〈LMLK − Q | LM ′

L〉
〈l0l′0 | K0〉 〈LLK0 | LL〉 (26)

where the reduced matrix element Lα(ll′)K(iω) is defined as

Lα(ll′)K(iω) =

√

(2K + 1)
√

(2L + 1)

∑

Γ′′

2ε′′ 〈L ||Q̂l ||L′′〉 〈L′′ ||Q̂l′ ||L〉
ε′′2 + ω2







LL′′l

l′KL







(27)

×〈l0l′0 | K0〉 〈LLK0 | LL〉

In the case of dipole polarizabilities, l = l′=1. For symmetry reason, in present case, only

Lα(ll′)K(iω) with even K will contribute to the C+OH interaction coefficients, so that the

knowledge of Lα(11)0 and Lα(11)2 is suffisant to get the whole set of LMLLM ′

Lαlml′m′ spherical

components. These two quantities were derived from the calculated diagonal components

LMLLMLα1010(iω) = LMLαzz(iω) using the relation

LMLLMLα1010(iω) = Lα(11)0(iω) + Lα(11)2(iω)
〈LML20 | LML〉
〈LL20 | LL〉 (28)

= Lα(11)0(iω) + Lα(11)2(iω)
3M2

L − L(L + 1)

L(2L − 1)
(29)

from which we obtain the inverse relations for ML=0 and ML = ±1

Lα(11)0(iω) =
2 LML=±1αzz(iω) + LML=0αzz(iω)

3
(30)

Lα(11)2(iω) =
LML=±1αzz(iω) − LML=0αzz(iω)

3
(31)

C. Interaction coefficients

From the knowledge of permanent multipole, static and dynamic polarisabilities of C(3P )

and OH(X2Π), long range multipolar matrix elements ii′jj′

VnLbMaMb
can be evaluated for the

electrostatic (Eq. 10), induction (Eq. 24) and dispersion (Eq. 20) energies. The ii′jj′

VnLbMaMb

coefficients are given in LS coupling case in Tables III and IV for the electrostatic and

polarization (induction plus dispersion) contributions, respectively, where i or i′ stands for

|LSMLMS〉 for C(3P ) (with L = S = 1) and j or j ′ stands for |ΛΣ〉 for OH(X2Π) (with

Λ = ±1, Σ = ± 1
2
). Rels. 9, 19 and 23 will then generate the related coefficients in JJ

coupling case, i.e. in the |JMJ〉 basis for carbon and in the doubly degenerate | ± Ω〉 basis
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for OH. In this last case, the | ± Ω〉 set of wavefunctions are directly obtained from those in

the LS coupling case by the relations | ± Ω〉 = | ± Λ ± Σ〉 or | ± Ω〉 = | ± Λ ∓ Σ〉.
In present work, the electrostatic coefficients have been tabulated for the dipole-

quadrupole (n=4) and quadrupole-quadrupole (n=5) interactions, the dispersion coefficients

for the dipole-induced dipole-induced (n=6) interactions and the induction coefficients for

dipole dipole-induced interaction (n=6). Notice that the induction coefficients vanish for

off-diagonal matrix elements |Λ − Λ′| = 2, due to the restriction given by |Λ − Λ′| ≤ lb,

where lb=1 for dipole. To the best of our knowledge, the C-OH interaction coefficients are

determined here for the first time, and thus, there is no possible comparison with other

tabulated values. Nevertheless, estimated values of state-averaged coefficients for dispersion

and induction contributions can be retrieved following Nielson et al. [31] i.e. for C6(0,ind)

(Eq. 32b), C6(0,disp) (Eq. 41) and C6(2,disp) (Eq.42). Using the dipole moment and static

polarizabilities values of Tables I and II, together with the rough London approximation to

evaluate the dispersion coefficients as was used in Ref. [23], we get C6(0,ind)=-4.955 a.u.,

C6(0,disp)=-31.89 a.u. and C6(2,disp)=-2.52 a.u. These values are found in good agreement

with present state-averaged coefficients i.e. -4.955, -35.93, -2.73 a.u. respectively.

D. Long-range multipolar potentials

The full multipolar potential has been determined in the |JMJ〉|ΛΣ〉 basis set from

E
JMJJ ′M ′

J
ΛΣΛ′Σ′

tot = E
JMJJ ′M ′

J
ΛΣΛ′Σ′

elec + E
JMJJ ′M ′

J
ΛΣΛ′Σ′

disp + E
JMJJ ′M ′

J
ΛΣΛ′Σ′

ind + E
JMJJ ′M ′

J
ΛΣΛ′Σ′

SO

(32)

where the electrostatic, dispersion and induction contribution are given by Eqs. 9, 19 and

23, respectively. The spin-orbit contribution E
JMJJ ′M ′

J
ΛΣΛ′Σ′

SO vanish unless J ′ = J, M ′
J =

MJ , Λ′ = Λ and Σ′ = Σ, and the non-zero diagonal matrix elements write as a function

of the fine structure splittings δOH and δJ,C. By sorting the |JMJ〉 states in the order

C(3P2), C(3P1) and C(3P0) with MJ indices running from top to bottom as MJ = J to

MJ = −J , the 18 spin-orbit matrix elements write as follows: {δ2,C + δOH, δ2,C + δOH, δ2,C +

δOH, δ2,C + δOH, δ2,C + δOH, δ1,C + δOH, δ1,C + δOH, δ1,C + δOH, δOH} for the first 9 states

|JMJ〉|ΛΣ〉, and {δ2,C, δ2,C, δ2,C, δ2,C, δ2,C, δ1,C, δ1,C, δ1,C, 0} for the remaining 9 states.

The upper 9 states correspond to |Λ = ±1, Σ = ∓1/2〉 while the lower 9 states correspond

to |Λ = ±1, Σ = ±1/2〉. The fine structure splitting values have been taken equal to the
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experimental values δOH = 139.7 cm−1 [33], δ1,C = 16.4 cm−1 and δ2,C = 43.4 cm−1 [34].

Using the tabulated values for the V ii′jj′

nLbMaMb
matrix elements, the full multipolar potential

matrix has been computed from Eq. 32, and subsequently diagonalized to compare the

resulting adiabatic long range multipolar PESs with ab initio PESs provided by super-

molecular calculations.

We compare in Figs. 1 and 2 the pure multipolar long-range potentials including electro-

static and induction contributions only with ab initio potentials evaluated at the CASSCF

level [7] for the 12 non-relativistic states of C+OH, i.e. neglecting the spin-orbit interaction.

The potentials are plotted as a function of the intermolecular distance R for γ = 0◦ in Fig. 1a

and for γ = 180◦ in Fig. 1b, as well as a function of γ for R = 25 bohr in Fig. 2. When

spin-orbit interactions are neglected, the 2,4Σ+,2,4 ∆,2,4 Σ− states form one group of quasi-

degenerate states with an attractive behavior at γ = 0◦ and with a repulsive behavior at

γ = 180◦,while the 2,4Π states display opposite behavior. As can be seen in Figs. 1 and 2 for

the doublet states (degenerate with their quartet counterparts at long-range), the multipolar

and ab initio interaction potentials display a similar behavior and are found in a quantitative

quite good agreement. The remaining small differences may result from the use of different

basis sets in the two calculations and from the uncorrected basis set superposition errors

(BSSE) of the CASSCF energies.

Full multipolar potentials including spin-orbit splitting have been plotted for the 18 spin-

orbit states of C+OH as a function of the intermolecular distance R for γ = 0◦ in Fig. 3a and

for γ = 180◦ in Fig. 3b, as well as a function of γ at R = 10 bohr in Fig. 4. In these figures,

the states are labelled according to the value of the quantum number Ω = MJ +Λ +Σ, well

defined for linear geometries of the complex. At short distance, once the spin-orbit splitting

becomes smaller than the binding energies, these states correlate to the 2S+1Λ states and

converge towards two groups of states as previously observed in Fig. 1. Nevertheless, due

to the contribution of dispersion energies, the group of states which displayed a repulsive

behavior for γ = 180◦ in Fig. 1b becomes attractive at short distance and small potential

barriers are observed around 7-8 bohr. In Fig. 4, we observe a quasi-isotropic potential for

the C+OH ground state. A slight preference appears for the approach of the carbon atom

on the hydrogen side of OH while the oxygen side is preferred in Fig 2 when spin-orbit

splittings are neglected. The complex spin-orbit structure of the long-range states of C +

OH shows also some conical intersections between states with same Ω value, as can be seen

15



in the 100-130 cm−1 energy range of Fig. 3a (γ = 0◦) or in the -50-40 cm−1 energy range of

Fig. 3b (γ = 180◦).

IV. CONCLUSION

We have calculated the long-range intermolecular potentials of the 18 spin-orbit states

resulting from the interaction between the two open-shell systems C(3P) and OH(X2Π).

The diatomic OH has been kept fixed at its ground vibrational state averaged distance r0.

The long-range interaction potentials are thus two-dimensional potential energy surfaces

(PESs) that depend on the intermolecular distance R and the angle γ between R and r.

The potential matrix elements have been evaluated within a diabatic basis set, built over

the unperturbed electronic wavefunctions of C and OH, and from the perturbation theory

up to second order using a two-center expansion of the coulombic intermolecular potential

operator. This gives rise to a multipolar expansion of the potential expressed as a series

of terms varying in R−n. The formalism to evaluate the long-range coefficients of such an

expansion is explicitly given for the first-order electrostatic and second-order polarization

(dispersion plus induction) contributions. The electrostatic energies include the dipole-

quadrupole (in R−4) and quadrupole-quadrupole (in R−5) interactions, while the dispersion

and induction energies have been limited to the terms varying in R−6, i.e. terms that

include the dipole-induced dipole-induced (dispersion) and dipole dipole-induced (induction)

interactions. The determination of the coefficients relies on the knowledge of monomer

properties such as the permanent multipole moments, static and dynamic polarizabilities

which have been carrefully calculated or selected from literature values. The final potential

matrix incorporates the atomic and diatomic spin-orbit splittings. The diagonalization of

the 18 × 18 full potential matrix generates the adiabatic long-range PESs. A comparison

of the present potentials with their ab initio counterparts obtained at the CASSCF level

within a supermolecule formalism has been undergoing, and a good agreement between

both approaches is observed.

16



ACKNOWLEDGMENTS

BBH acknowledges support from the ”Institut du Développement des Ressources en In-
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APPENDIX A

In this appendix, explicit expressions of the 〈JMJ |Q̂m
2 |J ′M ′

J〉 quadrupole matrix ele-

ments of carbon are given. Following the work of Graff and Wagner [8] and of Gentry and

Giese [17], we have expressed the 9 × 9 matrices as a function of the Q2(C) = 2 〈L0 |Q̂0
2 |L0〉

quantity (noted Q0 in Ref. [8]). From the relation,

〈JMJ |Q̂m
la |J ′M ′

J〉 = (−1)J ′−MJ+la
√

(2J + 1)(2J ′ + 1)





J ′ J la

M ′ −M M − M ′











L L la

J ′ J S







×〈L ||Q̂la ||L〉 (33)

and with the following definition

Q2(C) = 2 〈L0 |Q̂0
2 |L0〉 = 2(−1)L





L 2 L

0 0 0



 〈L| |Q̂2 ||L〉 , (34)

we obtain
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State : 3P2
3P1

3P0

MJ : 2 1 0 −1 −2 1 0 −1 0

〈

Q̂0
2(C)

〉

=
Q2(C)

4













































−1 0 0 0 0 0 0 0 0

0 1/2 0 0 0 −3/2 0 0 0

0 0 1 0 0 0 0 0 −
√

2

0 0 0 1/2 0 0 0 3/2 0

0 0 0 0 −1 0 0 0 0

0 −3/2 0 0 0 1/2 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 3/2 0 0 0 1/2 0

0 0 −
√

2 0 0 0 0 0 0













































, (35)

State : 3P2
3P1

3P0

MJ : 2 1 0 −1 −2 1 0 −1 0

〈

Q̂1
2(C)

〉

=
3Q2(C)

2
√

2













































0 1/
√

2 0 0 0 −1/
√

2 0 0 0

0 0 1/
√

12 0 0 0 1/2 0 −
√

2/3

0 0 0 −1/
√

12 0 0 0
√

3/4 0

0 0 0 0 −1/
√

2 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0
√

3/4 0 0 0 −1/2 0 0

0 0 0 1/2 0 0 0 1/2 0

0 0 0 0 −1/
√

2 0 0 0 0

0 0 0
√

2/3 0 0 0 0 0













































,

(36)
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State : 3P2
3P1

3P0

MJ : 2 1 0 −1 −2 1 0 −1 0

〈

Q̂2
2(C)

〉

= 3Q2(C)













































0 0 −1/
√

6 0 0 0 1/
√

2 0 −1/
√

3

0 0 0 −1/2 0 0 0 1/2 0

0 0 0 0 −1/
√

6 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1/2 0 0 0 1/2 0

0 0 0 0 −1/
√

2 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 −1/
√

3 0 0 0 0













































(37)

V. APPENDIX B

In this appendix, we give the explicit γ-dependence of the reduced dl
mm′ rotation matrices

used in this work:

l m m’ dl
mm′ l m m’ dl

mm′

1 0 0 cos(γ) 2 2 0
√

6
4

sin2(γ)

1 1 0 − sin(γ)√
2

2 2 1 −1+cos(γ)
2

sin(γ)

2 0 0 3
2
cos2(γ) − 1

2
2 2 -1 −1−cos(γ)

2
sin(γ)

2 1 0 −
√

3
2
sin(γ) cos(γ) 2 2 2 [ 1+cos(γ)

2
]2

2 2 -2 [1−cos(γ)
2

]2

Usual relations[32] hold to get other rotation matrices,

dl
mm′ = dl

−m′−m = (−1)m′−mdl
m′m
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VI. APPENDIX C

Using the following definition for the spherical components of the dynamic polarizability

of OH in the |Λ = ±1〉 electronic basis set

ΛΛ′

αlml′m′(iω) =
∑

Γ′′

2ε′′ 〈Λ |Q̂m
l |Γ′′〉 〈Γ′′ |Q̂m′

l′ |Λ′〉
ε′′2 + ω2

(38)

and using Eq. 25 to relate the spherical multipole moment operators Q̂m
l and |Λ = ±1〉

wavefunctions to their associated symmetrized components, Q̂±
l|m| and |(Λ = 1)±〉, where ±

labels the parity by reflection through the xz plane, we can relate the spherical components

of the dynamic polarizability to the cartesian ones defined as

pp′

αqq′

lml′m′(iω) =
∑

Γ′′

2ε′′ 〈Λp |Q̂q
lm |Γ′′〉 〈Γ′′ |Q̂q′

l′m′ |Λ′p′
〉

ε′′2 + ω2
(39)

where p, p′, q, q′ = ± is the parity, and pp′

αqq′

lml′m′ = p′pαqq′

lml′m′ . In the case of the dipole

polarizability (l = l′ = 1) associated with a diatom in a Π state (Λ = ±1) we obtain the

following relation between the spherical and cartesian components

ΛΛ′

α1m1m′(iω) =
1

4
[(1 + δm0)(1 + δm′0)]

1/2 (−σΛ)Λ(−σΛ′)Λ′

(−σm)m(−σm′)m′

×
{

++α++
1m1m′(iω) − σΛσΛ′σmσm′(1 − δm0)(1 − δm′0)

−−α−−
1m1m′(iω)

+ σΛσΛ′

−−α++
1m1m′(iω) − σmσm′(1 − δm0)(1 − δm′0)

++α−−
1m1m′(iω)

+ [σΛσm(1 − δm0) − σΛ′σm(1 − δm0)]
+−α−+

1m1m′(iω)

+ [σΛσm′(1 − δm′0) − σΛ′σm′(1 − δm′0)]
+−α+−

1m1m′(iω)
}

(40)

where σΛ = sign(Λ), σm = sign(m), and where it holds the following equalities ++α++
1010 =

−−α++
1010,

++α++
1111 = −−α−−

1111 and ++α−−
1111 = −−α++

1111 for a Π diatom [10]. The present notation

for cartesian components are related to that of Ref. [10] by

++α++
1010 =xx α++

1010([10]) =xx αzz

++α++
1111 =xx α++

1111([10]) =xx αxx
++α−−

1111 =xx α−−
1111([10]) =xx αyy

+−α+−
1111 =xy α+−

1111([10]) =xy αxy
+−α−+

1111 =xy α−+
1111([10]) =xy αyx (41)
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TABLE I: Static multipole moments (in atomic units) for C(3P ) and OH(X2Π).

C(3P ) OH(X2Π)

Q0
1 0.651a,b, 0.64628c

0.6545d, 0.6512e

Q0
2 +1.539f , +1.42g,+1.397h 1.35a, 1.30827c

+1.556i,-1.426j 1.3939d

Q±2
2 -1.070a, -0.85941c, -1.1825d

Q±2
2 (GW)k -5.24a, -4.21c, -5.79d

aRef. [13]; bExperimental value: Ref. [19]; cRef. [10]; dRef. [9]; eRef. [20]; f RHF value (small

CASSCF) of Ref.[21]; gCASSCF value of Ref. [21]; hRef. [22]; iRef. [23]; jRef. [24]; kValues with

the convention of Graff and Werner, as given by Eq. (8).
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TABLE II: Static and dynamic dipole polarizabilities (in a3
0) for C(3P ) and OH(X2Π).

C(3Pzz) OH(X2Π)

ω αzz αxx ω xxαzz
xxαxx

xxαyy < α >

0.0 10.264a, 9.62b 12.396a, 11.6b 8.751c 6.374c 7.554c 7.557 c

9.82/9.95d 11.92/12.11d 8.70a 6.26a 7.65a 7.54a,7.053e

10.59/9.98e 12.12/12.80e

ω α
f
zz α

f
xx ω xxα

g
zz

xxα
g
xx

xxα
g
yy

0.1 9.799 11.603 0.5 5.408 4.200 4.448

0.2 8.675 9.847 1.0 2.886 2.512 2.527

0.3 7.353 8.018 1.5 1.724 1.554 1.558

0.4 6.122 6.484 2.0 1.120 1.018 1.024

0.5 5.084 5.283 2.5 0.775 0.706 0.712

0.6 4.242 4.358 3.0 0.564 0.513 0.520

0.7 3.570 3.642 3.5 0.427 0.388 0.394

0.8 3.032 3.082 4.0 0.334 0.303 0.308

0.9 2.600 2.637 4.5 0.267 0.243 0.247

1.0 2.250 2.280 5.0 0.219 0.199 0.202

a Linear response values of present work; bRef. [24]; c Ref. [10]; dCASSCF and averaged CASPT2

values of Ref. [21]; eTDUHF and ROHF-FF values of Ref. [26] at rOH
0 = 1.95a0;

fevaluated from

[10,9] Padé approximants obtained from Cauchy moments; gobtained from OH pseudo-spectra of

Ref. [10] calculated at rOH
0 = 1.865a0.
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TABLE III: Long-range non zero ii′jj′

V4LbMaMb
and ii′jj′

V5LbMaMb
electrostatic coefficients (in

atomic units) for the C(3P ) + OH(X2Π) interaction.

LML L′M ′
L ΛΛ′ Ma Mb Lb

ii′jj′

V elec
4 Ma Mb Lb

ii′jj′

V elec
5

±1 ±1 ±1±1 0 0 1 -1.5199 0 0 2 -6.5067

±1 0 ±1±1 -1 0 1 1.5199 -1 0 2 7.5133

±1 ∓1 ±1±1 -2 0 1 0.000 -2 0 2 -2.6564

0 ±1 ±1±1 1 0 1 -1.5199 1 0 2 -7.5133

0 0 ±1±1 0 0 1 3.0398 0 0 2 13.013

±1 ±1 ±1∓1 0 2 2 5.5199

±1 0 ±1∓1 -1 2 2 -6.3738

±1 ∓1 ±1∓1 -2 2 2 2.2535

0 ±1 ±1∓1 1 2 2 6.3738

0 0 ±1∓1 0 2 2 -11.0398
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TABLE IV: Long-range non zero ii′jj′

V6LbMaMb
dispersion and induction coefficients (in atomic

units) for the C(3P ) + OH(X2Π) interaction.

ML M ′
L ΛΛ′ Ma Mb Lb

ii′jj′

V
disp
6 ML M ′

L ΛΛ′ Ma Mb Lb
ii′jj′

V ind
6

±1 ±1 ±1±1 0 0 0 -36.529 -1 -1 ±1±1 0 0 0 -5.106

±1 ±1 ±1±1 0 0 2 -2.871 -1 -1 ±1±1 0 0 2 -5.407

±1 0 ±1±1 -1 0 2 0.168 -1 0 ±1±1 -1 0 2 0.522

±1 ∓1 ±1±1 -2 0 2 -0.119 -1 1 ±1±1 -2 0 2 -0.369

0 ±1 ±1±1 1 0 2 -0.168 0 -1 ±1±1 1 0 2 -0.522

0 0 ±1±1 0 0 0 -34.737 0 0 ±1±1 0 0 0 -4.654

0 0 ±1±1 0 0 2 -2.435 0 0 ±1±1 0 0 2 -4.051

±1 ±1 ±1∓1 0 ±2 2 -1.532

±1 0 ±1∓1 -1 ±2 2 0.109

±1 ∓1 ±1∓1 -2 ±2 2 -0.077

0 ±1 ±1∓1 1 ±2 2 -0.109

0 0 ±1∓1 0 ±2 2 -1.248
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FIGURES CAPTIONS

FIGURE 1. Electrostatic plus induction (continuous line) or electrostatic only (dashed line)

potential energies (in cm−1) for the 12 non-relativistic long-range C(3P) + OH(X2Π) states

as a function of the intermolecular distance R (in bohr) for linear geometries of the com-

plex. The long-range multipolar potentials are compared with previous ab initio CASSCF

calculations. (a)γ=0◦: X2A′(2Σ+)(circle), 22A′ − 12A′′(2∆)(square), 22A′′(2Σ−)(cross),

32A′−32A′′(2Π)(triangle); (b)γ=180◦: (X2A′−12A′′(2Π)(square), 22A′(2Σ+)(circle), 32A′−
22A′′(2∆)(triangle), 32A′′(2Σ−)(cross).

FIGURE 2. Electrostatic plus induction (continuous line) or electrostatic only (dashed

line) potential energies (in cm−1) for the 12 non-relativistic long-range C(3P) + OH(X2Π)

states as a function of the OH bending angle, γ (in degree) at intermolecular distance, R=25

bohr. The long-range multipolar potentials are compared with previous ab initio CASSCF

calculations: X2A′(2Σ+ −2 Π)(square), 22A′(2∆ −2 Σ+)(circle), 32A′(2Π−2 ∆)(triangle up),

12A′′(2∆ −2 Π)(diamond), 22A′′(2Σ− −2 ∆)(triangle down), 32A′′(2Π −2 Σ−)(cross).

FIGURE 3. Full (electrostatic + induction + dispersion) multipolar potential energies

(in cm−1 ) including monomer spin-orbit splittings for the 18 long-range C(3P) + OH(X2Π)

states as a function of the intermolecular distance R (in bohr) at (a) γ=0◦ and (b)γ=180◦.

States are characterized by their Ω value: 7
2
(continuous), 5

2
(dotted), 3

2
(dot-dashed) or 1

2

(short dashed).

FIGURE 4. Full (electrostatic + induction + dispersion) multipolar potential energies

(in cm−1) including monomer spin-orbit splittings for the 18 long-range C(3P) + OH(X2Π)

states as a function of the OH bending angle, γ (in degree) at intermolecular distance, R=10

bohr.
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Figure 1a: Bussery-Honvault et al.
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Figure 3a: Bussery-Honvault et al.
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